JP2007173062A - Method and apparatus of producing flat battery - Google Patents

Method and apparatus of producing flat battery Download PDF

Info

Publication number
JP2007173062A
JP2007173062A JP2005369641A JP2005369641A JP2007173062A JP 2007173062 A JP2007173062 A JP 2007173062A JP 2005369641 A JP2005369641 A JP 2005369641A JP 2005369641 A JP2005369641 A JP 2005369641A JP 2007173062 A JP2007173062 A JP 2007173062A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
injection
nonaqueous electrolyte
electrode body
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369641A
Other languages
Japanese (ja)
Other versions
JP5114842B2 (en
Inventor
Takayuki Aoi
隆幸 青井
Kenichi Konishi
謙一 小西
Masaki Sakota
正記 迫田
Seiichi Kato
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005369641A priority Critical patent/JP5114842B2/en
Publication of JP2007173062A publication Critical patent/JP2007173062A/en
Application granted granted Critical
Publication of JP5114842B2 publication Critical patent/JP5114842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus of producing flat batteries which assures batteries of high liquid injection accuracy, by impregnating an electrode assembly placed in a housing case with nonaqueous electrolyte solution, without leaving it standing in the atmosphere or in a depressurized condition over long times, to suppress variation in the amount of liquid injection of the electrolyte solution and component changes in the solution. <P>SOLUTION: When nonaqueous electrolyte solution is sucked or injected in an upper case 1 in which the electrode assembly 2 is placed, the solution is temporarily stored in a syringe 11 for the nonaqueous electrolyte solution sealed with a injection piston 8 at a suction stage A. After it is moved to an injection stage B, the solution is supplied by the injection piston 8 at high accuracy. When the solution comes into contact with an injection guide ring 13, the surface tension of the solution, generated on the electrode assembly 2, is broken and by covering the entire circumference and entire surface, the assembly 2 is covered and the case 1 and the assembly 2 is filled with the solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電極体を収納した扁平形電池のケースに速やかに非水電解液を電極体に含浸させるのに最適な扁平形電池の製造方法およびその製造装置に関するものである。   The present invention relates to a method for manufacturing a flat battery and an apparatus for manufacturing the same, which are suitable for quickly impregnating an electrode body with a non-aqueous electrolyte in a case of the flat battery containing the electrode body.

近年、扁平形電池に代表されるコイン形電池は車載用や時計の主電源等として厳しい環境に耐えうる10年間保証という長期間の信頼性のあるコイン形電池の需要が拡大する傾向にある。コイン形電池の製造工程においては、安定したコイン形電池の品質を確保したバラツキの少ないモノづくりが要求され、特に非水電解液の注液量は長期間の保存性を確保するための保存特性を左右する大きな要因となり、バラツキが少ない厳しい注液量の精度が求められている。   In recent years, coin-type batteries represented by flat batteries tend to have an increasing demand for long-term reliable coin-type batteries with a 10-year warranty that can withstand harsh environments as the main power source for vehicles and watches. In the manufacturing process of coin-type batteries, it is required to manufacture products with little variation to ensure stable quality of coin-type batteries. Especially, the amount of non-aqueous electrolyte injected is a storage characteristic to ensure long-term storage. The accuracy of the strict injection volume with little variation is required.

コイン形電池は、負極体と正極体とセパレータとの積層構造からなる電極体を収納した上ケースに非水電解液を注液した後、上ケースに下ケースを被せ、下ケースの開口部をかしめ封口して製造される。上ケースに非水電解液を注液する際、高密度な活物質からなる電極体に非水電解液を含浸させるには時間がかかる。さらに、非水電解液を含浸させるため長い時間放置すると非水電解液の気化により非水電解液が蒸発し非水電解液量のバラツキや成分変化を招く。   A coin-type battery is prepared by injecting a non-aqueous electrolyte into an upper case that houses an electrode body having a laminated structure of a negative electrode body, a positive electrode body, and a separator, and then covering the upper case with the lower case and covering the opening of the lower case. It is manufactured by caulking and sealing. When the non-aqueous electrolyte is injected into the upper case, it takes time to impregnate the electrode body made of a high-density active material with the non-aqueous electrolyte. Further, if the nonaqueous electrolytic solution is left for a long period of time to impregnate the nonaqueous electrolytic solution, the nonaqueous electrolytic solution evaporates due to vaporization of the nonaqueous electrolytic solution, resulting in variations in the amount of the nonaqueous electrolytic solution and component changes.

従来の非水電解液の注液方法として、図4に示されるように定量ノズル112で非水電解液を一時貯溜室105に所定の非水電解液量が供給され、ピストン103は一時貯溜室105の上端を閉塞し、ピストン103の上端の排気口109より一時貯溜室105内の空気を排気し減圧する。また、一時貯溜室105内と減圧チャンバー104内の空気を排気口106により排気し、ケース101の内部を減圧状態にし、一時貯留室105に挿入されたピストン103で非水電解液が押し出されて、注液管102を通過することにより、減圧状態にある減圧チャンバー104内のケース101に所定量の非水電解液を注入させる方法が提案されている(例えば、特許文献1参照)。
特開2004−055238号公報
As a conventional non-aqueous electrolyte injection method, as shown in FIG. 4, a predetermined amount of non-aqueous electrolyte is supplied to the temporary storage chamber 105 by a metering nozzle 112, and the piston 103 is used as a temporary storage chamber. The upper end of 105 is closed, and the air in the temporary storage chamber 105 is exhausted from the exhaust port 109 at the upper end of the piston 103 to reduce the pressure. Further, the air in the temporary storage chamber 105 and the decompression chamber 104 is exhausted through the exhaust port 106, the inside of the case 101 is decompressed, and the non-aqueous electrolyte is pushed out by the piston 103 inserted into the temporary storage chamber 105. A method of injecting a predetermined amount of non-aqueous electrolyte into the case 101 in the decompression chamber 104 in a decompressed state by passing through the liquid injection tube 102 has been proposed (see, for example, Patent Document 1).
JP 2004-055238 A

しかしながら、上述した特許文献に示される従来技術では、図4で示されるように一時貯溜室105を通して注液管102から非水電解液が吐出される際に、非水電解液が一時貯溜室105と注液管102の表面に付着することや注液ノズル110の下面接液面111に付着するために注液する非水電解液にバラツキが発生し小さな直径である扁平形電池の非水電解液量の微少量あるいは高精度を要求される小型の扁平電池においては微小量または高精度に注液するのが困難であった。   However, in the conventional technique shown in the above-mentioned patent document, when the nonaqueous electrolytic solution is discharged from the liquid injection pipe 102 through the temporary storage chamber 105 as shown in FIG. 4, the nonaqueous electrolytic solution is temporarily stored in the temporary storage chamber 105. And non-aqueous electrolysis of a flat battery having a small diameter due to variations in the non-aqueous electrolyte that is injected to adhere to the surface of the liquid injection tube 102 or to the lower surface wetted surface 111 of the liquid injection nozzle 110. In a small flat battery that requires a small amount of liquid or high accuracy, it has been difficult to inject a small amount or high accuracy.

本発明は上記従来の課題を鑑みて成されたもので、非水電解液タンクより非水電解液シリンジが自ら吸液して非水電解液シリンジに貯蔵された非水電解液を注液するという非水電解液の吸液および注液を同一の機構で行うことで、非水電解液の供給に使用する非水電解液定量供給ポンプ等の外部要因が不要となり、非水電解液定量供給ポンプによる非水電解液供給量のバラツキが皆無となる。また、上ケースに収納された電極体に非水電解液を含浸させる際、表面張力により球体状となった非水電解液を崩して、電極体の全体を非水電解液で覆って電極体に含浸することができるため、非水電解液を大気中もしくは減圧状態で長時間の放置することがなくなり、非水電解液の蒸発による注液量のバラツキや非水電解液の成分変化を抑えて、非水電解液の高い注液精度と成分維持を確保した扁平形電池
の製造方法およびその製造装置を提供することを目的としている。
The present invention has been made in view of the above-described conventional problems, and the nonaqueous electrolyte syringe absorbs itself from the nonaqueous electrolyte tank and injects the nonaqueous electrolyte stored in the nonaqueous electrolyte syringe. By using the same mechanism to absorb and inject nonaqueous electrolyte, external factors such as the nonaqueous electrolyte metering pump used to supply the nonaqueous electrolyte become unnecessary, and the nonaqueous electrolyte metered supply There is no variation in the amount of non-aqueous electrolyte supplied by the pump. In addition, when impregnating the non-aqueous electrolyte into the electrode body housed in the upper case, the non-aqueous electrolyte that has become spherical due to surface tension is broken, and the entire electrode body is covered with the non-aqueous electrolyte. As a result, the non-aqueous electrolyte will not be left for a long time in the atmosphere or under reduced pressure, and variations in the injection volume due to evaporation of the non-aqueous electrolyte and changes in the components of the non-aqueous electrolyte are suppressed. Thus, an object of the present invention is to provide a method for manufacturing a flat battery and a manufacturing apparatus therefor, which ensure high injection accuracy and component maintenance of a nonaqueous electrolyte.

上記目的を達成するために本発明は、正極活物質からなる正極材とリチウムを保持しうる材料を活物質としてなる負極材をこれらの間にセパレータを介在させて積層してなる電極体を開口部の周縁部に絶縁ガスケットを有した上ケースに収納後、非水電解液を注液し容器状の下ケースで上ケースの開口部を封口する扁平形電池の製造方法であって、電極体を収納した上ケースを気密チャンバー内に収納し気密チャンバーを減圧後、非水電解液タンクより非水電解液シリンジが自ら吸液して非水電解液シリンジに貯蔵された前記非水電解液を注液すると共に表面張力により球体状となった非水電解液を崩して、電極体の全体を非水電解液で覆いながら電極体に含浸することを特徴としている。   In order to achieve the above object, the present invention provides an electrode body in which a positive electrode material made of a positive electrode active material and a negative electrode material made of a material capable of holding lithium are stacked with a separator interposed therebetween. A method of manufacturing a flat battery in which a non-aqueous electrolyte is injected after sealing in an upper case having an insulating gasket at the peripheral edge of the part, and the opening of the upper case is sealed with a container-like lower case, the electrode body The non-aqueous electrolyte stored in the non-aqueous electrolyte syringe is stored in the non-aqueous electrolyte syringe after the non-aqueous electrolyte syringe absorbs itself from the non-aqueous electrolyte tank. It is characterized by impregnating the electrode body while pouring and breaking the nonaqueous electrolyte that has become spherical due to surface tension and covering the entire electrode body with the nonaqueous electrolyte.

本発明によれば、電極体を収納した上ケースを気密チャンバー内に収納し気密チャンバーを減圧後、非水電解液シリンジが自ら吸液し非水電解液シリンジに貯蔵している非水電解液を供給すると共に表面張力により球体状となった非水電解液を崩して、電極体の全体を非水電解液で覆いながら電極体に含浸することにより、非水電解液シリンジが自ら供給ポンプの役目を果たすと共に注液ポンプの役目を果たすために非水電解液の供給量のバラツキが抑制される。また、電極体への非水電解液の含浸時間が短時間で終了するために大気圧の中や減圧状態の中での長時間放置をせずに済み、非水電解液の蒸発による注液量のバラツキを抑制することができる。しかも、非水電解液の成分変化を抑えることが可能となる。   According to the present invention, the non-aqueous electrolyte solution in which the upper case containing the electrode body is housed in the airtight chamber and the airtight chamber is depressurized, and then the nonaqueous electrolyte syringe absorbs itself and is stored in the nonaqueous electrolyte syringe. The nonaqueous electrolyte syringe that has become spherical due to the surface tension is broken, and the electrode body is impregnated while covering the entire electrode body with the nonaqueous electrolyte solution. In order to fulfill the role and the role of the liquid injection pump, variations in the supply amount of the non-aqueous electrolyte are suppressed. In addition, since the impregnation time of the nonaqueous electrolyte into the electrode body is completed in a short time, it is not necessary to leave it for a long time in atmospheric pressure or in a reduced pressure state. Variation in the amount can be suppressed. In addition, it is possible to suppress changes in the components of the non-aqueous electrolyte.

本発明の第1の発明では、正極活物質からなる正極材とリチウムを保持しうる材料を活物質としてなる負極材とこれらの間にセパレータを介在させて積層してなる電極体を開口部の周縁部に絶縁ガスケットを有した上ケースに収納後、非水電解液を注液し容器状の下ケースで前記上ケースの開口部を封口する扁平形電池の製造方法であって、前記電極体を収納した上ケースを気密チャンバー内に収納し前記気密チャンバーを減圧後、非水電解液タンクより非水電解液シリンジが自ら吸液して非水電解液シリンジに貯蔵された前記非水電解液を注液すると共に表面張力により球体状になった非水電解液を崩して、前記電極体の全体を非水電解液で覆いながら前記電極体に含浸することにより、非水電解液の供給量バラツキが抑制され、さらに大気圧に数十秒間も非水電解液が曝されることや減圧状態で長時間曝されることがなく、非水電解液の飛散や非水電解液成分の蒸発を抑制し、非水電解液量のバラツキ、非水電解液の成分の変化を抑制することが可能となる。   In the first invention of the present invention, a positive electrode material composed of a positive electrode active material, a negative electrode material composed of a material capable of holding lithium as an active material, and an electrode body formed by laminating a separator therebetween are provided in the opening. A method for producing a flat battery, which is stored in an upper case having an insulating gasket at a peripheral edge, and then injected with a non-aqueous electrolyte and seals the opening of the upper case with a container-like lower case, the electrode body The non-aqueous electrolyte stored in the non-aqueous electrolyte syringe is stored in the non-aqueous electrolyte syringe after being stored in the non-aqueous electrolyte syringe by storing the upper case in the air-tight chamber and reducing the pressure of the air-tight chamber. The amount of non-aqueous electrolyte supplied is reduced by breaking the non-aqueous electrolyte that has become spherical due to surface tension and impregnating the electrode body while covering the entire electrode body with the non-aqueous electrolyte. Variations are suppressed and the atmosphere The non-aqueous electrolyte is not exposed to the pressure for several tens of seconds or in a reduced pressure state for a long time, and it prevents the non-aqueous electrolyte from splashing and the non-aqueous electrolyte components from evaporating. It becomes possible to suppress variations in the amount and changes in the components of the non-aqueous electrolyte.

本発明の第2の発明では、非水電解液シリンジ内に空気を含まないように非水電解液を充満し、非水電解液を上ケース内の電極体に注液し含浸することにより、大気圧に非水電解液が曝されることがなく、非水電解液の成分の蒸発を抑制し、非水電解液量のバラツキ、非水電解液の成分の変化を抑制できることが可能となる。   In the second invention of the present invention, the nonaqueous electrolyte syringe is filled with the nonaqueous electrolyte solution so as not to include air, and the nonaqueous electrolyte solution is injected and impregnated into the electrode body in the upper case. The non-aqueous electrolyte is not exposed to atmospheric pressure, it is possible to suppress the evaporation of the components of the non-aqueous electrolyte, and to suppress variations in the amount of the non-aqueous electrolyte and changes in the components of the non-aqueous electrolyte. .

本発明の第3の発明では、非水電解液タンクの非水電解液の温度を調整しながら、注液ノズルより上ケース内の電極体に非水電解液を注液し含浸することにより、非水電解液の温度を所定の温度に保つことで非水電解液の粘度を下げる効果があり、電極体への含浸性をさらに向上させることができる。   In the third invention of the present invention, by adjusting the temperature of the non-aqueous electrolyte in the non-aqueous electrolyte tank and injecting and impregnating the non-aqueous electrolyte into the electrode body in the upper case from the injection nozzle, By maintaining the temperature of the non-aqueous electrolyte at a predetermined temperature, there is an effect of reducing the viscosity of the non-aqueous electrolyte, and the impregnation property to the electrode body can be further improved.

本発明の第4の発明では、非水電解液タンク内の非水電解液貯蔵槽に供給した非水電解液をオーバーフローさせて非水電解液タンク内の非水電解液回収層で回収し、常に非水電解液貯蔵槽の非水電解液の液面を一定に保ちながら非水電解液シリンジに吸液することにより、非水電解液シリンジ内の空気の混入を防ぎ非水電解液のみで充満させることで、非
水電解液の高い注液精度を確保することが可能となる。
In the fourth invention of the present invention, the nonaqueous electrolyte supplied to the nonaqueous electrolyte storage tank in the nonaqueous electrolyte tank is overflowed and recovered in the nonaqueous electrolyte recovery layer in the nonaqueous electrolyte tank, By always sucking liquid into the non-aqueous electrolyte syringe while keeping the liquid level of the non-aqueous electrolyte in the non-aqueous electrolyte storage tank constant, the mixture of air in the non-aqueous electrolyte syringe is prevented and only the non-aqueous electrolyte is used. By filling it, it becomes possible to ensure high liquid injection accuracy of the non-aqueous electrolyte.

本発明の第5の発明では、容器上の上ケースに収納された正極材と負極材とセパレータを介在して積層した電極体と上ケースを収納する気密チャンバーと、温度調整部を具備した非水電解液タンクと、一時的に貯蔵した非水電解液を押出す注液ピストンを内蔵した非水電解液シリンジと、注液管および注液ガイドリングからなる非水電解液シリンジに接続した注液ノズルと、注液ピストンを作動させるピストン駆動部と、気密チャンバーに接続された圧力調整部とで構成されたことにより、電極体上での表面張力による球体状となった非水電解液を崩して、電極体の全体を非水電解液で覆いながら電極体に含浸することができ、非水電解液の付着による非水電解液量のバラツキや非水電解液成分の蒸発を抑制し、非水電解液量のバラツキ、非水電解液の成分の変化を抑制することが可能となる。   According to a fifth aspect of the present invention, a positive electrode material and a negative electrode material housed in an upper case on a container, an electrode body laminated with a separator interposed therebetween, an airtight chamber for housing the upper case, and a temperature adjusting unit are provided. An aqueous electrolyte tank, a nonaqueous electrolyte syringe with a liquid injection piston that extrudes the temporarily stored nonaqueous electrolyte, and a nonaqueous electrolyte syringe consisting of an injection pipe and an injection guide ring The non-aqueous electrolyte formed into a spherical shape due to the surface tension on the electrode body is formed by the liquid nozzle, the piston drive section that operates the liquid injection piston, and the pressure adjustment section connected to the airtight chamber. It is possible to impregnate the electrode body while covering the whole electrode body with a non-aqueous electrolyte, suppressing variations in the amount of non-aqueous electrolyte due to adhesion of the non-aqueous electrolyte and evaporation of non-aqueous electrolyte components, Non-aqueous electrolyte amount variation, non It is possible to suppress the change in the components of the electrolyte.

本発明の第6の発明では、温度調整部である温度調整ヒータと温度調整コントローラを具備した非水電解液タンクと、非水電解液タンク内にある非水電解液貯蔵槽と非水電解液回収槽と、非水電解液シリンジに非水電解液を吸液させる非水電解液貯蔵槽と連通した供給ノズルとで構成したことにより、非水電解液タンクに設置させた温度調整ヒータと温度調整コントローラにて非水電解液の温度をコントロールすることでき、非水電解液の粘度を下げて電極体への含浸性を向上させることができる。   In the sixth aspect of the present invention, a non-aqueous electrolyte tank provided with a temperature adjustment heater as a temperature adjustment unit and a temperature adjustment controller, a non-aqueous electrolyte storage tank and a non-aqueous electrolyte in the non-aqueous electrolyte tank The temperature adjustment heater and temperature installed in the non-aqueous electrolyte tank are configured by a recovery tank and a supply nozzle connected to the non-aqueous electrolyte storage tank that absorbs the non-aqueous electrolyte into the non-aqueous electrolyte syringe. The temperature of the non-aqueous electrolyte can be controlled by the adjustment controller, and the viscosity of the non-aqueous electrolyte can be lowered to improve the impregnation property to the electrode body.

本発明の第7の発明では、注液ガイドリングの外形寸法が上ケースに収納された電極体の外形寸法から上ケースの内径寸法までの範囲内で構成され、且つ注液ガイドリングの先端部の内面がテーパ形状を有したにより、電極体上で表面張力による球体状となり電極体の外形より飛び出すほど広がった非水電解液を崩して、電極体の全体を非水電解液で覆いながら電極体に含浸することができ、注液ガイドリングに非水電解液が付着することなく短時間で含浸することが可能となる。   In the seventh aspect of the present invention, the outer dimension of the injection guide ring is configured within the range from the outer dimension of the electrode body accommodated in the upper case to the inner diameter dimension of the upper case, and the tip of the injection guide ring Since the inner surface of the electrode has a tapered shape, it becomes a spherical shape due to surface tension on the electrode body, breaks the nonaqueous electrolyte that has spread out so as to protrude from the outer shape of the electrode body, and covers the entire electrode body with the nonaqueous electrolyte. The body can be impregnated, and the non-aqueous electrolyte can be impregnated in a short time without adhering to the injection guide ring.

本発明の第8の発明では、非水電解液シリンジに非水電解液の吸液量および注液量を可変させる可変手段を有したことにより、困難であった微少な非水電解液量から幅広く条件変更を行え、所定の非水電解液量に合わせて定量ポンプや注入機構の製作や専用の機器への取替えが不要となり、生産電池の品種切替えの簡便となる効果がある。   In the eighth aspect of the present invention, since the non-aqueous electrolyte syringe has variable means for varying the liquid absorption amount and the liquid injection amount, the amount of the non-aqueous electrolyte solution that has been difficult can be reduced. Various conditions can be changed, and there is no need to manufacture a metering pump or injection mechanism according to a predetermined amount of non-aqueous electrolyte or replacement with a dedicated device.

本発明の第9の発明では、非水電解液タンク内の非水電解液貯蔵槽の非水電解液をオーバーフローさせて、常に非水電解液の液面を一定に保ち、非水電解液貯蔵槽と連通した非水電解液の液面が常に一定に保たれた供給ノズルを介して非水電解液を非水電解液シリンジに供給する構成にしたことにより、非水電解液シリンジ内を非水電解液で充満することができ、吸液時の空気の混入を抑制し非水電解液シリンジに精度の高い非水電解液の供給ができる。   In the ninth aspect of the present invention, the non-aqueous electrolyte in the non-aqueous electrolyte storage tank in the non-aqueous electrolyte tank is overflowed so that the liquid level of the non-aqueous electrolyte is always kept constant, and the non-aqueous electrolyte is stored. Since the non-aqueous electrolyte solution is supplied to the non-aqueous electrolyte syringe through a supply nozzle in which the liquid level of the non-aqueous electrolyte connected to the tank is always kept constant, It can be filled with a water electrolyte, and air can be prevented from being mixed during liquid absorption, and a highly accurate nonaqueous electrolyte can be supplied to the nonaqueous electrolyte syringe.

以下、本発明の一実施の形態について図面を参照しながら詳細に説明する。以下に示される一実施の形態については、本発明を詳細説明するために掲げた製造装置を示するものであって、本発明は扁平形電池の構造および製造装置を下記のものに特定するものではない。例えば、図1は本発明の実施の形態における非水電解液を吸液する吸液ステージと注液する注液ステージの状態を示す扁平形電池の製造装置の模式図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. An embodiment shown below shows a manufacturing apparatus for explaining the present invention in detail, and the present invention specifies the structure and manufacturing apparatus of a flat battery as follows. is not. For example, FIG. 1 is a schematic view of a flat battery manufacturing apparatus showing a state of a liquid absorption stage for absorbing a nonaqueous electrolyte and a liquid injection stage for injecting liquid according to an embodiment of the present invention.

図1に示されるように本発明の製造装置では、非水電解液を吸液する吸液ステージAと電極体を収納した上ケースに注液する注液ステージBを別個に持ちながらも同一の非水電解液注液部7のみで吸液と注液を行っている。非水電解液注液部7は、電極群2が収納された上ケース1を減圧の状態や大気圧の状態にする気密チャンバー10と、非水電解液を一時的に貯蔵する非水電解液シリンジ11と、非水電解液に圧力を掛けて電解液を押出すOリング5を具備した注液ピストン8と、注液管14と注液ガイドリング13から構成さ
れた非水電解液を吐出する注液ノズル6とからなる。
As shown in FIG. 1, in the manufacturing apparatus of the present invention, the liquid absorption stage A for absorbing the nonaqueous electrolyte and the liquid injection stage B for injecting the liquid into the upper case containing the electrode body are separately provided. Liquid absorption and liquid injection are performed only by the non-aqueous electrolyte liquid injection unit 7. The nonaqueous electrolyte solution injection unit 7 includes an airtight chamber 10 that places the upper case 1 in which the electrode group 2 is housed in a reduced pressure state or an atmospheric pressure state, and a nonaqueous electrolyte solution that temporarily stores the nonaqueous electrolyte solution. A non-aqueous electrolyte composed of a syringe 11, an injection piston 8 having an O-ring 5 that extrudes the electrolyte by applying pressure to the non-aqueous electrolyte, an injection pipe 14, and an injection guide ring 13 is discharged. And a liquid injection nozzle 6.

非水電解液を注液する注液ステージAは、非水電解液タンク16を配置し、非水電解液タンク16内には非水電解液送液部(図示せず)と非水電解液供給管17を介して接続した非水電解液貯蔵槽27と非水電解液貯蔵槽27よりオーバーフローした非水電解液を回収する非水電解液回収槽28に分かれている。また、非水電解液を暖める温度調整ヒータ20を非水電解液タンク16に内蔵しており、温度調整ヒータ20は温度調整コントローラ18で温度を調整する。さらに非水電解液貯蔵槽27は、非水電解液注液部7に非水電解液を供給する供給ノズル19と連通されており、非水電解液貯蔵槽27の非水電解液の液面が注液ノズル19内の非水電解液の液面に反映される構造となっている。   The liquid injection stage A for injecting a non-aqueous electrolyte includes a non-aqueous electrolyte tank 16, and a non-aqueous electrolyte solution feeding part (not shown) and a non-aqueous electrolyte are provided in the non-aqueous electrolyte tank 16. A non-aqueous electrolyte storage tank 27 connected via the supply pipe 17 and a non-aqueous electrolyte recovery tank 28 for recovering the non-aqueous electrolyte overflowed from the non-aqueous electrolyte storage tank 27 are divided. Further, a temperature adjusting heater 20 for warming the non-aqueous electrolyte is built in the non-aqueous electrolyte tank 16, and the temperature adjusting heater 20 adjusts the temperature by the temperature adjustment controller 18. Further, the non-aqueous electrolyte storage tank 27 is communicated with a supply nozzle 19 that supplies the non-aqueous electrolyte to the non-aqueous electrolyte injection section 7, and the liquid level of the non-aqueous electrolyte in the non-aqueous electrolyte storage tank 27. Is reflected on the liquid level of the non-aqueous electrolyte in the liquid injection nozzle 19.

また、移動した非水電解液注液部7の注液管14が注液ノズル19に挿入され、注液ピストン8を駆動するピストン駆動部29の連結シャフト25を介してサーボモータ21が注液ピストン8と接続する構造となっている。   Further, the injection pipe 14 of the moved non-aqueous electrolyte injection section 7 is inserted into the injection nozzle 19, and the servo motor 21 is injected via the connecting shaft 25 of the piston drive section 29 that drives the injection piston 8. The structure is connected to the piston 8.

次に電極体2を収納した上ケース1に注液する注液ステージBでは、上ケース1を保持する土台4を設置し、土台4はベース36とケースホルダ37からなり、ベース36にはOリング15が嵌合されており、非水電解液注液部7の気密チャンバー10が接続される。また、非水電解液注液部の注液ピストン8と接続し注液ピストン8を駆動するピストン駆動部29と気密チャンバー10内の圧力を調整する圧力調整部26を備える。   Next, in the liquid injection stage B for injecting the liquid into the upper case 1 containing the electrode body 2, the base 4 for holding the upper case 1 is installed. The base 4 includes a base 36 and a case holder 37. A ring 15 is fitted, and the airtight chamber 10 of the nonaqueous electrolyte solution injection unit 7 is connected. In addition, a piston drive unit 29 that is connected to the injection piston 8 of the non-aqueous electrolyte injection unit and drives the injection piston 8 and a pressure adjustment unit 26 that adjusts the pressure in the airtight chamber 10 are provided.

上述したように本発明の製造装置では、非水電解液を吸液する吸液ステージAと電極体2を収納した上ケース1に注液する注液ステージBを別個に持ちながらも同一の非水電解液注液部7のみで吸液と注液を行っている扁平形電池の製造装置であり、この装置により従来の方法に示す非水電解液の供給に使用する非水電解液定量供給ポンプ等の外部要因が不要となり、非水電解液定量供給ポンプによる非水電解液供給量のバラツキをさらに抑制することができ、高精度の注液が可能となる効果がある。   As described above, in the manufacturing apparatus of the present invention, the liquid absorption stage A that absorbs the non-aqueous electrolyte and the liquid injection stage B that injects the liquid into the upper case 1 housing the electrode body 2 are separately provided. This is an apparatus for manufacturing a flat battery in which only the water electrolyte solution injection part 7 absorbs and injects liquid, and this device is used to supply a nonaqueous electrolyte fixed amount used for supplying the nonaqueous electrolyte shown in the conventional method. An external factor such as a pump becomes unnecessary, and variation in the amount of non-aqueous electrolyte supplied by the non-aqueous electrolyte fixed supply pump can be further suppressed, so that high-precision liquid injection is possible.

また、吸液ステージAでは非水電解液送液部(図示せず)より非水電解液供給管17にて送られてきた脱気済みの非水電解液は非水電解液貯蔵槽27に供給され、供給ノズル19内の非水電解液の液面を常に一定に保つために、供給ノズル19と連通された非水電解液貯蔵槽27は溢れ出るまで非水電解液で満たされて、オーバーフローになった非水電解液は非水電解液回収槽28にて回収し、非水電解液送液部に送られる。このことにより供給ノズル19内の非水電解液の液面は常に一定に保たれ、非水電解液シリンジ11の注液管14より吸液される際にもエアー噛みを発生することなく、非水電解液を非水電解液シリンジ11内に充満させ貯蔵することが可能となる。   In the liquid absorption stage A, the degassed non-aqueous electrolyte sent from the non-aqueous electrolyte feed section (not shown) through the non-aqueous electrolyte supply pipe 17 is transferred to the non-aqueous electrolyte storage tank 27. In order to keep the liquid level of the non-aqueous electrolyte supplied in the supply nozzle 19 constant, the non-aqueous electrolyte storage tank 27 communicated with the supply nozzle 19 is filled with the non-aqueous electrolyte until it overflows, The overflowed non-aqueous electrolyte is recovered in the non-aqueous electrolyte recovery tank 28 and sent to the non-aqueous electrolyte solution feeding section. As a result, the liquid level of the non-aqueous electrolyte in the supply nozzle 19 is always kept constant, and even when the liquid is sucked from the injection pipe 14 of the non-aqueous electrolyte syringe 11, no air biting occurs. The water electrolyte can be filled and stored in the non-aqueous electrolyte syringe 11.

また、非水電解液シリンジ11に非水電解液が吸液される際に非水電解液が減るスピードより速く非水電解液を非水電解液供給管17より非水電解液貯蔵槽27に供給している。ここで、オーバーフローをセンサで感知し、非水電解液送液部を停止させ、非水電解液シリンジ11により吸液された後に非水電解液送液部を作動させて非水電解液を補充供給しても構わない。   In addition, when the nonaqueous electrolyte is sucked into the nonaqueous electrolyte syringe 11, the nonaqueous electrolyte is supplied to the nonaqueous electrolyte storage tank 27 from the nonaqueous electrolyte supply pipe 17 faster than the speed at which the nonaqueous electrolyte decreases. Supply. Here, an overflow is detected by a sensor, the non-aqueous electrolyte solution feeding part is stopped, and after the liquid is absorbed by the non-aqueous electrolyte syringe 11, the non-aqueous electrolyte solution feeding part is operated to replenish the non-aqueous electrolyte solution. You may supply.

さらに、非水電解液タンク16内の温度調整ヒータ20の温度調整を温度調整コントローラ18で調整し、非水電解液の粘度を下げる効果により非水電解液が上ケース1内の電極体2に含浸しやすい非水電解液の温度に調整し、電極体2への含浸性を向上させている。   Further, the temperature adjustment of the temperature adjustment heater 20 in the non-aqueous electrolyte tank 16 is adjusted by the temperature adjustment controller 18, and the non-aqueous electrolyte is applied to the electrode body 2 in the upper case 1 by the effect of reducing the viscosity of the non-aqueous electrolyte. The temperature of the nonaqueous electrolytic solution that is easily impregnated is adjusted to improve the impregnation property to the electrode body 2.

ここで吸液ステージAに移動した非水電解液注液部7を降下させ、注液管14を非水電解液貯蔵槽27に連結された供給ノズル19内の非水電解液の液面より深く挿入し、注液
管14の挿入位置は一回の吸液する非水電解液量が供給ノズル19内で減少する以上の挿入位置としている。また、非水電解液シリンジ11に非水電解液が吸液される際に非水電解液が減るスピードより速く、非水電解液を非水電解液貯蔵槽27に供給されている。
Here, the non-aqueous electrolyte injection part 7 moved to the liquid absorption stage A is lowered, and the injection pipe 14 is moved from the liquid level of the non-aqueous electrolyte in the supply nozzle 19 connected to the non-aqueous electrolyte storage tank 27. It is inserted deeply, and the injection position of the liquid injection tube 14 is set to be an insertion position that exceeds the amount of non-aqueous electrolyte to be absorbed once in the supply nozzle 19. The nonaqueous electrolyte solution is supplied to the nonaqueous electrolyte storage tank 27 faster than the speed at which the nonaqueous electrolyte solution is reduced when the nonaqueous electrolyte solution is absorbed into the nonaqueous electrolyte syringe 11.

次に注液ピストン8とピストン駆動部29が連結される。ピストン駆動部29の詳細説明については後述する。その注液ピストン8は非水電解液シリンジ11の下端に位置させ、注液ピストン8の先端部と非水電解液シリンジ11の底部との間には空間のない状態より、ピストン駆動部29を作動させて注液ピストン8を上昇させる。それにより非水電解液シリンジ11内に注液管14を介して注液ピストン8の上昇したストロークにより確保した体積分である所定の非水電解液を精度良く一時的に貯溜し非水電解液シリンジ11内を非水電解液で充満した後、非水電解液注液部7は上昇し元の注液ステージBに移動する。   Next, the liquid injection piston 8 and the piston drive part 29 are connected. The detailed description of the piston drive unit 29 will be described later. The liquid injection piston 8 is positioned at the lower end of the non-aqueous electrolyte syringe 11, and the piston drive unit 29 is moved from the state where there is no space between the tip of the liquid injection piston 8 and the bottom of the non-aqueous electrolyte syringe 11. Operate to raise the injection piston 8. As a result, a predetermined nonaqueous electrolyte, which is the volume secured by the ascending stroke of the injection piston 8 through the injection pipe 14, is temporarily stored in the nonaqueous electrolyte syringe 11 with high accuracy and temporarily stored. After the inside of the syringe 11 is filled with the non-aqueous electrolyte, the non-aqueous electrolyte injection part 7 rises and moves to the original injection stage B.

非水電解液注液部7が移動し、後で詳細に述べる電極体2を収納した上ケース1に注液する注液ステージBでは、土台4の上に電極体2を収納した上ケース1を保持した後、非水電解液シリンジ11の気密チャンバー10が接続され、ベース36に嵌合されたOリング15で気密チャンバー10内の気密性を確保している。さらに、ケースホルダ37上に上ケース1を保持するにはチャッキングできる機構でもよく、永久磁石や真空吸着で保持をしても構わない。本発明では構造を簡素化するため、ケースホルダ37に上ケース1が嵌合できる円形の窪みを設けて保持し、ケースホルダ37を上ケース1の品種に適合させることで本発明の製造装置に汎用性を持たしている。   In the liquid injection stage B in which the nonaqueous electrolyte liquid injection part 7 moves and injects into the upper case 1 in which the electrode body 2 described in detail later is stored, the upper case 1 in which the electrode body 2 is stored on the base 4. The airtight chamber 10 of the nonaqueous electrolyte syringe 11 is connected, and the airtightness in the airtight chamber 10 is secured by the O-ring 15 fitted to the base 36. Further, a mechanism that can be chucked may be used to hold the upper case 1 on the case holder 37, and it may be held by a permanent magnet or vacuum suction. In the present invention, in order to simplify the structure, the case holder 37 is provided with a circular recess into which the upper case 1 can be fitted, and the case holder 37 is adapted to the type of the upper case 1 so that the manufacturing apparatus of the present invention can be used. Has versatility.

次に、注液ピストン8の上端部でピストン駆動部29とが連結され、真空ポンプ(図示せず)に接続された圧力調整部26が非水電解液シリンジ11に接続される。また、ピストン駆動部29および圧力調整部26が非水電解液シリンジ11に具備された非水電解液注液部7の構成にしても良く、本発明の実施の形態においては個別の構成となっており、注液ピストン8は非水電解液シリンジ11の中心を通り、注液ピストン8の先端にはOリング5を嵌合したシンプルな構造で、注液ピストン8が上下に摺動する際の非水電解液シリンジ11の気密性を保っている。   Next, the piston driving unit 29 is coupled at the upper end of the liquid injection piston 8, and the pressure adjusting unit 26 connected to a vacuum pump (not shown) is connected to the non-aqueous electrolyte syringe 11. In addition, the piston drive unit 29 and the pressure adjustment unit 26 may be configured as the non-aqueous electrolyte solution injection unit 7 provided in the non-aqueous electrolyte syringe 11, and are individually configured in the embodiment of the present invention. The injection piston 8 passes through the center of the non-aqueous electrolyte syringe 11 and has a simple structure in which an O-ring 5 is fitted to the tip of the injection piston 8 so that the injection piston 8 slides up and down. The non-aqueous electrolyte syringe 11 is kept airtight.

次に、真空ポンプを作動させ、圧力調整部26の設定圧力で気密チャンバー10内を減圧した後、ピストン駆動部29にある上下運動変換型のサーボモータ21を作動させる。ここで、サーボモータ21の駆動ストロークが注液ピストン8のストロークと同一であるため、サーボモータ21の駆動ストロークの高い作動精度が必須であり、本発明の実施の形態ではサーボモータ21の回転速度をデジタルに変換し、回転速度を制御することで注液ピストン8の上下作動を高精度に制御して非水電解液の吸液量や注液量を調整している。   Next, after operating the vacuum pump to depressurize the airtight chamber 10 with the set pressure of the pressure adjusting unit 26, the vertical motion conversion type servo motor 21 in the piston driving unit 29 is operated. Here, since the drive stroke of the servo motor 21 is the same as the stroke of the liquid injection piston 8, high operation accuracy of the drive stroke of the servo motor 21 is essential. In the embodiment of the present invention, the rotation speed of the servo motor 21 is essential. Is converted to digital and the vertical movement of the liquid injection piston 8 is controlled with high accuracy by controlling the rotational speed, thereby adjusting the liquid absorption amount and liquid injection amount of the non-aqueous electrolyte.

さらに、本発明の実施の形態ではサーボモータ21を注液ピストン8の上下運動の駆動部に用いたが、板カムの回転運動を上下運動に変換して利用した駆動部やエアーシリンダーによる駆動部、カムとボールねじとサーボモータを組み合わせたメカ機構などで注液ストン8の上下駆動をすることもでき、注液ピストン8のストローク調整のみでは困難であった微少な非水電解液量から幅広く吸液量や注液量を可変させる可変手段として有効であり、所定の非水電解液量に合わせて、定量ポンプや注入機構の製作、取替えが不要となり、生産電池の品種切替えの簡便となる効果がある。   Furthermore, in the embodiment of the present invention, the servo motor 21 is used as the driving unit for the vertical movement of the liquid injection piston 8, but the driving unit using the rotary motion of the plate cam converted into the vertical movement or the driving unit using the air cylinder. The injection ston 8 can be driven up and down by a mechanical mechanism that combines a cam, ball screw, and servo motor, and a wide range of non-aqueous electrolyte amounts that are difficult to achieve by adjusting the stroke of the injection piston 8 alone. It is effective as a variable means to vary the amount of liquid absorption and injection, and it is not necessary to manufacture or replace a metering pump or injection mechanism in accordance with a predetermined amount of non-aqueous electrolyte. effective.

次に、ピストン駆動部29を作動させ注液ピストン8を下降させて、注液ノズル6より上ケース1に収納された電極体2に気密チャンバー10内の減圧と注液ピストン8による加圧との圧力差により非水電解液が供給され、注液ピストン8が下降限である下死点に達して電極体2に非水電解液の供給は終了する。   Next, the piston driving unit 29 is operated to lower the liquid injection piston 8, so that the electrode body 2 housed in the upper case 1 from the liquid injection nozzle 6 is depressurized in the airtight chamber 10 and pressurized by the liquid injection piston 8. The non-aqueous electrolyte is supplied due to the pressure difference, and the injection piston 8 reaches the bottom dead center at the lower limit, and the supply of the non-aqueous electrolyte to the electrode body 2 ends.

図2(a)は電極体2を収納した上ケース1に非水電解液を注液し始めの状態図である。注液管14から注液された非水電解液は図2(a)に示されるように電極体2に注液し始めの非水電解液は電極体2上で球体状になるが、図2(b)に示されるように注液された非水電解液量が増えるに従い球体が膨張し、電極体2上で電極体2の外形より大きな球体と成長していく。この時点では非水電解液の表面張力により、電極体2よりはみ出た状態にも関わらず崩れることなく球体状を保持したままである。   FIG. 2A is a state diagram of the start of injecting a non-aqueous electrolyte into the upper case 1 in which the electrode body 2 is accommodated. As shown in FIG. 2 (a), the non-aqueous electrolyte injected from the injection pipe 14 starts to be injected into the electrode body 2, and the non-aqueous electrolyte becomes spherical on the electrode body 2. As shown in 2 (b), the sphere expands as the amount of injected nonaqueous electrolyte increases, and grows on the electrode body 2 as a sphere larger than the outer shape of the electrode body 2. At this time, due to the surface tension of the nonaqueous electrolytic solution, the spherical shape is maintained without collapsing despite the state of protruding from the electrode body 2.

ここで、注液ノズル6を構成している注液ガイドリング13の外形寸法は電極体2の外形寸法より大きく上ケース1の開口部の内径寸法より小さい寸法の径に構成されている上、注液ガイドリング13と上ケース1の電極体2との間隔が狭いため、さらに大きくなった球体状の非水電解液は注液ガイドリング13と接し、図2(c)に示されるように表面張力により球体状を保持している非水電解液を崩す。表面張力を一度崩された非水電解液は注液ガイドリング13の内径部分に引き寄せられ、さらに注液ガイドリング13の内径部の形状は内面をテ−パ形状にしており、そのテーパ形状の先端部が電極体2の外形部分と上ケース1の内径部分に位置するため、非水電解液を速やかに電極体2の外形部分と上ケース1の内径部分の隙間に流し込むことができる。また、注液ガイドリング13のテ−パ形状の先端部は鋭く尖っており、非水電解液が付着し、非水電解液量バラツキの原因を起こさないような形状に形成させている。   Here, the outer dimension of the liquid injection guide ring 13 constituting the liquid injection nozzle 6 is configured to have a diameter larger than the outer dimension of the electrode body 2 and smaller than the inner diameter of the opening of the upper case 1. Since the space between the liquid injection guide ring 13 and the electrode body 2 of the upper case 1 is narrow, the larger spherical non-aqueous electrolyte comes into contact with the liquid injection guide ring 13, as shown in FIG. The non-aqueous electrolyte holding the spherical shape is broken by the surface tension. The non-aqueous electrolyte whose surface tension is once broken is attracted to the inner diameter portion of the injection guide ring 13, and the inner diameter portion of the injection guide ring 13 has a taper shape on the inner surface. Since the tip portion is located in the outer shape portion of the electrode body 2 and the inner diameter portion of the upper case 1, the nonaqueous electrolyte can be quickly poured into the gap between the outer shape portion of the electrode body 2 and the inner diameter portion of the upper case 1. Further, the tip end of the taper shape of the liquid injection guide ring 13 is sharply pointed, and is formed in a shape that does not cause non-aqueous electrolyte amount variation due to adhesion of the non-aqueous electrolyte solution.

このように、電極体2上の表面張力により球体状となっている非水電解液を崩し、電極体2の全周囲全面を非水電解液で覆われた状態にし、一定の時間の減圧状態を保った後、圧力調整部26にある減圧レギュレータ9を作動させ一定時間をかけて大気開放する。ここで大気開放時の供給空気はリチウム材料を使用した電池ではドライエアーが好ましく、さらに気密チャンバー10内を減圧せずに大気圧のままで注液することも可能である。   In this way, the non-aqueous electrolyte in a spherical shape is broken by the surface tension on the electrode body 2 so that the entire circumference of the electrode body 2 is covered with the non-aqueous electrolyte, and the pressure is reduced for a certain time. After maintaining the above, the decompression regulator 9 in the pressure adjusting unit 26 is operated to release the atmosphere over a certain period of time. Here, dry air is preferable as the supply air when the atmosphere is opened in a battery using a lithium material, and the airtight chamber 10 can be injected at atmospheric pressure without reducing the pressure.

さらに、これらの製造装置を1台または数台、あるいは数十台、ラインとして並べられ、並列にそれぞれの製造装置が上ケース1に非水電解液を注液して、処理能力を大きくすることができ、土台4を循環する治具として使用することでより一層生産性の高いライン構成を取ることが可能となる。また、一つの土台4に一つのケース1を保持する構造の他、一つの大きな土台4に複数の上ケース1を保持する構造も可能である。   Furthermore, one, several, or several tens of these manufacturing apparatuses are arranged as a line, and each manufacturing apparatus injects a non-aqueous electrolyte into the upper case 1 in parallel to increase the processing capacity. Therefore, by using the base 4 as a jig for circulating, it becomes possible to take a line configuration with higher productivity. In addition to a structure in which one case 1 is held on one base 4, a structure in which a plurality of upper cases 1 are held on one large base 4 is also possible.

注液し含浸された上ケース1は、図3に示されるように上ケース1に下ケース34が被せられ、下ケース34の側面を縮径および下ケース34の開口部を内側に折り曲げて封口し、気密性の高い扁平形電池35が成形される。   As shown in FIG. 3, the upper case 1 that has been injected and impregnated is covered with the lower case 34 by covering the upper case 1, the side surface of the lower case 34 is reduced in diameter, and the opening of the lower case 34 is bent inward. Then, the flat battery 35 with high airtightness is formed.

ここで、扁平形電池にはコイン形一次電池やコイン形二次電池等があるが、ここでは扁平形電池に代表される一つであるコイン形のリチウム一次電池(以下、コイン形電池と称する)の全体構成を示した断面図である図3について説明する。コイン形電池35は、電極体2を構成しているペレット状の正極体30とペレット状の負極体31と正極体30及び負極体31の間に配されたセパレータ32とからなり、正極体30と負極体31の間でリチウムイオンを移動させる非水電解液(図示せず)と電極体2とを収納する上ケース1と上ケース1の電極体2が収納された空間を密閉する上ケース1の開口部の周縁部にある絶縁ガスケット33と上ケース1に被せられ封口する下ケース34からなる。さらに上ケース1の開口部の外周面と絶縁ガスケット33の内周面および下ケース34の開口部の内周面との所定の位置に成膜されているシール膜(図示せず)とを備えて、より高い気密性を発揮している。   Here, the flat battery includes a coin-type primary battery, a coin-type secondary battery, and the like. Here, a coin-type lithium primary battery (hereinafter referred to as a coin-type battery), which is one of the flat batteries, is used. 3 is a cross-sectional view showing the overall structure of FIG. The coin-shaped battery 35 includes a pellet-shaped positive electrode body 30 constituting the electrode body 2, a pellet-shaped negative electrode body 31, and a separator 32 disposed between the positive electrode body 30 and the negative electrode body 31. An upper case 1 that houses a non-aqueous electrolyte (not shown) that moves lithium ions between the electrode body 2 and the electrode body 2, and an upper case that seals a space in which the electrode body 2 of the upper case 1 is housed. 1 comprises an insulating gasket 33 at the peripheral edge of the opening 1 and a lower case 34 that covers and seals the upper case 1. Further, a seal film (not shown) is formed at predetermined positions on the outer peripheral surface of the opening of the upper case 1, the inner peripheral surface of the insulating gasket 33, and the inner peripheral surface of the opening of the lower case 34. And exhibit higher airtightness.

正極体30は、ここでは、リチウム・コバルト酸化合物を用いるがこれに限定されるものではなく、例えばリチウム複合酸化物、金属硫化物、金属酸化物、金属セレン化合物等
の何れか一種以上を混合して用いることも可能である。また、負極体31は、負極活物質となる板状の金属リチウムやリチウム合金を打ち抜いてペレット状に成形している。
Here, the positive electrode body 30 uses a lithium / cobalt acid compound, but is not limited thereto. For example, any one or more of a lithium composite oxide, a metal sulfide, a metal oxide, a metal selenium compound, and the like are mixed. It can also be used. In addition, the negative electrode body 31 is formed into a pellet by punching plate-like metallic lithium or lithium alloy serving as a negative electrode active material.

次に、セパレータ32は、正極体30と負極体31との間を遮断し、両極材の接触による短絡を防止しつつ非水電解液中のリチウムイオンを通過させるものである。このセパレータ32は、繊維樹脂状により形成された不織布であり、空孔率が10%〜50%、厚みが40μm〜200μmのものを用いる。ここでは、ポリフェニレンサルファイドを用いるが、これに限定されるものではなく、ポリエチレンテレフタート、ポリイミド、ポリアミド等が上げられ、何れか一種以上を用いることも可能である。   Next, the separator 32 cuts off between the positive electrode body 30 and the negative electrode body 31, and allows lithium ions in the non-aqueous electrolyte to pass through while preventing a short circuit due to contact between both electrode materials. The separator 32 is a non-woven fabric formed of a fiber resin, and has a porosity of 10% to 50% and a thickness of 40 μm to 200 μm. Here, although polyphenylene sulfide is used, it is not limited to this, Polyethylene terephthalate, polyimide, polyamide, etc. are raised, and it is also possible to use any one or more.

非水電解液には、EMC、6フッ化リン酸リチウム、ペンタグライム、テトラグライム等が上げられ、これらのうちの何れか一種以上を用いる。   Examples of the non-aqueous electrolyte include EMC, lithium hexafluorophosphate, pentag lime, and tetraglyme, and any one or more of these are used.

また、下ケース34は、導電性金属からなる容器であり、正極体30と接触することでコイン形電池35の外部正極となる。具体的には、下ケース34にはステンレスからなる金属製の容器を用いるが、これに限定されるものではなく、例えばステンレス、アルミニウム、ニッケル等の金属を複数積層させた状態の金属製の容器等を用いることも可能である。   The lower case 34 is a container made of a conductive metal, and serves as an external positive electrode of the coin-type battery 35 by being in contact with the positive electrode body 30. Specifically, a metal container made of stainless steel is used for the lower case 34. However, the present invention is not limited to this. For example, a metal container in which a plurality of metals such as stainless steel, aluminum, and nickel are stacked. Etc. can also be used.

上ケース1は、電極体2を収納する導電性金属からなる容器であり、負極体31と接することでコイン形電池35の外部負極となる。上ケース1にはステンレスとニッケルの金属を複数積層させた状態の金属製の容器等を用いることも可能である。   The upper case 1 is a container made of a conductive metal that houses the electrode body 2, and becomes an external negative electrode of the coin-type battery 35 by being in contact with the negative electrode body 31. The upper case 1 may be a metal container in which a plurality of stainless steel and nickel metals are laminated.

また、絶縁ガスケット33は、円環状に形成されており、下ケース34と上ケース1とを封口した際に下ケース34と上ケース1との間に生じる隙間に嵌め込まれるように取り付けられることで上記隙間を封止する。この絶縁ガスケット33は、ポリプロピレン樹脂を用いるが、これに限定されることはなく、フェニレンサルファイト樹脂を、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリチレンテレフタート樹脂、ポリアリレート樹脂等も用いることができ、何れか一種又は複数種を混合して用いてもよい。   In addition, the insulating gasket 33 is formed in an annular shape, and is attached so as to be fitted into a gap generated between the lower case 34 and the upper case 1 when the lower case 34 and the upper case 1 are sealed. The gap is sealed. The insulating gasket 33 uses a polypropylene resin, but is not limited thereto, and a phenylene sulfite resin such as a polyether ketone resin, a polyether ether ketone resin, a polyethylene terephthalate resin, or a polyarylate resin is also used. Any one kind or a mixture of two or more kinds may be used.

下ケース34の内周側面や絶縁ガスケット33の内周側面とには、シール膜としてシール剤(図示せず)が塗布されており、下ケース34や上ケース1と絶縁ガスケット33との間に生じる微小な隙間に入りこむことにより、コイン形電池35の内部空間の密閉性をより高めている。シール剤には具体的には、フッ素系の樹脂を用い、シール剤を調製する溶媒には、上述したフッ素系の樹脂を溶解させるもので、具体的にはシクロヘキサン等を用いる。   A sealing agent (not shown) is applied as a sealing film to the inner peripheral side surface of the lower case 34 and the inner peripheral side surface of the insulating gasket 33, and between the lower case 34 and the upper case 1 and the insulating gasket 33. The tightness of the internal space of the coin-type battery 35 is further enhanced by entering the generated minute gap. Specifically, a fluorine-based resin is used for the sealant, and the above-described fluorine-based resin is dissolved in the solvent for preparing the sealant. Specifically, cyclohexane or the like is used.

次に以下、本発明の実施例に関わる扁平形電池の製造方法およびその製造装置について図を参照しながら詳細に説明する。   Next, a method of manufacturing a flat battery and an apparatus for manufacturing the flat battery according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1に示されるように非水電解液注液部7を吸液ステージAに移動させ、非水電解液シリンジ11の先端にある注液管14を非水電解液タンク16にある供給ノズル19内の非水電解液の液面より10mm以上深く挿入する。次に、ピストン駆動部29を注液ピストン8の先端部と連結する。次に、ピストン駆動部29を作動させ、下死点の位置にある注液ピストン8を上方向に3秒間の時間で10mmのストローク引き上げ、非水電解液タンク16内にある温度調整コントローラ18で温度の設定された温度調整ヒータ20により約40℃に暖められた840mgの非水電解液を注液管14より非水電解液シリンジ11内に吸い上げる。   As shown in FIG. 1, the nonaqueous electrolyte injection part 7 is moved to the liquid absorption stage A, and the injection pipe 14 at the tip of the nonaqueous electrolyte syringe 11 is connected to the supply nozzle 19 in the nonaqueous electrolyte tank 16. Insert 10mm deeper than the surface of the non-aqueous electrolyte. Next, the piston drive unit 29 is connected to the tip of the liquid injection piston 8. Next, the piston drive unit 29 is operated, and the liquid injection piston 8 located at the bottom dead center is pulled upward by a stroke of 10 mm in the time of 3 seconds, and the temperature adjustment controller 18 in the nonaqueous electrolyte tank 16 is used. 840 mg of non-aqueous electrolyte heated to about 40 ° C. by the temperature adjusting heater 20 whose temperature has been set is sucked into the non-aqueous electrolyte syringe 11 from the injection tube 14.

次に、非水電解液シリンジ11内を非水電解液で充満された非水電解液注液部7を注液ステージBに移動し、電極体2を収納された上ケース1を土台4に保持した後、非水電解液注液部7の気密チャンバー10を土台4に接続する。また、非水電解液注液部7の注液ピストン8の先端部にピストン駆動部29を接続し、非水電解液シリンジ11に圧力調整部26を接続する。   Next, the non-aqueous electrolyte injection part 7 filled with the non-aqueous electrolyte in the non-aqueous electrolyte syringe 11 is moved to the injection stage B, and the upper case 1 in which the electrode body 2 is stored is placed on the base 4. After the holding, the airtight chamber 10 of the non-aqueous electrolyte injection unit 7 is connected to the base 4. In addition, the piston drive unit 29 is connected to the tip of the injection piston 8 of the nonaqueous electrolyte injection unit 7, and the pressure adjustment unit 26 is connected to the nonaqueous electrolyte syringe 11.

次に、真空ポンプを作動させ圧力調整部26にある減圧圧力計12を監視しながら減圧レギュレータ9の設定圧力10MPaで気密チャンバー10内を5秒間の減圧を行い、ピストン駆動部29を作動させて注液ピストン8を下降させ、上ケース1に収納した電極体2に1秒間の時間で注液した。
注液終了後に20秒間の減圧を続け、その後、真空ポンプを停止して気密チャンバー10内の圧力を2秒間で、大気圧である101.3MPaに戻す。気密チャンバー10を開いて取り出した上ケース1を実施例1とした。
Next, while operating the vacuum pump and monitoring the pressure reducing pressure gauge 12 in the pressure adjusting unit 26, the pressure inside the airtight chamber 10 is reduced for 5 seconds at the set pressure 10 MPa of the pressure reducing regulator 9, and the piston driving unit 29 is operated. The liquid injection piston 8 was lowered and injected into the electrode body 2 accommodated in the upper case 1 in a time of 1 second.
After the injection, the pressure reduction is continued for 20 seconds, and then the vacuum pump is stopped and the pressure in the airtight chamber 10 is returned to 101.3 MPa which is the atmospheric pressure in 2 seconds. The upper case 1 taken out by opening the airtight chamber 10 was taken as Example 1.

(比較例1)
本発明の実施例1と比較するため、図4に示されるような構成の装置へ実施例1と同じ非水電解液を注液していない電極体2を収納した上ケース101を減圧チャンバー104に組み込み、一時貯溜室105に840mgの非水電解液を別設置されている非水電解液定量供給ポンプ(図示せず)と接続した定量ノズル112より供給後、減圧チャンバー104内を10kPaの圧力にて5秒間の減圧を行い、ピストン103を押し下げて、注液管102より非水電解液を上ケース101に1秒間で注液をし、注液終了後に20秒間の減圧をして、減圧チャンバー104を大気圧である101.3kPaの圧力に戻す。次に減圧チャンバー104を開き、取り出した上ケース101を比較例1とした。
(Comparative Example 1)
For comparison with the first embodiment of the present invention, the upper case 101 in which the electrode body 2 in which the same non-aqueous electrolyte as in the first embodiment is not injected into the apparatus configured as shown in FIG. After being supplied from a metering nozzle 112 connected to a non-aqueous electrolyte metering pump (not shown) in which 840 mg of non-aqueous electrolyte is separately installed in the temporary storage chamber 105, the pressure in the decompression chamber 104 is 10 kPa. The pressure is reduced for 5 seconds, the piston 103 is pushed down, the non-aqueous electrolyte is injected into the upper case 101 from the injection pipe 102 for 1 second, and after the injection is completed, the pressure is reduced for 20 seconds to reduce the pressure. The chamber 104 is returned to a pressure of 101.3 kPa, which is atmospheric pressure. Next, the decompression chamber 104 was opened, and the upper case 101 taken out was used as Comparative Example 1.

上記実施例および比較例の同じ非水電解液の注液時間における注液時に製造装置に付着、または蒸発により損失非水電解液の重量をバラツキとして比較するために、それぞれ20個の上ケースに実施し下記の評価を行った結果を(表1)に示す。   In order to compare the weight of the loss non-aqueous electrolyte as a variation due to adhesion to the manufacturing apparatus or by evaporation during the injection of the same non-aqueous electrolyte in the above examples and comparative examples, each of the 20 upper cases The results of carrying out the following evaluation are shown in (Table 1).

(表1)に示した非水電解液の重量のバラツキは、非水電解液の注液済みである上ケースの重量と非水電解液の未注液である上ケースの重量に非水電解液の基準重量の840mgを加えた重量との差を注液された非水電解液の重量とし、最大値を最小値の差との比較をした。   The variation in the weight of the non-aqueous electrolyte shown in Table 1 depends on the weight of the upper case where the non-aqueous electrolyte has been injected and the weight of the upper case where the non-aqueous electrolyte has not been injected. The difference between the reference weight of the liquid and the weight obtained by adding 840 mg was taken as the weight of the injected non-aqueous electrolyte, and the maximum value was compared with the difference between the minimum values.

また、非水電解液の損失重量として、非水電解液の注液済みである上ケースの重量と非水電解液の未注液である上ケースの重量に非水電解液の基準重量の840mgを加えた重量との差を注液された非水電解液の重量とし、最小の非水電解液の重量と供給した非水電解液の基準重量840mgとの差を比較した。   Further, the weight loss of the non-aqueous electrolyte is 840 mg of the reference weight of the non-aqueous electrolyte in addition to the weight of the upper case where the non-aqueous electrolyte is injected and the weight of the upper case where the non-aqueous electrolyte is not injected. The difference between the weight of the added nonaqueous electrolyte and the weight of the injected nonaqueous electrolyte was compared with the difference between the minimum weight of the nonaqueous electrolyte and the reference weight of the supplied nonaqueous electrolyte of 840 mg.

また、非水電解液の含浸重量として、同じ注液時間内で電極体に含浸した非水電解液の重量を比較するため、注液する前の電極体の重量と非水電解液を注液後の電極体にエアーブローを掛け、電極体の表面にある非水電解液を取り除いた後の電極体の重量との差を比較した。   Also, in order to compare the weight of the nonaqueous electrolyte impregnated in the electrode body within the same injection time as the impregnation weight of the nonaqueous electrolyte, inject the weight of the electrode body before injection and the nonaqueous electrolyte. Air blow was applied to the subsequent electrode body, and the difference from the weight of the electrode body after removing the non-aqueous electrolyte on the surface of the electrode body was compared.

Figure 2007173062
(表1)より明らかなように実施例1による方法は、比較例1と比較して注液時における非水電解液のバラツキ重量も少なく精度が高い製造装置であり、上ケースに高精度な非水電解液の注液ができた。また、非水電解液の基準重量840mgに対しても差が小さく、非水電解液の損失重量が少ないことから、非水電解液を精度良く吸い上げ製造装置内に残留なく注液できていることが言え、注液時の非水電解液の飛散や注液後に非水電解液の揮発の少ない製造装置であり、非水電解液の蒸発を抑制できたことで非水電解液の成分のバラツキを抑えることのできる方法である。また、非水電解液の含浸重量を見ても比較例1と実施例1では30mgもの差があり、非水電解液の温度を上げて粘度が下がり含浸し易くなり、注液ガイドリングによる非水電解液の表面張力を崩し、電極体の全面を覆うことや注液ガイドリングの内面のテーパ形状がさらに非水電解液の切れを良くしたと考えられ、同時間内で実施例1が含浸させるのに充分な機能を発揮していると言える。
Figure 2007173062
As apparent from (Table 1), the method according to Example 1 is a highly accurate manufacturing apparatus with less variation weight of the non-aqueous electrolyte during injection compared to Comparative Example 1, and high accuracy in the upper case. A non-aqueous electrolyte was injected. Moreover, since the difference is small with respect to the reference weight 840 mg of the non-aqueous electrolyte, and the loss weight of the non-aqueous electrolyte is small, the non-aqueous electrolyte can be sucked up accurately and injected into the manufacturing apparatus without residue. However, it is a manufacturing device with less non-aqueous electrolyte volatilization after the injection and non-aqueous electrolyte volatilization after injection. It is a method that can suppress this. Moreover, even if it sees the impregnation weight of a non-aqueous electrolyte, there is a difference of 30 mg between Comparative Example 1 and Example 1, the temperature of the non-aqueous electrolyte increases, the viscosity decreases, and the impregnation becomes easier. It is considered that the surface tension of the aqueous electrolyte is broken, the entire surface of the electrode body is covered, and the tapered shape of the inner surface of the injection guide ring further improves the cutting of the non-aqueous electrolyte. It can be said that it is functioning enough to make it happen.

さらに注目したいのが、比較例1の注液した最大値重量で非水電解液を供給した基準重量840mgに対して860mgと増えていることがわかる。これは非水電解液定量供給ポンプによる非水電解液供給量のバラツキも加味されているが、それ以上に非水電解液が装置内に残留し、その残留した非水電解液が加味されて供給した非水電解液の重量以上に注液されたと考えられる。また、840mgの注液量に対して比較例では100mgの非水電解液の重量のバラツキが発生しているのに対して、本発明の製造装置では5mgと極微量に抑えることができ、前述した様に比較例の装置では、注液する非水電解液の重量が小さくなればなるほど構造が小さくなり、更なる小型化は断念せざるを得ない。   Further, it should be noted that the maximum weight of the injected liquid of Comparative Example 1 is increased to 860 mg from the reference weight of 840 mg supplied with the nonaqueous electrolyte. This includes the variation in the amount of non-aqueous electrolyte supplied by the non-aqueous electrolyte constant supply pump, but more than that, the non-aqueous electrolyte remains in the device, and the remaining non-aqueous electrolyte is added. It is considered that the liquid was injected in excess of the weight of the supplied non-aqueous electrolyte. Further, in the comparative example, a variation in the weight of the 100 mg non-aqueous electrolyte occurs with respect to the injection amount of 840 mg, whereas in the manufacturing apparatus of the present invention, it can be suppressed to a very small amount of 5 mg. As described above, in the apparatus of the comparative example, the structure becomes smaller as the weight of the nonaqueous electrolyte to be injected becomes smaller, and further downsizing must be abandoned.

比較例の注液精度、非水電解液の損失量の悪化要因があり、比較例1による製造装置では、非水電解液定量供給ポンプのバラツキも加味された上、一時貯溜室およびピストンや非水電解液の経路の表面に非水電解液が付着し残留して、注液した非水電解液の重量のバラツキを招いていたと考えられる。また、注液後の含浸時に注液ノズルの下面接液面に発生した非水電解液の表面張力が電極体に非水電解液が含浸する力の邪魔となり、電極体に含浸する非水電解液の重量を減らしたと考えられる。   There are factors that deteriorate the accuracy of liquid injection and the amount of non-aqueous electrolyte loss in the comparative example, and in the manufacturing apparatus according to comparative example 1, the non-aqueous electrolyte fixed amount supply pump is taken into account, and the temporary storage chamber, piston, It is considered that the nonaqueous electrolyte solution adhered and remained on the surface of the path of the water electrolyte solution, resulting in variations in the weight of the injected nonaqueous electrolyte solution. In addition, the surface tension of the non-aqueous electrolyte generated on the lower surface wetted surface of the injection nozzle during impregnation after injection impedes the force that the non-aqueous electrolyte impregnates the electrode body, and the non-aqueous electrolysis that impregnates the electrode body It is thought that the liquid weight was reduced.

さらに、目視で確認できるほど電極体上に非水電解液が今にも溢れ出しそうな状態になっており、下ケースを被せ封口した際に、非水電解液が漏れ出ているのが目視で確認できた。このことで、溢れ出した非水電解液による設備の汚れやそれに伴う設備の稼働トラブル、液こぼれによるコイン形電池の表面汚れや液不足による電池特性の低下等の品質トラブルなど、多岐にわたるトラブルが発生することの確認もされている。   In addition, the nonaqueous electrolyte is likely to overflow on the electrode body so that it can be visually confirmed, and it is visually confirmed that the nonaqueous electrolyte leaks when the cover is covered with the lower case. did it. As a result, there are various troubles such as equipment contamination due to overflowing non-aqueous electrolyte and associated equipment operation troubles, coin-type battery surface contamination due to liquid spillage and quality troubles such as deterioration of battery characteristics due to lack of liquid. It has also been confirmed that this occurs.

以上のように比較例1において、短時間における注液を行ったときに発生する注液精度の悪化は、非水電解液の重量のバラツキをもたらし、その結果として、非水電解液が少ない場合には、コイン形電池内の非水電解液が不足し、電池寿命の短命化につながり、非水電解液が多い場合にはガス発生によるコイン形電池の膨れ、安全性の低下が懸念される。本発明は高い精度での注液を実現することで、電池寿命の安定化、安全性の安定化を実現している。   As described above, in Comparative Example 1, the deterioration of the accuracy of the injection that occurs when the injection is performed in a short time brings about a variation in the weight of the non-aqueous electrolyte, and as a result, the amount of the non-aqueous electrolyte is small. Causes shortage of the non-aqueous electrolyte in the coin-type battery, leading to a shortened battery life, and if there is a large amount of the non-aqueous electrolyte, there is a concern that the coin-type battery may swell due to gas generation and the safety may be reduced. . The present invention achieves stable battery life and safety by realizing liquid injection with high accuracy.

本発明によれば、非水電解液の注液量バラツキを最小限に押えることができ、バラツキの極少化が可能となり、精度よく非水電解液を注液することができる。また、非水電解液のこぼれにまつわる様々なトラブルを解消することができ、困難であった微量な非水電解液量を減圧状態または大気状態で高精度に注液することが可能となり、高性能な扁平形の超小型電池の製造非水電解液方法として有用である。さらに、高容量化を図るために電池内に可能な限り多くを収納した電極体に対して、その電極体に見合った大量の非水電解液を収容することができるため、高エネルギー密度で負荷特性の優れ、貯蔵寿命が長いなどの効果をもたらす電池の作製が可能となる。   According to the present invention, variation in the amount of non-aqueous electrolyte injected can be minimized, variation can be minimized, and non-aqueous electrolyte can be injected accurately. In addition, various troubles related to non-aqueous electrolyte spillage can be solved, and it has become possible to inject a minute amount of non-aqueous electrolyte, which has been difficult, with high accuracy in a reduced pressure or atmospheric condition. It is useful as a non-aqueous electrolyte method for producing a flat micro battery. Furthermore, since a large amount of non-aqueous electrolyte corresponding to the electrode body can be accommodated in the electrode body that accommodates as much as possible in the battery in order to increase the capacity, the load is high energy density. It is possible to produce a battery that has excellent characteristics and a long shelf life.

本発明の実施の形態における非水電解液を吸液する吸液ステージと注液する注液ステージの状態を示す扁平形電池の製造装置の模式図The schematic diagram of the manufacturing apparatus of the flat battery which shows the state of the liquid absorption stage which absorbs the nonaqueous electrolyte in embodiment of this invention, and the liquid injection stage which injects (a)本発明の実施の形態における注液時の注液し始めの状態図、(b)同注液時の表面張力により球体状となった非水電解液の状態図、(c)同注液時の含浸し始めの状態図(A) State diagram of the start of liquid injection at the time of liquid injection in the embodiment of the present invention, (b) State diagram of a non-aqueous electrolyte that has become spherical due to surface tension at the time of liquid injection, (c) State diagram of the beginning of impregnation during injection 本発明の一実施形態におけるコイン形電池の断面図Sectional drawing of the coin-type battery in one Embodiment of this invention 従来の他の電解液注液装置を示す模式図Schematic diagram showing another conventional electrolyte solution injection device

符号の説明Explanation of symbols

1 上ケース
2 電極体
4 架台
5 Oリング
6 注液ノズル
7 非水電解液注液部
8 注液ピストン
9 減圧レギュレータ
10 気密チャンバー
11 非水電解液シリンジ
12 減圧圧力計
13 注液ガイドリング
14 注液管
15 Oリング
16 非水電解液タンク
17 非水電解液供給管
18 温度調整コントローラ
19 供給ノズル
20 温度調整ヒータ
21 サーボモータ
25 連結シャフト
26 圧力調整部
27 非水電解液貯蔵槽
28 非水電解液回収層
29 ピストン駆動部
30 正極体
31 負極体
32 セパレータ
33 絶縁ガスケット
34 下ケース
35 コイン形電池(扁平形電池)
36 ベース
37 ケースホルダ

DESCRIPTION OF SYMBOLS 1 Upper case 2 Electrode body 4 Base 5 O-ring 6 Injection nozzle 7 Non-aqueous electrolyte injection part 8 Injection piston 9 Decompression regulator 10 Airtight chamber 11 Non-aqueous electrolyte syringe 12 Decompression pressure gauge 13 Injection guide ring 14 Note Liquid pipe 15 O-ring 16 Non-aqueous electrolyte tank 17 Non-aqueous electrolyte supply pipe 18 Temperature adjustment controller 19 Supply nozzle 20 Temperature adjustment heater 21 Servo motor 25 Connecting shaft 26 Pressure adjustment section 27 Non-aqueous electrolyte storage tank 28 Non-aqueous electrolysis Liquid recovery layer 29 Piston drive unit 30 Positive electrode body 31 Negative electrode body 32 Separator 33 Insulating gasket 34 Lower case 35 Coin battery (flat battery)
36 Base 37 Case holder

Claims (9)

正極活物質からなる正極材とリチウムを保持しうる材料を活物質としてなる負極材とこれらの間にセパレータを介在させて積層してなる電極体を開口部の周縁部に絶縁ガスケットを有した上ケースに収納後、非水電解液を注液し容器状の下ケースで前記上ケースの開口部を封口する扁平形電池の製造方法であって、前記電極体を収納した上ケースを気密チャンバー内に収納し前記気密チャンバーを減圧後、非水電解液タンクより非水電解液シリンジが自ら吸液して非水電解液シリンジに貯蔵された前記非水電解液を注液すると共に表面張力により球体状になった非水電解液を崩して、前記電極体の全体を非水電解液で覆いながら前記電極体に含浸することを特徴とする扁平形電池の製造方法。   A positive electrode material made of a positive electrode active material, a negative electrode material made of a material capable of holding lithium as an active material, and an electrode body formed by laminating a separator between them, and having an insulating gasket at the periphery of the opening A method for producing a flat battery in which a non-aqueous electrolyte is injected after being accommodated in a case and the opening of the upper case is sealed with a container-like lower case, wherein the upper case containing the electrode body is placed in an airtight chamber. The airtight chamber is depressurized and the nonaqueous electrolyte syringe absorbs itself from the nonaqueous electrolyte tank and injects the nonaqueous electrolyte stored in the nonaqueous electrolyte syringe. A method for producing a flat battery, comprising: breaking a nonaqueous electrolytic solution in a shape and impregnating the electrode body while covering the entire electrode body with the nonaqueous electrolytic solution. 非水電解液シリンジ内に空気を含まないように非水電解液を充満し、非水電解液を上ケース内の電極体に注液し含浸することを特徴とする請求項1に記載の扁平形電池の製造方法。   The flat solution according to claim 1, wherein the nonaqueous electrolyte syringe is filled with a nonaqueous electrolyte solution so as not to contain air, and the nonaqueous electrolyte solution is injected and impregnated into an electrode body in the upper case. A manufacturing method of a battery. 非水電解液タンクの非水電解液の温度を調整しながら、注液ノズルより上ケース内の電極体に非水電解液を注液し含浸させすることを特徴とする請求項1に記載の扁平形電池の製造方法。   The nonaqueous electrolyte solution is injected and impregnated into the electrode body in the case above the injection nozzle while adjusting the temperature of the nonaqueous electrolyte solution in the nonaqueous electrolyte tank. A method for producing a flat battery. 非水電解液タンク内の非水電解液貯蔵槽に供給した非水電解液をオーバーフローさせて非水電解液タンク内の非水電解液回収層で回収し、常に非水電解液貯蔵槽の非水電解液の液面を一定に保ちながら非水電解液シリンジに吸液することを特徴とする請求項1に記載の扁平形電池の製造方法。   The non-aqueous electrolyte supplied to the non-aqueous electrolyte storage tank in the non-aqueous electrolyte tank is overflowed and recovered by the non-aqueous electrolyte recovery layer in the non-aqueous electrolyte tank. 2. The method for producing a flat battery according to claim 1, wherein the liquid surface of the aqueous electrolyte is sucked into the non-aqueous electrolyte syringe while being kept constant. 容器上の上ケースに収納された正極材と負極材とセパレータを介在して積層した電極体と上ケースを収納する気密チャンバーと、温度調整部を具備した非水電解液タンクと、一時的に貯蔵した非水電解液を押出す注液ピストンを内蔵した非水電解液シリンジと、注液管および注液ガイドリングからなる前記非水電解液シリンジに接続した注液ノズルと、前記注液ピストンを作動させるピストン駆動部と、前記気密チャンバーに接続された圧力調整部とで構成されたことを特徴とする扁平形電池の製造装置。   A positive electrode material stored in an upper case on the container, a negative electrode material, an electrode body laminated with a separator interposed therebetween, an airtight chamber for storing the upper case, a non-aqueous electrolyte tank equipped with a temperature adjustment unit, and temporarily A non-aqueous electrolyte syringe with a built-in injection piston for extruding the stored non-aqueous electrolyte, an injection nozzle connected to the non-aqueous electrolyte syringe comprising an injection tube and an injection guide ring, and the injection piston An apparatus for manufacturing a flat battery, comprising: a piston driving unit for operating the pressure sensor; and a pressure adjusting unit connected to the airtight chamber. 温度調整部である温度調整ヒータと温度調整コントローラを具備した非水電解液タンクと、前記非水電解液タンク内にある非水電解液貯蔵槽と非水電解液回収槽と、非水電解液シリンジに非水電解液を吸液させる前記非水電解液貯蔵槽と連通した供給ノズルとで構成したことを特徴とする請求項5に記載の扁平形電池の製造装置。   A non-aqueous electrolyte tank having a temperature adjustment heater and a temperature adjustment controller as a temperature adjustment unit, a non-aqueous electrolyte storage tank, a non-aqueous electrolyte recovery tank, and a non-aqueous electrolyte solution in the non-aqueous electrolyte tank 6. The flat battery manufacturing apparatus according to claim 5, comprising a supply nozzle communicating with the non-aqueous electrolyte storage tank in which the syringe absorbs the non-aqueous electrolyte. 注液ガイドリングの外形寸法が上ケースに収納された電極体の外形寸法から前記上ケースの内径寸法までの範囲内で構成され、且つ前記注液ガイドリングの先端部の内面がテーパ形状を有した請求項5に記載の扁平形電池の製造装置。   The outer dimension of the liquid injection guide ring is configured within the range from the outer dimension of the electrode body housed in the upper case to the inner diameter dimension of the upper case, and the inner surface of the tip of the liquid injection guide ring has a tapered shape. The flat battery manufacturing apparatus according to claim 5. 非水電解液シリンジに非水電解液の吸液量および注液量を可変する可変手段を有したことを特徴とする請求項5に記載の扁平形電池の製造装置。   6. The flat battery manufacturing apparatus according to claim 5, wherein the non-aqueous electrolyte syringe has variable means for varying the amount of liquid absorbed and the amount of liquid injected. 非水電解液タンク内の非水電解液貯蔵槽の非水電解液をオーバーフローさせて、常に非水電解液の液面を一定に保ち、前記非水電解液貯蔵槽と連通した非水電解液の液面が常に一定に保たれた供給ノズルを介して非水電解液を非水電解液シリンジに供給するように構成にしたことを特徴とする請求項5に記載の扁平形電池の製造装置。

A nonaqueous electrolyte solution that overflows the nonaqueous electrolyte solution in the nonaqueous electrolyte solution tank and keeps the liquid level of the nonaqueous electrolyte solution constant and communicates with the nonaqueous electrolyte solution storage tank. 6. The flat battery manufacturing apparatus according to claim 5, wherein the non-aqueous electrolyte is supplied to the non-aqueous electrolyte syringe through a supply nozzle in which the liquid level is always kept constant. .

JP2005369641A 2005-12-22 2005-12-22 Method for manufacturing flat battery and apparatus for manufacturing the same Expired - Fee Related JP5114842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369641A JP5114842B2 (en) 2005-12-22 2005-12-22 Method for manufacturing flat battery and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369641A JP5114842B2 (en) 2005-12-22 2005-12-22 Method for manufacturing flat battery and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007173062A true JP2007173062A (en) 2007-07-05
JP5114842B2 JP5114842B2 (en) 2013-01-09

Family

ID=38299337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369641A Expired - Fee Related JP5114842B2 (en) 2005-12-22 2005-12-22 Method for manufacturing flat battery and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5114842B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086928A1 (en) * 2010-01-15 2011-07-21 長野オートメーション株式会社 Apparatus and method for supplying electrolytic solution
CN102683753A (en) * 2012-05-25 2012-09-19 深圳市赢合科技股份有限公司 Laminated battery pole piece input device and piece lamination prevention material taking mechanism
WO2012173156A1 (en) * 2011-06-17 2012-12-20 株式会社フジキン Electrochemical element
CN105977545A (en) * 2016-07-24 2016-09-28 合肥国轩高科动力能源有限公司 Lithium-ion button cell assembly equipment
CN108832073A (en) * 2018-08-21 2018-11-16 无锡先导智能装备股份有限公司 Liquid-injection equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029230U (en) * 1973-07-10 1975-04-03
JPS5682580A (en) * 1979-12-07 1981-07-06 Hitachi Maxell Ltd Manufacture of button-type battery
JPH0745302A (en) * 1993-07-29 1995-02-14 Shin Kobe Electric Mach Co Ltd Formation method of storage battery jar device therefor and jig therefor
JPH08273659A (en) * 1995-04-03 1996-10-18 Toshiba Corp Electrolyte impregnating method and its device
JPH09165810A (en) * 1995-12-14 1997-06-24 Inax Corp Water supply device for urinal
JP2000068337A (en) * 1998-08-18 2000-03-03 Seiko Epson Corp Failure identification mark for wafer probe test
JP2004055238A (en) * 2002-07-17 2004-02-19 Awa Eng Co Filling method and filling device of electrolytic solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029230U (en) * 1973-07-10 1975-04-03
JPS5682580A (en) * 1979-12-07 1981-07-06 Hitachi Maxell Ltd Manufacture of button-type battery
JPH0745302A (en) * 1993-07-29 1995-02-14 Shin Kobe Electric Mach Co Ltd Formation method of storage battery jar device therefor and jig therefor
JPH08273659A (en) * 1995-04-03 1996-10-18 Toshiba Corp Electrolyte impregnating method and its device
JPH09165810A (en) * 1995-12-14 1997-06-24 Inax Corp Water supply device for urinal
JP2000068337A (en) * 1998-08-18 2000-03-03 Seiko Epson Corp Failure identification mark for wafer probe test
JP2004055238A (en) * 2002-07-17 2004-02-19 Awa Eng Co Filling method and filling device of electrolytic solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086928A1 (en) * 2010-01-15 2011-07-21 長野オートメーション株式会社 Apparatus and method for supplying electrolytic solution
WO2012173156A1 (en) * 2011-06-17 2012-12-20 株式会社フジキン Electrochemical element
JP2013004383A (en) * 2011-06-17 2013-01-07 Fujikin Inc Electrochemical element
KR20140056216A (en) * 2011-06-17 2014-05-09 가부시키가이샤 후지킨 Electrochemical element
KR101665208B1 (en) * 2011-06-17 2016-10-11 가부시키가이샤 후지킨 Method for manufacturing electrochemical element and apparatus for manufacturing electrochemical element
CN102683753A (en) * 2012-05-25 2012-09-19 深圳市赢合科技股份有限公司 Laminated battery pole piece input device and piece lamination prevention material taking mechanism
CN105977545A (en) * 2016-07-24 2016-09-28 合肥国轩高科动力能源有限公司 Lithium-ion button cell assembly equipment
CN108832073A (en) * 2018-08-21 2018-11-16 无锡先导智能装备股份有限公司 Liquid-injection equipment
CN108832073B (en) * 2018-08-21 2024-01-02 无锡先导智能装备股份有限公司 Liquid injection equipment

Also Published As

Publication number Publication date
JP5114842B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP2007173063A (en) Method of manufacturing flat battery and its manufacturing device
JP5683938B2 (en) Secondary battery manufacturing method and electrolyte injection device
JP5114842B2 (en) Method for manufacturing flat battery and apparatus for manufacturing the same
KR102072299B1 (en) Electrolytic solution for electric double layer capacitor, electric double layer capacitor using the same, and manufacturing method therefor
JP2007165170A (en) Method of manufacturing secondary battery and device of manufacturing same
KR101044428B1 (en) Air battery system and method for using and controlling the air battery system
JP4967890B2 (en) Air battery system
JP6770671B2 (en) battery
JP2007335181A (en) Manufacturing method and device for nonaqueous electrolyte secondary battery
JP2008041548A (en) Nonaqueous electrolyte secondary battery
CN104200999B (en) A kind of lithium-ion energy storage device
JP2013197035A (en) Manufacturing apparatus of battery and manufacturing method of battery
KR20190122829A (en) Metal anode battery
JP2019029281A (en) Electrolyte injection device
CN201038226Y (en) Battery vacuum liquid injection device
US20150287548A1 (en) Self-limiting electrolyte filling method
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
KR100634151B1 (en) Apparatus for injecting liquid into container and method therefor
CN109417156A (en) Electrolyte is injected to the method for bag type secondary battery using gap control fixture
CN114865248B (en) Lithium ion battery annotates liquid machine
JP3615699B2 (en) Sealed battery and method for manufacturing the same
JP2963865B2 (en) Electrolyte injection device
JP2007073736A (en) Electrolyte supply device and liquid filling method of electrolyte by using the same
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
JP2010073400A (en) Electrolytic liquid injection method, and electrolytic liquid injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees