JP2007335181A - Manufacturing method and device for nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method and device for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007335181A
JP2007335181A JP2006164299A JP2006164299A JP2007335181A JP 2007335181 A JP2007335181 A JP 2007335181A JP 2006164299 A JP2006164299 A JP 2006164299A JP 2006164299 A JP2006164299 A JP 2006164299A JP 2007335181 A JP2007335181 A JP 2007335181A
Authority
JP
Japan
Prior art keywords
battery container
aqueous electrolyte
battery
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164299A
Other languages
Japanese (ja)
Inventor
Mayumi Kaneda
真由美 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006164299A priority Critical patent/JP2007335181A/en
Publication of JP2007335181A publication Critical patent/JP2007335181A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid filling method that contributes to improve battery quality and productivity in a nonaqueous electrolyte filling step which are deteriorated due to high density of an active material and an increase in tension at a positive-electrode plate, a negative-electrode plate, and a separator along with the trend of high capacity. <P>SOLUTION: A manufacturing method for a nonaqueous electrolyte secondary battery is composed of a first step for decompressing the inside of a chamber 10 storing a battery container 15, into which an electrode group 16 is inserted, for a fixed period of time by using a vacuum pump 1; a second step in which a gas injection opening/closing valve 6 is opened so as to inject gas soluble in a nonaqueous electrolyte from a gas canister 3 into the chamber 10, a decompression opening/closing valve 4 is closed after a fixed period of time, and the gas injection opening/closing valve 6 is closed after a fixed period of time; a third step for filling the nonaqueous electrolyte into the battery container 10 by using a liquid-filling pump 7 and a liquid-filling nozzle 8; and subsequently, a fourth step in which the battery container is decompressed by using the vacuum pump 1 and the inside of the battery container is returned to an atmospheric pressure after the elapse of a fixed period of time, so as to feed the battery container 15 to the next step. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高出力および高容量化を図ることができる非水電解液二次電池に非水電解液を効率よく能率的に注液することができる非水電解液二次電池の製造方法およびその製造装置に関するものである。   The present invention provides a method for producing a non-aqueous electrolyte secondary battery capable of efficiently and efficiently injecting a non-aqueous electrolyte into a non-aqueous electrolyte secondary battery capable of achieving high output and high capacity, and its The present invention relates to a manufacturing apparatus.

近年では、AV機器あるいはパソコンや携帯型通信機器などの電子機器のポータブル化やコードレス化が急速に促進されており、これらの電子機器の駆動用電源としては、急速充電が可能で体積エネルギー密度および重量エネルギー密度がともに高く、小型軽量でかつ高容量の充放電可能な電池としてリチウム二次電池に代表される非水電解液二次電池が主流になりつつある。利用される電子機器の多様化に伴い、高容量を求められるため、活物質の高密度化、正極板と負極板とセパレータの緊迫度が増し、それに伴い非水電解液の浸透する時間が長くなるようになった。   In recent years, portable and cordless electronic devices such as AV devices or personal computers and portable communication devices have been rapidly promoted. As power sources for driving these electronic devices, rapid charging is possible and volume energy density and Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries are becoming mainstream as batteries that have both high weight energy density, small size, light weight, and high capacity and can be charged and discharged. Along with the diversification of electronic equipment used, high capacity is required, so the density of the active material is increased, the tightness of the positive electrode plate, the negative electrode plate, and the separator is increased, and accordingly the time for the nonaqueous electrolyte to penetrate is increased. Came to be.

生産性向上のため図8に示すように、チャンバ101内に電極群107が挿入された電池容器106を収納し、電池容器106の上部に所定量の非水電解液を集留できる漏斗状の液溜め容器102を装着する。注液ポンプ103を用いて、液溜め容器102に非水電解液を供給して一旦集留させ、真空ポンプ104を駆動してチャンバ101内を真空の雰囲気にして電池容器内106および非水電解液中の空気を除去する。さらにチャンバ101内を一旦大気に開放してから、加圧ポンプ105を用いて加圧し、非水電解液の上下部における圧力差を利用して非水電解液を浸透させる方法が提案されている(例えば、特許文献1参照)。
特開平7―99050号公報
As shown in FIG. 8 for improving productivity, a battery container 106 in which an electrode group 107 is inserted is housed in a chamber 101, and a funnel-like shape capable of collecting a predetermined amount of nonaqueous electrolyte on the battery container 106. The liquid reservoir 102 is attached. Using a liquid injection pump 103, a nonaqueous electrolytic solution is supplied to the liquid storage container 102 and once collected, and the vacuum pump 104 is driven to bring the chamber 101 into a vacuum atmosphere. Remove air from the liquid. Further, a method has been proposed in which the inside of the chamber 101 is once opened to the atmosphere, then pressurized using the pressurizing pump 105, and the nonaqueous electrolytic solution is permeated using the pressure difference between the upper and lower portions of the nonaqueous electrolytic solution. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 7-99050

しかしながら、上述した特許文献1の従来技術では、高容量化に伴い電極群を構成している正極板と負極板とこれらの間に介在するセパレータとの緊迫度の増加や活物質の高密度化が進むことにより、非水電解液の浸透する時間が長くなり、真空状態を維持する時間を延ばすことで非水電解液の浸透を促進させることになる。その結果、非水電解液の揮発量が増え非水電解液量のバラツキが発生し、電池容量のバラツキが増えるという課題を有していた。   However, in the above-described prior art of Patent Document 1, as the capacity increases, the degree of tightness between the positive electrode plate and the negative electrode plate constituting the electrode group and the separator interposed therebetween increases the density of the active material. As time elapses, the time for the nonaqueous electrolyte to permeate becomes longer, and the time for maintaining the vacuum state is extended to promote the permeation of the nonaqueous electrolyte. As a result, the volatilization amount of the non-aqueous electrolyte solution is increased, resulting in variations in the non-aqueous electrolyte solution amount, resulting in increased battery capacity variation.

本発明は上記従来の課題を鑑みてなされたもので、電池容器内を減圧し、電池容器内を非水電解液に溶解し得る気体に置換した後に非水電解液を注液し、電池容器内の残存する非水電解液に溶解し得る気体を除去する非水電解液二次電池の製造方法およびその製造装置を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and after depressurizing the inside of the battery container and replacing the inside of the battery container with a gas that can be dissolved in the non-aqueous electrolyte, the non-aqueous electrolyte is injected, and the battery container It is an object of the present invention to provide a method for manufacturing a non-aqueous electrolyte secondary battery and a manufacturing apparatus therefor, which remove gas that can be dissolved in the remaining non-aqueous electrolyte.

上記のような目的を達成するために本発明の非水電解液二次電池の製造方法では、正極集電体に少なくとも正極活物質を含む正極合剤層を形成した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤層を形成した帯状の負極板とこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を金属製の電池容器に挿入し、電池容器内に非水電解液を注液した後に封口体で電池容器の開口部を封口する非水電解液二次電池の製造方法であって、電池容器内の減圧する第一の工程と、次いで電池容器内を非水電解液に溶解し得る気体に置換する第二の工程と、次いで電池容器内に非水電解液を注液する第三の工程と、さらに電池容器内の残存する非水電解液に溶解し得る気体を除去する第四の工
程からなることを特徴としている。
In order to achieve the above object, in the method for producing a non-aqueous electrolyte secondary battery of the present invention, a strip-shaped positive electrode plate and a negative electrode current collector in which a positive electrode mixture layer containing at least a positive electrode active material is formed on a positive electrode current collector. A strip-shaped negative electrode plate in which a negative electrode mixture layer containing at least a negative electrode active material is formed on an electric conductor, and an electrode group wound in a spiral shape with a separator interposed therebetween are inserted into a metal battery container, and the battery A non-aqueous electrolyte secondary battery manufacturing method for sealing an opening of a battery container with a sealing body after injecting a non-aqueous electrolyte into the container, the first step of reducing the pressure in the battery container, and A second step of replacing the inside of the battery container with a gas that can be dissolved in the non-aqueous electrolyte; a third step of injecting the non-aqueous electrolyte into the battery container; and the remaining non-water in the battery container. It is characterized by comprising a fourth step of removing gas that can be dissolved in the electrolyte. .

本発明によれば、電池容器内を減圧し非水電解液に溶解し得る気体に置換した後、電池容器内に非水電解液を注液し電池容器内の残存する非水電解液に溶解し得る気体を除去することにより、規定量の非水電解液を注液および浸透させるための真空状態に維持する時間および浸透させる時間を短縮することができ、非水電解液の揮発量が増えることによって生じる非水電解液量のバラツキを抑制し、品質および生産性の向上が可能となる。   According to the present invention, after depressurizing the inside of the battery container and replacing it with a gas that can be dissolved in the non-aqueous electrolyte, the non-aqueous electrolyte is injected into the battery container and dissolved in the remaining non-aqueous electrolyte in the battery container. By removing possible gas, it is possible to shorten the time for maintaining and infiltrating a specified amount of nonaqueous electrolyte in a vacuum state for injecting and infiltrating, and increase the volatilization amount of the nonaqueous electrolyte The variation in the amount of the non-aqueous electrolyte caused by this can be suppressed, and the quality and productivity can be improved.

本発明の第1の発明においては、正極集電体に少なくとも正極活物質を含む正極合剤層を形成した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤層を形成した帯状の負極板とをこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を金属製の電池容器内に挿入し、電池容器内に非水電解液を注液する非水電解液二次電池の製造方法であって、電池容器内の減圧する第一の工程と、次いで電池容器内を非水電解液に溶解し得る気体に置換する第二の工程と、次いで電池容器内に非水電解液を注液する第三の工程と、さらに電池容器内の残存する非水電解液に溶解し得る気体を除去する第四の工程からなることにより、非水電解液を大気中もしくは減圧状態で長時間の放置することがなくなり、非水電解液の蒸発による注液量のバラツキや非水電解液の成分変化を抑えて、非水電解液の高い注液精度と成分維持を確保した注液が可能となる。   In the first aspect of the present invention, a strip-like positive electrode plate in which a positive electrode mixture layer containing at least a positive electrode active material is formed on a positive electrode current collector and a negative electrode mixture layer containing at least a negative electrode active material on a negative electrode current collector are formed. A non-aqueous solution in which a non-aqueous electrolyte solution is injected into a battery container by inserting an electrode group formed by winding a strip-shaped negative electrode plate into a metal battery container with a separator interposed therebetween A method for producing an electrolyte secondary battery, wherein a first step of decompressing the battery container, a second step of substituting the inside of the battery container with a gas that can be dissolved in a non-aqueous electrolyte, and then a battery container A non-aqueous electrolyte solution in the atmosphere by comprising a third step of injecting a non-aqueous electrolyte solution into the inside and a fourth step of removing gas that can be dissolved in the non-aqueous electrolyte solution remaining in the battery container. Evaporation of non-aqueous electrolyte without being left in the middle or under reduced pressure for a long time By suppressing the components change in the pouring weight variation and a non-aqueous electrolyte solution with a high instilling accuracy and instilling of securing the components maintain a non-aqueous electrolyte solution is possible.

本発明の第2の発明においては、電池容器内を非水電解液に溶解し得る気体として二酸化炭素を用いることにより、電極群に非水電解液が浸透することを促進し浸透時間を短縮することができ、また非水電解液に溶存した二酸化炭素が皮膜を形成することで極板表面の反応ムラを抑えることが可能となり、電池特性を向上することが可能となる。   In the second invention of the present invention, by using carbon dioxide as a gas that can be dissolved in the nonaqueous electrolyte inside the battery container, the penetration of the nonaqueous electrolyte into the electrode group is promoted and the permeation time is shortened. In addition, carbon dioxide dissolved in the nonaqueous electrolytic solution forms a film, so that reaction unevenness on the electrode plate surface can be suppressed, and battery characteristics can be improved.

本発明の第3の発明においては、第三の工程において、電極群を収納した電池容器内に非水電解液を注液した後、電池容器内を加圧することにより、非水電解液を正極合材層および負極合材層の深部まで浸透させることができ、電池容量のバラツキを抑制することが可能となる。   In the third invention of the present invention, in the third step, after injecting the non-aqueous electrolyte into the battery container containing the electrode group, the inside of the battery container is pressurized to thereby convert the non-aqueous electrolyte into the positive electrode. Penetration to the deep part of the composite material layer and the negative electrode composite material layer can be achieved, and variations in battery capacity can be suppressed.

本発明の第4の発明においては、第四の工程において、電池容器内の残存する非水電解液に溶解する気体を除去する方法として、電池容器内を減圧することにより、非水電解液中に含まれる水分を除去することで充電時のガス発生を抑えることが可能となる。   In the fourth invention of the present invention, in the fourth step, as a method of removing the gas dissolved in the nonaqueous electrolyte remaining in the battery container, the inside of the battery container is reduced in pressure by reducing the pressure in the battery container. It is possible to suppress gas generation during charging by removing moisture contained in the battery.

本発明の第5の発明においては、第四の工程において、減圧後に電池容器内を空気で加圧することにより、非水電解液を正極合材層および負極合材層の深部まで、より浸透させることができ、電池容量のバラツキを抑制することが可能となる。   In the fifth invention of the present invention, in the fourth step, the non-aqueous electrolyte is further penetrated to the deep part of the positive electrode mixture layer and the negative electrode mixture layer by pressurizing the inside of the battery container with air after decompression. Therefore, variation in battery capacity can be suppressed.

本発明の第6の発明においては、正極板および負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群が挿入された電池容器を収納するチャンバを有し、電池容器内とチャンバの気体を排出するチャンバに接続され減圧を行う減圧部と、減圧部を開閉する減圧用開閉弁と、電池容器内とチャンバの気体を置換するチャンバに接続されたガスボンベと、ガスボンベから置換する気体の注入を開閉する気体注入用開閉弁と、電池容器内とチャンバ内を加圧するチャンバに接続された加圧部と、加圧部を開閉する加圧用開閉弁と、電池容器内に非水電解液を定量供給する注液ポンプと、注液ポンプからの非水電解液を電池容器内へ注液する注液ノズルとで構成したことを特徴とする非水電解液二次電池の製造装置による一連の工程により、注液時間を短縮し、その結果非水電解液の損失量とバラツキを低減することで生産性と品質が向上し、非水電解液の浸透性が向上することで電池特性が向上する注液が可能となる。   In a sixth aspect of the present invention, there is provided a chamber for housing a battery container into which an electrode group formed by winding a positive electrode plate and a negative electrode plate in a spiral shape with a separator interposed therebetween, A decompression unit connected to a chamber for exhausting the gas in the chamber and the decompression unit, a decompression on-off valve for opening and closing the decompression unit, a gas cylinder connected to the inside of the battery container and the chamber for replacing the gas in the chamber, and a gas cylinder A gas injection on / off valve for opening and closing the injection of gas to be replaced, a pressurizing unit connected to a chamber for pressurizing the inside of the battery container and the chamber, a pressurizing on / off valve for opening and closing the pressurizing unit, and a battery container A non-aqueous electrolyte secondary battery comprising an injection pump for supplying a non-aqueous electrolyte quantitatively and an injection nozzle for injecting the non-aqueous electrolyte from the injection pump into the battery container A series of works by manufacturing equipment Shortens the injection time, and as a result, improves the productivity and quality by reducing the loss and variation of the non-aqueous electrolyte, and improves the battery characteristics by improving the permeability of the non-aqueous electrolyte. Injection is possible.

以下、本発明の一実施の形態について、図面を参照しながら詳細に説明する。以下に示される一実施の形態については、本発明を詳細説明するために掲げた製造装置を示するものであって、本発明は円筒状の非水電解液二次電池の構造および製造装置を特定するものではない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. An embodiment shown below shows a manufacturing apparatus for explaining the present invention in detail. The present invention provides a structure and manufacturing apparatus for a cylindrical non-aqueous electrolyte secondary battery. Not specific.

図1は、本発明の実施の形態である非水電解液二次電池の製造方法における注液工程のフローチャートである。図1に示すように、第一工程では、電極群が挿入された電池容器を収納したチャンバ内を真空ポンプを使って一定時間減圧する。次に第二工程では、気体注入用開閉弁を開放してチャンバ内の非水電解液に溶解し得る気体を注入し、一定時間後に減圧用開閉弁を閉じ、さらに一定時間後に気体注入用開閉弁を閉じる。   FIG. 1 is a flowchart of a liquid injection process in the method for manufacturing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. As shown in FIG. 1, in the first step, the inside of the chamber containing the battery container in which the electrode group is inserted is depressurized for a certain time using a vacuum pump. Next, in the second step, the gas injection on-off valve is opened to inject a gas that can be dissolved in the non-aqueous electrolyte in the chamber, the decompression on-off valve is closed after a certain time, and the gas injection on-off is opened after a certain time. Close the valve.

次に第三工程では、電池容器内に注液ポンプとノズルを使って、非水電解液を注液する。次に第四工程では、真空ポンプを用いて減圧もしくは加圧ポンプを用いて加圧する。一定時間経過後、大気圧に戻して電池容器を取り出し、次工程である浸透待ち工程へ送る。   Next, in the third step, a non-aqueous electrolyte is injected into the battery container using an injection pump and a nozzle. Next, in the fourth step, the pressure is reduced using a vacuum pump or a pressure pump. After a lapse of a certain time, the pressure is returned to atmospheric pressure, the battery container is taken out, and sent to the next waiting process for permeation.

図2は、本発明の非水電解液二次電池(以下、二次電池と称する)の製造装置の模式図である。図2において、減圧するための真空ポンプ1と、加圧するための加圧ポンプ2と、非水電解液に溶解し得る気体が入ったガスボンベ3が、電極群16が挿入された電池容器15を収納したチャンバ10に接続されている。   FIG. 2 is a schematic view of an apparatus for producing a nonaqueous electrolyte secondary battery (hereinafter referred to as a secondary battery) of the present invention. In FIG. 2, a vacuum pump 1 for depressurization, a pressurization pump 2 for pressurization, and a gas cylinder 3 containing a gas that can be dissolved in a nonaqueous electrolytic solution are connected to a battery container 15 in which an electrode group 16 is inserted. It is connected to the housed chamber 10.

またチャンバ10に接続された真空ポンプ1との間には真空を開閉する減圧用開閉弁4が接続され、加圧ポンプ2には加圧用開閉弁5、ガスボンベ3には気体注入用開閉弁6がそれぞれ接続されている。さらに非水電解液を送液するための注液ポンプ7に非水電解液をチャンバ10内に収納された電池容器15に注液する注液ノズル8が接続され、注液ポンプ7は非水電解液が貯蔵されている非水電解液タンク9に接続されている。   Further, a pressure reducing on / off valve 4 for opening and closing a vacuum is connected to the vacuum pump 1 connected to the chamber 10, a pressure on / off valve 5 is connected to the pressure pump 2, and a gas injection on / off valve 6 is connected to the gas cylinder 3. Are connected to each other. Further, an injection nozzle 7 for injecting the non-aqueous electrolyte into the battery container 15 accommodated in the chamber 10 is connected to the injection pump 7 for feeding the non-aqueous electrolyte, and the injection pump 7 is non-aqueous. It is connected to a non-aqueous electrolyte tank 9 in which the electrolyte is stored.

図7は電極群16が挿入された金属製の電池容器15を示す。電極群16には集電するためのリード17の片方端が接合され、リード17の電極群16と接合した反対端には電池容器15を密閉状態にするための封口板18が接合されている。   FIG. 7 shows a metal battery container 15 in which the electrode group 16 is inserted. One end of a lead 17 for collecting current is joined to the electrode group 16, and a sealing plate 18 for sealing the battery container 15 is joined to the opposite end of the lead 17 joined to the electrode group 16. .

次に、非水電解液を電池容器15に注液する順を図2を用いて説明する。まず、第一の工程ではチャンバ10内に電極群16が挿入された電池容器15を収納し、真空ポンプ1を駆動するとともに、減圧用開閉弁4を開放する。一定時間開放して、チャンバ10内および電池容器15内部の空気を除去する。その際、電池容器15内の電極群16内の渦巻状に巻回した正極板と負極板とセパレータとの間や電池容器15と電極群16との隙間の空気までを除去することが望ましい。   Next, the order of injecting the non-aqueous electrolyte into the battery container 15 will be described with reference to FIG. First, in the first step, the battery container 15 in which the electrode group 16 is inserted is housed in the chamber 10, the vacuum pump 1 is driven, and the pressure reducing on-off valve 4 is opened. The air in the chamber 10 and the battery container 15 is removed by opening for a certain time. At that time, it is desirable to remove the space between the positive electrode plate, the negative electrode plate and the separator wound in a spiral shape in the electrode group 16 in the battery container 15 and the air in the gap between the battery container 15 and the electrode group 16.

次いで第二の工程では、気体注入用開閉弁6を開放し、第一工程で空気が除去されたチャンバ10および電池容器15内部に非水電解液に二酸化炭素からなる溶解し得る気体を注入する。一定時間経過後、減圧用開閉弁4を閉じ、非水電解液に溶解し得る気体をさらにチャンバ10および電池容器15内部に注入し、一定時間経過後、気体注入用開閉弁6を閉じる。この際も、電池容器15内の電極群16内の渦巻状に巻回した正極板と負極板とセパレータとの間や電池容器15と電極群16との隙間にまで、非水電解液に溶解し得る気体を挿入できる時間を確保することが望ましい。   Next, in the second step, the gas injection on-off valve 6 is opened, and a dissolvable gas composed of carbon dioxide is injected into the non-aqueous electrolyte into the chamber 10 and the battery container 15 from which air has been removed in the first step. . After a certain time has elapsed, the pressure reducing on / off valve 4 is closed, and a gas that can be dissolved in the nonaqueous electrolyte is further injected into the chamber 10 and the battery container 15, and after a certain time has elapsed, the gas injection on / off valve 6 is closed. Also in this case, it dissolves in the non-aqueous electrolyte up to the space between the positive electrode plate and the negative electrode plate wound in a spiral shape in the electrode group 16 in the battery container 15 and the gap between the battery container 15 and the electrode group 16. It is desirable to ensure a time during which a gas that can be inserted is inserted.

その後、第三の工程では注液ポンプ7で非水電解液タンク9から注液ノズル8を介して非水電解液を電池容器15に注液する。その後に、加圧用開閉弁5を開放して、チャンバ10内および電池容器15内を加圧ポンプ2で加圧する。そのことにより電極群16内への非水電解液の浸透をさらに促進させることが可能となる。   Thereafter, in the third step, the nonaqueous electrolyte is injected into the battery container 15 from the nonaqueous electrolyte tank 9 through the injection nozzle 8 by the injection pump 7. Thereafter, the pressurization on-off valve 5 is opened, and the inside of the chamber 10 and the battery container 15 is pressurized by the pressurizing pump 2. Accordingly, it is possible to further promote the penetration of the nonaqueous electrolytic solution into the electrode group 16.

さらに第四の工程では、真空ポンプ1を駆動するとともに減圧用開閉弁4を開放してチャンバ10および電池容器15内の残存する非水電解液に溶解し得る気体を除去し、一定時間経過後に、真空ポンプ1を停止し、減圧用開閉弁4を閉じて一連の工程を終了する。または第四の工程では、減圧後さらに、加圧ポンプ2を駆動して、加圧用開閉弁5を開放し、一定時間経過後に加圧ポンプ2を停止し、加圧用開閉弁5を閉じて一連の工程を終了する。なお、非水電解液に溶解可能な気体であれば二酸化炭素に限定されない。   Further, in the fourth step, the vacuum pump 1 is driven and the pressure reducing on-off valve 4 is opened to remove the gas that can be dissolved in the remaining non-aqueous electrolyte in the chamber 10 and the battery container 15. Then, the vacuum pump 1 is stopped, the pressure reducing on-off valve 4 is closed, and the series of steps is completed. Alternatively, in the fourth step, after depressurization, the pressurization pump 2 is further driven to open the pressurization on-off valve 5, the pressurization pump 2 is stopped after a certain period of time, and the pressurization on-off valve 5 is closed. This step is completed. The gas is not limited to carbon dioxide as long as it is a gas that can be dissolved in the non-aqueous electrolyte.

次に以下、本発明の実施例に関わる非水電解液二次電池の製造方法およびその製造装置について図を参照しながら詳細に説明する。以下本発明の実施例について詳細に説明するが、これらは本発明を何ら限定するものではない。   Next, a method for manufacturing a non-aqueous electrolyte secondary battery and its manufacturing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. EXAMPLES Examples of the present invention will be described in detail below, but these do not limit the present invention.

図7に示されるように、直径18mm、高さ65mmの一般的なリチウムイオン二次電池を用いた。また非水電解液に溶解し得る気体として、二酸化炭素を用い、あらかじめ電極群16を挿入した電池容器15の重量を未注液の状態で測定しておく。   As shown in FIG. 7, a general lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm was used. In addition, carbon dioxide is used as a gas that can be dissolved in the nonaqueous electrolytic solution, and the weight of the battery container 15 in which the electrode group 16 is inserted in advance is measured in an uninjected state.

図2に示す製造装置を用い、まず、第一の工程で、チャンバ10内に電極群16を挿入した電池容器15を収納し、図3の電池容器15内とチャンバ10内の圧力の状態図に示すように、減圧用開閉弁4を開放して、真空ポンプ1を使って真空度−100kPaで60秒間減圧する。ついで第二の工程で、気体注入用開閉弁6を開放して50Kpaで二酸化炭素の注入を開始し、5秒経過後、減圧用開閉弁4を閉じた。   2, first, in the first step, the battery container 15 in which the electrode group 16 is inserted is housed in the chamber 10, and the state diagram of the pressure in the battery container 15 and the chamber 10 in FIG. 3. As shown in FIG. 4, the pressure reducing on-off valve 4 is opened, and the vacuum pump 1 is used to reduce the pressure at a vacuum degree of −100 kPa for 60 seconds. Next, in the second step, the gas injection on / off valve 6 was opened and carbon dioxide injection was started at 50 Kpa, and after 5 seconds, the pressure reducing on / off valve 4 was closed.

さらに60秒経過後、気体注入用開閉弁6を閉じた。第三の工程で、電池容器15に注液ポンプ7で非水電解タンク9から注液ノズル8を介して5.2gの非水電解液を注液した。次に、第四の工程で減圧用開閉弁4を開放し、真空ポンプ1を使って、−90Kpaに減圧し、60秒後に真空ポンプ1を停止し大気圧に戻して、減圧用開閉弁4を閉じた。その後、非水電解液が電極群16内へ浸透する時間と浸透完了直後の重量を測定した電池容器15を実施例1とした。   After a further 60 seconds, the gas injection on-off valve 6 was closed. In the third step, 5.2 g of nonaqueous electrolytic solution was injected into the battery container 15 from the nonaqueous electrolytic tank 9 through the liquid injection nozzle 8 with the liquid injection pump 7. Next, in the fourth step, the pressure reducing on / off valve 4 is opened, the vacuum pump 1 is used to reduce the pressure to -90 Kpa, and after 60 seconds, the vacuum pump 1 is stopped and returned to atmospheric pressure. Closed. Then, the battery container 15 which measured the time for the non-aqueous electrolyte to penetrate into the electrode group 16 and the weight immediately after the completion of the penetration was taken as Example 1.

本発明の実施例2として、第三の工程までは実施例1と同様にして非水電解液を注液した。その後に、図4の電池容器15内とチャンバ10内の圧力の状態図に示すように、 第四の工程で加圧用開閉弁5を開放し、加圧ポンプ2を使って空気を注入して50kPaに加圧し、60秒後に加圧ポンプ2を停止し大気圧に戻して、加圧用開閉弁5を閉じた。その後、非水電解液が電極群16内へ浸透する時間と浸透完了直後の重量を測定した電池容器15を実施例2とした。   As Example 2 of the present invention, a non-aqueous electrolyte was injected in the same manner as Example 1 up to the third step. Thereafter, as shown in the state diagram of the pressure in the battery container 15 and the chamber 10 in FIG. 4, the pressure on-off valve 5 is opened in the fourth step, and air is injected using the pressure pump 2. The pressure was increased to 50 kPa, and after 60 seconds, the pressure pump 2 was stopped and returned to atmospheric pressure, and the pressure on-off valve 5 was closed. Then, the battery container 15 which measured the time for the non-aqueous electrolyte to penetrate into the electrode group 16 and the weight immediately after the completion of the penetration was taken as Example 2.

本発明の実施例3として、第二の工程までは、実施例1と同様にして二酸化炭素を注入した。次いで、図5の電池容器15内とチャンバ10内の圧力の状態図に示すように、第三の工程で、電池容器15に注液ポンプ7で非水電解液タンク9から注液ノズル8を介して5.2gの非水電解液を注液した後に、加圧用開閉弁5を開放し加圧ポンプ2を使って電池容器15内を50kPaの加圧し、10秒後に加圧ポンプ2を停止し、加圧用開閉弁5を閉じて大気圧に戻した。   As Example 3 of the present invention, carbon dioxide was injected in the same manner as in Example 1 until the second step. Next, as shown in the state diagram of the pressure in the battery container 15 and the chamber 10 in FIG. 5, in the third step, the liquid injection nozzle 8 is inserted into the battery container 15 from the nonaqueous electrolyte tank 9 by the liquid injection pump 7. After injecting 5.2 g of non-aqueous electrolyte, the pressure on / off valve 5 is opened, the pressure pump 2 is used to pressurize the battery container 15 to 50 kPa, and the pressure pump 2 is stopped after 10 seconds. Then, the pressure on-off valve 5 was closed to return to atmospheric pressure.

さらに、第四の工程で減圧用開閉弁4を開放し、真空ポンプ1を使って、−90Kpaに減圧し、60秒後に真空ポンプ1を停止し大気圧に戻して、減圧開閉弁4を閉じた。その後、非水電解液が電極群16内へ浸透する時間と浸透完了直後の重量を測定した電池容器15を実施例3とした。   Further, in the fourth step, the pressure reducing on / off valve 4 is opened, the pressure is reduced to -90 Kpa using the vacuum pump 1, and after 60 seconds, the vacuum pump 1 is stopped and returned to atmospheric pressure, and the pressure reducing on / off valve 4 is closed. It was. Then, the battery container 15 which measured the time for the non-aqueous electrolyte to penetrate into the electrode group 16 and the weight immediately after the completion of the penetration was taken as Example 3.

本発明の実施例4として、第三の工程までは、実施例3と同様にして非水電解液を注液した。その後に、図6の電池容器15内とチャンバ10内の圧力の状態図に示すように、第四の工程で減圧用開閉弁4を開放し、真空ポンプ1を使って、−90Kpaに減圧し、60秒後に真空ポンプ1を停止し大気圧に戻して、減圧開閉弁4を閉じ、さらに加圧用開閉弁5を開放し、加圧ポンプ2を使って空気を注入して50kPaに加圧し、60秒後に加圧ポンプ2を停止し大気圧に戻して、加圧用開閉弁5を閉じた。その後、非水電解液が電極群16内へ浸透する時間と浸透完了直後の重量を測定した電池容器15を実施例4とした。   As Example 4 of the present invention, a non-aqueous electrolyte was injected in the same manner as Example 3 up to the third step. Thereafter, as shown in the state diagram of the pressure in the battery container 15 and the chamber 10 in FIG. 6, the pressure reducing on / off valve 4 is opened in the fourth step, and the vacuum pump 1 is used to reduce the pressure to −90 Kpa. 60 seconds later, the vacuum pump 1 is stopped and returned to atmospheric pressure, the pressure reducing on-off valve 4 is closed, the pressure on-off valve 5 is opened, air is injected using the pressure pump 2, and the pressure is increased to 50 kPa. After 60 seconds, the pressurizing pump 2 was stopped and returned to atmospheric pressure, and the pressurizing on-off valve 5 was closed. Then, the battery container 15 which measured the time for the nonaqueous electrolyte to permeate into the electrode group 16 and the weight immediately after the completion of the permeation was defined as Example 4.

(比較例)
図8に示すような注液装置を用いて注液を行った。あらかじめ電極群107が挿入された電池容器106の重量を未注液の状態で測定しておく。チャンバ101内に電極群107が挿入された電池容器106を収納し、電池容器106の上部の装着された漏斗状の液溜め容器102に非水電解液5.2gを注液ポンプ103を用いて、集留させる。減圧加圧切替三方弁108を減圧側に閉じ、真空ポンプ104を駆動してチャンバ101内を−90kPaに減圧する。
(Comparative example)
Injection was performed using an injection apparatus as shown in FIG. The weight of the battery container 106 in which the electrode group 107 is inserted in advance is measured in an uninjected state. A battery container 106 in which an electrode group 107 is inserted is accommodated in the chamber 101, and 5.2 g of a non-aqueous electrolyte is injected into the funnel-shaped liquid reservoir container 102 mounted on the upper part of the battery container 106 by using an injection pump 103. , Collect. The three-way valve 108 for reducing and increasing pressure is closed to the pressure reducing side, and the vacuum pump 104 is driven to reduce the pressure in the chamber 101 to −90 kPa.

120秒経過後に真空ポンプ104を停止して減圧加圧切替三方弁108を大気開放側に開き、チャンバ101内を一旦大気圧に戻す。その後、減圧加圧切替三方弁108を加圧側に閉じ加圧ポンプ105を用いて50kPaに加圧し、60秒後に、加圧ポンプ105を停止して減圧加圧切替三方弁108を大気開放側に開き、チャンバ101内を大気圧に戻す。その後、非水電解液が電極群107内へ浸透する時間と浸透完了直後の重量を測定した電池容器106を比較例とした。   After 120 seconds have elapsed, the vacuum pump 104 is stopped, the pressure-reduction / pressure switching three-way valve 108 is opened to the atmosphere opening side, and the inside of the chamber 101 is once returned to atmospheric pressure. After that, the pressure-reduction / pressure switching three-way valve 108 is closed on the pressure side and pressurized to 50 kPa using the pressure pump 105, and after 60 seconds, the pressure pump 105 is stopped and the pressure-reduction pressure switching three-way valve 108 is opened to the atmosphere open side. Open and return the chamber 101 to atmospheric pressure. Then, the battery container 106 which measured the time which nonaqueous electrolyte solution osmose | permeates in the electrode group 107, and the weight immediately after completion | finish of infiltration was made into the comparative example.

上記実施例1から4および比較例の非水電解液注液時間における精度、注液時に装置に付着または揮発により損失した非水電解液の量を比較するために、下記の評価を行った。その結果を(表1)に示す。   In order to compare the accuracy in the nonaqueous electrolyte injection time of Examples 1 to 4 and the comparative example and the amount of the nonaqueous electrolyte lost to the apparatus due to adhesion or volatilization during injection, the following evaluation was performed. The results are shown in (Table 1).

(表1)に示した注液時間、非水電解液の損失量、注液量のバラツキは下記のとおり計測した。注液時間は電池容器内の電極群に浸透した時間を測定した。注液精度は、非水電解液の注液済みとなった電池容器の重量と非水電解液未注液の状態となった電池容器の重量に非水電解液の重量の5.2gを加えた重量との差を注液された量とし、注液した非水電解液量との比率を表した。   The injection time, the loss amount of the non-aqueous electrolyte, and the variation in the injection amount shown in Table 1 were measured as follows. The time for injecting the liquid was measured as the time of penetration into the electrode group in the battery container. The accuracy of pouring is calculated by adding 5.2 g of the weight of the non-aqueous electrolyte to the weight of the battery container that has been filled with the non-aqueous electrolyte and the weight of the battery container that has not been filled with the non-aqueous electrolyte. The difference from the weight was taken as the injected amount, and the ratio to the injected non-aqueous electrolyte amount was expressed.

実施した30個の電池容器で各例の比較をした。また、非水電解液の損失量は、非水電解液の注液済みとなった電池容器の重量と非水電解液未注液の状態となった電池容器の重量に非水電解液の重量の5.2gを加えた重量との差を注液されたとし、各例で比較を行った。   Each example was compared with the 30 battery containers implemented. The amount of loss of the non-aqueous electrolyte is the weight of the non-aqueous electrolyte in addition to the weight of the battery container that has been injected with the non-aqueous electrolyte and the weight of the battery container that has not been injected with the non-aqueous electrolyte. Assuming that the difference from the weight of 5.2 g was added, the comparison was made in each example.

Figure 2007335181
Figure 2007335181

(表1)の結果より、本発明の注液方法での実施例1から実施例4は、比較例に比べ、注液時間が短縮でき、かつ損失量および注液量バラツキも低減できた。特に実施例3においては、第三の工程で注液後の加圧を追加することで、実施例1の効果に加えて、非水電解液の浸透を促進することが可能である。   From the results of (Table 1), Examples 1 to 4 in the liquid injection method of the present invention were able to reduce the liquid injection time and the loss amount and liquid injection amount variation compared to the comparative example. In particular, in Example 3, in addition to the effect of Example 1, it is possible to promote the penetration of the nonaqueous electrolytic solution by adding pressurization after the injection in the third step.

また実施例4においても、第四の工程で減圧後の加圧を追加することで、実施例3の効果に加えて、非水電解液の浸透を促進することが可能である。比較例は、非水電解液の上下の圧力差のみで非水電解液を電池容器内に浸透させているが、電池容器内の空気を完全に除去していないために空気と非水電解液の置換が進みにくく、自然置換による浸透を待たなければならない。   Also in Example 4, in addition to the effect of Example 3, it is possible to promote the penetration of the non-aqueous electrolyte by adding the pressure after the pressure reduction in the fourth step. In the comparative example, the non-aqueous electrolyte is infiltrated into the battery container only by the pressure difference between the upper and lower sides of the non-aqueous electrolyte, but the air and the non-aqueous electrolyte are not removed because the air in the battery container is not completely removed. It is difficult to proceed with replacement, and it is necessary to wait for penetration by natural replacement.

その結果、浸透終了までの時間がかかり、それに伴い揮発による非水電解液の損失量が増え、注液量がばらつく原因となっている。それに比べ、本発明の方法では、電池容器内の空気を除去するだけでなく、非水電解液に溶解し得る気体である二酸化炭素に置換することで、より非水電解液が電池容器内に浸透し、浸透終了までの時間も短縮でき、その結果として損失量と注液量のバラツキが低減でき、品質および生産性の向上が可能となる。   As a result, it takes time to complete the permeation, and accordingly, the loss amount of the non-aqueous electrolyte due to volatilization increases, which causes the injection amount to vary. In contrast, the method of the present invention not only removes the air in the battery container, but also substitutes carbon dioxide, which is a gas that can be dissolved in the non-aqueous electrolyte, so that the non-aqueous electrolyte is more contained in the battery container. Penetration and the time until the completion of penetration can be shortened. As a result, variations in loss and liquid injection can be reduced, and quality and productivity can be improved.

本発明によれば、電極群が挿入された電池容器内を非水電解液に溶解し得る気体に置換することにより、電池容器内の気体と非水電解液の置換がより促進されるため、注液時間の短縮が図れ、その結果、非水電解液の損失量と注液量バラツキを抑えることができ、生産性と品質の向上および製造コストの削減に有用である。   According to the present invention, the replacement of the gas in the battery container and the non-aqueous electrolyte is further promoted by replacing the inside of the battery container in which the electrode group is inserted with a gas that can be dissolved in the non-aqueous electrolyte. The injection time can be shortened, and as a result, the loss amount of the nonaqueous electrolyte and the injection amount variation can be suppressed, which is useful for improving productivity and quality and reducing the manufacturing cost.

本発明の実施の形態を示す工程のフローチャートProcess flowchart showing an embodiment of the present invention 本発明の実施の形態を示す製造装置の模式図The schematic diagram of the manufacturing apparatus which shows embodiment of this invention 本発明の実施例1における電池容器内とチャンバ内の圧力の状態図State diagram of pressure in battery container and chamber in embodiment 1 of the present invention 本発明の実施例2における電池容器内とチャンバ内の圧力の状態図State diagram of pressure in battery container and chamber in embodiment 2 of the present invention 本発明の実施例3における電池容器内とチャンバ内の圧力の状態図State diagram of pressure in battery container and chamber in embodiment 3 of the present invention 本発明の実施例4における電池容器内とチャンバ内の圧力の状態図State diagram of pressure in battery container and chamber in embodiment 4 of the present invention 本発明の電池容器内に電極群が挿入された模式図Schematic diagram of the electrode group inserted in the battery container of the present invention 従来技術の注液装置の模式図Schematic diagram of a conventional injection device

符号の説明Explanation of symbols

1 真空ポンプ
2 加圧ポンプ
3 ガスボンベ
4 減圧用開閉弁
5 加圧用開閉弁
6 気体注入用開閉弁
7 注液ポンプ
8 注液ノズル
9 非水電解液タンク
10 チャンバ
15 電池容器
16 電極群
17 リード
18 封口板

DESCRIPTION OF SYMBOLS 1 Vacuum pump 2 Pressurization pump 3 Gas cylinder 4 Pressure reducing on-off valve 5 Pressurizing on-off valve 6 Gas injection on-off valve 7 Injection pump 8 Injection nozzle 9 Non-aqueous electrolyte tank 10 Chamber 15 Battery container 16 Electrode group 17 Lead 18 Sealing plate

Claims (6)

正極集電体に少なくとも正極活物質を含む正極合剤層を形成した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤層を形成した帯状の負極板とをこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を金属製の電池容器内に挿入し、前記電池容器内に非水電解液を注液した後、封口体で前記電池容器の開口部を封口する非水電解液二次電池の製造方法であって、前記電池容器内を減圧する第一の工程と、次いで前記電池容器内を前記非水電解液に溶解し得る気体に置換する第二の工程と、次いで前記電池容器内に前記非水電解液を注液する第三の工程と、さらに前記電池容器内の残存する前記非水電解液に溶解し得る気体を除去する第四の工程からなることを特徴とする非水電解液二次電池の製造方法。   Between the strip-shaped positive electrode plate in which the positive electrode mixture layer containing at least the positive electrode active material is formed on the positive electrode current collector and the strip-shaped negative electrode plate in which the negative electrode mixture layer including at least the negative electrode active material is formed on the negative electrode current collector. After inserting a non-aqueous electrolyte into the battery container, the electrode group formed by winding the separator in a spiral shape with a separator interposed between the battery container, and then opening the battery container with a sealing body A non-aqueous electrolyte secondary battery manufacturing method for sealing a battery, wherein a first step of depressurizing the inside of the battery container, and then replacing the inside of the battery container with a gas that can be dissolved in the non-aqueous electrolyte. A second step, a third step of injecting the non-aqueous electrolyte into the battery container, and a fourth step of removing gas that can be dissolved in the non-aqueous electrolyte remaining in the battery container. The manufacturing method of the nonaqueous electrolyte secondary battery characterized by comprising a process. 前記電池容器内を非水電解液に溶解し得る気体として、二酸化炭素を用いることを特徴とする請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein carbon dioxide is used as a gas that can be dissolved in the non-aqueous electrolyte in the battery container. 前記第三の工程において、電極群を収納した電池容器内に非水電解液を注液した後、前記電池容器内を加圧することを特徴とする請求項1に記載の非水電解液二次電池の製造方法。   2. The non-aqueous electrolyte secondary according to claim 1, wherein, in the third step, the inside of the battery container is pressurized after injecting the non-aqueous electrolyte into the battery container containing the electrode group. Battery manufacturing method. 前記第四の工程での電池容器内の残存する非水電解液に溶解し得る気体を除去する方法として、前記電池容器内を減圧することを特徴とする請求項1に記載の非水電解液二次電池の製造方法。   The nonaqueous electrolytic solution according to claim 1, wherein the inside of the battery container is depressurized as a method of removing gas that can be dissolved in the nonaqueous electrolytic solution remaining in the battery container in the fourth step. A method for manufacturing a secondary battery. 前記第四の工程として、減圧後に電池容器内を加圧することを特徴とする請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein, as the fourth step, the inside of the battery container is pressurized after decompression. 正極板および負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群が挿入された電池容器を収納するチャンバを有し、前記電池容器内とチャンバの気体を排出するチャンバに接続され減圧を行う減圧部と、前記減圧部を開閉する減圧用開閉弁と、前記電池容器内とチャンバの気体を置換する前記チャンバに接続されたガスボンベと、前記ガスボンベから置換する気体の注入を開閉する気体注入用開閉弁と、前記電池容器内とチャンバ内を加圧するチャンバに接続された加圧部と、前記加圧部を開閉する加圧用開閉弁と、前記電池容器内に非水電解液を定量供給する注液ポンプと、前記注液ポンプからの前記非水電解液を電池容器内へ注液する注液ノズルとで構成したことを特徴とする非水電解液二次電池の製造装置。

A chamber for storing a battery container in which an electrode group formed by spirally winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween, and exhausting gas in the battery container and the chamber; A pressure reducing part for reducing pressure, a pressure reducing on-off valve for opening and closing the pressure reducing part, a gas cylinder connected to the chamber for replacing the gas in the battery container and the chamber, and injection of gas for replacement from the gas cylinder A gas injection on-off valve that opens and closes the battery, a pressurization unit connected to the chamber for pressurizing the inside of the battery container and the chamber, a pressurization on-off valve for opening and closing the pressurization unit, and non-water in the battery container A non-aqueous electrolyte secondary battery comprising a liquid injection pump for supplying a constant amount of an electrolyte and a liquid injection nozzle for injecting the non-aqueous electrolyte from the liquid injection pump into a battery container Manufacturing equipment.

JP2006164299A 2006-06-14 2006-06-14 Manufacturing method and device for nonaqueous electrolyte secondary battery Pending JP2007335181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164299A JP2007335181A (en) 2006-06-14 2006-06-14 Manufacturing method and device for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164299A JP2007335181A (en) 2006-06-14 2006-06-14 Manufacturing method and device for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007335181A true JP2007335181A (en) 2007-12-27

Family

ID=38934451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164299A Pending JP2007335181A (en) 2006-06-14 2006-06-14 Manufacturing method and device for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007335181A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
JP2010262821A (en) * 2009-05-07 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2012134047A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Method of manufacturing secondary battery and electrolyte injection device
US20130081264A1 (en) * 2011-09-29 2013-04-04 Kabushiki Kaisha Toshiba Method of fabricating secondary battery
JP2013140782A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device
CN103700887A (en) * 2014-01-03 2014-04-02 国家电网公司 Lithium titanate battery opening formation device and opening formation method
JP2014165220A (en) * 2013-02-21 2014-09-08 Jcc Engineering Co Ltd Dispensing system
WO2015025207A1 (en) 2013-08-22 2015-02-26 Toyota Jidosha Kabushiki Kaisha Manufacturing method of nonaqueous electrolytic solution secondary battery
KR20170111691A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 Electrolyte injection device and method for secondary battery
CN107615548A (en) * 2015-08-05 2018-01-19 株式会社皆藤制作所 Coiler device
CN107785527A (en) * 2017-09-27 2018-03-09 东莞市沃泰通新能源有限公司 A kind of battery liquid-filling device
CN109192919A (en) * 2018-08-30 2019-01-11 广州倬粤动力新能源有限公司 Electrolyte filling method for carbon fiber storage battery
CN113644347A (en) * 2021-09-02 2021-11-12 烟台浩忆生物科技有限公司 Metal-air battery and liquid injection method thereof
WO2022080749A1 (en) 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Method for manufacturing battery cell using soluble gas-saturated electrolyte solution

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
JP2010262821A (en) * 2009-05-07 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2012134047A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Method of manufacturing secondary battery and electrolyte injection device
US20130081264A1 (en) * 2011-09-29 2013-04-04 Kabushiki Kaisha Toshiba Method of fabricating secondary battery
CN103035951A (en) * 2011-09-29 2013-04-10 株式会社东芝 Method of fabricating secondary battery
JP2013077404A (en) * 2011-09-29 2013-04-25 Toshiba Corp Manufacturing method of secondary battery
JP2013140782A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device
JP2014165220A (en) * 2013-02-21 2014-09-08 Jcc Engineering Co Ltd Dispensing system
WO2015025207A1 (en) 2013-08-22 2015-02-26 Toyota Jidosha Kabushiki Kaisha Manufacturing method of nonaqueous electrolytic solution secondary battery
CN103700887A (en) * 2014-01-03 2014-04-02 国家电网公司 Lithium titanate battery opening formation device and opening formation method
US11158465B2 (en) 2015-08-05 2021-10-26 Kaido Manufacturing Co., Ltd. Winder
CN107615548A (en) * 2015-08-05 2018-01-19 株式会社皆藤制作所 Coiler device
US11170949B2 (en) 2015-08-05 2021-11-09 Kaido Manufacturing Co., Ltd. Winder
EP3333954A4 (en) * 2015-08-05 2018-12-12 Kaido Manufacturing CO., LTD. Winding device
KR20170111691A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 Electrolyte injection device and method for secondary battery
KR102118664B1 (en) * 2016-03-29 2020-06-03 주식회사 엘지화학 Electrolyte injection device and method for secondary battery
CN107785527A (en) * 2017-09-27 2018-03-09 东莞市沃泰通新能源有限公司 A kind of battery liquid-filling device
CN109192919A (en) * 2018-08-30 2019-01-11 广州倬粤动力新能源有限公司 Electrolyte filling method for carbon fiber storage battery
WO2022080749A1 (en) 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Method for manufacturing battery cell using soluble gas-saturated electrolyte solution
KR20220050706A (en) 2020-10-16 2022-04-25 주식회사 엘지에너지솔루션 Battery cell manufacturing method using soluble gas saturated electrolyte
CN113644347A (en) * 2021-09-02 2021-11-12 烟台浩忆生物科技有限公司 Metal-air battery and liquid injection method thereof

Similar Documents

Publication Publication Date Title
JP2007335181A (en) Manufacturing method and device for nonaqueous electrolyte secondary battery
KR101254613B1 (en) Electrochemical battery cell
JP5950170B2 (en) Battery manufacturing method
KR100630413B1 (en) Apparatus and Method for pouring electrolyte
KR101541588B1 (en) Battery manufacturing apparatus and method for manufacturing battery
JP5683938B2 (en) Secondary battery manufacturing method and electrolyte injection device
JP2008041548A (en) Nonaqueous electrolyte secondary battery
JP2007165170A (en) Method of manufacturing secondary battery and device of manufacturing same
JP5991714B2 (en) Nonaqueous electrolyte secondary battery manufacturing method and manufacturing apparatus
KR101317003B1 (en) Method of fabricating secondary battery
CN105637679A (en) Secondary cell production method
JP6066213B2 (en) Secondary battery manufacturing method and secondary battery
JP6014993B2 (en) Electric device manufacturing method, manufacturing apparatus, and electric device
JP2004152570A (en) Electrolyte injection method and device for the same
JP2003036850A (en) Nonaqueous electrolytic secondary battery and its manufacturing method
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
WO2019096962A1 (en) Process and apparatus for manufacturing an electrochemical cell
KR20160032530A (en) Apparatus for impregnating electrolyte and fabricating method of secondary battery using thereof
JP2010015784A (en) Seal member for battery, battery, and those manufacturing methods
KR100822192B1 (en) Injecting method of electrolyte
KR102264674B1 (en) Electrolyte Injection Method Using Vacuum
KR102264683B1 (en) Electrolyte Injection Method Using Vacuum
JP2004311343A (en) Performance test means and performance test method for nonaqueous electrolytic solution battery, liquid filling device for nonaqueous electrolytic solution battery as well as manufacturing method of nonaqueous electrolytic solution battery
US20230327219A1 (en) Battery cell manufacturing method using electrolytic solution saturated with soluble gas
JP2021118039A (en) Method for manufacturing nonaqueous electrolyte secondary battery