JP2007165170A - Method of manufacturing secondary battery and device of manufacturing same - Google Patents

Method of manufacturing secondary battery and device of manufacturing same Download PDF

Info

Publication number
JP2007165170A
JP2007165170A JP2005361579A JP2005361579A JP2007165170A JP 2007165170 A JP2007165170 A JP 2007165170A JP 2005361579 A JP2005361579 A JP 2005361579A JP 2005361579 A JP2005361579 A JP 2005361579A JP 2007165170 A JP2007165170 A JP 2007165170A
Authority
JP
Japan
Prior art keywords
electrolyte
storage tank
battery container
temporary storage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005361579A
Other languages
Japanese (ja)
Inventor
Isao Fujiwara
勲 藤原
Kenji Mizuno
賢治 水野
Seiichi Kato
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005361579A priority Critical patent/JP2007165170A/en
Publication of JP2007165170A publication Critical patent/JP2007165170A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing-injection method of a secondary battery of which productivity is superior by means that an electrolytic solution is injected in a short time into the secondary battery of a state without injection of the electrolytic solution, and in which the electrolytic solution is precisely injected. <P>SOLUTION: In the method, an opening of a battery container 1 in which an electrode group of the secondary battery in a state without injection of the electrolytic solution are housed and an electrolytic solution primary storage tank 4 are connected with an elastomer 3. After the pressure is reduced in the battery container 1 via the electrolytic solution primary storage tank 4, the electrolytic solution is injected via a first step in which a piston type valve 5 of the electric solution primary storage tank 4 is closed and the pressure in the battery container 1 is maintained in a state of reduced pressure, a second step in which quantitative amount of the electrolytic solution is supplied into the electrolytic solution primary storage tank 4, a third step in which the piston type valve 5 is opened while applying centrifugal force on the electrolytic solution and in which the electrolytic solution is injected into the battery container, a fourth step in which the pressure in the battery container 1 and in the electric solution primary storage tank 4 is made into an equilibrium state, and a fifth step in which the pressure in the battery container 1 is reduced via the electrolytic solution primary storage tank 4 interior. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極集電体に少なくとも正極活物質を含む正極合剤塗料を塗布した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤塗料を塗布した帯状の負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を電池容器に挿入し、電池容器内に電解液を注液後、封口体で封口する二次電池の製造方法であって、電池容器内に電解液を効率よく能率的に注液する二次電池の製造方法およびその製造装置に関するものである。   The present invention comprises a strip-like positive electrode plate coated with a positive electrode mixture paint containing at least a positive electrode active material on a positive electrode current collector and a strip-like negative electrode plate coated with a negative electrode mixture paint containing at least a negative electrode active material on a negative electrode current collector. A method for manufacturing a secondary battery in which a separator is interposed between them and an electrode group wound in a spiral shape is inserted into a battery container, an electrolytic solution is injected into the battery container, and then sealed with a sealing body. The present invention relates to a method for manufacturing a secondary battery and an apparatus for manufacturing the same, in which an electrolytic solution is efficiently and efficiently injected into a battery container.

近年、AV機器あるいはパソコンや携帯型通信機器などの電子機器のポータブル化やコードレス化が急速に促進されており、これらの電子機器やその他の動力用の駆動用電源として、高エネルギー密度で負荷特性の優れた密閉型電池が要望されている。特に、エネルギー密度及び電圧が高く、貯蔵寿命が長いなどの多くの特長を有するリチウム電池が脚光を浴びている。   In recent years, portable and cordless electronic devices such as AV devices, personal computers, and portable communication devices have been rapidly promoted. As drive power sources for these electronic devices and other power sources, load characteristics with high energy density are provided. Therefore, there is a demand for an excellent sealed battery. In particular, lithium batteries having many features such as high energy density and voltage, and long shelf life are in the spotlight.

例えば、円筒形のリチウム電池は、正極板と負極板とがセパレータを介して渦巻状に巻回されて電極群を形成した後、この電極群を有底円筒状の電池容器内に収容し、電池容器の開口部の外周に環状に溝入れ加工を行い、電池容器内に所定量の電解液を注液し、次いで電池容器の開口部にガスケットを介して封口体を挿入し、内側に突出した溝部上で封口体を支持した状態で電池容器の開口部を内側にかしめ加工することで封口している。   For example, in a cylindrical lithium battery, a positive electrode plate and a negative electrode plate are spirally wound through a separator to form an electrode group, and then the electrode group is accommodated in a bottomed cylindrical battery container, A groove is formed in the outer periphery of the opening of the battery container in an annular shape, a predetermined amount of electrolyte is poured into the battery container, and then a sealing body is inserted into the opening of the battery container via a gasket and protrudes inward. The battery container is sealed by caulking the opening of the battery container while the sealing body is supported on the groove.

これらの二次電池においては、二次電池の高容量化を図るために電池容器内に可能な限り多くの巻回した電極群とその電極群に見合った大量の電解液を収容する必要があるが、電解液を電池容器内に効率よく能率的に注液することが困難になっていた。   In these secondary batteries, in order to increase the capacity of the secondary battery, it is necessary to store as many wound electrode groups as possible in the battery container and a large amount of electrolyte solution corresponding to the electrode groups. However, it has been difficult to efficiently and efficiently inject the electrolytic solution into the battery container.

上記電池容器に電解液を注液する方法として、図12に示されるように、電池容器101の開口部と電解液一時貯蔵槽104とをパッキン103で接続したうえで、回転盤106上に配置し、電池容器101内を減圧後、電解液一時貯蔵槽104へ定量の電解液を供給し、回転盤106を回転させることで電池容器101と電解液一時貯蔵槽104に遠心力を作用させ、その後、テーパピン105を開き、電池容器101内の負圧と電解液一時貯蔵槽104内の大気圧との圧力差と遠心力を利用して注液する方法が提案されている(例えば、特許文献1参照)。   As a method of injecting the electrolyte into the battery container, as shown in FIG. 12, the opening of the battery container 101 and the electrolyte temporary storage tank 104 are connected by the packing 103 and then placed on the turntable 106. Then, after depressurizing the inside of the battery container 101, a fixed amount of electrolyte is supplied to the electrolyte solution temporary storage tank 104, and the centrifugal force is applied to the battery container 101 and the electrolyte solution temporary storage tank 104 by rotating the rotating plate 106. Thereafter, the taper pin 105 is opened, and a method of injecting liquid using a pressure difference between the negative pressure in the battery container 101 and the atmospheric pressure in the electrolyte temporary storage tank 104 and centrifugal force has been proposed (for example, Patent Documents). 1).

また、図13で示されるように、電池容器201を設置したデシケータ容器202内を減圧した後、吐出ノズル203より電解液をデシケータ容器202の内外との圧力差と落下を用いて滴下する。その後、電解液の滴下を停止しデシケータ容器202内を減圧または加圧を行い、電池容器201内に発生した泡を除去する方法を繰り返す注液方法が提案されている(例えば、特許文献2参照)。   Further, as shown in FIG. 13, after the inside of the desiccator container 202 in which the battery container 201 is installed is decompressed, the electrolytic solution is dropped from the discharge nozzle 203 using the pressure difference between the inside and outside of the desiccator container 202 and dropping. Thereafter, a liquid injection method has been proposed in which the dropping of the electrolytic solution is stopped, the inside of the desiccator container 202 is depressurized or pressurized, and the method of removing bubbles generated in the battery container 201 is repeated (for example, see Patent Document 2). ).

また、図14で示されるように充填チャンバ305に電池容器301を収納し、電解液一時貯蔵槽304内に必要な量の電解液を供給し、ピストン303によって電解液一時貯蔵槽304の蓋がされ、次に充填チャンバ305内を減圧した後、ピストン303を下降させて電解液を電解液一時貯蔵槽304より押出し、吐出ノズル302より電解液を電池容器301内に注液し、その後、さらに充填チャンバ305を加圧して電解液を電池容器301内に充分に注液する方法が提案されている(例えば、特許文献3参照)。
特開平8−106896号公報 特開2004−22502号公報 特許第3467135号公報
Further, as shown in FIG. 14, the battery container 301 is housed in the filling chamber 305, a necessary amount of electrolyte is supplied into the electrolyte temporary storage tank 304, and the lid of the electrolyte temporary storage tank 304 is covered by the piston 303. Then, after reducing the pressure in the filling chamber 305, the piston 303 is lowered to push out the electrolyte from the electrolyte temporary storage tank 304, and the electrolyte is injected from the discharge nozzle 302 into the battery container 301. A method has been proposed in which the filling chamber 305 is pressurized to sufficiently inject the electrolyte into the battery container 301 (see, for example, Patent Document 3).
JP-A-8-106896 JP 2004-22502 A Japanese Patent No. 3467135

しかしながら、上述した特許文献1の従来技術では、図12に示されるように遠心力が働いた状態でテーパピン105が開かれ、電解液は遠心力と圧力差の両者により付勢されるため、勢いあまって周囲に飛散して電池容器101の開口部付近にも付着し、必要な電解液量が得られず電池容量不足という好ましくない課題が発生する。   However, in the above-described prior art of Patent Document 1, the taper pin 105 is opened in a state where the centrifugal force is applied as shown in FIG. 12, and the electrolyte is biased by both the centrifugal force and the pressure difference. It is scattered to the surroundings and adheres to the vicinity of the opening of the battery container 101, so that an undesired problem that the required amount of electrolyte cannot be obtained and the battery capacity is insufficient occurs.

また、特許文献2の従来技術では、図13に示されるようにデシケータ容器202内を完全に真空状態にするには多くの時間を要し、高真空状態においては圧力差により電解液が気化し電池容器201の外周やデシケータ容器202の内壁に飛び散り、電解液の損失、注液精度の悪化の課題が発生する。一方、短時間の減圧では、電池容器201内を十分に減圧できず、注液時に空気が電池容器201内に閉じ込められ、電解液の注液に多くの時間を要する。   In the prior art of Patent Document 2, as shown in FIG. 13, it takes a long time to completely evacuate the desiccator container 202. In a high vacuum state, the electrolyte is vaporized due to a pressure difference. It splatters on the outer periphery of the battery container 201 and the inner wall of the desiccator container 202, and the problem of the loss of electrolyte solution and the deterioration of injection accuracy occurs. On the other hand, when the pressure is reduced for a short time, the inside of the battery container 201 cannot be sufficiently reduced, and air is confined in the battery container 201 at the time of pouring, and a lot of time is required for pouring the electrolyte.

また、特許文献3で開示されている注液方法では、図14に示されるように減圧とピストン303による加圧力により、電解液を電池容器301内へ短時間での注液を可能とするが、電解液一時貯蔵槽304内やピストン303および注液路内部に表面張力により付着する電解液を電池容器301内へ誘導することができず、一時貯蔵槽304内の多くの電解液は一時貯蔵槽304内に付着して残り、注液精度が悪化する。また、電池容器301内外を減圧し電池容器301内の空気を減圧で取り出すために高真空とすると差圧注液時に電解液が気化し、電池容器301の外周や充填チャンバ305の内壁への飛び散りや電解液の損失が発生し、注液精度の悪化につながる。電解液が気化しない程度の真空度では注液に適さず、電池容器301内に空気を残すことになり注液時間が長くなる要因となる。   Further, in the liquid injection method disclosed in Patent Document 3, the electrolyte can be injected into the battery container 301 in a short time by reducing the pressure and applying pressure by the piston 303 as shown in FIG. The electrolyte that adheres to the inside of the electrolyte temporary storage tank 304 and the piston 303 and the liquid injection path due to surface tension cannot be guided into the battery container 301, and many electrolytes in the temporary storage tank 304 are temporarily stored. It remains attached to the tank 304, and the accuracy of liquid injection deteriorates. In addition, when the pressure is reduced to reduce the pressure inside and outside the battery container 301 and the air in the battery container 301 is taken out under reduced pressure, the electrolyte is vaporized during the differential pressure injection, and the battery container 301 may be scattered on the outer periphery of the battery container 301 or the inner wall of the filling chamber 305. Electrolyte loss occurs, leading to poor injection accuracy. If the degree of vacuum is such that the electrolyte does not evaporate, it is not suitable for injection, leaving air in the battery container 301 and causing a longer injection time.

本発明は上記従来の課題を鑑みてなされたもので、電池容器に電解液を注液する際、遠心力を作用させながらも電池容器を設置したデシケータ容器などの囲われた容器ごと密閉し、真空状態にするのではなく、電極群を収納した電池容器の開口部と電解液一時貯蔵槽とが弾性体で接合させ、電解液一時貯蔵槽と電池容器を真空状態にさせることにより短時間で高精度な注液を実現し、電解液の付着防止ができ、注液精度を向上させる二次電池の製造方法およびその製造装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and when injecting an electrolytic solution into a battery container, it is sealed together with the enclosed container such as a desiccator container in which the battery container is installed while acting a centrifugal force, Instead of creating a vacuum state, the opening of the battery container containing the electrode group and the electrolyte temporary storage tank are joined by an elastic body, and the temporary electrolyte storage tank and the battery container are brought into a vacuum state in a short time. An object of the present invention is to provide a secondary battery manufacturing method and a manufacturing apparatus thereof that can realize high-precision liquid injection, prevent adhesion of an electrolytic solution, and improve liquid injection accuracy.

上記のような目的を達成するために本発明の二次電池の製造方法は、正極集電体に少なくとも正極活物質を含む正極合剤塗料を塗布した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤塗料を塗布した帯状の負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を電池容器に挿入し、電池容器内に電解液を注液し封口体で封口する二次電池の製造方法であって、電極群を収納した電池容器の開口部と電解液一時貯蔵槽とが弾性体を介して接続され、電解液一時貯蔵槽を介して電池容器内を減圧した後、電解液一時貯蔵槽を開閉する弁を閉じて電池容器内を減圧状態に維持する第一の工程と、次いで電解液一時貯蔵槽内に定量の電解液を供給する第二の工程と、次いで遠心力を電解液に作用させた状態で弁を開き電解液を電池容器内に注液する第三の工程と、電池容器内と電解液一時貯蔵槽の圧力を平衡状態にする第四の工程と、さらに電解液一時貯蔵槽内を介して電池容器内を減圧する第五の工程を経て電池容器内に電解液を注液することを特徴としている。   In order to achieve the above object, the method for producing a secondary battery according to the present invention includes a positive electrode current collector coated with a positive electrode mixture paint containing at least a positive electrode active material and at least a negative electrode current collector and a belt-like positive electrode plate. An electrode group formed by winding a strip-shaped negative electrode plate coated with a negative electrode mixture paint containing a negative electrode active material in a spiral shape with a separator interposed therebetween is inserted into the battery container, and an electrolytic solution is poured into the battery container. A method for producing a secondary battery that is sealed with a liquid sealing body, wherein an opening of a battery container housing an electrode group and an electrolytic solution temporary storage tank are connected via an elastic body, and the electrolytic solution temporary storage tank is used. After depressurizing the inside of the battery container, close the valve that opens and closes the electrolytic solution storage tank to maintain the inside of the battery container in a depressurized state, and then supply a certain amount of electrolyte into the electrolyte solution storage tank In the second step, and then with centrifugal force acting on the electrolyte A third step of injecting the electrolyte into the battery container, a fourth step of bringing the pressure in the battery container and the electrolyte temporary storage tank into equilibrium, and further through the electrolyte temporary storage tank An electrolyte solution is injected into the battery container through a fifth step of reducing the pressure in the battery container.

本発明によれば、電極群を収納した電池容器の開口部と一貯蔵槽とが弾性体を介して接
続され、遠心力と電池容器内および電解液一時貯蔵槽の圧力を平衡状態しながら、電池容器内に電解液を注液することにより、短時間で電池容器への電解液の注液が完了し、高精度で損失の少ない電解液の注液が可能となる。
According to the present invention, the opening of the battery container containing the electrode group and one storage tank are connected via an elastic body, while the centrifugal force and the pressure in the battery container and the electrolyte temporary storage tank are balanced, By injecting the electrolyte into the battery container, the injection of the electrolyte into the battery container is completed in a short time, and the electrolyte can be injected with high accuracy and less loss.

本発明の第1の発明では、正極集電体に少なくとも正極活物質を含む正極合剤塗料を塗布した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤塗料を塗布した帯状の負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を電池容器に挿入し、電池容器内に電解液を注液し、封口体で封口する二次電池の製造方法であって、電極群を収納した電池容器の開口部と電解液一時貯蔵槽とが弾性体を介して接続され、電解液一時貯蔵槽を介して電池容器内を減圧した後、電解液一時貯蔵槽を開閉する弁を閉じて電池容器内を減圧状態に維持する第一の工程と、次いで電解液一時貯蔵槽内に定量の電解液を供給する第二の工程と、次いで遠心力を電解液に作用させた状態で弁を開き電解液を電池容器内に注液する第三の工程と、電池容器内と電解液一時貯蔵槽の圧力を平衡状態にする第四の工程と、さらに電解液一時貯蔵槽内を介して電池容器内を減圧する第五の工程を経て電池容器内に電解液を注液する方法であり、この方法をすることにより、短時間で高精度に電池容器内に電解液を注液することが可能となる。   In the first aspect of the present invention, a strip-like positive electrode plate coated with a positive electrode mixture paint containing at least a positive electrode active material is applied to a positive electrode current collector, and a negative electrode mixture paint containing at least a negative electrode active material is applied to a negative electrode current collector. An electrode group formed by winding a strip-shaped negative electrode plate in a spiral shape with a separator interposed therebetween is inserted into a battery container, an electrolyte is injected into the battery container, and the secondary battery is sealed with a sealing body. In the manufacturing method, the opening of the battery container housing the electrode group and the electrolyte temporary storage tank are connected via an elastic body, and the inside of the battery container is depressurized via the electrolyte temporary storage tank. The first step of closing the valve for opening and closing the temporary storage tank to maintain the inside of the battery container in a depressurized state, the second step of supplying a fixed amount of the electrolyte into the temporary electrolyte storage tank, and the centrifugal force Open the valve with the electrolyte applied, and inject the electrolyte into the battery container. The battery through the third step, the fourth step of bringing the pressure in the battery container and the electrolyte temporary storage tank into equilibrium, and the fifth step of reducing the pressure in the battery container via the temporary electrolyte storage tank In this method, an electrolytic solution is injected into the container, and by using this method, the electrolytic solution can be injected into the battery container with high accuracy in a short time.

本発明の第2の発明では、第三の工程において、電解液一時貯蔵槽内を減圧状態にし、電解液に遠心力を作用させた状態で弁を開き電極群を収納した電池容器内に注液することであり、電解液の飛散が抑制され高精度に電解液を電池容器に注液することができる。   In the second invention of the present invention, in the third step, the inside of the electrolyte temporary storage tank is depressurized, and the valve is opened in a state where centrifugal force is applied to the electrolyte. It is possible to inject the electrolyte into the battery container with high accuracy while suppressing the scattering of the electrolyte.

本発明の第3の発明では、第三の工程において、電解液に遠心力を作用させながら電解液一時貯蔵槽を加圧状態にして弁を開き電極群を収納した電池容器内に注液することであり、電解液に作用する力を倍増させことで、短時間に電解液を電池容器内に注液することが可能となる。   In the third invention of the present invention, in the third step, while applying centrifugal force to the electrolyte, the electrolyte temporary storage tank is brought into a pressurized state, the valve is opened, and the solution is poured into the battery container containing the electrode group. Thus, by doubling the force acting on the electrolytic solution, the electrolytic solution can be injected into the battery container in a short time.

本発明の第4の発明では、第三または第四の工程において電解液一時貯蔵槽内の圧力制御を時間に依存する線形直線、または曲線よりなる関数に従う圧力の波形に沿って増圧し、電極群を収納した電池容器内と電解液一時貯蔵槽の圧力を平衡状態にすることであり、気体による加圧時に、電解液一時貯蔵槽に高速な速度で流入する気体により電解液の表面は波打ち、かつ液面、液中に気泡が生じるのを防ぎ、気泡が電解液と共に電池容器内へ流入し電解液の電極群への含浸に時間を要するのを防ぐことで、安定的に短時間での注液を実現することができる。   In the fourth aspect of the present invention, in the third or fourth step, the pressure control in the electrolyte temporary storage tank is increased along a pressure waveform according to a function of a linear straight line or a curve depending on time, The pressure in the battery container containing the group and the electrolyte storage tank is balanced, and the surface of the electrolyte is corrugated by the gas flowing into the electrolyte storage tank at a high speed when pressurized with gas. In addition, it is possible to prevent bubbles from being generated in the liquid surface and in the liquid, and to prevent the bubbles from flowing into the battery container together with the electrolyte and taking time to impregnate the electrode group with the electrolyte in a stable and short time. Can be achieved.

本発明の第5の発明では、第四の工程および第五の工程を複数回繰り返し電極群を収納した電池容器内に電解液を注液することであり、電池容器内に残存する空気の気泡に繰り返し流速を与えることができ、電解液を電極群への含浸状況を作りだし、短時間に電池容器内に電解液を注液することが可能となる。   In the fifth invention of the present invention, the fourth step and the fifth step are repeated a plurality of times to inject the electrolyte into the battery container containing the electrode group, and air bubbles remaining in the battery container The flow rate can be repeatedly applied to the electrode group, and the electrolyte solution can be impregnated into the electrode group, and the electrolyte solution can be injected into the battery container in a short time.

本発明の第6の発明では、正極板および負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群が収納された電池容器と電池容器の開口部とが弾性体を介して接続される電解液一時貯蔵槽を有し、この電解液一時貯蔵槽を開閉する弁と、電池容器内と電解液一時貯蔵槽の気体を吸排する電解液一時貯蔵槽に接続された圧力調整と、一時貯蔵槽を固定し回転させることで電解液一時貯蔵槽に供給される電解液に遠心力を与える回転盤と、電解液一時貯蔵槽内へ電解液を供給するポンプと、電解液一時貯蔵槽内を減圧するポンプと、電解液一時貯蔵槽内を減圧、加圧、大気圧状態へと切替える切替弁と、電解液一時貯蔵槽を開閉する弁を開閉させる駆動部と回転盤を回転させる駆動部とで構成した二次電池の製造装置であり、短時間で高精度に電池容器内に電解液を注液を可能としている。   In the sixth invention of the present invention, the battery container in which the electrode group formed by winding the positive electrode plate and the negative electrode plate in a spiral shape with a separator interposed therebetween and the opening of the battery container are elastic bodies. And a pressure valve connected to the electrolyte temporary storage tank, and a valve connected to open and close the electrolyte temporary storage tank, and a pressure connected to the electrolyte temporary storage tank for sucking and discharging the gas in the battery container and the temporary electrolyte storage tank Adjustment, rotation plate for applying centrifugal force to the electrolyte supplied to the electrolyte temporary storage tank by fixing and rotating the temporary storage tank, a pump for supplying the electrolyte into the electrolyte temporary storage tank, and the electrolyte A pump for depressurizing the inside of the temporary storage tank, a switching valve for switching the pressure inside the temporary storage tank for depressurization, pressurization, and switching to an atmospheric pressure state, and a drive unit and a turntable for opening and closing the valve for opening and closing the temporary storage tank A secondary battery manufacturing apparatus configured with a rotating drive unit, Thereby making it possible to pour an electrolyte solution into time battery container with high accuracy.

以下、本発明の一実施の形態について図面を参照しながら詳細に説明する。例えば、図1に示されるような本発明の二次電池の製造装置において、回転盤6上に電池容器固定治具7と電解液一時貯蔵槽4が配置され、回転盤6は架台30に設置された軸受け31を介して動力部8に接続されて、回転盤6に回転力を伝達する。動力部8は電動機を直結した機構でもよく、本発明では、ギヤを具備したサーボモータを回転盤6に軸受け31を介して接続している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. For example, in the secondary battery manufacturing apparatus of the present invention as shown in FIG. 1, the battery container fixing jig 7 and the electrolyte temporary storage tank 4 are disposed on the rotating plate 6, and the rotating plate 6 is installed on the gantry 30. It is connected to the power unit 8 through the bearing 31 that is made to transmit the rotational force to the rotating disk 6. The power unit 8 may be a mechanism directly connected to an electric motor. In the present invention, a servo motor provided with a gear is connected to the rotating disk 6 via a bearing 31.

電池容器1は回転盤6上の電池容器固定治具7にセットすることで、電池容器1内の圧力が減圧および加圧時においても気密を保つゴムなどの弾性体で構成されるパッキン3を介して電解液一時貯蔵槽4に接続される。電池容器固定治具7は、電池容器1をチャッキングできる機構でもよく、永久磁石や真空吸着で保持をしても構わない。本発明においては、パッキン3の弾性力を利用して電池容器固定治具7とパッキン3の嵌合により電池容器1を保持する。   The battery container 1 is set on the battery container fixing jig 7 on the turntable 6 so that the packing 3 made of an elastic body such as rubber that keeps airtight even when the pressure in the battery container 1 is reduced and pressurized. To the electrolyte temporary storage tank 4. The battery container fixing jig 7 may be a mechanism capable of chucking the battery container 1 and may be held by a permanent magnet or vacuum suction. In the present invention, the battery container 1 is held by fitting the battery container fixing jig 7 and the packing 3 using the elastic force of the packing 3.

また、回転盤6上に配置された弁駆動部19を作動することにより電解液一時貯蔵槽4内に内蔵されたピストン型弁5を回転盤6の中心方向に引き寄せ、電池容器1と電解液一時貯蔵槽4とが連通した状態(以下、開くと称する)にする。弁駆動部19においては、回転して駆動を伝える板カムでもよく、本発明では、エアーシリンダにより直線運動をピストン型弁5に伝達している。   In addition, by operating a valve drive unit 19 disposed on the turntable 6, the piston type valve 5 built in the electrolyte temporary storage tank 4 is drawn toward the center of the turntable 6, and the battery container 1 and the electrolyte solution are drawn. The temporary storage tank 4 is communicated (hereinafter referred to as “open”). The valve drive unit 19 may be a plate cam that rotates and transmits the drive. In the present invention, a linear motion is transmitted to the piston type valve 5 by an air cylinder.

電解液一時貯蔵槽4には気体配管24を介して圧力調整部33が接続され、圧力調整部33には大気開放二方向弁13、波形制御圧力二方向弁14と増圧弁15とエア発生部11、減圧二方向弁16と弱減圧二方向弁17と高真空圧用レギュレータ9と中真空圧用レギュレータ10と真空ポンプ12を設置し、電池容器1内あるいは電解液一時貯蔵槽4内の圧力を検出しながら加圧し、または減圧状態にする。また、加圧する気体を本発明では圧縮空気を使用しているが、不活性ガスでもよく、不活性ガスを使用することで電解液に及ぼす効果は大きい。   A pressure adjusting unit 33 is connected to the electrolyte temporary storage tank 4 via a gas pipe 24, and the pressure adjusting unit 33 includes an atmospheric release two-way valve 13, a waveform control pressure two-way valve 14, a pressure increasing valve 15, and an air generating unit. 11. A pressure reducing two-way valve 16, a weak pressure reducing two-way valve 17, a high vacuum pressure regulator 9, a medium vacuum pressure regulator 10, and a vacuum pump 12 are installed to detect the pressure in the battery container 1 or the electrolyte temporary storage tank 4. While pressurizing or depressurizing. Further, in the present invention, compressed air is used as the gas to be pressurized. However, an inert gas may be used, and the use of the inert gas has a great effect on the electrolyte.

電解液一時貯蔵槽4へ接続された電解液供給部32には、電解液貯蔵タンク21、液体用配管25、供給ポンプ18、供給ノズル20から構成され定量の電解液を電解液一時貯蔵槽4内へ供給する。   The electrolyte solution supply section 32 connected to the electrolyte solution temporary storage tank 4 includes an electrolyte solution storage tank 21, a liquid pipe 25, a supply pump 18, and a supply nozzle 20. Supply in.

また、電解液一時貯蔵槽4内のピストン型弁5の代わりに図2に示されるようにボールバルブ型弁23を用いても良い。   Further, instead of the piston type valve 5 in the electrolyte temporary storage tank 4, a ball valve type valve 23 may be used as shown in FIG.

電池容器1は、上部が開口している有底円筒形や角形の電池容器を用いることができる。その材質としては、鋼板にニッケルメッキを施したものやアルミニウム合金からなるものを挙げることができる。電池容器1内に後で詳細に述べる電極群2を収納後、電池容器1の開口部22の外周に環状に溝入れ加工を施し、電極群2を電池容器1内に保持している。   The battery container 1 may be a bottomed cylindrical or rectangular battery container having an open top. Examples of the material include those obtained by applying nickel plating to a steel plate and those made of an aluminum alloy. After the electrode group 2, which will be described later in detail, is stored in the battery container 1, an annular groove is formed on the outer periphery of the opening 22 of the battery container 1, and the electrode group 2 is held in the battery container 1.

電解液を注液した電池容器1は、電極群2より導出している正極リード(図示せず)を電池容器1に溶接し、次に電極群2より導出した負極リード(図示せず)を絶縁ガスケットが周縁に具備された封口板(図示せず)に溶接し、その封口板を電池容器の開口部22に挿入して、電池容器1の開口部22を内方向に折り曲げてかしめ封口し、二次電池を作製している。   In the battery container 1 into which the electrolytic solution has been injected, a positive electrode lead (not shown) led out from the electrode group 2 is welded to the battery container 1, and then a negative electrode lead (not shown) led out from the electrode group 2 is used. An insulating gasket is welded to a sealing plate (not shown) provided on the periphery, the sealing plate is inserted into the opening 22 of the battery container, and the opening 22 of the battery container 1 is bent inward to seal by sealing. A secondary battery is manufactured.

ここで、電池容器1の中には収納されている電極群2においては、複合リチウム酸化物を活物質とする正極板と天然黒鉛等を活物質とする負極板とをポリエチレン等の高分子か
らなる微多孔フィルムであるセパレータを介して渦巻状に捲回または、積層して極板群2を構成する。
Here, in the electrode group 2 housed in the battery container 1, a positive electrode plate using a composite lithium oxide as an active material and a negative electrode plate using natural graphite as an active material are made of a polymer such as polyethylene. The electrode plate group 2 is formed by winding or laminating spirally through a separator that is a microporous film.

正極板は、コバルト酸リチウム等のリチウム含有複合酸化物である正極活物質とアセチレンブラック等を用いた導電剤とポリフッ化ビニリデン等を用いた結着剤とを分散媒に混練分散させた正極合剤塗料を正極集電体であるアルミニウム箔に塗着し、乾燥、圧延して帯状の正極板を用いる。正極集電体については特に限定されないが、アルミニウムやアルミニウム合金製の箔やラス加工もしくはエッチング処理された厚み10μm〜60μmのものが使用できる。   The positive electrode plate is a positive electrode composite in which a positive electrode active material, which is a lithium-containing composite oxide such as lithium cobaltate, a conductive agent using acetylene black, and a binder using polyvinylidene fluoride are kneaded and dispersed in a dispersion medium. An agent paint is applied to an aluminum foil as a positive electrode current collector, dried and rolled to use a strip-shaped positive electrode plate. Although it does not specifically limit about a positive electrode electrical power collector, The thing of 10 micrometers-60 micrometers of thickness which carried out foil or the lath processing or the etching process made from aluminum or aluminum alloy can be used.

負極板は、天然黒鉛等を用いた負極活物質とポリフッ化ビニリデン等を用いた結着剤とポリエチレンオキシド等を用いた増粘剤とを分散媒に混練分散させた負極合剤塗料を負極集電体である銅箔に塗着し、乾燥、圧延して帯状の負極板を用いる。また負極集電体は特に限定されないが、圧延銅箔、電解銅箔、ラス加工もしくはエッチング処理された銅箔からなる厚み10μm〜50μmのものが使用できる。   The negative electrode plate is composed of a negative electrode active material using natural graphite, a binder using polyvinylidene fluoride, and a thickener using polyethylene oxide. It is applied to a copper foil, which is an electric body, dried and rolled, and a strip-shaped negative electrode plate is used. The negative electrode current collector is not particularly limited, and a negative electrode current collector made of rolled copper foil, electrolytic copper foil, lath processed or etched copper foil having a thickness of 10 μm to 50 μm can be used.

セパレータとしては、微多孔フィルムを重ね合わせた多層フィルムが用いられ、なかでもポリエチレン、ポリプロピレン、PVdF等からなる微多孔フィルムが好適であり、厚みは10μm〜25μmが好ましい。   As the separator, a multilayer film in which microporous films are stacked is used, and among them, a microporous film made of polyethylene, polypropylene, PVdF, or the like is suitable, and the thickness is preferably 10 μm to 25 μm.

また、電解液はその主成分としてエチレンカーボネートやプロピレンカーボネート等の環状カーボネートおよびジメチルカーボネートやジエチルカーボネート等の鎖状カーボネートが含有される非水溶媒とLiPF6,LiBF4等の電子吸引性の強いリチウム塩を使用した溶質からなる。 The electrolyte is composed of a nonaqueous solvent containing cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate and diethyl carbonate as main components, and lithium having a strong electron withdrawing property such as LiPF 6 and LiBF 4. Consists of solutes using salt.

以下、本発明の実施例について図を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施例1における二次電池の製造方法について図1を参照しながら説明する。第一の工程では、回転盤6上に配置された弁駆動部19を作動し、ピストン型弁5を開き、圧力調整部33の各二方向弁13,14,17を閉じた後に、減圧二方向弁16を開いて、高真空圧力値に設定された高真空圧用レギュレータ9と真空ポンプ12を作動させて、電池容器1内の圧力を大気圧の約1/100である1.0kPa以下で60秒間、減圧する。   A method for manufacturing a secondary battery in Example 1 of the present invention will be described with reference to FIG. In the first step, the valve drive unit 19 arranged on the rotating disk 6 is operated, the piston type valve 5 is opened, the two-way valves 13, 14, 17 of the pressure adjusting unit 33 are closed, The directional valve 16 is opened and the high vacuum pressure regulator 9 and the vacuum pump 12 set to a high vacuum pressure value are operated, so that the pressure in the battery container 1 is about 1.0 kPa or less, which is about 1/100 of the atmospheric pressure. Depressurize for 60 seconds.

60秒間の減圧後、弁駆動部19を作動して、ピストン型弁5を閉じて、電池容器1と電解液一時貯蔵槽4とが閉鎖された状態(以下、閉じると称する)にする。次いで、圧力調整部33にある減圧二方向弁16を閉じ、大気圧開放二方向弁13を開くことで、電池容器1内を減圧された状態に保持しながらも電解液一時貯蔵槽4内を大気圧に開放する。   After the pressure reduction for 60 seconds, the valve drive unit 19 is operated to close the piston type valve 5 so that the battery container 1 and the electrolyte temporary storage tank 4 are closed (hereinafter referred to as closing). Next, by closing the pressure reducing two-way valve 16 in the pressure adjusting unit 33 and opening the atmospheric pressure releasing two-way valve 13, the inside of the electrolyte temporary storage tank 4 is maintained while maintaining the inside of the battery container 1 in a reduced pressure state. Release to atmospheric pressure.

第二の工程では、電解液供給部32にある電解液貯蔵タンク21に蓄えられた電解液を液体用配管25にて接続された供給ポンプ18より電解液一時貯蔵槽4へ接続された供給ノズル20から定量の電解液を電解液一時貯蔵槽4内へ供給する。また、この時点の電解液一時貯蔵槽4は大気圧状態であり、電解液量として5.8gを供給した。   In the second step, the supply nozzle connected to the electrolyte temporary storage tank 4 from the supply pump 18 connected to the electrolyte storage tank 21 in the electrolyte supply part 32 by the liquid pipe 25. A fixed amount of electrolyte is supplied from 20 into the electrolyte temporary storage tank 4. In addition, the electrolyte temporary storage tank 4 at this time was in an atmospheric pressure state, and 5.8 g was supplied as the amount of the electrolyte.

次の第三の工程では、動力部8を駆動させ、回転盤6の回転数が1000rpmに到達し、電池容器1に所定の遠心力が約300G(重力加速度を1Gとする)程度になった後、弁駆動部19を作動させてピストン型弁5を開き、電解液の注液を開始する。   In the next third step, the power unit 8 is driven, the rotational speed of the rotating disk 6 reaches 1000 rpm, and the predetermined centrifugal force is about 300 G (gravitational acceleration is set to 1 G) on the battery container 1. Then, the valve drive part 19 is operated, the piston type valve 5 is opened, and injection of electrolyte solution is started.

第四の工程では、圧力調整部33にある大気圧開放二方向弁13を閉じた後(二方向弁
16,17はすでに閉じたままである)、エア発生部11より供給された気体の圧力を増圧弁15で約2倍に増圧させ、波形制御圧力二方向弁14を制御しながら開き、電解液一時貯蔵槽4内を図7に示されるように加圧力の掛け初めと掛け終わりの圧力の掛け方を緩やかにしながらも5秒間で所定圧力になるように制御を行い、1000kPaの加圧の状態で電池容器1と電解液一時貯蔵槽4内の圧力を平衡状態にする。また、実施例1では曲線の関数に従う波形に沿って増圧したが、図8に示されるように第四の工程の電解液一時貯蔵槽4内への圧力の掛け方を直線的になるようにし、1000kPaの加圧の状態になるようにしてもよい。
In the fourth step, after the atmospheric pressure releasing two-way valve 13 in the pressure adjusting unit 33 is closed (the two-way valves 16 and 17 are already closed), the pressure of the gas supplied from the air generating unit 11 is changed. The pressure increase valve 15 increases the pressure approximately twice, opens the waveform control pressure two-way valve 14, and opens the electrolyte temporary storage tank 4 as shown in FIG. The pressure in the battery container 1 and the electrolyte temporary storage tank 4 is brought into an equilibrium state with a pressure of 1000 kPa while the pressure is applied gradually while the method of applying is moderated. Further, in Example 1, the pressure was increased along the waveform according to the function of the curve. However, as shown in FIG. 8, the method of applying the pressure into the electrolyte temporary storage tank 4 in the fourth step is linear. The pressure may be 1000 kPa.

次に、60秒間の遠心力と加圧状態を維持した後、波形制御圧力二方向弁14を閉じ、大気圧開放二方向弁13を開き、電池容器1と電解液一時貯蔵槽4内の圧力を大気圧の状態にされ、電池容器1と電解液一時貯蔵槽4内の圧力は101.3kPaとなる。   Next, after maintaining the centrifugal force and the pressurized state for 60 seconds, the waveform control pressure two-way valve 14 is closed, the atmospheric pressure release two-way valve 13 is opened, and the pressure in the battery container 1 and the electrolyte temporary storage tank 4 is The pressure in the battery container 1 and the electrolyte solution temporary storage tank 4 is 101.3 kPa.

最後に第五の工程では、遠心力が作用した状態で大気圧開放二方向弁13を閉じた後、弱減圧二方向弁17を開き、中真空圧用レギュレータ10で設定される21.3kPaで電池容器1と電解液貯蔵槽4内を10秒間の減圧を行う。このことにより、電解液が注液後に再度溢れだすことを防ぐことが可能となり、第四工程で加圧した電極群2内にある縮小した気泡を電極群2内より吸い出すことができる。   Finally, in the fifth step, after the atmospheric pressure release two-way valve 13 is closed in a state where centrifugal force is applied, the weak pressure reduction two-way valve 17 is opened and the battery is operated at 21.3 kPa set by the medium vacuum pressure regulator 10. The container 1 and the electrolyte storage tank 4 are depressurized for 10 seconds. As a result, it is possible to prevent the electrolyte from overflowing again after the injection, and the reduced bubbles in the electrode group 2 pressurized in the fourth step can be sucked out from the electrode group 2.

次に、弱減圧二方向弁17を閉じ、大気圧開放二方向弁13を開いて、電池容器1内と電解液一時貯蔵槽4内を大気圧の状態にし、弁駆動部19を作動させてピストン型弁5を閉じる。また、動力部8を停止し、回転盤6の回転を停止させて第五の工程が終了される。   Next, the weak pressure reducing two-way valve 17 is closed, the atmospheric pressure release two-way valve 13 is opened, the inside of the battery container 1 and the electrolyte temporary storage tank 4 are brought into the atmospheric pressure state, and the valve driving unit 19 is operated. The piston type valve 5 is closed. Further, the power unit 8 is stopped and the rotation of the rotating disk 6 is stopped, and the fifth step is completed.

以上のように、第一から第五の工程を実施し、注液され、電解液を電極群2に含浸させて電解液がこぼれ出なくなった電池容器1を取り出し、その電池容器1を実施例1とした。   As described above, the first to fifth steps are performed, the battery container 1 which has been injected and impregnated with the electrolyte group 2 to prevent the electrolyte from spilling is taken out, and the battery container 1 is taken as an example. It was set to 1.

本発明の別の実施例として、図3に示すように電解液一時貯蔵槽40と電極群2の入った電池容器1を収納した搬送治具43とを搬送型注液部26として構成しており、搬送注液部26は十数個用意し、第一の工程、第二の工程、第三および第四および第五の工程を循環しており、第一の工程には、第五の工程を終了した搬送型注液部26が、第一の工程が終了していない電池容器1に載せかえられて搬送されてくる。搬送型注液部26の搬送はコンベアによる自動搬送を本実施例では行っているが、自走機による搬送、人による搬送のいずれの形態でも良い。   As another embodiment of the present invention, as shown in FIG. 3, a temporary electrolyte storage tank 40 and a transport jig 43 containing the battery container 1 containing the electrode group 2 are configured as a transport type liquid injection section 26. The dosing section 26 is prepared and circulated through the first process, the second process, the third process, the fourth process, and the fifth process. The transport-type liquid injection unit 26 that has completed the process is transferred to the battery container 1 that has not completed the first process and is transported. In this embodiment, the transport type liquid injection unit 26 is transported automatically by a conveyor, but may be transported by a self-propelled machine or transported by a person.

本実施例2では、上述した実施例1の第一の工程、第二の工程、第三から第五の工程をそれぞれ同時に進めることができ、注液工程の時間短縮が可能となり、実施例2を詳細に図を参照しながら説明する。図3は、本実施例2における第一の工程の状態を示す模式図である。実施例1と同じ電極群2が入った電池容器1を搬送治具43に収納し、パッキン42を付属しピストン型弁41を内蔵した電解液一時貯蔵槽40を接続して、搬送治具43と一体化させ構成した搬送型注液部26を次工程に搬送する。   In the present Example 2, the first process, the second process, and the third to fifth processes of Example 1 described above can be simultaneously performed, and the time required for the liquid injection process can be shortened. Will be described in detail with reference to the drawings. FIG. 3 is a schematic diagram illustrating the state of the first step in the second embodiment. The battery container 1 containing the same electrode group 2 as in the first embodiment is housed in a transport jig 43, and the electrolyte temporary storage tank 40 with a packing 42 and a built-in piston type valve 41 is connected to the transport jig 43. The transport type liquid injection unit 26 that is configured integrally with is transported to the next step.

第一の工程では、図4に示されるように搬送型注液部26を構成している電解液一時貯蔵槽40に減圧調整部35を気体配管24にて接続し、弁駆動部27をピストン型弁41と接続する。   In the first step, as shown in FIG. 4, a decompression adjusting unit 35 is connected to the electrolyte temporary storage tank 40 constituting the transport type injection unit 26 through the gas pipe 24, and the valve driving unit 27 is connected to the piston. Connected to the mold valve 41.

次に弁駆動部27を作動させ、ピストン型弁41を開き、電池容器1と電解液一時貯蔵槽40とが連通した状態で、減圧調整部35にある大気圧開放二方向弁50を閉じ、減圧
二方向弁51を開く。さらに高真空圧用レギュレータ52を1.0kPaに設定し、真空ポンプ53を作動させて、電池容器1内を60秒間の減圧を行う。
Next, the valve drive unit 27 is operated, the piston type valve 41 is opened, and in a state where the battery container 1 and the electrolyte temporary storage tank 40 communicate with each other, the atmospheric pressure release two-way valve 50 in the decompression adjustment unit 35 is closed, Open the pressure reducing two-way valve 51. Further, the high vacuum pressure regulator 52 is set to 1.0 kPa, the vacuum pump 53 is operated, and the inside of the battery container 1 is decompressed for 60 seconds.

60秒間の減圧後、弁駆動部27を作動してピストン型弁41を閉じ、電池容器1と電解液一時貯蔵槽40とが閉鎖された状態にして、減圧調整部35にある減圧二方向弁51を閉じた後、大気圧開放二方向弁50を開いて、電池容器1内を減圧された状態に保持しながらも電解液一時貯蔵槽40内を大気圧である101.3kPaに戻している。この第一の工程を終了した搬送型注液部26を次工程の第二の工程に搬送する。   After the pressure reduction for 60 seconds, the valve drive unit 27 is operated to close the piston type valve 41 so that the battery container 1 and the electrolyte temporary storage tank 40 are closed. After closing 51, the atmospheric pressure release two-way valve 50 is opened, and the inside of the electrolyte temporary storage tank 40 is returned to 101.3 kPa, which is the atmospheric pressure, while the inside of the battery container 1 is held in a decompressed state. . The transport type liquid injection unit 26 that has finished the first step is transported to the second step of the next step.

第二の工程では、図5に示されるように供給ノズル56、電解液貯蔵タンク54、供給ポンプ55で構成した電解液供給部36を搬送型注液部26にある電解液一時貯蔵槽40と接続し、電解液貯蔵タンク54に蓄えられる電解液を液体用配管64にて接続された供給ポンプ55より電解液一時貯蔵槽40へ接続された供給吐出ノズル56から定量の電解液5.8gを電解液一時貯蔵槽40内へ供給した。次に供給ノズル56を電解液一時貯蔵槽40から切り離し、電解液一時貯蔵槽40内に電解液を保ち、且つ電池容器1内を減圧状態に保った状態で次工程の第三の工程に搬送する。   In the second step, as shown in FIG. 5, the electrolyte supply part 36 constituted by the supply nozzle 56, the electrolyte storage tank 54, and the supply pump 55 is replaced with the electrolyte temporary storage tank 40 in the transport type injection part 26. 5.8 g of a fixed amount of electrolyte solution is supplied from a supply discharge nozzle 56 connected to the electrolyte temporary storage tank 40 from a supply pump 55 connected to the electrolyte solution storage tank 54 by a liquid pipe 64. The electrolyte solution was supplied into the temporary storage tank 40. Next, the supply nozzle 56 is disconnected from the electrolyte temporary storage tank 40, and the electrolyte is kept in the electrolyte temporary storage tank 40, and the battery container 1 is transported to the third process of the next process while being kept in a reduced pressure state. To do.

第三の工程では、数十個の搬送型注液部26が順次、回転盤44に設置され、図6はその一部分示した模式図で、同図に示されるように搬送型注液部26を回転盤44上に設置し、弁駆動部45がピストン型弁41に接続され、気体配管65を介して圧力調整部37が搬送型注液部26に接続される。搬送型注液部26が回転盤44にセットされた後、動力部47を駆動させ、回転盤44は架台48に設置された軸受け部46を介して回転を開始する。   In the third step, several tens of transport-type liquid injection units 26 are sequentially installed on the turntable 44, and FIG. 6 is a schematic diagram showing a part thereof. As shown in FIG. Is installed on the turntable 44, the valve drive unit 45 is connected to the piston type valve 41, and the pressure adjustment unit 37 is connected to the transport type liquid injection unit 26 via the gas pipe 65. After the transport type liquid injection unit 26 is set on the rotating plate 44, the power unit 47 is driven, and the rotating plate 44 starts rotating via the bearing unit 46 installed on the gantry 48.

回転盤44の回転数が1000rpmに到達し、電池容器1に所定の遠心力が約300G(重力加速度を1Gとする)程度になった後、弁駆動部45を作動させてピストン型弁41を開き、電解液の注液を開始する。   After the rotation speed of the turntable 44 reaches 1000 rpm and the predetermined centrifugal force reaches about 300 G (the gravitational acceleration is set to 1 G) on the battery container 1, the valve drive unit 45 is operated to change the piston type valve 41. Open and start pouring electrolyte.

第四の工程では、圧力調整部37にある大気圧開放二方向弁60を閉じた後(二方向弁57,61はすでに閉じたままである)、増圧弁58でエア発生部59より供給された気体の圧力を約2倍に増圧させ、波形制御圧力二方向弁57を制御しながら開き、電解液一時貯蔵槽40内を図7に示されるように加圧力の掛け初めと終わりを緩やかにしながらも5秒間で所定圧力になるように制御し、1000kPaの加圧の状態で電池容器1と電解液一時貯蔵槽4内の圧力を平衡状態にする。   In the fourth step, after the atmospheric pressure release two-way valve 60 in the pressure adjusting unit 37 is closed (the two-way valves 57 and 61 are already closed), the pressure increasing valve 58 supplies the air from the air generating unit 59. The pressure of the gas is increased by a factor of about 2, and the waveform control pressure two-way valve 57 is opened while being controlled, and the inside and outside of the temporary electrolyte storage tank 40 are gradually applied as shown in FIG. However, the pressure is controlled to be a predetermined pressure in 5 seconds, and the pressure in the battery container 1 and the electrolyte temporary storage tank 4 is brought into an equilibrium state in a pressurized state of 1000 kPa.

次に、60秒間の遠心力と加圧の状態を維持した後、波形制御圧力二方向弁57を閉じ、次に大気圧開放二方向弁60を開き、電池容器1と電解液一時貯蔵槽40内の圧力を大気圧の状態にする。   Next, after maintaining the centrifugal force and pressurization state for 60 seconds, the waveform control pressure two-way valve 57 is closed, and then the atmospheric pressure release two-way valve 60 is opened, and the battery container 1 and the electrolyte temporary storage tank 40 are opened. Set the pressure inside to atmospheric pressure.

第五の工程では、遠心力が作用した状態で大気圧開放二方向弁60を閉じる。次いで、弱減圧二方向弁61を開いて、中真空圧用レギュレータ62で設定される21.3kPaで電池容器1と電解液貯蔵槽40内を10秒間の減圧を行い、第四の工程で加圧した電極群2内にある縮小した気泡のみを吸い出し、電解液が注液後、再度溢れだすことを防ぐことが可能となる。   In the fifth step, the atmospheric pressure release two-way valve 60 is closed in a state where the centrifugal force is applied. Next, the weak pressure reducing two-way valve 61 is opened, the battery container 1 and the electrolyte storage tank 40 are depressurized for 10 seconds at 21.3 kPa set by the medium vacuum pressure regulator 62, and the pressure is increased in the fourth step. Thus, it is possible to suck out only the reduced bubbles in the electrode group 2 and prevent the electrolyte from overflowing again after the injection.

次に、弱減圧二方向弁61を閉じ、大気圧開放二方向弁60を開いて、電池容器1と電解液一時貯蔵槽40内を大気圧の状態にし、弁駆動部45を作動させてピストン型弁41を閉じる。また、動力部47を停止し、回転盤44の回転を停止させて、電解液一時貯蔵槽40から気体配管65の接続を切り離し、且つピストン型弁41から弁駆動部45を取り外した後、搬送型注液部26を回転盤44から取り外して、第五の工程が終了される。   Next, the weak pressure reduction two-way valve 61 is closed, the atmospheric pressure release two-way valve 60 is opened, the battery container 1 and the electrolyte temporary storage tank 40 are brought into an atmospheric pressure state, and the valve driving unit 45 is operated to operate the piston. The mold valve 41 is closed. Further, the power unit 47 is stopped, the rotation of the turntable 44 is stopped, the connection of the gas pipe 65 is disconnected from the electrolyte temporary storage tank 40, and the valve driving unit 45 is removed from the piston type valve 41, and then transported The mold injection part 26 is removed from the turntable 44, and the fifth step is completed.

以上のように第一の工程から第五の工程を実施し、搬送型注液部26より取り外した電池容器1を実施例2とした。また、搬送型注液部26は注液されていない電池容器1を収納し、第一の工程に搬送される。   As described above, the battery container 1 that was removed from the transport type liquid injection unit 26 by performing the first to fifth steps was referred to as Example 2. Moreover, the conveyance type liquid injection part 26 accommodates the battery container 1 which has not been injected, and is conveyed to a 1st process.

実施例3では、実施例1の第一の工程、第二の工程および第五の工程を同様な方法で実施し、第三の工程においては、図1に示す各二方向弁13,14,17を閉じた後に、減圧二方向弁16を開いて、高真空圧力値に設定された高真空圧用レギュレータ9と真空ポンプ12を作動させて、電解液の入った電解液一次貯蔵槽4内の圧力を電池容器1の圧力と同じ1.0kPa以下に減圧し、電池容器1と電解液一時貯蔵槽4内の圧力を平衡状態にする。次に回転盤6を回転させて電解液に約300G程度の遠心力を掛け、弁駆動部19を作動させてピストン型弁5を開き、遠心力にのみによる電解液の注液を開始し、電解液量5.8gを注液した。   In Example 3, the first process, the second process, and the fifth process of Example 1 are performed in the same manner. In the third process, each of the two-way valves 13, 14, shown in FIG. 17 is closed, the pressure reducing two-way valve 16 is opened, the high vacuum pressure regulator 9 set to a high vacuum pressure value and the vacuum pump 12 are operated, and the electrolyte in the electrolyte primary storage tank 4 containing the electrolyte is stored. The pressure is reduced to 1.0 kPa or less, which is the same as the pressure of the battery container 1, and the pressure in the battery container 1 and the electrolyte temporary storage tank 4 is brought into an equilibrium state. Next, the rotating disk 6 is rotated to apply a centrifugal force of about 300 G to the electrolytic solution, the valve drive unit 19 is operated to open the piston type valve 5, and the injection of the electrolytic solution only by the centrifugal force is started. An electrolyte amount of 5.8 g was injected.

第四の工程での電池容器1への圧力の掛け方は図9に示されるように1.0kPa以下の圧力から1000kPaの加圧の状態でになるまでの間を5秒間で所定圧力になるように圧力を検出しながら制御し、電池容器1と電解液一時貯蔵槽4内の圧力を平衡状態にした。最後に実施例1と同じ第五の工程を実施する。   As shown in FIG. 9, the pressure applied to the battery container 1 in the fourth step is a predetermined pressure in 5 seconds from a pressure of 1.0 kPa or less to a pressure of 1000 kPa. Thus, the pressure in the battery container 1 and the electrolyte temporary storage tank 4 was controlled to be in an equilibrium state. Finally, the same fifth step as in Example 1 is performed.

以上のように、第一から第五の工程を実施し、注液され、電解液を電極群2に含浸されて電解液がこぼれ出さなくなった電池容器1を取り出し、その電池容器1を実施例3とした。   As described above, the first to fifth steps are carried out, the battery container 1 which has been injected and is impregnated with the electrolyte group 2 so that the electrolytic solution does not spill out is taken out, and the battery container 1 is taken as an example. It was set to 3.

実施例4では、実施例1の第二の工程まで同様な方法で実施し、図10に示されるように第三の工程においては、第四の工程の後に第三の工程を実施する。具体的には動力部8を駆動させ、回転盤6は架台30に設置された軸受け部31を介して回転を開始する。回転盤6の回転数が1000rpmに到達し、電池容器1に所定の遠心力が約300G(重力加速度を1Gとする)程度を掛ける。
また、先に行う第四の工程では図1に示す圧力調整部33の大気圧開放二方向弁13を閉じた後(二方向弁16,17はすでに閉じたままである)、増圧弁15でエア発生部11より供給された気体の圧力を約2倍に増圧させ、波形制御圧力二方向弁14を開き、電解液一時貯蔵槽4内を図8に示されるように圧力の掛け方を直線的になるように掛け、1000kPaの加圧の状態になった後に、第三の工程の弁駆動部19を作動させてピストン型弁5を開き、電池容器1に働く遠心力および電池容器1の減圧状態と電解液一時貯蔵槽4の加圧状態との差圧とを利用して加圧の状態になった電解液量5.8gの電解液を注液し始めた後に、電池容器1と電解液一時貯蔵槽4の圧力を平衡状態にした。 次に第五の工程では、遠心力が作用した状態で大気圧開放二方向弁13を閉じた後、弱減圧二方向弁17を開き、中真空圧用レギュレータ10で設定される21.3kPaで電池容器1と電解液貯蔵槽4内を10秒間の減圧を行う。
In Example 4, it implements by the same method to the 2nd process of Example 1, and as FIG. 10 shows, in a 3rd process, a 3rd process is implemented after a 4th process. Specifically, the power unit 8 is driven, and the rotating disk 6 starts to rotate via a bearing unit 31 installed on the gantry 30. The rotation speed of the turntable 6 reaches 1000 rpm, and a predetermined centrifugal force is applied to the battery container 1 by about 300 G (gravitational acceleration is set to 1 G).
Further, in the fourth step to be performed first, after the atmospheric pressure release two-way valve 13 of the pressure adjusting unit 33 shown in FIG. 1 is closed (the two-way valves 16 and 17 are already closed), the air is increased by the pressure increasing valve 15. The pressure of the gas supplied from the generator 11 is increased approximately twice, the waveform control pressure two-way valve 14 is opened, and the inside of the electrolyte temporary storage tank 4 is linearly applied as shown in FIG. After the pressure is increased to 1000 kPa, the valve drive unit 19 in the third step is operated to open the piston type valve 5 and the centrifugal force acting on the battery container 1 and the battery container 1 After starting to inject the electrolyte of 5.8 g of the electrolyte in a pressurized state using the pressure difference between the reduced pressure and the pressurized state of the electrolyte temporary storage tank 4, The pressure of the electrolyte temporary storage tank 4 was brought into an equilibrium state. Next, in the fifth step, after the atmospheric pressure release two-way valve 13 is closed in a state where the centrifugal force is applied, the weak pressure reduction two-way valve 17 is opened, and the battery is set at 21.3 kPa set by the medium vacuum pressure regulator 10. The container 1 and the electrolyte storage tank 4 are depressurized for 10 seconds.

さらに、弱減圧二方向弁17を閉じ、大気圧開放二方向弁13を開いて、電池容器1内と電解液一時貯蔵槽4内を大気圧の状態にし、弁駆動部19を作動させてピストン型弁5を閉じる。また、動力部8を停止し、回転盤6の回転を停止させて第五の工程が終了される。以上のように、第一から第五の工程を実施し、取り出した電池容器1を実施例4とした。   Further, the weak pressure reduction two-way valve 17 is closed, the atmospheric pressure release two-way valve 13 is opened, the inside of the battery container 1 and the electrolyte temporary storage tank 4 are brought into an atmospheric pressure state, the valve driving unit 19 is operated, and the piston is operated. The mold valve 5 is closed. Further, the power unit 8 is stopped and the rotation of the rotating disk 6 is stopped, and the fifth step is completed. As described above, the first to fifth steps were performed, and the battery container 1 taken out was taken as Example 4.

実施例1と同様に、第一の工程から第五の工程を実施し、第五の工程の終了時に回転盤
6を停止せずに、図11に示されるように第四の工程と第五の工程を繰り返して、取り出した電池容器1を実施例4とした。
As in Example 1, the first to fifth steps are performed, and the fourth and fifth steps are performed as shown in FIG. 11 without stopping the turntable 6 at the end of the fifth step. The battery container 1 taken out by repeating the above process was taken as Example 4.

具体的には、実施例1の第五の工程を終了し、電池容器1に電解液量5.8gを注液した後、図1に示す回転盤6を停止せずに電池容器1に遠心力が加わった状態で圧力調整部33にある大気圧開放二方向弁13を閉じた後(二方向弁16,17はすでに閉じたままである)、エア発生部11より供給された気体の圧力を増圧させる増圧弁15で約2倍に増圧させ、波形制御圧力二方向弁14を開き、電解液一時貯蔵槽4内を1000kPaの加圧の状態で電池容器1と電解液一時貯蔵槽4内の圧力を平衡状態にする。次に、60秒間の遠心力と加圧状態を維持した後、波形制御圧力二方向弁14を閉じ、大気圧開放二方向弁13を開き、電池容器1と電解液一時貯蔵槽4内の圧力を大気圧の状態である101.3kPaになった時点で第四の工程を終了する。   Specifically, after finishing the fifth step of Example 1 and injecting an electrolyte amount of 5.8 g into the battery container 1, it is centrifuged in the battery container 1 without stopping the turntable 6 shown in FIG. After the atmospheric pressure release two-way valve 13 in the pressure adjusting unit 33 is closed in a state where force is applied (the two-way valves 16 and 17 are already closed), the pressure of the gas supplied from the air generation unit 11 is changed. The pressure is increased approximately twice by the pressure-increasing valve 15 to increase the pressure, the waveform control pressure two-way valve 14 is opened, and the battery container 1 and the electrolyte temporary storage tank 4 in a pressurized state of 1000 kPa in the electrolyte temporary storage tank 4 The pressure inside is in an equilibrium state. Next, after maintaining the centrifugal force and the pressurized state for 60 seconds, the waveform control pressure two-way valve 14 is closed, the atmospheric pressure release two-way valve 13 is opened, and the pressure in the battery container 1 and the electrolyte temporary storage tank 4 is When the pressure reaches 101.3 kPa, which is an atmospheric pressure state, the fourth step is completed.

次の第五の工程では、大気圧開放二方向弁13を閉じた後、弱減圧二方向弁17を開き、中真空圧用レギュレータ10で設定される21.3kPaで電池容器1と電解液貯蔵槽4内を10秒間の減圧を行う。次に、弱減圧二方向弁17を閉じ、大気圧開放二方向弁13を開いて、電池容器1内と電解液一時貯蔵槽4内を大気圧の状態にし、弁駆動部19を作動させてピストン型弁5を閉じる。また、動力部8を停止し、回転盤6の回転を停止させて第五の工程が終了される。以上のように、第一から第五の工程を実施し、注液され、取り出した電池容器1を実施例5とした。   In the next fifth step, the atmospheric pressure release two-way valve 13 is closed, then the weak pressure reduction two-way valve 17 is opened, and the battery container 1 and the electrolyte storage tank are set at 21.3 kPa set by the medium vacuum pressure regulator 10. The inside of 4 is decompressed for 10 seconds. Next, the weak pressure reducing two-way valve 17 is closed, the atmospheric pressure release two-way valve 13 is opened, the inside of the battery container 1 and the electrolyte temporary storage tank 4 are brought into the atmospheric pressure state, and the valve driving unit 19 is operated. The piston type valve 5 is closed. Further, the power unit 8 is stopped and the rotation of the rotating disk 6 is stopped, and the fifth step is completed. As described above, the first to fifth steps were performed, and the battery container 1 that was injected and taken out was designated as Example 5.

(比較例1)
本発明の実施例と比較するため、図12に示されるような構成の装置へ実施例と同じ電解液を注液していない電池容器101を組み込み、比較例1の最良の形態として電池容器101内を14.7kPaの圧力にて60秒間の減圧をし、電池容器101と電解液一時貯蔵槽104との間のテーパピン105を閉じた後、5.8gの電解液を大気圧状態の電解液一時貯蔵槽104へ供給し、電池容器101と電解液の貯蔵された電解液一時貯蔵槽104に1000rpmの回転を与えて、遠心力を加え、電池容器101と電解液一時貯蔵槽104との間のテーパピン105を開き、70秒間経過させた後、回転を停止し、装置から取り出した電池を比較例1とし、電解液が電池容器101内の電極群2に含浸されるまで放置した。
(Comparative Example 1)
In order to compare with the embodiment of the present invention, the battery container 101 in which the same electrolytic solution as the embodiment is not injected is incorporated into the apparatus having the configuration shown in FIG. The inside was depressurized for 60 seconds at a pressure of 14.7 kPa, and after closing the taper pin 105 between the battery container 101 and the electrolyte temporary storage tank 104, 5.8 g of electrolyte was converted to an electrolyte in an atmospheric pressure state. Supply to the temporary storage tank 104, apply rotation of 1000 rpm to the battery container 101 and the electrolyte temporary storage tank 104 in which the electrolytic solution is stored, and apply centrifugal force between the battery container 101 and the electrolyte temporary storage tank 104. The taper pin 105 was opened, and after 70 seconds had passed, the rotation was stopped, the battery taken out from the apparatus was set as Comparative Example 1, and the battery was left until the electrode group 2 in the battery container 101 was impregnated.

(比較例2)
図13に示されるデシケータ容器202内に実施例と同じ電解液を注液していない電池容器201を収納し、比較例2の最良の形態として、デシケータ容器202と電池容器201内を8kPaの圧力にて60秒間の減圧を行い、電池容器201に5.8gの電解液を供給した。
(Comparative Example 2)
In the desiccator container 202 shown in FIG. 13, the battery container 201 not injected with the same electrolytic solution as that of the example is housed. As the best mode of Comparative Example 2, the desiccator container 202 and the battery container 201 have a pressure of 8 kPa. The pressure was reduced for 60 seconds, and 5.8 g of the electrolyte was supplied to the battery container 201.

次に、デシケータ容器202と電池容器201内を3.5KPa圧力で減圧を行い、その後、大気圧の101.3kPaまで45秒間の時間を掛けて徐々に上昇させた後、15kPaにて25秒間の加圧を行い、デシケータ容器202と電池容器201内を大気圧に戻し、デシケータ容器202から取り出した電池容器201を比較例2とし、電解液が電池容器201内の電極群2に含浸されるまで放置した。   Next, the desiccator container 202 and the battery container 201 are depressurized at a pressure of 3.5 KPa, and then gradually increased to 101.3 kPa of atmospheric pressure over a period of 45 seconds, and then at a pressure of 15 kPa for 25 seconds. Pressurization is performed, the inside of the desiccator container 202 and the battery container 201 is returned to atmospheric pressure, the battery container 201 taken out from the desiccator container 202 is set as Comparative Example 2, and the electrolytic solution is impregnated in the electrode group 2 in the battery container 201. I left it alone.

(比較例3)
図14に示されるような構成の装置へ実施例と同じ電解液を注液していない電池容器301を組み込み、充填チャンバ305と電池容器301内を8kPaの圧力にて60秒間の減圧した後、ピストン303を下降させて電解液を電解液一時貯蔵槽304より押出し、吐出ノズル302より5.8gの電解液を注液した。その後、70秒間の充填チャンバ305を加圧し、充填チャンバ305と電池容器301を大気圧に戻した後、装置から取
り出した電池を比較例3とし、電解液が電池容器301内の電極群2に含浸されるまで放置した。
(Comparative Example 3)
A battery container 301 not injected with the same electrolytic solution as that of the example was installed in the apparatus configured as shown in FIG. 14, and the inside of the filling chamber 305 and the battery container 301 was depressurized at a pressure of 8 kPa for 60 seconds, The piston 303 was lowered, the electrolyte was extruded from the electrolyte temporary storage tank 304, and 5.8 g of electrolyte was injected from the discharge nozzle 302. Thereafter, the filling chamber 305 for 70 seconds is pressurized, the filling chamber 305 and the battery container 301 are returned to atmospheric pressure, the battery taken out from the apparatus is set as Comparative Example 3, and the electrolytic solution is applied to the electrode group 2 in the battery container 301. Leave until impregnated.

上記実施例1〜5および比較例1〜3の電解液注液時間における精度、注液時に装置に付着または揮発により損失電解液の量を比較するために、下記の評価を行った結果を(表1)に示す。
(表1)に示した注液時間、注液精度、電解液の損失量は下記のとおり計測した。
注液時間は電池容器内の電極群に含浸した時間を測定した。注液精度は、電解液の注液済みの電池容器重量と電解液の未注液の電池容器重量に電解液の重量の5.8gを加えた重量との差を注液された量とし、供給した電解液量との比率を表した。実施した30個の電池容器で各例の比較をした。また、電解液の損失量は、電解液の注液済みの電池容器重量と電解液の未注液の電池容器重量に電解液の重量の5.8gを加えた重量との差を注液されたとし、各例で比較を行った。
In order to compare the accuracy of the electrolyte solution injection times of Examples 1 to 5 and Comparative Examples 1 to 3 above, the amount of the loss electrolyte solution due to adhesion or volatilization to the apparatus during injection, the following evaluation results ( Table 1) shows.
The injection time, injection accuracy, and loss of electrolyte shown in Table 1 were measured as follows.
The liquid injection time was measured by impregnating the electrode group in the battery container. The accuracy of the injection is defined as the difference between the weight of the battery container into which the electrolyte has been injected and the weight of the battery container without the injection of the electrolyte plus 5.8 g of the weight of the electrolyte. The ratio with the amount of supplied electrolyte was shown. Each example was compared with the 30 battery containers implemented. In addition, the amount of loss of the electrolytic solution is the difference between the weight of the battery container into which the electrolytic solution has been injected and the weight obtained by adding 5.8 g of the weight of the electrolytic solution to the weight of the battery container without injecting the electrolytic solution. In each case, a comparison was made.

Figure 2007165170
(表1)より明らかなように、実施例1〜5による方法は、比較例1〜3と比較して、短時間の注液時間ができ、注液精度が良好であり、高精度で電池容器内へ電解液を注液ができた。また、電解液の損失量においても少量であり、電解液の飛散、揮発の少ない注液方法と装置の実現ができた。比較例の注液精度、電解液の損失量の悪化要因は次のようになると考えられる。
Figure 2007165170
As apparent from (Table 1), the methods according to Examples 1 to 5 enable a short time for injecting compared to Comparative Examples 1 to 3, the injection accuracy is good, and the battery is highly accurate. The electrolyte was poured into the container. In addition, the amount of loss of the electrolytic solution was small, and a liquid injection method and apparatus with little scattering and volatilization of the electrolytic solution could be realized. It is considered that the deterioration factors of the liquid injection accuracy and the loss amount of the electrolytic solution in the comparative example are as follows.

比較例1による方法では、短時間では電解液が電極群内に含浸せず、注液後に3分以上の大気状態で含浸、または他の含浸工法による含浸の促進を必要し、電解液の揮発により液の損失が増加し、注液精度が悪化した。また、比較例2による方法でも短時間で電解液が電極群内に含浸せず、注液後に10分以上の大気状態で含浸が必要となり、電解液の揮発により液の損失が増加し、注液精度が悪化した。さらに、比較例3による方法でも、短時間では、5.8gの電解液を電池容器内に注液、および電極群内に含浸させることができず、電池容器より溢れてしまう。溢れないように注液するためには、電解液の吐出速度を小さくするか、間欠での吐出を行い数回に分けて吐出する必要があり、電池容器内の雰囲気を加圧や減圧を行ったため10分以上の時間を要してしまい、電解液の揮発により液の損失が増加し、また、注液する際に電解液が注液経路に付着し注液精度が悪化したと考えられる。   In the method according to Comparative Example 1, the electrolyte solution is not impregnated in the electrode group in a short period of time, and it is necessary to impregnate in the atmospheric state for 3 minutes or more after injection, or to promote the impregnation by another impregnation method. As a result, the liquid loss increased and the injection accuracy deteriorated. Further, even in the method according to Comparative Example 2, the electrolyte solution is not impregnated in the electrode group in a short time, and impregnation is required in the atmospheric state for 10 minutes or more after the injection. Liquid accuracy deteriorated. Furthermore, even in the method according to Comparative Example 3, in a short time, 5.8 g of the electrolytic solution cannot be injected into the battery container and impregnated in the electrode group, and overflows from the battery container. In order to inject liquid so that it does not overflow, it is necessary to reduce the discharge speed of the electrolytic solution or to discharge intermittently in several batches, and pressurize or depressurize the atmosphere in the battery container. Therefore, it takes 10 minutes or more, and the loss of the liquid increases due to the volatilization of the electrolytic solution. Also, when the liquid is injected, the electrolytic solution adheres to the liquid injection path, and the liquid injection accuracy is thought to deteriorate.

比較例1〜3において、短時間における注液を行ったときに発生する注液精度の悪化は、電池容器内の電解液量のばらつきをもたらし、その結果として、電解液が少ない場合には、充放電時の電池内の電解液が不足し、電池寿命の短命化につながる。また、電解液が多い場合にはガス発生による電池の膨れ、安全性の低下が懸念される。本発明は短時間の注液において高精度の注液を実現することで、電池寿命の安定化、安全性の安定化を実現している。   In Comparative Examples 1 to 3, the deterioration of the injection accuracy that occurs when the injection is performed in a short period of time results in variations in the amount of electrolyte in the battery container, and as a result, when the electrolyte is small, Insufficient electrolyte in the battery during charge / discharge leads to shortened battery life. Moreover, when there is much electrolyte solution, there exists a concern about the swelling of the battery by gas generation and the fall of safety | security. The present invention achieves stable battery life and stable safety by realizing highly accurate liquid injection in a short time of liquid injection.

本発明によれば、二次電池の電池容器に短時間にもかかわらず注液精度の良い注液が可能となる。また、電池容器内を減圧と加圧の状態と装置構造に起因する短時間での電池容
器内への電解液の注液、かつ遠心力を作用させる状態とその装置構造による高精度で電解液の損失の少ない注液を実現することができる。さらに、二次電池の高容量化を図るために電池容器内に可能な限り多くを巻回した電極群に対して、その電極群に見合った大量の電解液を収容することができるため、高エネルギー密度で負荷特性の優れ、貯蔵寿命が長いなどの効果をもたらす二次電池の作製が可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the liquid injection with a sufficient liquid injection precision is attained in the secondary battery battery container in spite of a short time. In addition, the electrolytic solution can be injected into the battery container in a short time due to the reduced pressure and pressurized state and the device structure in the battery container, and the electrolytic solution can be applied with high accuracy by the state in which the centrifugal force is applied and the device structure. It is possible to realize a liquid injection with a small loss. Furthermore, a large amount of electrolyte solution suitable for the electrode group can be accommodated in the electrode group in which as much as possible is wound in the battery container in order to increase the capacity of the secondary battery. It is possible to manufacture a secondary battery that provides effects such as excellent load characteristics with energy density and long shelf life.

本発明の実施例1における二次電池の製造装置の模式図The schematic diagram of the manufacturing apparatus of the secondary battery in Example 1 of this invention. 本発明の別実施例における電解液一時貯蔵槽の模式図The schematic diagram of the electrolyte temporary storage tank in another Example of this invention 本発明の実施例2における搬送型搬送型注液部の模式図The schematic diagram of the conveyance type conveyance type liquid injection part in Example 2 of this invention 本発明の実施例2における第一の工程での搬送型搬送型注液部の模式図The schematic diagram of the conveyance type conveyance type liquid injection part in the 1st process in Example 2 of this invention. 本発明の実施例2における第二の工程での搬送型搬送型注液部の模式図The schematic diagram of the conveyance type conveyance type liquid injection part in the 2nd process in Example 2 of this invention. 本発明の実施例2における第三,四,五の工程での搬送型搬送型注液部の模式図The schematic diagram of the conveyance type conveyance type liquid injection | pouring part in the 3rd, 4th, 5th process in Example 2 of this invention 本発明の実施例1,2における電池容器内と電解液一時貯蔵槽内の圧力の状態図Phase diagram of pressure in battery container and electrolyte temporary storage tank in Examples 1 and 2 of the present invention 本発明の実施例1,2における電池容器内と電解液一時貯蔵槽内の圧力の別状態図Different state diagrams of pressure in battery container and electrolyte temporary storage tank in Examples 1 and 2 of the present invention 本発明の実施例3における電池容器内と電解液一時貯蔵槽内の圧力の状態図State diagram of pressure in battery container and electrolyte temporary storage tank in Example 3 of the present invention 本発明の実施例4における電池容器内と電解液一時貯蔵槽内の圧力の状態図State diagram of pressure in battery container and electrolyte temporary storage tank in Example 4 of the present invention 本発明の実施例5における電池容器内と電解液一時貯蔵槽内の圧力の状態図State diagram of pressure in battery container and electrolyte temporary storage tank in Example 5 of the present invention 従来例の別注液装置を示す概略の模式図Schematic schematic diagram showing a conventional liquid injection device 従来例の別注液装置を示す概略の模式図Schematic schematic diagram showing a conventional liquid injection device 従来例の別注液装置を示す概略の模式図Schematic schematic diagram showing a conventional liquid injection device

符号の説明Explanation of symbols

1 電池容器
2 電極群
3 パッキン
4 電解液一時貯蔵槽
5 ピストン型弁
6 回転盤
7 電池容器固定治具
8 動力部
9 高真空圧用レギュレータ
10 中真空圧用レギュレータ
11 エア発生部
12 真空ポンプ
13 大気圧開放二方向弁
14 波形制御圧力二方向弁
15 増圧弁
16 減圧二方弁
17 弱減圧二方向弁
18 供給ポンプ
19 弁駆動部
20 供給ノズル
21 電解液貯蔵タンク
22 電池容器の開口部
23 ボールバルブ型弁
24 気体用配管
25 流体用配管
27 弁駆動部
29 気体配管
30 架台
31 軸受け部
32 電解液供給部
33 圧力調整部
35 減圧調整部
41 ピストン型弁
42 パッキン
43 電池容器固定治具
45 弁駆動部
46 軸受け部
47 動力部
48 架台
50 大気開放二方向弁
51 減圧二方向弁
52 高真空圧用レギュレータ
53 真空ポンプ
54 電解液貯蔵タンク
55 供給ポンプ
56 供給ノズル
57 波形制御圧力二方向弁
58 増圧弁
59 エア発生部
60 大気開放二方向弁
61 弱減圧二方向弁
62 中真空圧用レギュレータ
63 真空ポンプ
64 流体用配管
65 気体配管

DESCRIPTION OF SYMBOLS 1 Battery container 2 Electrode group 3 Packing 4 Electrolyte temporary storage tank 5 Piston type valve 6 Turntable 7 Battery container fixing jig 8 Power part 9 Regulator for high vacuum pressure 10 Regulator for medium vacuum pressure 11 Air generating part 12 Vacuum pump 13 Atmospheric pressure Open two-way valve 14 Waveform control pressure two-way valve 15 Booster valve 16 Depressurization two-way valve 17 Weak decompression two-way valve 18 Supply pump 19 Valve drive unit 20 Supply nozzle 21 Electrolyte storage tank 22 Opening of battery container 23 Ball valve type Valve 24 Gas piping 25 Fluid piping 27 Valve driving section 29 Gas piping 30 Mounting base 31 Bearing section 32 Electrolyte supply section 33 Pressure adjusting section 35 Depressurizing adjusting section 41 Piston type valve 42 Packing 43 Battery container fixing jig 45 Valve driving section 46 Bearing section 47 Power section 48 Mount 50 Air release two-way valve 51 Pressure reduction two-way valve 52 Takashin Regulator for pressure 53 Vacuum pump 54 Electrolyte storage tank 55 Supply pump 56 Supply nozzle 57 Waveform control pressure two-way valve 58 Booster valve 59 Air generator 60 Atmospheric release two-way valve 61 Weak pressure reduction two-way valve 62 Medium vacuum pressure regulator 63 Vacuum pump 64 Fluid piping 65 Gas piping

Claims (6)

正極集電体に少なくとも正極活物質を含む正極合剤塗料を塗布した帯状の正極板と負極集電体に少なくとも負極活物質を含む負極合剤塗料を塗布した帯状の負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群を電池容器に挿入し、電池容器内に電解液を注液し封口体で封口する二次電池の製造方法であって、前記電極群を収納した電池容器の開口部と電解液一時貯蔵槽とが弾性体を介して接続され、電解液一時貯蔵槽を介して電池容器内を減圧した後、電解液一時貯蔵槽を開閉する弁を閉じて電池容器内を減圧状態に維持する第一の工程と、次いで前記電解液一時貯蔵槽内に定量の電解液を供給する第二の工程と、次いで遠心力を前記電解液に作用させた状態で弁を開き電解液を電池容器内に注液する第三の工程と、前記電池容器内と電解液一時貯蔵槽の圧力を平衡状態にする第四の工程と、さらに前記電解液一時貯蔵槽内を介して電池容器内を減圧する第五の工程とを経て電池容器内に電解液を注液することを特徴とする二次電池の製造方法。   Between the positive electrode current collector coated with a positive electrode mixture paint containing at least a positive electrode active material and a negative electrode current collector coated with a negative electrode mixture paint containing at least a negative electrode active material between them. A method of manufacturing a secondary battery in which an electrode group wound in a spiral shape with a separator interposed is inserted into a battery container, an electrolytic solution is injected into the battery container and sealed with a sealing body, and the electrode group is The opening of the stored battery container and the electrolyte temporary storage tank are connected via an elastic body. After the pressure inside the battery container is reduced through the temporary electrolyte storage tank, the valve for opening and closing the temporary electrolyte storage tank is closed. A first step of maintaining the inside of the battery container in a reduced pressure state, a second step of supplying a predetermined amount of the electrolyte into the electrolyte temporary storage tank, and a state in which centrifugal force is then applied to the electrolyte And the third step of opening the valve and injecting the electrolyte into the battery container, The battery container and the electrolyte container temporary storage tank are in a balanced state through the fourth step, and the battery container is further reduced in pressure through the electrolyte solution temporary storage tank. A method for producing a secondary battery, comprising injecting an electrolyte solution into the battery. 第三の工程において、電解液一時貯蔵槽内を減圧状態にし、電解液に遠心力を作用させた状態で弁を開き電極群を収納した電池容器内に注液することを特徴とする請求項1に記載の二次電池の製造方法。   In the third step, the inside of the electrolyte temporary storage tank is depressurized, and the valve is opened in a state where centrifugal force is applied to the electrolyte, and liquid is injected into the battery container containing the electrode group. 2. A method for producing a secondary battery according to 1. 第三の工程において、電解液に遠心力を作用させながら電解液一時貯蔵槽を加圧状態にして弁を開き電極群を収納した電池容器内に注液することを特徴とする請求項1に記載の二次電池の製造方法。   In the third step, the electrolyte is temporarily put into a pressurized state while a centrifugal force is applied to the electrolyte, and the valve is opened to inject the solution into the battery container containing the electrode group. The manufacturing method of the secondary battery as described. 第三または第四の工程において、電解液一時貯蔵槽内の圧力制御を時間に依存する線形直線、または曲線の関数に従う波形に沿って増圧し、電極群を収納した電池容器内と前記電解液一時貯蔵槽の圧力を平衡状態にすることを特徴とする請求項1から3のいずれかに記載の二次電池の製造方法。   In the third or fourth step, the pressure control in the electrolyte temporary storage tank is increased along a linear line that depends on time or a waveform that follows a function of a curve, and in the battery container housing the electrode group and the electrolyte 4. The method of manufacturing a secondary battery according to claim 1, wherein the pressure of the temporary storage tank is brought into an equilibrium state. 第四の工程および第五の工程を複数回繰り返し電極群を収納した電池容器内に電解液を注液することを特徴とする請求項1から4のいずれかに記載の二次電池の製造方法。   5. The method for producing a secondary battery according to claim 1, wherein the electrolytic solution is injected into a battery container containing the electrode group by repeating the fourth step and the fifth step a plurality of times. . 正極板および負極板をこれらの間にセパレータを介在させて渦巻状に巻回してなる電極群が収納された電池容器と電池容器の開口部とが弾性体を介して接続される電解液一時貯蔵槽を有し、この電解液一時貯蔵槽を開閉する弁と、前記電池容器内と電解液一時貯蔵槽の気体を吸排する電解液一時貯蔵槽に接続された圧力調整部と、前記一時貯蔵槽を固定し回転させることで電解液一時貯蔵槽に供給される電解液に遠心力を与える回転盤と、前記電解液一時貯蔵槽内へ電解液を供給するポンプと、前記電解液一時貯蔵槽内を減圧するポンプと、前記電解液一時貯蔵槽内を減圧、加圧、大気圧状態へと切替える切替弁と、前記電解液一時貯蔵槽を開閉する弁を開閉させる駆動部と、前記回転盤を回転させる駆動部とで構成したことを特徴とする二次電池の製造装置。   Temporary storage of an electrolytic solution in which a battery container containing an electrode group formed by winding a positive electrode plate and a negative electrode plate in a spiral shape with a separator interposed therebetween and an opening of the battery container are connected via an elastic body A valve that opens and closes the electrolyte temporary storage tank, a pressure adjusting unit connected to the electrolyte temporary storage tank that sucks and discharges gas in the battery container and the temporary electrolyte storage tank, and the temporary storage tank A rotating disk for applying centrifugal force to the electrolyte supplied to the electrolyte temporary storage tank by fixing and rotating, a pump for supplying the electrolyte into the electrolyte temporary storage tank, and the electrolyte temporary storage tank A pressure reducing pump, a switching valve for switching the inside of the electrolyte temporary storage tank to a pressure reducing, pressurizing, and atmospheric pressure state, a drive unit for opening and closing a valve for opening and closing the electrolyte temporary storage tank, and the rotating disk It is composed of a drive unit that rotates. Battery manufacturing equipment.
JP2005361579A 2005-12-15 2005-12-15 Method of manufacturing secondary battery and device of manufacturing same Withdrawn JP2007165170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361579A JP2007165170A (en) 2005-12-15 2005-12-15 Method of manufacturing secondary battery and device of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361579A JP2007165170A (en) 2005-12-15 2005-12-15 Method of manufacturing secondary battery and device of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007165170A true JP2007165170A (en) 2007-06-28

Family

ID=38247847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361579A Withdrawn JP2007165170A (en) 2005-12-15 2005-12-15 Method of manufacturing secondary battery and device of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007165170A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218135A (en) * 2008-03-12 2009-09-24 Panasonic Corp Method and device for manufacturing flat battery
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
CN102496691A (en) * 2011-12-26 2012-06-13 东莞新能源科技有限公司 Vacuum liquid filling equipment for soft-package battery
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
JP5331946B1 (en) * 2012-07-05 2013-10-30 オー・エム・シー株式会社 Electrolytic solution pouring method and pouring device
WO2014010024A1 (en) * 2012-07-09 2014-01-16 トヨタ自動車株式会社 Battery manufacturing method
JP2015090758A (en) * 2013-11-05 2015-05-11 株式会社豊田自動織機 Manufacturing method for power storage device
JP2016091824A (en) * 2014-11-05 2016-05-23 湘南Corun Energy株式会社 Manufacturing method of battery and alkali storage battery
CN111341995A (en) * 2020-03-11 2020-06-26 湖南赛智科技有限公司 Vacuum liquid injection control valve
CN112599940A (en) * 2020-12-15 2021-04-02 南京国轩电池有限公司 Liquid injection method for solving problem of sinking of square aluminum shell battery shell
CN113841292A (en) * 2019-10-09 2021-12-24 长野自动机械株式会社 Device for supplying liquid
KR20230081655A (en) 2021-11-30 2023-06-07 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Method for manufacturing secondary battery
JP7410064B2 (en) 2021-02-05 2024-01-09 プライムアースEvエナジー株式会社 Electrolyte injection system for open type batteries and electrolyte injection method for open type batteries

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218135A (en) * 2008-03-12 2009-09-24 Panasonic Corp Method and device for manufacturing flat battery
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
CN102496691A (en) * 2011-12-26 2012-06-13 东莞新能源科技有限公司 Vacuum liquid filling equipment for soft-package battery
JP5331946B1 (en) * 2012-07-05 2013-10-30 オー・エム・シー株式会社 Electrolytic solution pouring method and pouring device
JPWO2014010024A1 (en) * 2012-07-09 2016-06-20 トヨタ自動車株式会社 Battery manufacturing method
WO2014010024A1 (en) * 2012-07-09 2014-01-16 トヨタ自動車株式会社 Battery manufacturing method
US9831531B2 (en) 2012-07-09 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery
JP2015090758A (en) * 2013-11-05 2015-05-11 株式会社豊田自動織機 Manufacturing method for power storage device
JP2016091824A (en) * 2014-11-05 2016-05-23 湘南Corun Energy株式会社 Manufacturing method of battery and alkali storage battery
CN113841292A (en) * 2019-10-09 2021-12-24 长野自动机械株式会社 Device for supplying liquid
CN113841292B (en) * 2019-10-09 2024-02-06 长野自动机械株式会社 Liquid supply device
CN111341995A (en) * 2020-03-11 2020-06-26 湖南赛智科技有限公司 Vacuum liquid injection control valve
CN111341995B (en) * 2020-03-11 2022-05-13 湖南赛智科技有限公司 Vacuum liquid injection control valve
CN112599940A (en) * 2020-12-15 2021-04-02 南京国轩电池有限公司 Liquid injection method for solving problem of sinking of square aluminum shell battery shell
CN112599940B (en) * 2020-12-15 2023-03-24 南京国轩电池有限公司 Liquid injection method for solving problem of sinking of square aluminum shell battery shell
JP7410064B2 (en) 2021-02-05 2024-01-09 プライムアースEvエナジー株式会社 Electrolyte injection system for open type batteries and electrolyte injection method for open type batteries
KR20230081655A (en) 2021-11-30 2023-06-07 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Method for manufacturing secondary battery
EP4203129A1 (en) 2021-11-30 2023-06-28 Prime Planet Energy & Solutions, Inc. Method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP2007165170A (en) Method of manufacturing secondary battery and device of manufacturing same
KR101978557B1 (en) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
US6322923B1 (en) Separator for gel electrolyte battery
US6217623B1 (en) Method of fabricating an electrochemical device
US9431648B2 (en) Method for filling electrochemical cells
US10096860B2 (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2007173063A (en) Method of manufacturing flat battery and its manufacturing device
JP2007123238A (en) Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
KR101780786B1 (en) Electrolyte injection apparatus and electrolyte injection method
KR101578179B1 (en) Device for removing coating materials when cutting jelly rolly in the jelly roll winding system of electric double layer capacitors
JP2007335181A (en) Manufacturing method and device for nonaqueous electrolyte secondary battery
JP6637955B2 (en) Manufacturing method of lithium ion secondary battery
JP2007123237A (en) Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
KR102586807B1 (en) Electrolyte injection apparatus, and Electrolyte injection method
JP2001110400A (en) Device and method for puring electrolyte
JP2012196595A (en) Apparatus for kneading paste and method of producing battery
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
JP2010113920A (en) Lithium-ion secondary battery, vehicle, battery mounted equipment, and method for manufacturing lithium-ion secondary battery
JP5798050B2 (en) Secondary battery, storage battery system using the secondary battery, and maintenance method
KR20150033677A (en) Self-limiting electrolyte-filling process
JP5114842B2 (en) Method for manufacturing flat battery and apparatus for manufacturing the same
JP6014993B2 (en) Electric device manufacturing method, manufacturing apparatus, and electric device
KR102177819B1 (en) Method and apparatus for manufacturing of prismatic secondary battery
WO2019096594A1 (en) Electrochemical cell, as well as process and apparatus for manufacturing the same
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101228