JP2007173063A - Method of manufacturing flat battery and its manufacturing device - Google Patents

Method of manufacturing flat battery and its manufacturing device Download PDF

Info

Publication number
JP2007173063A
JP2007173063A JP2005369642A JP2005369642A JP2007173063A JP 2007173063 A JP2007173063 A JP 2007173063A JP 2005369642 A JP2005369642 A JP 2005369642A JP 2005369642 A JP2005369642 A JP 2005369642A JP 2007173063 A JP2007173063 A JP 2007173063A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode body
pressure
upper case
syringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369642A
Other languages
Japanese (ja)
Inventor
Nozomi Hara
望 原
Takayuki Aoi
隆幸 青井
Kenichi Konishi
謙一 小西
Seiichi Kato
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005369642A priority Critical patent/JP2007173063A/en
Publication of JP2007173063A publication Critical patent/JP2007173063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-accuracy and high-efficiency manufacturing method for rapidly injecting a minute quantity of electrolyte even for an ultraminiature battery small in electric capacity of a flat battery; and to provide a manufacturing device. <P>SOLUTION: An electrolyte pressure-fed from an electrolyte tank 20 is injected into an upper case 1 having an injection valve 8 in a boundary between an electrolyte syringe 7 and an injection nozzle 16 and composed by stacking and housing a negative electrode body 4 and a separator 5 of an electrode body housed in a decompression chamber 9 reduced in pressure from the injection nozzle 16 by opening/closing the valve, and thus the electrolyte without being exposed to the atmosphere and decompressed air for a long time is accurately and efficiently injected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、扁平形電池のケースに電解液を負極体とセパレータに含浸させながら速やかに注液するのに適した扁平形電池の製造方法とその製造装置に関するものである。   The present invention relates to a flat battery manufacturing method and a manufacturing apparatus thereof suitable for quickly injecting an electrolyte into a flat battery case while impregnating a negative electrode body and a separator.

近年、コイン形電池は扁平形電池に代表され、車載用や時計などの主電源として厳しい環境に耐えうる傾向にあり、10年間保証という長期間の信頼性のあるコイン形電池の需要が拡大している。コイン形電池の製造工程では安定した品質を確保したモノづくりが要求され、長期間の保存を確保するためには電池の保存特性を左右する大きな要因である電解液の注液量のバラツキを少なく厳しい注液量の精度が求められる。   In recent years, coin batteries have been typified by flat batteries, tending to withstand harsh environments as the main power source for vehicles and watches, and the demand for long-term reliable coin batteries with a 10-year warranty has increased. ing. Manufacturing processes for coin-type batteries require manufacturing that ensures stable quality, and in order to ensure long-term storage, there is little variation in the amount of electrolyte injected, which is a major factor affecting the storage characteristics of batteries. Strict injection volume accuracy is required.

負極体と正極体とセパレータとの積層構造からなる電極体を入れた上ケースに電解液を注液した後、上ケースに下ケースを被せ、下ケースの開口部をかしめ封口して製造されるコイン形電池では上ケースに電解液を注液するとき、密度の高い活物質である電極体に電解液を含浸させる時間が必要となる。さらに、電解液を含浸させるため長時間で放置すると電解液は蒸発し電解液量のバラツキの原因となる。   Manufactured by injecting an electrolyte solution into an upper case containing an electrode body composed of a laminate structure of a negative electrode body, a positive electrode body and a separator, and then covering the upper case with the lower case and caulking and sealing the opening of the lower case. In the coin battery, when an electrolyte is injected into the upper case, it takes time to impregnate the electrode body, which is a high-density active material, with the electrolyte. Furthermore, if the electrolyte solution is impregnated for a long time to be impregnated, the electrolyte solution evaporates and causes a variation in the electrolyte solution amount.

従来の電解液の注液方法として、図5に示されるように定量ノズル101で電解液を充填シリンダ102に所定の電解液量を供給する。ピストン103は充填シリンダ102の上端を閉塞し、ピストン103の上端部にある排気口104より充填シリンダ102内の空気を排気し、減圧チャンバー105内とケース106の内部を減圧状態にする。充填シリンダ102に供給された電解液は、充填シリンダ102に挿入されたピストン103で電解液が押し出されて、注液管107を通過して減圧状態にある減圧チャンバー105内にあるケース106に所定量の電解液を注入する方法が提案されている(例えば、特許文献1参照)。   As a conventional method of injecting an electrolytic solution, as shown in FIG. 5, a predetermined amount of electrolytic solution is supplied to the filling cylinder 102 by filling the electrolytic solution with a fixed nozzle 101. The piston 103 closes the upper end of the filling cylinder 102, exhausts the air in the filling cylinder 102 from the exhaust port 104 at the upper end of the piston 103, and puts the inside of the decompression chamber 105 and the inside of the case 106 into a decompressed state. The electrolytic solution supplied to the filling cylinder 102 is placed in the case 106 in the decompression chamber 105 in a decompressed state after the electrolytic solution is pushed out by the piston 103 inserted in the filling cylinder 102 and passes through the liquid injection pipe 107. A method of injecting a fixed amount of electrolyte has been proposed (see, for example, Patent Document 1).

また、図6に示されるように充填チャンバー151にケース152が収納され、一時貯留室153内に収納されているピストン本体154を取り外し、充填シリンダ153内に必要な量の電解液を供給後、充填シリンダ153にピストン本体154を挿入する。次に、充填チャンバー151内を減圧後、ピストン本体154を押し下げて電解液の液面が上昇し、充填シリンダ153より押出された電解液が注液管155を通過してケース152内に注液された後、充填チャンバー151を加圧して注液する方法が提案されている(例えば、特許文献2参照)。   Further, as shown in FIG. 6, the case 152 is stored in the filling chamber 151, the piston main body 154 stored in the temporary storage chamber 153 is removed, and a necessary amount of electrolyte is supplied into the filling cylinder 153. The piston main body 154 is inserted into the filling cylinder 153. Next, after reducing the pressure in the filling chamber 151, the piston body 154 is pushed down to raise the electrolyte level, and the electrolyte extruded from the filling cylinder 153 passes through the injection pipe 155 and is injected into the case 152. Then, a method has been proposed in which the filling chamber 151 is pressurized and injected (for example, see Patent Document 2).

さらに、図7に示されるように円板201上に配置されたケース202とホルダ203とが接続され、ケース202が減圧された後に充填シリンダ204へ必要な量の電解液が供給される。次に、円板201が回転されケース202と充填シリンダ204に遠心力が働き、その後、テーパーピン205を開き、ケース202内の負圧と充填シリンダ204の大気圧との圧力差に加え、遠心力を加味して電解液を注液する方法が提案されている(例えば、特許文献3参照)。
特開2004−055238公報 特開平9−102443公報 特開平8−106896公報
Further, as shown in FIG. 7, the case 202 disposed on the disc 201 and the holder 203 are connected, and after the case 202 is depressurized, a necessary amount of electrolyte is supplied to the filling cylinder 204. Next, the disc 201 is rotated and a centrifugal force is applied to the case 202 and the filling cylinder 204. Thereafter, the taper pin 205 is opened, and in addition to the pressure difference between the negative pressure in the case 202 and the atmospheric pressure in the filling cylinder 204, centrifugal A method of injecting an electrolytic solution in consideration of force has been proposed (see, for example, Patent Document 3).
JP 2004-055238 A JP-A-9-102443 JP-A-8-106896

しかしながら、上述した特許文献の従来技術では電解液がケースに注液する前や電極体
に含浸させるために、数十秒間以上も大気圧中もしくは減圧状態に曝されるため、電解液の蒸発を促してしまうために起こる電解液量の注液量のバラツキが発生する。さらに、充填シリンダや電解液の経路の表面に電解液が付着するための起こる電解液の注液量の不足を招き、さらには電解液の成分のバラツキ招くという課題を有している。
However, in the above-described prior art of the patent document, since the electrolyte solution is exposed to atmospheric pressure or a reduced pressure state for several tens of seconds or more in order to impregnate the electrode body, the electrolyte solution is not evaporated. Variations in the injection amount of the electrolyte that occur due to the urge are generated. Furthermore, there is a problem that the amount of the electrolyte solution injected due to the electrolyte solution adhering to the surface of the filling cylinder or the electrolyte solution path is insufficient, and further, the components of the electrolyte solution are varied.

本発明は上記従来の課題を鑑みて成されたもので、負極体とセパレータを積層し収納した上ケースに加圧力を制御した気体で電解液を加圧しながら注液することにより、電解液の経路の表面に電解液が付着することを極力抑えて注液量のバラツキが抑制され、速やかに負極体とセパレータとその隙間に電解液を含浸させながらも、電解液を上ケースに注液する前や電極体に含浸させるために大気圧中もしくは減圧状態で長時間の放置することがなく、注液を行うことで電解液の蒸発による注液量のバラツキを抑制し、電解液の成分変化を抑えて注液精度を向上させて、効率よく電解液を含浸させる扁平形電池の製造方法およびその製造装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and by pouring the electrolyte solution while pressurizing the electrolyte solution with a gas whose pressure is controlled in an upper case in which the negative electrode body and the separator are stacked and accommodated, The dispersion of the injection volume is suppressed by suppressing the adhesion of the electrolyte to the surface of the path as much as possible, and the electrolyte is poured into the upper case while the electrolyte is immediately impregnated in the gap between the negative electrode body and the separator. Do not leave for a long time at atmospheric pressure or under reduced pressure to impregnate the electrode body before and / or the electrode body. An object of the present invention is to provide a method of manufacturing a flat battery and an apparatus for manufacturing the same that efficiently impregnates the electrolyte solution and efficiently impregnates the electrolyte.

上記のような目的を達成するために本発明の扁平形電池の製造方法は、リチウムを保持しうる材料を活物質としてなる負極体と正極活物質からなる正極体をこれらの間にセパレータを介在している積層構造からなる電極体と電解液を開口部の周縁部に絶縁ガスケットを有した容器状の上ケースに収納し、上ケースに被せられた容器状の下ケースの開口部を封口し、密閉する扁平形電池の製造方法であって、電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し減圧チャンバー内を減圧後、電解液シリンジ内に充満された電解液を加圧力の制御した気体により加圧しながら注液することを特徴としている。   In order to achieve the above object, the flat battery manufacturing method of the present invention includes a negative electrode body made of a material capable of holding lithium as an active material and a positive electrode body made of a positive electrode active material with a separator interposed therebetween. The laminated electrode body and electrolyte solution are stored in a container-like upper case having an insulating gasket at the periphery of the opening, and the container-like lower case opening that covers the upper case is sealed. A method for producing a flat battery for sealing, in which an upper case containing a stack of a negative electrode body and a separator of an electrode body is placed in a decompression chamber, and after the decompression chamber is decompressed, the electrolyte syringe is filled. The electrolytic solution is injected while being pressurized with a gas whose pressure is controlled.

本発明によれば、電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し減圧チャンバー内を減圧後、電解液シリンジ内に充満された電解液を加圧力の制御された気体により加圧しながら注液することにより、電解液の経路の表面に電解液が付着することを極力抑えて注液量のバラツキが抑制され、速やかに負極体とセパレータとその隙間にも電解液を含浸させて電解液の注液量のバラツキを抑制するにも関わらず、電解液の蒸発による電解液の注液量のバラツキや成分変化を抑えて注液精度を向上させ、効率よく電解液を含浸させることが可能となる。   According to the present invention, the upper case in which the negative electrode body and the separator of the electrode body are stacked and accommodated is placed in the decompression chamber, the inside of the decompression chamber is decompressed, and the electrolyte filled in the electrolyte syringe is controlled to control the pressurizing force. By injecting while pressurizing with the generated gas, the electrolyte is prevented from adhering to the surface of the electrolyte path as much as possible, and variations in the injection volume are suppressed. Despite impregnating the electrolyte and suppressing variations in the injection volume of the electrolyte, variations in the injection volume of the electrolyte due to evaporation of the electrolyte and changes in components are suppressed, improving the injection accuracy and improving efficiency. It is possible to impregnate the electrolytic solution.

本発明の第1の発明においては、リチウムを保持しうる材料を活物質としてなる負極体と正極活物質からなる正極体をこれらの間にセパレータを介在している積層構造からなる電極体と電解液を開口部の周縁部に絶縁ガスケットを有した容器状の上ケースに収納し、上ケースに被せられた容器状の下ケースの開口部を封口し、密閉する扁平形電池の製造方法であって、前記電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し減圧チャンバー内を減圧後、電解液シリンジ内に充満された電解液を加圧力の制御された気体により加圧しながら注液することにより、電解液の経路の表面に電解液が付着することを極力抑えて電解液の注液量のバラツキを抑制し、速やかに負極体とセパレータとその隙間に電解液を含浸させ、さらに注液前や含浸時に電解液が大気圧に数十秒間も曝されることや減圧状態で長時間曝されることがなく、電解液成分の蒸発による電解液量のバラツキや電解液の成分の変化を抑制し、注液精度を向上させることが可能となる。   In the first invention of the present invention, a negative electrode body comprising a material capable of holding lithium as an active material and a positive electrode body comprising a positive electrode active material and an electrode body having a laminated structure in which a separator is interposed therebetween and electrolysis This is a method for manufacturing a flat battery in which liquid is stored in a container-like upper case having an insulating gasket at the periphery of the opening, and the opening of the container-like lower case covered by the upper case is sealed and sealed. Then, the upper case containing the negative electrode body and the separator stacked and housed in the electrode body is placed in a decompression chamber, the pressure inside the decompression chamber is reduced, and then the electrolyte solution filled in the electrolyte syringe is gas whose pressure is controlled. By injecting while pressurizing with an electrolyte, it is possible to suppress the electrolyte from adhering to the surface of the electrolyte path as much as possible to suppress variations in the injection amount of the electrolyte, and to promptly perform electrolysis in the gap between the negative electrode body and the separator. Contains liquid In addition, the electrolyte solution is not exposed to atmospheric pressure for several tens of seconds before being injected or impregnated, and is not exposed to a reduced pressure for a long time. It is possible to suppress changes in the components of the liquid and improve the accuracy of liquid injection.

本発明の第2の発明においては、電解液シリンジ内を常に充満している電解液に加圧力を制御された不活性ガスで加圧しながら上ケースに注液することにより、空気に触れることがないため電解液の成分変化の抑制ができ、制御された加圧力で注液の速度をコントロ
ールすることが可能となる。
In the second invention of the present invention, it is possible to touch the air by injecting into the upper case while pressurizing the electrolyte solution always filling the electrolyte syringe with an inert gas whose pressure is controlled. Therefore, it is possible to suppress changes in the components of the electrolytic solution, and to control the rate of injection with a controlled pressure.

本発明の第3の発明においては、電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し、大気圧の状態下で電解液シリンジ内に充満された電解液を加圧力の制御した気体により加圧しながら注液することより、電解液の含浸することが促進され短時間での含浸が可能となる。さらに減圧チャンバー内を減圧せずに、加圧力の制御した気体により加圧しながら注液するが可能で製造コスト力の強化となる。   In the third aspect of the present invention, an upper case containing a negative electrode body and a separator laminated and accommodated is placed in a vacuum chamber, and an electrolyte solution filled in an electrolyte syringe under atmospheric pressure is used. By injecting while pressurizing with a gas whose pressure is controlled, impregnation with the electrolyte is promoted, and impregnation in a short time becomes possible. Furthermore, it is possible to inject liquid while pressurizing with a gas whose pressure is controlled without depressurizing the inside of the decompression chamber.

本発明の第4の発明においては、負極体とセパレータを積層して収納された絶縁ガスケットを具備した上ケースと上ケースを収納する減圧チャンバーを有し、電解液タンクに接続された気体加圧部と、電解液タンクに接続された電解液シリンジと、電解液シリンジを開閉する注液バルブと、注液バルブを作動させるバルブ駆動部と、前記注液シリンジに接続した注液ノズルと、前記減圧チャンバーに接続された圧力調整部とで構成したことにより、電解液の経路である電解液シリンジや注液バルブの表面に電解液が付着することを極力抑えて電解液の注液量のバラツキを抑制し、速やかに負極体とセパレータとその隙間に電解液を含浸させることが可能である。さらに、注液前や含浸時に電解液が大気圧に数十秒間も曝されることや減圧状態で長時間曝されることがなく、電解液の飛散や電解液成分の蒸発を抑制し、電解液量のバラツキが抑制でき、注液精度を向上させることが可能となる。   In a fourth aspect of the present invention, a gas pressurization having an upper case having an insulating gasket that is housed by laminating a negative electrode body and a separator and a decompression chamber that houses the upper case, and connected to an electrolyte tank An electrolyte syringe connected to the electrolyte tank, a liquid injection valve that opens and closes the electrolyte syringe, a valve drive unit that operates the liquid injection valve, a liquid injection nozzle connected to the liquid injection syringe, With the pressure adjustment unit connected to the decompression chamber, it is possible to suppress the electrolyte from adhering to the surface of the electrolyte syringe or the injection valve that is the path of the electrolyte as much as possible, and to vary the injection amount of the electrolyte. It is possible to quickly impregnate the negative electrode body, the separator and the gap between them with an electrolyte. In addition, the electrolytic solution is not exposed to atmospheric pressure for several tens of seconds before injection or during impregnation, and is not exposed to a reduced pressure for a long time. Variations in the amount of liquid can be suppressed, and the accuracy of liquid injection can be improved.

本発明の第5の発明においては、電解液タンクを気体加圧部で加圧力の制御がされた不活性ガスにより加圧するように構成したことにより、電解液の成分の変化を抑制し、減圧チャンバーの減圧力に見合った加圧力の抑制が出来るため、効率の良い注液が可能となる。   In the fifth aspect of the present invention, the electrolyte tank is configured to be pressurized with an inert gas whose pressurization is controlled by the gas pressurizing unit, thereby suppressing changes in the components of the electrolyte and reducing the pressure. Since it is possible to suppress the applied pressure corresponding to the decompression force of the chamber, efficient liquid injection is possible.

本発明の第6の発明においては、バルブ駆動部が回転発生部とカム機構で構成したことにより、電解液シリンジの注液バルブを精度よく作動させ精度の良い注液が可能となり、電解液の極小量な注液にも対応ができる。   In the sixth aspect of the present invention, since the valve driving portion is constituted by the rotation generating portion and the cam mechanism, the liquid injection valve of the electrolyte syringe can be operated with high accuracy, and the liquid injection can be performed with high accuracy. Capable of handling extremely small volumes of liquid.

本発明の第7の発明においては、電解液シリンジと注液ノズルとが分離ができるように構成したことにより、電解液の付着の抑制ができる上、電解液の凝固による注液ノズルの詰まりの清掃が簡単に行え、メンテナンス性の向上が可能となる。   In the seventh aspect of the present invention, since the electrolyte syringe and the injection nozzle are configured to be separable, the adhesion of the electrolyte solution can be suppressed, and the injection nozzle is blocked due to the solidification of the electrolyte solution. Easy cleaning and improved maintainability.

以下、本発明の一実施の形態について図面を参照しながら詳細に説明する。以下に示される一実施の形態については、本発明を詳細説明するために掲げた製造装置を示するものであって、本発明は扁平形電池の構造および製造装置を下記のものに特定するものではない。例えば、図2は本発明の減圧チャンバーを接続時の状態を示す扁平形電池の製造装置の模式図である。図2に示されるように架台10上に後で詳細に述べる負極体4とセパレータ5を収納した上ケース1を保持した後、電解液シリンジ7に具備された減圧チャンバー9が接続される。架台10には、Oリング溝部11が施されOリング溝11内にはOリング32が勘合されており、減圧チャンバー9内の気密性を確保している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. An embodiment shown below shows a manufacturing apparatus for explaining the present invention in detail, and the present invention specifies the structure and manufacturing apparatus of a flat battery as follows. is not. For example, FIG. 2 is a schematic view of a flat battery manufacturing apparatus showing a state when the decompression chamber of the present invention is connected. As shown in FIG. 2, after holding the upper case 1 containing a negative electrode body 4 and a separator 5, which will be described in detail later, on a gantry 10, a decompression chamber 9 provided in an electrolyte syringe 7 is connected. The gantry 10 is provided with an O-ring groove 11 and an O-ring 32 is fitted in the O-ring groove 11 to ensure airtightness in the decompression chamber 9.

次に、減圧チャンバー9には減圧レギュレータ12、減圧圧力計13、減圧開閉弁14からなる減圧発生部15が接続され、真空ポンプ(図示せず)の真空度を調整し、減圧チャンバー9内の圧力の調整を行っている。このとき、減圧チャンバー9内の真空度が高ければ高いほど好ましいが、真空度が高すぎると電解液の沸騰を招き、また本発明の注液量を決定する重要なファクターである為、減圧圧力計13にて監視を行い、真空度が許容の上下限内でなければ、本発明の製造装置を停止する。また、減圧チャンバー9内を減圧せずに注液することも可能である。   Next, the decompression chamber 9 is connected to a decompression generator 15 comprising a decompression regulator 12, a decompression pressure gauge 13, and a decompression on / off valve 14, and the degree of vacuum of a vacuum pump (not shown) is adjusted, The pressure is adjusted. At this time, the higher the degree of vacuum in the decompression chamber 9 is, the more preferable, but if the degree of vacuum is too high, the electrolyte solution boils and is an important factor that determines the amount of liquid to be injected in the present invention. Monitoring is performed with a total of 13, and if the degree of vacuum is not within the allowable upper and lower limits, the manufacturing apparatus of the present invention is stopped. It is also possible to inject liquid without reducing the pressure in the vacuum chamber 9.

電解液を貯蔵する電解液シリンジ7は、内部に注液バルブ8を装備し、バルブ駆動部29に注液バルブ8の先端部に付属したカムフォロア26を介して接続している。バルブ駆動部29は、円板状の板カム27とサーボモータ28からなり、サーボモータ28にて板カム27を回転させ、注液バルブ8に上下運動を伝達し、注液バルブ8の開閉を行って、上ケース1に電解液を注液している。板カム27の回転速度を変更することにより電解液量をコントロールすることが可能で、板カム27の回転速度を速くすると電解液量は小さくなる。ここで、本発明の一実施の形態としてバルブ駆動部29に板カム27の回転運動を利用したが、これに特定せず、エアーシリンダによる上下運動やカムとボールねじとサーボモータを組み合わせたメカ機構などで注液バルブ8の上下運動を伝達することもできる。   The electrolyte syringe 7 that stores the electrolyte is equipped with an injection valve 8 inside, and is connected to the valve drive unit 29 via a cam follower 26 attached to the tip of the injection valve 8. The valve drive unit 29 is composed of a disk-shaped plate cam 27 and a servo motor 28, and the servo motor 28 rotates the plate cam 27 to transmit the vertical movement to the liquid injection valve 8 to open and close the liquid injection valve 8. The electrolyte solution is injected into the upper case 1. It is possible to control the amount of electrolyte by changing the rotation speed of the plate cam 27. When the rotation speed of the plate cam 27 is increased, the amount of electrolyte decreases. Here, as an embodiment of the present invention, the rotational movement of the plate cam 27 is used for the valve drive unit 29. However, the present invention is not limited to this, and a vertical movement by an air cylinder or a mechanism combining a cam, a ball screw, and a servo motor. The vertical movement of the liquid injection valve 8 can also be transmitted by a mechanism or the like.

また、注液バルブ8にはスプリング24が装着され、注液バルブ8の上下運動の補助をし、電解液室30との気密性を確保するために電解液シリンジ7に嵌合されたOリング25にて隔離している。   In addition, a spring 24 is attached to the liquid injection valve 8, assisting the vertical movement of the liquid injection valve 8, and an O-ring fitted to the electrolyte syringe 7 to ensure airtightness with the electrolyte chamber 30. Isolated at 25.

また、注液ノズル16はナット17を閉めることで電解液シリンジ7と接続されており、ナット17を緩めることで簡単に電解液シリンジ7と分離ができ、電解液量に対応した注液ノズル16の選定ができ、注液ノズル16の先端にある突起部の長短を選定することにより、より高精度な注液が可能となる。さらに、電解液の凝固による注液ノズルの目詰まりの対応が簡単にできるため、メンテナンス性にも富んだ構造となっている。また、注液バルブ8との接触面の材質をポリプロピレンや四弗化エチレン樹脂などの樹脂が適している。   Further, the injection nozzle 16 is connected to the electrolyte syringe 7 by closing the nut 17, and can be easily separated from the electrolyte syringe 7 by loosening the nut 17, and the injection nozzle 16 corresponding to the amount of electrolyte By selecting the length of the protrusion at the tip of the liquid injection nozzle 16, it is possible to perform liquid injection with higher accuracy. Furthermore, since the injection nozzle can be easily clogged due to the solidification of the electrolytic solution, the structure is rich in maintainability. A material such as polypropylene or ethylene tetrafluoride resin is suitable for the material of the contact surface with the liquid injection valve 8.

電解液シリンジ7内にある電解液室30の電解液供給口18には、電解液供給部23が接続され電解液室30を常に電解液で充満しており、電解液供給部23は電解液圧送管19、電解液タンク20、不活性ガス圧力計21、不活性ガス圧力レギュレータ22からなる。また、不活性ガスタンク(図示せず)に接続された電解液供給部23は不活性ガス圧力レギュレータ22にて不活性ガスの圧力を調整して、電解液タンク20に圧力が掛けられ、圧力を帯びた電解液が電解液室30を充満させている。ここで、減圧チャンバー9内の減圧と同様に本発明の注液量を決定する重要なファクターである為、不活性ガス圧力計21にて許容の上下限内でなければ、本発明の製造装置を停止する。不活性ガスにおいては、二酸化炭素、窒素、アルゴン等でもよく、本発明では窒素ガスを使用して、電解液タンク20に圧力を掛けて加圧力のある電解液にしている。   An electrolytic solution supply port 23 of the electrolytic solution chamber 30 in the electrolytic solution syringe 7 is connected to the electrolytic solution supply unit 23 so that the electrolytic solution chamber 30 is always filled with the electrolytic solution. It consists of a pressure feed pipe 19, an electrolyte solution tank 20, an inert gas pressure gauge 21, and an inert gas pressure regulator 22. The electrolyte supply unit 23 connected to an inert gas tank (not shown) adjusts the pressure of the inert gas by the inert gas pressure regulator 22 so that the electrolyte tank 20 is pressurized, and the pressure is increased. The charged electrolyte fills the electrolyte chamber 30. Here, since it is an important factor for determining the amount of liquid to be injected of the present invention in the same manner as the decompression in the decompression chamber 9, the production apparatus of the present invention must be within the allowable upper and lower limits by the inert gas pressure gauge 21. To stop. The inert gas may be carbon dioxide, nitrogen, argon, or the like. In the present invention, nitrogen gas is used to apply pressure to the electrolyte tank 20 to obtain a pressurized electrolyte.

さらに、電解液の加圧力を変更することにより電解液の吐出速度をコントロールすることが可能で、電解液の加圧力を高くすると電解液の吐出速度も速くなる。また、電解液室30は加圧された電解液で満たされているため、電解液室30内に気泡の侵入を防止することができ、また電解液圧送管19の途中に電解液内の気泡を除去する脱気機構(図示せず)を設けることもできる。   Furthermore, it is possible to control the discharge speed of the electrolytic solution by changing the applied pressure of the electrolytic solution. When the applied pressure of the electrolytic solution is increased, the discharged speed of the electrolytic solution is also increased. In addition, since the electrolytic solution chamber 30 is filled with the pressurized electrolytic solution, it is possible to prevent bubbles from entering the electrolytic solution chamber 30, and bubbles in the electrolytic solution are provided in the middle of the electrolytic solution feeding pipe 19. It is also possible to provide a deaeration mechanism (not shown) for removing the water.

減圧チャンバー9内を減圧発生部15にて減圧し、バルブ駆動部29を作動して注液バルブ8を開閉して、電解液の加圧力と減圧チャンバー9内の減圧との圧力差により上ケース1のセパレータ5上に電解液が注液される。また、これらの製造装置を1台または数台、あるいは数十台、ラインとして並べられ、並列にそれぞれの製造装置が上ケース1に電解液を注液して、処理能力を大きくすることができ、架台10を循環する治具として使用することでより一層生産性の高いライン構成を取ることが可能となる。   The inside of the decompression chamber 9 is decompressed by the decompression generating section 15, the valve driving section 29 is operated to open and close the liquid injection valve 8, and the upper case is caused by the pressure difference between the applied pressure of the electrolyte and the decompression in the decompression chamber 9. An electrolytic solution is poured onto one separator 5. In addition, one, several, or several tens of these manufacturing apparatuses are arranged as a line, and each manufacturing apparatus can inject electrolyte into the upper case 1 in parallel to increase the processing capacity. By using it as a jig that circulates the gantry 10, it becomes possible to adopt a line configuration with higher productivity.

注液された上ケース1は、図4に示されるように正極体3をセパレータ5の上に積層し、下ケース6が被せられ、下ケース6の側面を縮径および下ケース6の開口部を内側に折り曲げて封口し、絶縁ガスケット31を圧縮して気密性の高い扁平形電池が成形される。   As shown in FIG. 4, the injected upper case 1 is formed by laminating the positive electrode body 3 on the separator 5 and covering the lower case 6. The side surface of the lower case 6 is reduced in diameter and the opening of the lower case 6. Is folded inward and sealed, and the insulating gasket 31 is compressed to form a flat battery with high airtightness.

ここで、扁平形電池にはコイン形一次電池やコイン形二次電池等があるが、ここでは扁平形電池に代表される一つであるコイン形のリチウムイオン二次電池(以下、コイン形二次電池と称する)の全体構成を示した断面図である図4について説明する。コイン形二次電池33は、電極体2を構成しているペレット状の正極体3とペレット状の負極体4と正極体3及び負極体4の間に配されたセパレータ5とからなり、正極体3と負極体4の間でリチウムイオンを移動させる電解液(図示せず)と電極体2とを収納する上ケース1と上ケース1の電極体2が収納された空間を密閉する上ケース1の開口部の周縁部にある絶縁ガスケット31と上ケース1に被せられ封口する下ケース6からなる。さらに上ケース1の開口部の外周面と絶縁ガスケット31の内周面および下ケース6の開口部の内周面との所定の位置に成膜されているシール膜(図示せず)とを備えて、より高い気密性を発揮している。   Here, the flat battery includes a coin-type primary battery, a coin-type secondary battery, and the like. Here, a coin-type lithium ion secondary battery (hereinafter, coin-type secondary battery), which is one of the flat batteries, is used. Next, FIG. 4 which is a cross-sectional view showing the overall configuration of the secondary battery will be described. The coin-type secondary battery 33 includes a pellet-shaped positive electrode body 3 constituting the electrode body 2, a pellet-shaped negative electrode body 4, and a separator 5 disposed between the positive electrode body 3 and the negative electrode body 4. An upper case 1 that houses an electrolyte (not shown) that moves lithium ions between the body 3 and the negative electrode body 4 and the electrode body 2 and an upper case that seals a space in which the electrode body 2 of the upper case 1 is housed. 1 comprises an insulating gasket 31 at the peripheral edge of the opening 1 and a lower case 6 that covers and seals the upper case 1. Further, a seal film (not shown) is formed at predetermined positions on the outer peripheral surface of the opening of the upper case 1, the inner peripheral surface of the insulating gasket 31, and the inner peripheral surface of the opening of the lower case 6. And exhibit higher airtightness.

正極体3は、ここでは、リチウム・マンガン酸化合物を用いるがこれに限定されるものではなく、例えばリチウム複合酸化物、金属硫化物、金属酸化物、金属セレン化合物等の何れか一種以上を混合して用いることも可能である。   Here, the positive electrode body 3 uses a lithium manganate compound, but is not limited thereto. For example, any one or more of a lithium composite oxide, a metal sulfide, a metal oxide, a metal selenium compound and the like are mixed. It can also be used.

また、負極体4は、負極活物質となる板状の金属リチウムやリチウム合金を打ち抜いてペレット状に成形している。負極体4は、ペレット状の金属リチウムと、リチウムと化合可能な金属若しくは化合物を貼り合わせた状態でコイン形二次電池33の内部に収納し、放置しておくことでリチウム合金化したものを負極活物質として用いる。   Further, the negative electrode body 4 is formed by punching plate-like metallic lithium or a lithium alloy serving as a negative electrode active material into a pellet shape. The negative electrode body 4 is stored in the coin-type secondary battery 33 in a state in which pellet-shaped metallic lithium and a metal or compound that can be combined with lithium are bonded together, and is left to be a lithium alloy. Used as negative electrode active material.

次に、セパレータ5は、正極体3と負極体4との間を遮断し、両極材の接触による短絡を防止しつつ電解液中のリチウムイオンを通過させるものである。このセパレータ5は、繊維樹脂状により形成された不織布であり、空孔率が10%〜50%、厚みが40μm〜200μmのものを用いる。ここでは、ポリフェニレンサルファイトを用いるが、これに限定されるものではなく、ポリエチレンテレフタート、ポリイミド、ポリアミド等が上げられ、何れか一種以上を用いることも可能である。   Next, the separator 5 interrupts | blocks between the positive electrode body 3 and the negative electrode body 4, and allows the lithium ion in electrolyte solution to pass through, preventing the short circuit by the contact of both electrode materials. The separator 5 is a non-woven fabric formed of a fiber resin, and has a porosity of 10% to 50% and a thickness of 40 μm to 200 μm. Here, although polyphenylene sulfite is used, it is not limited to this, Polyethylene terephthalate, a polyimide, polyamide, etc. are raised, It is also possible to use any 1 or more types.

電解液には、EMC、ペンタグライム、テトラグライム等が上げられ、これらのうちの何れか一種以上を用いる。   Examples of the electrolyte include EMC, pentag lime, and tetraglyme, and any one or more of these are used.

また、下ケース6は、導電性金属からなる容器であり、正極体3と接触することでコイン形二次電池33の外部正極となる。具体的には、下ケース6には、ステンレス等からなる金属製の容器を用いるが、これに限定されるものではなく、例えばステンレス、アルミニウム、ニッケル等の金属を複数積層させた状態の金属製の容器等を用いることも可能である。   The lower case 6 is a container made of a conductive metal, and serves as an external positive electrode of the coin-type secondary battery 33 by being in contact with the positive electrode body 3. Specifically, a metal container made of stainless steel or the like is used for the lower case 6, but the present invention is not limited to this. For example, the lower case 6 is made of metal in a state where a plurality of metals such as stainless steel, aluminum, and nickel are laminated. It is also possible to use other containers.

上ケース1は、電極体2を収納する導電性金属からなる容器であり、負極体4と接することでコイン形二次電池33の外部負極となる。上ケース1には、アルミニウムとステンレスとが貼り合わされたクラッド材等を用い、第1の金属層がアルミニウムとなるように形成する。負極体4が収納される底面には、ペレット状の金属リチウムを貼り付け、二次電池の組立後にリチウム合金が形成されせる。   The upper case 1 is a container made of a conductive metal that houses the electrode body 2, and becomes an external negative electrode of the coin-type secondary battery 33 by being in contact with the negative electrode body 4. The upper case 1 is formed using a clad material or the like in which aluminum and stainless steel are bonded so that the first metal layer is aluminum. Pellets of metallic lithium are attached to the bottom surface where the negative electrode body 4 is accommodated, and a lithium alloy is formed after the secondary battery is assembled.

また、絶縁ガスケット31は、円環状に形成されており、下ケース6と上ケース1とを封口した際に下ケース6と上ケース1との間に生じる隙間に嵌め込まれるように取り付けられることで上記隙間を封止する。この絶縁ガスケット31は、ポリフェニレンサルファイト樹脂を用いるが、これに限定されることはなく、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリチレンテレフタート樹脂、ポリアリレート樹脂等も用いることができ、何れか一種又は複数種を混合して用いてもよい。   The insulating gasket 31 is formed in an annular shape, and is attached so as to be fitted into a gap generated between the lower case 6 and the upper case 1 when the lower case 6 and the upper case 1 are sealed. The gap is sealed. This insulating gasket 31 uses polyphenylene sulfite resin, but is not limited thereto, polyether ketone resin, polyether ether ketone resin, polyethylene terephthalate resin, polyarylate resin, etc. can be used, Any one kind or a plurality of kinds may be mixed and used.

下ケース6の内周側面や絶縁ガスケット31の内周側面とには、シール膜としてシール剤(図示せず)が塗布されており、下ケース6や上ケース1と絶縁ガスケット31との間に生じる微小な隙間に入りこむことにより、コイン形二次電池33の内部空間の密閉性をより高めている。シール剤には具体的には、フッ素系の樹脂を用い、シール剤を調製する溶媒には、上述したフッ素系の樹脂を溶解させるもので、具体的にはシクロヘキサン等を用いる。   A sealing agent (not shown) is applied as a sealing film to the inner peripheral side surface of the lower case 6 and the inner peripheral side surface of the insulating gasket 31, and between the lower case 6 and the upper case 1 and the insulating gasket 31. The tightness of the internal space of the coin-type secondary battery 33 is further improved by entering the generated minute gap. Specifically, a fluorine-based resin is used for the sealant, and the above-described fluorine-based resin is dissolved in the solvent for preparing the sealant. Specifically, cyclohexane or the like is used.

次に以下、本発明の実施例に関わる扁平形電池の製造方法について図を参照しながら詳細に説明する。   Next, a method for manufacturing a flat battery according to an embodiment of the present invention will be described in detail with reference to the drawings.

本発明の実施例1における減圧チャンバーを接続する前の状態を示す扁平形電池の製造装置の模式図を図1に示す。電解液供給部23にある不活性ガス圧力レギュレータ22を作動させ、不活性ガスタンク(図示せず)から送られてきた不活性ガスの圧力を90kPaに調整し、電解液タンク20は90kPaの圧力を帯びた電解液の状態になり、電解液タンク20に接続された電解液シリンジ7の電解液供給口18に電解液圧送管19を介して電解液が圧送され、注液バルブ8の閉じられた電解液室30は加圧力90kPaの電解液で充満される。 The schematic diagram of the flat battery manufacturing apparatus which shows the state before connecting the decompression chamber in Example 1 of this invention is shown in FIG. The inert gas pressure regulator 22 in the electrolyte supply unit 23 is operated to adjust the pressure of the inert gas sent from an inert gas tank (not shown) to 90 kPa, and the electrolyte tank 20 has a pressure of 90 kPa. The electrolyte solution is in the state of a charged electrolyte solution, and the electrolyte solution is pumped to the electrolyte solution supply port 18 of the electrolyte solution syringe 7 connected to the electrolyte solution tank 20 via the electrolyte solution feeding tube 19, and the injection valve 8 is closed. The electrolytic solution chamber 30 is filled with an electrolytic solution having a pressure of 90 kPa.

また、減圧チャンバー9が装着されていない架台10上の定位置に負極体4とセパレータ5が収納された電解液を注液していない上ケース1を保持する。保持方法はチャックや真空吸着、磁力による保持方法でもよく。本発明では構造を簡素化できる架台10に上ケース1が嵌合できる円形の窪みを設けて固定している。   Further, the upper case 1 in which the electrolyte containing the negative electrode body 4 and the separator 5 is not injected is held at a fixed position on the gantry 10 where the decompression chamber 9 is not mounted. The holding method may be a chuck, vacuum suction, or magnetic holding method. In the present invention, a circular recess into which the upper case 1 can be fitted is provided and fixed to the gantry 10 that can simplify the structure.

図2に示される矢印方向に減圧チャンバー9が架台10と装着され、その後、減圧発生部15にある減圧開閉弁14を開き、減圧レギュレータ12を作動させて、減圧チャンバー9内の圧力を減圧レギュレータ12にて設定された大気圧の約1/10である10kPaまで減圧する。   The decompression chamber 9 is attached to the gantry 10 in the direction of the arrow shown in FIG. 2, and then the decompression on / off valve 14 in the decompression generating unit 15 is opened and the decompression regulator 12 is operated to reduce the pressure in the decompression chamber 9. The pressure is reduced to 10 kPa, which is about 1/10 of the atmospheric pressure set at 12.

図3は本発明の実施例1における電解液の注液状態を示す扁平形電池の製造装置の模式図である。バルブ駆動部29にあるサーボモータ28を駆動し、板カム27を回転させて、注液バルブ8の先端にあるカムフォロア26を介して注液バルブ8は、スプリング24の力により上方向に持ち上げられ、本実施例における注液ノズル16のノズル内径が1mmである注液ノズル16が図3に示されるように開孔されて、電解液が電解液の加圧力と減圧チャンバー9内の減圧との差圧力により上ケースへの注液が開始され、その後、板カム27の回転により注液バルブ8が閉じられ注液は終了する。また、本発明の注液量は62mgで、注液バルブ8の開閉時間はわずか0.1〜0.2秒程度であり、サーボモータ28は一回転後に停止する。
注液後、減圧を2秒間保持し、電解液がセパレータ5に含浸され、その後減圧発生部15にある減圧レギュレータ12を作動して減圧チャンバー9内は大気圧である101.3kPaに2秒間の時間を有して戻される。大気への開放時の供給エアーはリチウム電池の場合ではドライエアーを用いるのが良い。減圧チャンバー9を開いて取り出した上ケース1を実施例1とした。
FIG. 3 is a schematic view of a flat battery manufacturing apparatus showing an electrolyte injection state in Example 1 of the present invention. The servo motor 28 in the valve drive unit 29 is driven to rotate the plate cam 27, and the liquid injection valve 8 is lifted upward by the force of the spring 24 via the cam follower 26 at the tip of the liquid injection valve 8. The liquid injection nozzle 16 having an inner diameter of 1 mm in the liquid injection nozzle 16 in this embodiment is opened as shown in FIG. 3, so that the electrolyte is applied with the pressure of the electrolyte and the reduced pressure in the vacuum chamber 9. The liquid injection into the upper case is started by the differential pressure, and then the liquid injection valve 8 is closed by the rotation of the plate cam 27 and the liquid injection is finished. Further, the liquid injection amount of the present invention is 62 mg, and the liquid injection valve 8 has an opening / closing time of only about 0.1 to 0.2 seconds, and the servo motor 28 stops after one rotation.
After injection, the vacuum is maintained for 2 seconds, and the separator 5 is impregnated with the electrolyte, and then the vacuum regulator 12 in the vacuum generator 15 is operated to increase the pressure in the vacuum chamber 9 to 101.3 kPa, which is atmospheric pressure, for 2 seconds. Returned with time. In the case of a lithium battery, dry air may be used as the supply air when opening to the atmosphere. The upper case 1 taken out by opening the decompression chamber 9 was taken as Example 1.

実施例1と同様に、負極体4とセパレータ5が収納された電解液を注液していない上ケース1を架台10上の定位置に保持し、減圧チャンバー9が架台10と装着された後に、減圧をせずに減圧チャンバー9内の圧力が大気圧の状態のままで注液を開始した。注液終了後、6秒間の大気圧の状態で放置をし、減圧チャンバー9を開いて取り出した上ケース
1を実施例2とした。
As in Example 1, after the upper case 1 not filled with the electrolyte containing the negative electrode body 4 and the separator 5 was held at a fixed position on the gantry 10 and the decompression chamber 9 was attached to the gantry 10 The liquid injection was started while the pressure in the vacuum chamber 9 was kept at atmospheric pressure without reducing the pressure. After the injection, the upper case 1 was left as an atmospheric pressure for 6 seconds, and the decompression chamber 9 was opened and taken out.

(比較例1)
本発明の実施例と比較するため、図5に示されるような構成の装置へ実施例と同じ電解液を注液していない負極体とセパレータを収納した上ケース106を減圧チャンバー105に組み込み、充填シリンダ102に62mgの電解液を供給後、減圧チャンバー105内を10kPaの圧力にて減圧をし、ピストン103を押し下げて、注液管107より電解液を上ケース106に注液し、2秒間の減圧後、減圧チャンバー105を大気圧である101.3kPaの圧力に戻す。次に減圧チャンバー105を開き、取り出した上ケース106を比較例1とした。
(Comparative Example 1)
In order to compare with the embodiment of the present invention, an upper case 106 containing a negative electrode body and a separator not filled with the same electrolytic solution as the embodiment into an apparatus configured as shown in FIG. After supplying 62 mg of the electrolytic solution to the filling cylinder 102, the pressure in the decompression chamber 105 is reduced to a pressure of 10 kPa, the piston 103 is pushed down, and the electrolytic solution is injected into the upper case 106 from the liquid injection tube 107 for 2 seconds. After the depressurization, the decompression chamber 105 is returned to a pressure of 101.3 kPa, which is atmospheric pressure. Next, the decompression chamber 105 was opened, and the upper case 106 taken out was used as Comparative Example 1.

上記実施例および比較例の同じ電解液の注液時間における注液時に装置に付着または揮発により損失電解液の重量をバラツキとして比較するために、下記の評価を行った結果を(表1)に示す。   The results of the following evaluation are shown in (Table 1) in order to compare the weight of the loss electrolyte by dispersion or volatilization due to volatilization or volatilization during the injection of the same electrolyte in the above examples and comparative examples. Show.

(表1)に示した電解液の重量のバラツキは、電解液の注液済みである上ケースの重量と電解液の未注液である上ケースの重量に電解液の重量の62mgを加えた重量との差を注液された電解液の重量とし、実施した20個の上ケースの最大値を最小値の差との比較をした。   The variation in the weight of the electrolytic solution shown in Table 1 was obtained by adding 62 mg of the weight of the electrolytic solution to the weight of the upper case where the electrolytic solution had been injected and the weight of the upper case where the electrolytic solution had not been poured. The difference from the weight was taken as the weight of the injected electrolyte, and the maximum value of the 20 upper cases carried out was compared with the difference between the minimum values.

また、電解液の損失重量として、電解液の注液済みである上ケースの重量と電解液の未注液である上ケースの重量に電解液の重量の62mgを加えた重量との差を注液された電解液の重量とし、最小の電解液の重量と供給した基準電解液の重量62mgとの差を比較した。   In addition, the weight loss of the electrolytic solution is the difference between the weight of the upper case where the electrolytic solution has been injected and the weight of the upper case where the electrolytic solution has not been added plus 62 mg of the weight of the electrolytic solution. The weight of the liquid electrolyte was compared, and the difference between the minimum weight of the electrolyte and the weight of the supplied standard electrolyte 62 mg was compared.

Figure 2007173063
(表1)より明らかなように実施例1,2による方法は、比較例1とを比較して注液時における電解液の重量のバラツキも少なく精度が良好であり、上ケースに高精度な電解液の注液ができた。また、電解液の基準重量62mgに対しても差が小さく、電解液の損失重量が少ないことで、電解液の飛散、電解液の蒸発の少ない製造方法と製造装置と言うことができ、電解液の蒸発を抑制できたことで電解液の成分のバラツキを抑えることのできる方法である。さらに、実施例1と実施例2を比較すると減圧チャンバー内を減圧することで電解液の損失に対して効果的であった。また、に比較例1の方法では、電解液の重量が小さくなればなるほど構造が小さくなり、さらなる小型化に対応した方法としては断念せざるを得ない。
Figure 2007173063
As apparent from (Table 1), the methods according to Examples 1 and 2 have less accuracy in the weight of the electrolyte during injection compared to Comparative Example 1, and the accuracy is good, and the upper case is highly accurate. The electrolyte was injected. Further, the difference is small with respect to the standard weight of the electrolytic solution of 62 mg, and the loss weight of the electrolytic solution is small, so that it can be said that the manufacturing method and the manufacturing device cause little scattering of the electrolytic solution and evaporation of the electrolytic solution. This is a method capable of suppressing the variation in the components of the electrolytic solution by suppressing the evaporation of the electrolyte. Further, comparing Example 1 and Example 2, it was effective against the loss of the electrolyte solution by reducing the pressure in the vacuum chamber. In addition, in the method of Comparative Example 1, the structure becomes smaller as the weight of the electrolytic solution becomes smaller, and it must be abandoned as a method corresponding to further miniaturization.

比較例1の注液精度であるバラツキ、電解液の損失量の悪化要因は次のようになると考えられる。比較例1による方法では、充填シリンダおよびピストンや電解液の経路の表面に電解液が付着し、注液した電解液の重量のバラツキを招いていたと考えられ、電解液の長時間の減圧による電解液の蒸発も電解液の損失重量が大きくなった原因と考えられる。また、比較例1による方法においては目視で確認できるほど正極体上に電解液が今にも溢れ出しそうな状態になっており、下ケースを被せ封口した際に、電解液が漏れ出ているのが目視で確認できた。このことで、溢れ出した電解液による設備の汚れやそれに伴う設備
の稼働トラブル、液こぼれによる二次電池の表面汚れや液不足による電池特性の低下等の品質トラブルなど、多岐にわたるトラブルが発生することの確認もされている。
It is considered that the variation in the injection accuracy of Comparative Example 1 and the deterioration factor of the loss amount of the electrolytic solution are as follows. In the method according to Comparative Example 1, it is considered that the electrolytic solution adhered to the surface of the filling cylinder, the piston, and the path of the electrolytic solution, resulting in variations in the weight of the injected electrolytic solution. The evaporation of the liquid is also considered to be the cause of the increased weight loss of the electrolyte. In addition, in the method according to Comparative Example 1, the electrolyte solution is likely to overflow on the positive electrode body to the extent that it can be visually confirmed, and when the lower case is covered and sealed, the electrolyte solution leaks out. It was confirmed visually. This causes a wide variety of problems such as equipment contamination due to overflowing electrolyte and associated equipment operation trouble, secondary battery surface contamination due to liquid spillage, and quality problems such as deterioration of battery characteristics due to lack of liquid. It has also been confirmed.

以上のように比較例において、短時間における注液を行ったときに発生する注液精度の悪化は、電解液の重量のバラツキをもたらし、その結果として、電解液が少ない場合には、充放電時の二次電池内の電解液が不足し、電池寿命の短命化につながる。また、電解液が多い場合にはガス発生による電池の膨れ、安全性の低下が懸念される。本発明は短時間の注液において高精度の注液を実現することで、電池寿命の安定化、安全性の安定化を実現している。   As described above, in the comparative example, the deterioration of the injection accuracy that occurs when the injection is performed in a short period of time results in variations in the weight of the electrolytic solution. At times, the electrolyte in the secondary battery is insufficient, leading to a shortened battery life. Moreover, when there is much electrolyte solution, there exists a concern about the swelling of the battery by gas generation and the fall of safety | security. The present invention achieves stable battery life and stable safety by realizing highly accurate liquid injection in a short time of liquid injection.

本発明によれば、短時間にもかかわらず電池への注液精度の良い注液が可能となる。また、本発明の製造方法と製造装置は電解液への加圧と上ケースの減圧を適切にバランスよく利用して注液することにより電解液のこぼれにまつわる様々なトラブルを解消することができ、従来の技術では困難であった微小な電解液量を注液することが可能となり、高性能な扁平形の超小型電池の電解液を注液する方法として有用である。さらに、高容量化を図るために電池内に可能な限り多くを収納した電極体に対して、その電極体に見合った大量の電解液を収容することができるため、高エネルギー密度で負荷特性の優れ、貯蔵寿命が長いなどの効果をもたらす電池の作製が可能となる。   According to the present invention, it is possible to inject liquid with high accuracy in injecting a battery in spite of a short time. In addition, the manufacturing method and the manufacturing apparatus of the present invention can eliminate various troubles related to spillage of the electrolyte by injecting using an appropriate balance between the pressure applied to the electrolyte and the pressure reduction of the upper case, It becomes possible to inject a minute amount of electrolytic solution, which has been difficult with the prior art, and is useful as a method for injecting the electrolytic solution of a high-performance flat micro battery. Furthermore, since a large amount of electrolyte corresponding to the electrode body can be accommodated in an electrode body that accommodates as much as possible in the battery in order to increase the capacity, the load characteristics can be increased with high energy density. It is possible to produce a battery that is excellent and has effects such as a long shelf life.

本発明の実施例1における減圧チャンバーを接続する前の状態を示す扁平形電池の製造装置の模式図The schematic diagram of the flat battery manufacturing apparatus which shows the state before connecting the decompression chamber in Example 1 of this invention. 本発明の減圧チャンバーを接続時の状態を示す扁平形電池の製造装置の模式図The schematic diagram of the flat battery manufacturing apparatus which shows the state at the time of connecting the decompression chamber of this invention 本発明の実施例1における電解液の注液状態を示す扁平形電池の製造装置の模式図The schematic diagram of the manufacturing apparatus of the flat battery which shows the injection state of the electrolyte solution in Example 1 of this invention 本発明の一実施形態におけるコイン形二次電池の断面図Sectional drawing of the coin-type secondary battery in one Embodiment of this invention 従来技術の注液装置における実施の形態図Embodiment of a prior art liquid injection device 別従来技術の注液装置における実施の形態図Embodiment of another conventional liquid injection device 別従来技術の注液装置における実施の形態図Embodiment of another conventional liquid injection device

符号の説明Explanation of symbols

1 上ケース
2 電極体
3 正極体
4 負極体
5 セパレータ
6 下ケース
7 電解液シリンジ
8 注液バルブ
9 減圧チャンバー
10 架台
11 Oリング溝部
12 減圧レギュレータ
13 減圧圧力計
14 減圧開閉弁
15 減圧発生部
16 注液ノズル
17 ナット
18 電解液供給口
19 電解液圧送管
20 電解液タンク
21 不活性ガス圧力計
22 不活性ガス圧力レギュレータ
23 電解液供給部
24 スプリング
25 Oリング
26 カムフォロア
27 板カム
28 サーボモータ
29 バルブ駆動部
30 電解液室
31 絶縁ガスケット
32 Oリング
33 コイン形二次電池(扁平形電池)

DESCRIPTION OF SYMBOLS 1 Upper case 2 Electrode body 3 Positive electrode body 4 Negative electrode body 5 Separator 6 Lower case 7 Electrolyte syringe 8 Injection valve 9 Depressurization chamber 10 Mounting frame 11 O-ring groove part 12 Decompression regulator 13 Decompression pressure gauge 14 Decompression opening / closing valve 15 Decompression generation part 16 Injection nozzle 17 Nut 18 Electrolyte supply port 19 Electrolyte pressure feed pipe 20 Electrolyte tank 21 Inert gas pressure gauge 22 Inert gas pressure regulator 23 Electrolyte supply part 24 Spring 25 O-ring 26 Cam follower 27 Plate cam 28 Servo motor 29 Valve drive unit 30 Electrolyte chamber 31 Insulating gasket 32 O-ring 33 Coin type secondary battery (flat battery)

Claims (7)

リチウムを保持しうる材料を活物質としてなる負極体と正極活物質からなる正極体をこれらの間にセパレータを介在している積層構造からなる電極体と電解液を開口部の周縁部に絶縁ガスケットを有した容器状の上ケースに収納し、前記上ケースに被せられた容器状の下ケースの開口部を封口し、密閉する扁平形電池の製造方法であって、前記電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し減圧チャンバー内を減圧後、電解液シリンジ内に充満された電解液を加圧力の制御した気体により加圧しながら注液することを特徴とする扁平形電池の製造方法。   Insulating gaskets having a negative electrode body comprising a material capable of holding lithium as an active material and a positive electrode body comprising a positive electrode active material having a laminated structure in which a separator is interposed therebetween and an electrolyte solution at the periphery of the opening A flat battery manufacturing method for sealing and sealing an opening of a container-like lower case covered by the upper case, the negative electrode body of the electrode body and The upper case with the separators stacked and installed is placed in a vacuum chamber, the pressure inside the vacuum chamber is reduced, and the electrolyte filled in the electrolyte syringe is injected while being pressurized with a gas whose pressure is controlled. A method for manufacturing a flat battery. 電解液シリンジ内を常に空気を含まないように充満している電解液に加圧力を制御した不活性ガスで加圧しながら、上ケースに注液することを特徴とする請求項1に記載の扁平形電池の製造方法。   2. The flat shape according to claim 1, wherein the electrolyte solution filled in the electrolyte solution syringe so as not to contain air is always injected into the upper case while being pressurized with an inert gas whose pressure is controlled. A manufacturing method of a battery. 電極体の負極体とセパレータを積層して収納した上ケースを減圧チャンバー内に設置し、大気圧の状態下で電解液シリンジ内に充満された電解液を加圧力の制御した気体により加圧しながら注液することを特徴とする請求項1または2に記載の扁平形電池の製造方法。   An upper case in which the negative electrode body and separator of the electrode body are stacked and housed is installed in a vacuum chamber, and the electrolyte filled in the electrolyte syringe is pressurized with a gas whose pressure is controlled under atmospheric pressure. The method for producing a flat battery according to claim 1, wherein the liquid is injected. リチウムを保持しうる材料を活物質としてなる負極体とセパレータを積層して収納された絶縁ガスケットを具備した上ケースと上ケースを収納する減圧チャンバーを有し、電解液タンクに接続された気体加圧部と、電解液タンクに接続された電解液シリンジと、電解液シリンジを開閉する注液バルブと、注液バルブを作動させるバルブ駆動部と、前記注液シリンジに接続した注液ノズルと、前記減圧チャンバーに接続された圧力調整部とで構成したことを特徴とする扁平形電池の製造装置。   An upper case provided with an insulating gasket in which a negative electrode body made of a material capable of holding lithium as an active material and a separator are stacked and stored, and a decompression chamber for storing the upper case, and a gas supply connected to an electrolyte tank A pressure part, an electrolyte syringe connected to the electrolyte tank, a liquid injection valve that opens and closes the electrolyte syringe, a valve drive unit that operates the liquid injection valve, a liquid injection nozzle connected to the liquid injection syringe, A flat battery manufacturing apparatus comprising a pressure adjusting unit connected to the decompression chamber. 電解液タンクを気体加圧部で加圧力の制御がされた不活性ガスにより加圧するように構成したことを特徴とする請求項4に記載の扁平形電池の製造装置。   The apparatus for manufacturing a flat battery according to claim 4, wherein the electrolyte tank is configured to be pressurized with an inert gas whose pressure is controlled by a gas pressurizing unit. バルブ駆動部が回転発生部とカム機構で構成したことを特徴とする請求項4に記載の扁平形電池の製造装置。   The flat battery manufacturing apparatus according to claim 4, wherein the valve driving unit includes a rotation generating unit and a cam mechanism. 電解液シリンジと注液ノズルとが分離ができるように構成したことを特徴とする請求項4に記載の扁平形電池の製造装置。

The flat battery manufacturing apparatus according to claim 4, wherein the electrolytic solution syringe and the injection nozzle are configured to be separable.

JP2005369642A 2005-12-22 2005-12-22 Method of manufacturing flat battery and its manufacturing device Pending JP2007173063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369642A JP2007173063A (en) 2005-12-22 2005-12-22 Method of manufacturing flat battery and its manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369642A JP2007173063A (en) 2005-12-22 2005-12-22 Method of manufacturing flat battery and its manufacturing device

Publications (1)

Publication Number Publication Date
JP2007173063A true JP2007173063A (en) 2007-07-05

Family

ID=38299338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369642A Pending JP2007173063A (en) 2005-12-22 2005-12-22 Method of manufacturing flat battery and its manufacturing device

Country Status (1)

Country Link
JP (1) JP2007173063A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
WO2011126068A1 (en) * 2010-04-07 2011-10-13 日産自動車株式会社 Electrolyte pouring device and electrolyte pouring method
WO2011152221A1 (en) * 2010-06-02 2011-12-08 日産自動車株式会社 Device for supplying electrolyte solution
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
JP2013109855A (en) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd Manufacturing method and manufacturing apparatus of electric device and electric device
JP2013164915A (en) * 2012-02-09 2013-08-22 Nec Corp Battery manufacturing method and battery manufacturing apparatus
US9660300B2 (en) 2013-03-21 2017-05-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing sealed battery
CN109473621A (en) * 2018-11-12 2019-03-15 大同新成新材料股份有限公司 A kind of lithium battery electrolytes injection device and its application method
JP2019212464A (en) * 2018-06-04 2019-12-12 三洋化成工業株式会社 Manufacturing method of lithium ion battery
CN113851797A (en) * 2021-10-15 2021-12-28 芜湖天弋能源科技有限公司 Get rid of lithium cell and annotate liquid mouth equipment for electrolyte
GB2604197B (en) * 2021-08-16 2023-09-06 Cellerate Ltd Assembly of an object having a stacked construction of a plurality of components
WO2024098203A1 (en) * 2022-11-07 2024-05-16 宁德时代新能源科技股份有限公司 Electrolyte injection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212227A (en) * 2009-02-13 2010-09-24 Panasonic Corp Method of manufacturing battery or capacitor
WO2011126068A1 (en) * 2010-04-07 2011-10-13 日産自動車株式会社 Electrolyte pouring device and electrolyte pouring method
US9065131B2 (en) 2010-04-07 2015-06-23 Nissan Motor Co., Ltd. Electrolyte injection device and electrolyte injection method
KR101433502B1 (en) * 2010-06-02 2014-08-22 닛산 지도우샤 가부시키가이샤 Device for supplying electrolyte solution
CN102918682A (en) * 2010-06-02 2013-02-06 日产自动车株式会社 Device for supplying electrolyte solution
EP2579361A1 (en) * 2010-06-02 2013-04-10 Nissan Motor Co., Ltd Device for supplying electrolyte solution
JPWO2011152221A1 (en) * 2010-06-02 2013-07-25 日産自動車株式会社 Electrolyte supply device
EP2579361A4 (en) * 2010-06-02 2014-02-19 Nissan Motor Device for supplying electrolyte solution
WO2011152221A1 (en) * 2010-06-02 2011-12-08 日産自動車株式会社 Device for supplying electrolyte solution
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
JP2013109855A (en) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd Manufacturing method and manufacturing apparatus of electric device and electric device
JP2013164915A (en) * 2012-02-09 2013-08-22 Nec Corp Battery manufacturing method and battery manufacturing apparatus
US9660300B2 (en) 2013-03-21 2017-05-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing sealed battery
JP2019212464A (en) * 2018-06-04 2019-12-12 三洋化成工業株式会社 Manufacturing method of lithium ion battery
JP7488018B2 (en) 2018-06-04 2024-05-21 三洋化成工業株式会社 How lithium-ion batteries are manufactured
CN109473621A (en) * 2018-11-12 2019-03-15 大同新成新材料股份有限公司 A kind of lithium battery electrolytes injection device and its application method
CN109473621B (en) * 2018-11-12 2021-05-04 大同新成新材料股份有限公司 Lithium battery electrolyte injection device and use method thereof
GB2604197B (en) * 2021-08-16 2023-09-06 Cellerate Ltd Assembly of an object having a stacked construction of a plurality of components
CN113851797A (en) * 2021-10-15 2021-12-28 芜湖天弋能源科技有限公司 Get rid of lithium cell and annotate liquid mouth equipment for electrolyte
WO2024098203A1 (en) * 2022-11-07 2024-05-16 宁德时代新能源科技股份有限公司 Electrolyte injection device

Similar Documents

Publication Publication Date Title
JP2007173063A (en) Method of manufacturing flat battery and its manufacturing device
JP2007165170A (en) Method of manufacturing secondary battery and device of manufacturing same
JP5683938B2 (en) Secondary battery manufacturing method and electrolyte injection device
KR101541588B1 (en) Battery manufacturing apparatus and method for manufacturing battery
KR101780786B1 (en) Electrolyte injection apparatus and electrolyte injection method
JP5114842B2 (en) Method for manufacturing flat battery and apparatus for manufacturing the same
JP2001110400A (en) Device and method for puring electrolyte
JPWO2015087618A1 (en) Battery manufacturing method and manufacturing apparatus
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
CN105637679B (en) The manufacture method of secondary cell
KR101822063B1 (en) Secondary battery pressing device and electrolyte injection device comprising the same
CN104200999B (en) A kind of lithium-ion energy storage device
JP4222868B2 (en) Electrolyte injection method and electrolyte injection device for sealed battery
CN114865248B (en) Lithium ion battery annotates liquid machine
JP2018088312A (en) Manufacturing method of power storage device
KR100634151B1 (en) Apparatus for injecting liquid into container and method therefor
WO2015111665A1 (en) Power storage device manufacturing method, manufacturing device, liquid injection device, and liquid injection method
KR20150033677A (en) Self-limiting electrolyte-filling process
KR101395438B1 (en) Manufacturing method and manufacturing apparatus for electrical device with film covering
JP2963865B2 (en) Electrolyte injection device
JP6014993B2 (en) Electric device manufacturing method, manufacturing apparatus, and electric device
JP4010477B2 (en) Apparatus and method for injecting liquid into container
JP2002100329A (en) Sealed type battery and its manufacturing method
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
KR20160102837A (en) Degassing method and apparatus of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023