JP2010262821A - Method of manufacturing secondary battery - Google Patents

Method of manufacturing secondary battery Download PDF

Info

Publication number
JP2010262821A
JP2010262821A JP2009112489A JP2009112489A JP2010262821A JP 2010262821 A JP2010262821 A JP 2010262821A JP 2009112489 A JP2009112489 A JP 2009112489A JP 2009112489 A JP2009112489 A JP 2009112489A JP 2010262821 A JP2010262821 A JP 2010262821A
Authority
JP
Japan
Prior art keywords
battery case
electrolytic solution
secondary battery
electrolyte
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009112489A
Other languages
Japanese (ja)
Other versions
JP5251713B2 (en
Inventor
Takuichi Arai
卓一 荒井
Naoki Tada
直樹 多田
Daisuke Teramoto
大介 寺本
Kuniko Hirami
邦子 平美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009112489A priority Critical patent/JP5251713B2/en
Publication of JP2010262821A publication Critical patent/JP2010262821A/en
Application granted granted Critical
Publication of JP5251713B2 publication Critical patent/JP5251713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a secondary battery capable of impregnating electrolytic liquid uniformly in a short time. <P>SOLUTION: The method is provided for manufacturing the secondary battery which has a battery case and a positive and a negative electrode group housed in the battery case, with electrolytic liquid impregnated in the electrode group. The method includes a gas housing step in which a part of solvent constituting the electrolytic liquid is housed in evaporation state into the battery case wherein the electrode group is housed, a liquefaction step in which the solvent in an evaporation state housed in the battery case after the gas housing step is liquefied, and a liquid filling step in which remaining liquid which is not housed in the gas housing step out of the electrolytic liquid is filled into the battery case after the liquefaction step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,非水電解液を注入する工程を含む二次電池の製造方法に関する。さらに詳細には,正極板と負極板とをセパレータを介して捲回あるいは積層された電極体に非水電解液を含浸させる二次電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a secondary battery including a step of injecting a non-aqueous electrolyte. More specifically, the present invention relates to a method for manufacturing a secondary battery in which a non-aqueous electrolyte is impregnated into an electrode body obtained by winding or laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween.

例えば,正極板と負極板とをセパレータを介して捲回したものをケースに挿入し,電解液を注入して封口することにより製造される二次電池がある。このような二次電池の製造工程において,電解液を注入し含浸させる工程では,一般に,含浸を進行させるための待ち時間が必要である。そのため従来より,この注液に係る工程をできるだけ短時間とするための工夫が多くなされてきた。特に,セパレータ等の細孔に電解液を侵入させるために,電池ケース内を減圧する方法が多く提案されている。   For example, there is a secondary battery manufactured by inserting a positive electrode plate and a negative electrode plate wound through a separator into a case, and injecting and sealing an electrolyte. In such a secondary battery manufacturing process, in the process of injecting and impregnating an electrolytic solution, generally a waiting time is required for the impregnation to proceed. Therefore, conventionally, many ideas have been made to make the process related to the injection as short as possible. In particular, many methods for reducing the pressure inside the battery case have been proposed in order to allow the electrolytic solution to enter the pores of the separator or the like.

例えば本出願人は以前に,薄い電解液または溶媒のみをまず注入し,真空引き後,濃い電解液を注入する方法を提案した(特許文献1参照。)。このようにすることにより,真空引きによる電解質の飛び散りを防止し,周辺の汚損を防止できるとした。また,特許文献2には,電池ケースの電解液を加温した状態で,常圧状態と減圧状態とのサイクルを繰り返し,電解液を分割注液する方法が提案されている。加温により電解液の粘性を低下するとともに,比較的弱い減圧を繰り返すことにより,短時間での含浸が可能とされている。   For example, the present applicant has previously proposed a method in which only a thin electrolytic solution or solvent is first injected, and then a thick electrolytic solution is injected after evacuation (see Patent Document 1). By doing so, it was said that it was possible to prevent scattering of the electrolyte due to evacuation and to prevent surrounding contamination. Patent Document 2 proposes a method in which the electrolyte solution is divided and injected by repeating a cycle of a normal pressure state and a reduced pressure state while the electrolyte solution of the battery case is heated. Impregnation in a short time is possible by reducing the viscosity of the electrolyte by heating and repeating relatively weak pressure reduction.

また,特許文献3には,チャンバ内を減圧した後,非水電解液に溶解し得る気体に置換した後に非水電解液を注液し,その後残存する上記気体を除去するために減圧する製造方法が提案されている。上記の気体と非水電解液との置換が促進されるので,注液時間の短縮が図れるとされている。   In addition, Patent Document 3 describes a manufacturing method in which the inside of a chamber is depressurized, then the nonaqueous electrolytic solution is injected after being replaced with a gas that can be dissolved in the nonaqueous electrolytic solution, and then the pressure is reduced to remove the remaining gas. A method has been proposed. Since the replacement of the gas with the non-aqueous electrolyte is promoted, it is said that the injection time can be shortened.

特開2005−203120号公報JP-A-2005-203120 特開2004−241222号公報JP 2004-241222 A 特開2007−335181号公報JP 2007-335181 A

しかしながら,近年,二次電池の大容量化に伴い,極板群のさらなる高密度化や電解液の高濃度化が進み,ますます含浸に時間が掛かるようになっている。そのため,この注液工程の所要時間を短縮することが望まれている。   However, in recent years, with the increase in the capacity of secondary batteries, the density of electrode plates and the concentration of electrolytes have increased, and it has become increasingly time for impregnation. Therefore, it is desired to shorten the time required for this injection process.

本発明は,前記した従来の二次電池の製造方法が有する問題点を解決するためになされたものである。すなわちその課題とするところは,短時間で満遍なく電解液を含浸させることのできる二次電池の製造方法を提供することにある。   The present invention has been made to solve the problems of the conventional method for manufacturing a secondary battery. That is, an object of the present invention is to provide a method for manufacturing a secondary battery that can be uniformly impregnated with an electrolytic solution in a short time.

この課題の解決を目的としてなされた本発明の二次電池の製造方法は,電池ケースと,電池ケースの内部に収納された正負の電極体群とを有し,電極体群に電解液が含浸されている二次電池の製造方法であって,電解液を構成する溶媒の一部が電極体群を収納した電池ケースの内部に気化状態で収容された状態とする気体収容工程と,気体収容工程後の電池ケースの内部に収容されている気化状態の溶媒を液化する液化工程と,液化工程後の電池ケースの内部に,電解液のうち気体収容工程で収容されなかった残部の液体を注入する液体注入工程とを有するものである。   A method of manufacturing a secondary battery according to the present invention for the purpose of solving this problem includes a battery case and a group of positive and negative electrodes housed in the battery case, and the electrode body group is impregnated with an electrolyte. A method for producing a secondary battery, comprising: a gas containing step in which a part of a solvent constituting the electrolyte is contained in a vaporized state inside a battery case containing an electrode assembly; A liquefaction process for liquefying the vaporized solvent contained in the battery case after the process, and the remaining liquid that was not accommodated in the gas containment process was injected into the battery case after the liquefaction process. And a liquid injection step.

本発明の二次電池の製造方法によれば,溶媒の一部が気体で収容された後,液化される。気体は,空間中に拡散する速度が速く,短時間で電池ケース内の全体に拡散する。しかる後に液化されることから,電池ケース内の各所において,溶媒の一部が液体となって付着する。このようになっている電池ケース内に電解液の残部を注入するので,その含浸する速度は速い。先に注入されて付着している溶媒の一部の存在によって導かれるので,電池ケース内の隅々まで行き渡る。従って,短時間で満遍なく電解液を含浸させることができる方法となっている。   According to the method for manufacturing a secondary battery of the present invention, a part of the solvent is contained in a gas and then liquefied. Gas diffuses rapidly in the space, and diffuses throughout the battery case in a short time. Since it is liquefied after that, a part of the solvent adheres as a liquid at various points in the battery case. Since the remainder of the electrolyte is injected into the battery case, the impregnation speed is high. Since it is guided by the presence of some of the solvent that has been previously injected and adhered, it reaches every corner of the battery case. Therefore, it is a method that can uniformly impregnate the electrolyte in a short time.

さらに本発明では,電解液のうち液体注入工程で収容される残部の液体には,気体収容工程で収容される溶媒より,高沸点の溶媒が含まれることが望ましい。
このようなものであれば,気体収容工程で収容される溶媒は,温度を上昇させることによって気化されやすい。
Furthermore, in the present invention, it is desirable that the remaining liquid contained in the liquid injection step in the electrolytic solution contains a solvent having a higher boiling point than the solvent contained in the gas containing step.
If it is such, the solvent accommodated in a gas accommodation process will be easily vaporized by raising temperature.

さらに本発明では,気体収容工程は,電池ケースの内部を加温することによるものであり,液化工程は,電池ケースの内部を冷却することによるものであることが望ましい。
このようなものであれば,気体収容工程では,収容される溶媒を適量注入してから容易に気化状態とすることができる。さらに,容易に液化することができる。このようにできるように,気化状態となる環境が,例えば1気圧で100℃未満の範囲内である溶媒を選択するとよい。
Further, in the present invention, it is desirable that the gas containing step is by heating the inside of the battery case, and the liquefaction step is by cooling the inside of the battery case.
If it is such, in a gas accommodation process, it can be made into a vaporization state easily, after inject | pouring appropriate quantity of the solvent accommodated. Furthermore, it can be easily liquefied. In order to be able to do this, it is preferable to select a solvent whose vaporized environment is within a range of, for example, 1 atm and less than 100 ° C.

本発明の二次電池の製造方法によれば,短時間で満遍なく電解液を含浸させることができる。   According to the method for manufacturing a secondary battery of the present invention, the electrolytic solution can be uniformly impregnated in a short time.

本形態の二次電池の製造に係る注液工程の手順を示す工程図である。It is process drawing which shows the procedure of the liquid injection process which concerns on manufacture of the secondary battery of this form.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,扁平捲回型のリチウムイオン二次電池の製造方法であり,非水電解液を注液することによる電池の製造方法に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. This embodiment is a method of manufacturing a flat wound lithium ion secondary battery, and the present invention is applied to a method of manufacturing a battery by injecting a non-aqueous electrolyte.

本形態の二次電池の製造方法では,まず,電解液を注液する前の電池セルを製造し,その後,非水電解液を注液して封口する。電池セルは,電池ケース内に電極板群を封入したものである。そこで,電池セルの製造について簡単に説明する。まず,電池ケースや電極板群をそれぞれ製造する。電極板群は,正負の電極板にセパレータを挟み,扁平形状に捲回したものである。あるいは,円筒形状のものや,平積みのものでもよい。   In the secondary battery manufacturing method of the present embodiment, first, a battery cell before the electrolyte is injected is manufactured, and then a nonaqueous electrolyte is injected and sealed. A battery cell is one in which an electrode plate group is enclosed in a battery case. Therefore, the production of battery cells will be briefly described. First, battery cases and electrode plate groups are manufactured. The electrode plate group is formed by sandwiching a separator between positive and negative electrode plates and winding it into a flat shape. Alternatively, it may be cylindrical or flat.

正負の電極板は,金属箔に活物質ペーストを塗布し,乾燥・圧延等によって製造される。また,セパレータは,絶縁性樹脂製のシートである。これらの電極板を,その間にセパレータを挟んで捲回し,電池ケースに入れる。そして,電池ケースの開口に封口板を取り付ける。この段階では,封口板には,注液口が開口されている。ここまでの工程は,従来と同様の製造方法を採用すればよい。   Positive and negative electrode plates are manufactured by applying an active material paste to a metal foil and drying and rolling. The separator is a sheet made of insulating resin. These electrode plates are wound with a separator between them and placed in a battery case. Then, a sealing plate is attached to the opening of the battery case. At this stage, the liquid injection port is opened in the sealing plate. For the steps up to here, a manufacturing method similar to the conventional one may be adopted.

なお,正極板は,アルミ箔にリチウムイオンを吸蔵・放出可能な正極活物質を塗布したものである。正極活物質としては,例えば,ニッケル酸リチウム(LiNiO2),マンガン酸リチウム(LiMnO2),コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物が用いられる。また,負極板は,銅箔にリチウムイオンを吸蔵・放出可能な負極活物質を塗布したものである。負極活物質としては,例えば,非晶質炭素,難黒鉛化炭素,易黒鉛化炭素,黒鉛等の炭素系物質が用いられる。 The positive electrode plate is made of aluminum foil coated with a positive electrode active material capable of inserting and extracting lithium ions. As the positive electrode active material, for example, a lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium cobaltate (LiCoO 2 ) or the like is used. The negative electrode plate is a copper foil coated with a negative electrode active material capable of inserting and extracting lithium ions. Examples of the negative electrode active material include carbon-based materials such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite.

次に,この状態の電池ケース内に,図1に示すような手順で,電解液を注液する。本形態では,電解液の溶媒として使用可能であるとともに,ある程度の加温によって気化させることのできる物質(以下,第1の電解液という)をまず少量注液し,電池ケース内で気化させる。そして,その気体を電池ケース内に充満させた後,冷却して液化させる。これによって,第1の電解液が電池ケース内の各所において結露する。その状態で,残りの電解液(以下,第2の電解液という)を注液することにより,迅速に含浸させることが出来る。   Next, an electrolytic solution is injected into the battery case in this state according to the procedure shown in FIG. In this embodiment, a substance that can be used as a solvent for an electrolytic solution and can be vaporized by heating to a certain degree (hereinafter referred to as a first electrolytic solution) is first injected in a small amount and vaporized in a battery case. Then, after the gas is filled in the battery case, it is cooled and liquefied. As a result, the first electrolytic solution is condensed in various places in the battery case. In this state, the remaining electrolytic solution (hereinafter referred to as the second electrolytic solution) can be poured to quickly impregnate.

第1の電解液としては,非水電解液の溶媒として用いられる物質のうち,室温(20〜30℃程度)では液体であるとともに,電極板群に影響を与えない程度の加温(例えば,40〜80℃程度)によって気化するものから選択する。例えば,酢酸メチル(沸点56.9℃),酢酸エチル(沸点77℃)等が好ましい。また,第2の電解液は,有機溶媒に電解質を溶解させたものである。従来より非水電解液として広く使用されている物質を使用すればよい。これは,室温で液体のものである。一般的には,沸点で比較して,第1の電解液として第2の電解液より低沸点の物質を選べばよい。   As a 1st electrolyte solution, while being a liquid at room temperature (about 20-30 degreeC) among the substances used as a solvent of a nonaqueous electrolyte solution, the heating which does not affect an electrode plate group (for example, 40 to 80 ° C.). For example, methyl acetate (boiling point 56.9 ° C.), ethyl acetate (boiling point 77 ° C.) and the like are preferable. The second electrolytic solution is obtained by dissolving an electrolyte in an organic solvent. A substance that has been widely used as a non-aqueous electrolyte may be used. This is liquid at room temperature. In general, a substance having a lower boiling point than the second electrolytic solution may be selected as the first electrolytic solution as compared with the boiling point.

第2の電解液の,有機溶媒として例えば,プロピレンカーボネート(PC)やエチレンカーボネート(EC),ジメチルカーボネート(DMC),メチルエチルカーボネート(MEC)等のエステル系溶媒や,エステル系溶媒にγ−ブチラクトン(γ−BL),ジエトキシエタン(DEE)等のエーテル系溶媒等を配合した有機溶媒が挙げられる。また,電解質である塩としては,過塩素酸リチウム(LiClO4)やホウフッ化リチウム(LiBF4),六フッ化リン酸リチウム(LiPF6)などのリチウム塩を用いることができる。 As an organic solvent for the second electrolyte, for example, an ester solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), or methyl ethyl carbonate (MEC), or γ-butylactone as an ester solvent. An organic solvent containing an ether solvent such as (γ-BL) or diethoxyethane (DEE) can be used. In addition, as a salt that is an electrolyte, lithium salts such as lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), and lithium hexafluorophosphate (LiPF 6 ) can be used.

本形態の注液工程では,電極体を内部に収納した電池ケースに対し,その内部の温度や圧力の制御を行いながら,注液を行う。まず,電池ケース内を100℃程度まで加温し(工程1),真空引きを行う(工程2)。これにより,電池ケース内の水分や空気,不純物等を除去する。   In the liquid injection process of the present embodiment, liquid injection is performed while controlling the temperature and pressure inside the battery case in which the electrode body is housed. First, the inside of the battery case is heated to about 100 ° C. (step 1), and vacuuming is performed (step 2). Thereby, moisture, air, impurities, etc. in the battery case are removed.

次に,電池ケース内の環境が,第1の電解液が気化される程度の温度となるように調整する(工程3)。この温度は,第1の電解液として選択した溶媒の種類に応じて,決定すればよい。そして,第1の電解液を電池ケース内に注液する(工程4)。この工程4の後,注液された第1の電解液は電池ケース内において,まもなく気体となる。本形態では,第1の電解液として酢酸メチルを使用するとともに,工程3において約60℃に調整している。   Next, the environment in the battery case is adjusted to a temperature at which the first electrolytic solution is vaporized (step 3). This temperature may be determined according to the type of solvent selected as the first electrolytic solution. Then, the first electrolytic solution is injected into the battery case (step 4). After this step 4, the injected first electrolyte becomes gas soon in the battery case. In this embodiment, methyl acetate is used as the first electrolytic solution, and the temperature is adjusted to about 60 ° C. in Step 3.

従って,気体となった第1の電解液は,電池ケース内で容易に拡散し,その全体に広がる。特に,あらかじめ真空引きされているので,電池ケース内に空気はほとんど残っていない。そして,気化状態の第1の電解液は,電極板群の隙間やセパレータの細孔等の細かな箇所にも容易に入り込むことができる。この工程3と工程4とが,気体収容工程に相当する。   Therefore, the first electrolytic solution that has become a gas easily diffuses in the battery case and spreads throughout the battery case. In particular, since the air is evacuated in advance, almost no air remains in the battery case. And the 1st electrolyte solution of the vaporization state can penetrate | penetrate easily into fine places, such as the clearance gap between electrode plate groups, and the pore of a separator. Step 3 and step 4 correspond to a gas containing step.

さらに,第1の電解液の気体が十分に拡散する程度の時間をおいてから,電池ケースの内部が室温程度(例えば25℃)となるまで温度を下げる(工程5)。これにより,電池ケース内において,第1の電解液が液化する。第1の電解液は,この前の段階で電池ケース内に気化状態で拡散しているので,電極板やセパレータの表面などにおいて結露することになる。すなわち,電極体の各部に満遍なく付着した状態となる。従って,この工程5が,液化工程に相当する。   Further, after allowing a sufficient amount of time for the gas of the first electrolyte to diffuse, the temperature is lowered until the interior of the battery case reaches room temperature (for example, 25 ° C.) (step 5). As a result, the first electrolytic solution is liquefied in the battery case. Since the first electrolytic solution is diffused in the battery case in the previous stage, dew condensation occurs on the electrode plate, the surface of the separator, and the like. That is, it is in a state of being uniformly attached to each part of the electrode body. Therefore, this step 5 corresponds to a liquefaction step.

工程4では,この工程5で電極板やセパレータの表面を十分濡らすことのできる程度の第1の電解液を注液しておく。なお,工程4の注液をしてから,工程3の加温を行うようにしてもよい。この手順によっても,電池ケース内を,気体となった第1の電解液によって満ちた状態とすることができる。なお,注液の前にあらかじめ,第1の電解液を,気化しない程度まで予熱しておいてもよい。さらには,あらかじめ気化させておいて,気体として注入してもよい。なお,工程3〜5においては,温度の調整による気化や液化に代えて,圧力の調整によってもよい。また,温度と圧力とを併用してもよい。   In step 4, the first electrolytic solution is poured in such a degree that the surface of the electrode plate or separator can be sufficiently wetted in step 5. In addition, after injecting the liquid in step 4, the heating in step 3 may be performed. Also by this procedure, the battery case can be filled with the first electrolytic solution that has become a gas. In addition, you may preheat the 1st electrolyte solution to such an extent that it does not evaporate before injection. Further, it may be vaporized in advance and injected as a gas. In steps 3 to 5, instead of vaporization or liquefaction due to temperature adjustment, pressure adjustment may be used. Moreover, you may use temperature and a pressure together.

次に,電池ケースの内部を室温程度に保ったままで,続いて,電解液の残部,すなわち第2の電解液を注液する(工程6)。第2の電解液は,室温で液体であるので,この工程6は,液体状態の電解液を注液する工程である。この工程6が,液体注入工程に相当する。この工程における注液方法は,基本的に従来の手順と同じである。すなわち,適量の電解液を注液してから電池ケース内を減圧し,電解液が含浸されるのを待つ。通常は,所要時間の短縮のために,予め決めた全量の電解液を一度に注液するのでなく,分割して注液する。そして,注液と減圧を何度か繰り返すことにより,全量が比較的短時間で含浸される。   Next, while the inside of the battery case is kept at about room temperature, the remainder of the electrolytic solution, that is, the second electrolytic solution is injected (step 6). Since the second electrolytic solution is liquid at room temperature, this step 6 is a step of injecting a liquid electrolytic solution. This step 6 corresponds to a liquid injection step. The liquid injection method in this step is basically the same as the conventional procedure. That is, after pouring an appropriate amount of electrolyte, the inside of the battery case is depressurized and waits for the electrolyte to be impregnated. Usually, in order to shorten the required time, the entire predetermined amount of electrolyte is not injected all at once, but dividedly. Then, by repeating injection and decompression several times, the entire amount is impregnated in a relatively short time.

この工程6により,既に注入されている第1の電解液と第2の電解液とが混合される。そして,第1の電解液も電解液の一部となる。第2の電解液を予め決めた量だけ含浸させ終わったら,電池ケースの注液口を封止する(工程7)。これで,本形態の注液工程は終了である。   By this step 6, the first electrolytic solution and the second electrolytic solution that have already been injected are mixed. The first electrolyte also becomes part of the electrolyte. When the second electrolyte is impregnated by a predetermined amount, the battery case inlet is sealed (step 7). This completes the liquid injection process of this embodiment.

本形態では,あらかじめ第1の電解液を気体状態で電池ケース内に充満させるとともに,電池ケース内で結露させている。すなわち,一旦,電極板群を第1の電解液で濡れた状態としている。そのため,第2の電解液は,第1の電解液に導かれて,電極板の隙間やセパレータの細孔等に容易に含浸される。すなわち,含浸の速度が速いので,第2の電解液の注液に掛かる所要時間は従来のものよりかなり短縮される。従って,第1の電解液の結露のために掛かる時間を加味しても,従来の所要時間より短時間での注液工程とすることができた。   In this embodiment, the battery case is preliminarily filled with the first electrolytic solution in a gaseous state, and dew condensation is caused in the battery case. That is, the electrode plate group is once wetted with the first electrolytic solution. Therefore, the second electrolytic solution is guided to the first electrolytic solution and easily impregnated in the gaps of the electrode plates, the pores of the separator, and the like. That is, since the impregnation speed is high, the time required for injecting the second electrolytic solution is considerably shortened compared to the conventional one. Therefore, even if the time required for the dew condensation of the first electrolytic solution is taken into consideration, the liquid injection process can be performed in a shorter time than the conventional required time.

本発明者らは,実験によって本形態の実施例と比較例1,2による注液を行い,その所要時間を比較した。この実験では,正極の活物質としてLiCoO2,負極の活物質としてカーボンを用いたリチウムイオン二次電池の製造工程における注液工程を実施した。なお,この実験で用いた二次電池は,電極体の体積が約120cm3であり,電池ケースの容積が約300cm3のものである。これは,例えばハイブリッド自動車用として,一般的に用いられているサイズのものである。 The inventors of the present invention performed injections according to the embodiment of the present embodiment and Comparative Examples 1 and 2 and compared the required time. In this experiment, a liquid injection process was performed in the manufacturing process of a lithium ion secondary battery using LiCoO 2 as the positive electrode active material and carbon as the negative electrode active material. The secondary battery used in this experiment has an electrode body volume of about 120 cm 3 and a battery case volume of about 300 cm 3 . This is a size generally used for, for example, a hybrid vehicle.

また,この実験では,第1の電解液として,酢酸メチル0.8gを用いた。また,第2の電解液としては,エチレンカーボネートとジエチルカーボネートとの混合溶媒に1mol/lのLiPF6を溶解させたものを用いた。第2の電解液は,100g注液した。また,図1に示した各工程のうち,工程1,工程2,工程7は,実施例や比較例1,2のいずれでも同様に行った。 In this experiment, 0.8 g of methyl acetate was used as the first electrolytic solution. Further, as the second electrolytic solution, a solution obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate was used. 100 g of the second electrolytic solution was injected. Also, among the steps shown in FIG. 1, step 1, step 2, and step 7 were performed in the same manner in any of the examples and comparative examples 1 and 2.

実施例は,本形態の注液工程に沿って注液を行ったものである。すなわち,まず第1の電解液を注液して気化させ,電池ケース内に充満させた上で,結露させた(工程3〜工程5)。その後,第2の電解液を注液した(工程6)。それに対し,比較例1,2は,本形態の工程3〜工程5を使用しないで,以下のような注液工程を行った。
比較例1では,あらかじめ第1の電解液と第2の電解液とを混合した電解液100.8gを用意し,室温にて注液した。
比較例2では,いずれも室温にて,まず,第1の電解液0.8gを注液し,続いて,第2の電解液100gを注液した。すなわち,第1の電解液は気化させず,注液後も液状のままとした。
In the examples, liquid injection was performed along the liquid injection process of this embodiment. That is, first, the first electrolytic solution was injected and vaporized to fill the battery case, and then condensed (Steps 3 to 5). Then, the 2nd electrolyte solution was inject | poured (process 6). On the other hand, in Comparative Examples 1 and 2, the following liquid injection process was performed without using steps 3 to 5 of this embodiment.
In Comparative Example 1, 100.8 g of an electrolytic solution obtained by mixing the first electrolytic solution and the second electrolytic solution in advance was prepared and injected at room temperature.
In Comparative Example 2, first, 0.8 g of the first electrolytic solution was injected at room temperature, and then 100 g of the second electrolytic solution was injected. That is, the first electrolytic solution was not vaporized and remained liquid after the injection.

発明者はさらに,実施例および比較例1,2における第2の電解液の注液手順として,全量を一度に注液してから減圧する場合と,複数回に分割注液する場合とを試行錯誤し,最も短時間での注液工程となるものを模索した。その結果,最も短時間での注液工程は,それぞれ以下の通りであった。なお,比較例1,2のいずれにおいても,第1の電解液を含まない第2の電解液のみを注液することとしても,所要時間はほとんど変わらなかった。   The inventor further tried the procedure of injecting the second electrolyte solution in Examples and Comparative Examples 1 and 2 when the entire amount was injected at once and then the pressure was reduced, and when the divided injection was divided into multiple times. I made a mistake and searched for what would be the shortest injection process. As a result, the injection process in the shortest time was as follows. In both Comparative Examples 1 and 2, the required time hardly changed even when only the second electrolytic solution not containing the first electrolytic solution was injected.

本実施例では,第2の電解液を,以下の(A−1)〜(A−3)の計3回の注液および減圧によって注液した。この手順によって全100gの第2の電解液を含浸させるまでに掛かった全所要時間は,約17分であった。
(A−1)第2の電解液 約50g注入 → −50kPaで60秒減圧
(A−2)第2の電解液 約30g注入 → −20kPaで60秒減圧
(A−3)第2の電解液 全残量注入 → −10kPaで120秒減圧
In this example, the second electrolytic solution was injected by a total of three times of the following (A-1) to (A-3) and reduced pressure. The total time required to impregnate all 100 g of the second electrolyte by this procedure was about 17 minutes.
(A-1) Injection of about 50 g of the second electrolytic solution → 60 seconds depressurization at −50 kPa (A-2) Injection of about 30 g of the second electrolytic solution → Depressurization of 60 seconds at −20 kPa (A-3) Second electrolytic solution Total remaining injection → Depressurized for 120 seconds at -10kPa

比較例1では,以下の(B−1)〜(B−5)の手順によって5回に分けて注液した。その全所要時間は,約24分であった。
(B−1)混合電解液 約50g注入 → −50kPaで60秒減圧
(B−2)混合電解液 約20g注入 → −30kPaで60秒減圧
(B−3)混合電解液 約10g注入 → −20kPaで60秒減圧
(B−4)混合電解液 約10g注入 → −10kPaで60秒減圧
(B−5)混合電解液 全残量注入 → −10kPaで120秒減圧
In Comparative Example 1, the liquid was divided into five times by the following procedures (B-1) to (B-5). The total time required was about 24 minutes.
(B-1) Mixed electrolyte solution injection about 50 g → reduced pressure at −50 kPa for 60 seconds (B-2) Mixed electrolyte solution injection about 20 g → reduced pressure at −30 kPa for 60 seconds (B-3) Mixed electrolyte solution injection about 10 g → −20 kPa (B-4) Reduced pressure by -10 kPa for 60 seconds (B-5) Reduced pressure by -100 kPa for 120 seconds.

比較例2では,以下の(C−1)〜(C−5)の手順によって5回に分けて注液した。その全所要時間は,約23分であった。
(C−1)第1の電解液 0.8g と 第2の電解液 約50gを続けて注入
→ −50kPaで60秒減圧
(C−2)第2の電解液 約20g注入 → −30kPaで60秒減圧
(C−3)第2の電解液 約10g注入 → −20kPaで60秒減圧
(C−4)第2の電解液 約10g注入 → −10kPaで60秒減圧
(C−5)第2の電解液 全残量注入 → −10kPaで120秒減圧
In Comparative Example 2, the liquid was divided into five times according to the following procedures (C-1) to (C-5). The total time required was about 23 minutes.
(C-1) Continuous injection of 0.8 g of the first electrolytic solution and about 50 g of the second electrolytic solution
→ -60 kPa for 60 seconds (C-2) injection of about 20 g of the second electrolyte → -30 kPa for 60 seconds (C-3) injection of about 10 g of the second electrolyte → -20 kPa for 60 seconds (C- 4) Injection of about 10 g of the second electrolyte solution → 60 seconds depressurization at −10 kPa (C-5) Second electrolyte injection of all remaining amount → 120 seconds depressurization at −10 kPa

従って,本形態の実施例によれば,比較例1,2に比較して,かなり短時間で注液工程を完了できることが確認できた。実施例では,1回の減圧によって含浸が大きく進行するので,その後に注液できる電解液の量を多くすることができた。そのため,注液・減圧の分割回数を少なくしても,十分短時間で注液工程を完了することができた。これに対して,比較例1,2では,含浸の進行が遅く,注液・減圧の分割回数をやや多くする必要があった。その結果,全体としては,実施例に比較して,注液工程にかなり長時間を要するものであった。   Therefore, according to the example of the present embodiment, it was confirmed that the liquid injection process could be completed in a considerably short time as compared with Comparative Examples 1 and 2. In the example, since the impregnation greatly progressed by a single pressure reduction, the amount of electrolyte that can be injected thereafter could be increased. Therefore, the injection process could be completed in a sufficiently short time even if the number of injection and decompression divisions was reduced. On the other hand, in Comparative Examples 1 and 2, the progress of impregnation was slow, and it was necessary to slightly increase the number of times of injection and decompression. As a result, as a whole, the injection process required a considerably long time compared to the examples.

以上詳細に説明したように 本形態の注液工程によれば,まず,第1の電解液のみを注液して,電池ケース内で気化させ,内部に充満させる。従って,電池ケース内の細部にまで,第1の電解液が行き渡る。その状態で電池ケースの温度を下げて,第1の電解液を液化させる。これにより,電池ケース内が,第1の電解液で湿った状態となる。そうしておいて,第2の電解液を注液すると,この第1の電解液を呼び水として,迅速に含浸させることができる。従って,電極板群の細部等まで短時間で満遍なく電解液を含浸させることができる。   As described in detail above, according to the liquid injection process of this embodiment, first, only the first electrolytic solution is injected, vaporized in the battery case, and filled inside. Therefore, the first electrolytic solution spreads to the details in the battery case. In this state, the temperature of the battery case is lowered to liquefy the first electrolytic solution. Thereby, the inside of the battery case becomes wet with the first electrolytic solution. Then, when the second electrolytic solution is injected, the first electrolytic solution can be used as priming water and impregnated quickly. Accordingly, the electrolyte solution can be uniformly impregnated in a short time to the details of the electrode plate group.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,上記の分割注液の手順は,一例であり,各回の注液量や減圧時間,減圧圧力等はいずれも,二次電池の構成や各種条件に合わせて,適切に選択すればよい。また,第1,第2の電解液の材質やそれらの注液量も,それぞれの二次電池の用途や大きさ等に合わせて適切に選択すればよい。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, the above-described divided injection procedure is an example, and the injection amount, the decompression time, the decompression pressure, etc. of each time may be appropriately selected according to the configuration of the secondary battery and various conditions. Further, the materials of the first and second electrolytes and the amount of injection thereof may be appropriately selected according to the use and size of each secondary battery.

Claims (3)

電池ケースと,前記電池ケースの内部に収納された正負の電極体群とを有し,前記電極体群に電解液が含浸されている二次電池の製造方法において,
前記電解液を構成する溶媒の一部が前記電極体群を収納した前記電池ケースの内部に気化状態で収容された状態とする気体収容工程と,
前記気体収容工程後の前記電池ケースの内部に収容されている気化状態の溶媒を液化する液化工程と,
前記液化工程後の前記電池ケースの内部に,前記電解液のうち前記気体収容工程で収容されなかった残部の液体を注入する液体注入工程とを有することを特徴とする二次電池の製造方法。
In a method of manufacturing a secondary battery having a battery case and a positive and negative electrode body group housed in the battery case, the electrode body group being impregnated with an electrolyte solution,
A gas containing step in which a part of the solvent constituting the electrolytic solution is contained in a vaporized state inside the battery case containing the electrode group; and
A liquefaction step for liquefying the vaporized solvent housed inside the battery case after the gas containment step;
A method for manufacturing a secondary battery, comprising: injecting the remaining liquid of the electrolyte solution that has not been stored in the gas storage step into the battery case after the liquefaction step.
請求項1に記載の二次電池の製造方法において,
前記電解液のうち前記液体注入工程で収容される残部の液体には,前記気体収容工程で収容される溶媒より,高沸点の溶媒が含まれることを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 1,
The method of manufacturing a secondary battery, wherein the remaining liquid contained in the liquid injecting step of the electrolyte contains a solvent having a boiling point higher than that of the solvent contained in the gas containing step.
請求項1または請求項2に記載の二次電池の製造方法において,
前記気体収容工程は,前記電池ケースの内部を加温することによるものであり,
前記液化工程は,前記電池ケースの内部を冷却することによるものであることを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 1 or 2,
The gas containing step is by heating the inside of the battery case,
The method for producing a secondary battery, wherein the liquefaction step is performed by cooling the inside of the battery case.
JP2009112489A 2009-05-07 2009-05-07 Manufacturing method of secondary battery Active JP5251713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112489A JP5251713B2 (en) 2009-05-07 2009-05-07 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112489A JP5251713B2 (en) 2009-05-07 2009-05-07 Manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2010262821A true JP2010262821A (en) 2010-11-18
JP5251713B2 JP5251713B2 (en) 2013-07-31

Family

ID=43360740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112489A Active JP5251713B2 (en) 2009-05-07 2009-05-07 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP5251713B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165221A (en) * 2013-02-21 2014-09-08 Jcc Engineering Co Ltd Impregnation method
KR101802003B1 (en) * 2013-11-29 2017-11-27 주식회사 엘지화학 Method for manufacturing secondary battery and secondary battery producted by the same method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294229A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2003164791A (en) * 2001-12-03 2003-06-10 Seiko Epson Corp Coating method and coating device
JP2004241222A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery
JP2005203120A (en) * 2004-01-13 2005-07-28 Toyota Motor Corp Manufacturing method of battery and injection method of electrolyte solution
JP2006108047A (en) * 2004-10-08 2006-04-20 Gs Yuasa Corporation:Kk Manufacturing method of battery
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294229A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2003164791A (en) * 2001-12-03 2003-06-10 Seiko Epson Corp Coating method and coating device
JP2004241222A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery
JP2005203120A (en) * 2004-01-13 2005-07-28 Toyota Motor Corp Manufacturing method of battery and injection method of electrolyte solution
JP2006108047A (en) * 2004-10-08 2006-04-20 Gs Yuasa Corporation:Kk Manufacturing method of battery
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165221A (en) * 2013-02-21 2014-09-08 Jcc Engineering Co Ltd Impregnation method
KR101802003B1 (en) * 2013-11-29 2017-11-27 주식회사 엘지화학 Method for manufacturing secondary battery and secondary battery producted by the same method

Also Published As

Publication number Publication date
JP5251713B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
CN110165284B (en) Lithium ion secondary battery
US9166255B2 (en) Lithium-sulphur (Li-S)-type electrochemical battery and production method thereof
JP6253106B2 (en) Positive electrode for secondary battery, secondary battery, and manufacturing method thereof
WO2012043398A1 (en) Method for drying electrode pair, method for manufacturing lithium-ion secondary battery, method for manufacturing electric double-layer capacitor, and method for manufacturing lithium-ion capacitor
US20110217594A1 (en) Electrode body, and lithium secondary battery employing the electrode body
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
KR20180079625A (en) Li/Metal Battery with Composite Solid Electrolyte
KR101481860B1 (en) Method for Preparation of Lithium Secondary Battery
JP2005251738A (en) Nonaqueous electrolyte secondary battery and manufacturing method for nonaqueous electrolyte secondary battery
JP2011216297A (en) Wound electrode group, battery including the same, and method of manufacturing battery
US20070072087A1 (en) Non-aqueous electrolyte secondary battery
US20030175583A1 (en) Nonaqueous electrolyte cell and its manufacturing method
JP2003187872A (en) Manufacturing method for lithium secondary cell having multiphase separator
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
CN103682366B (en) Aluminium foil/carbon composite current collector, its preparation method and lithium ion battery
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP5251713B2 (en) Manufacturing method of secondary battery
KR20110059258A (en) Method for manufacturing lithium secondary battery
JP2000123860A (en) Electrolyte filling method of lithium secondary battery and electrode terminal structure
JP2012109102A (en) Nonaqueous electrolyte secondary battery
KR101516469B1 (en) Method of inpregnating an electrolye, and secondary battery having a high electrolye saturation
CN108649262A (en) A kind of solid state battery organic silicon substrate buffer layer and preparation method thereof and application
JPH11307133A (en) Manufacture of organic electrolyte battery
JP6184104B2 (en) Non-aqueous electrolyte battery
JP5957927B2 (en) Battery manufacturing method and battery manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3