JP4507345B2 - Method for producing lithium polymer secondary battery - Google Patents

Method for producing lithium polymer secondary battery Download PDF

Info

Publication number
JP4507345B2
JP4507345B2 JP2000097318A JP2000097318A JP4507345B2 JP 4507345 B2 JP4507345 B2 JP 4507345B2 JP 2000097318 A JP2000097318 A JP 2000097318A JP 2000097318 A JP2000097318 A JP 2000097318A JP 4507345 B2 JP4507345 B2 JP 4507345B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte solution
lithium polymer
polymer secondary
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000097318A
Other languages
Japanese (ja)
Other versions
JP2001283916A (en
Inventor
英之 植田
きよみ 神月
透 大島
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000097318A priority Critical patent/JP4507345B2/en
Publication of JP2001283916A publication Critical patent/JP2001283916A/en
Application granted granted Critical
Publication of JP4507345B2 publication Critical patent/JP4507345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子固体電解質に電解液を保持させたリチウムポリマー二次電池の製造方法に関するものである。
【0002】
【従来の技術】
近年、携帯型情報機器の小型軽量化、高性能化の急速な進展により、その駆動電源として超薄型高容量電池が要望されるようになった。超薄型高容量電池としては、電解液の代わりに高分子固体電解質に電解液を含浸させたゲル状ポリマー電解質を用い、アルミニウム箔と樹脂フィルムとを積層したラミネート材料を電池外装体として利用したリチウムポリマー二次電池(ゲル状ポリマー電解質電池)が有望であり、その開発、実用化が積極的に行われている。
【0003】
ゲル状ポリマー電解質は、ゲル化によりポリマーの三次元網目構造内に電解液を保持させたものであり、イオン導電性を確保するとともに電解液の固定化による漏液を防止することができるという優れた特徴を有している。
【0004】
従来、このようなリチウムポリマー二次電池を作製する方法としては、電解液と重合性化合物と重合開始剤を含むプレゲル電解質溶液を正極及び/または負極に塗布した後、加熱もしくは紫外線、電子線等を照射することにより電極表面にゲル状ポリマー電解質膜を形成し、その後、多孔質体を介して得られた複合電極を対向させる方法や、予め作製したゲル状ポリマー電解質膜もしくは多孔質体と一体化させたゲル状ポリマー電解質膜を正極と負極との間に挟み込む方法が提案されている。
【0005】
また特開平11−214038号公報及び特開平11−283673号公報には、多孔質体を介して正極とカーボン負極とが対向してなる発電体が収容された外装体内に重合性化合物と電解液と特定の重合開始剤を含むプレゲル溶液を一括注入した後、これを外装体内部で加熱重合(ゲル化)させることでリチウムポリマー二次電池を作製する構成が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら上記した従来の構成では、高性能なリチウムポリマー二次電池を効率的に生産することは困難であり、多くの問題が生じている。
【0007】
プレゲル電解質溶液を極板上に塗布した後にゲル化させ、その後、多孔質体を介して得られた複合電極を対向させる構成ならびに予め作製したゲル状ポリマー電解質膜もしくは多孔質体と一体化させたゲル状ポリマー電解質膜を正極と負極との間に挟み込む構成では、製造する際の外部環境因子(例えば、湿度、酸素濃度等)の影響を受けやすく、性状及び膜厚の均一なゲル状ポリマー電解質膜を量産レベルで得ることは極めて困難であった。しかもゲル状ポリマー電解質が製造装置を損傷・腐食させるといった問題も有していた。
【0008】
またプレゲル電解質溶液を一括注入して、電池内部で加熱重合(ゲル化)させる構成では、プレゲル電解質溶液の粘性が高く、正極、カーボン負極、多孔体への溶液の浸透性が悪化するため、ゲル化が電池内部で不均一に生じ、その結果、電池の充放電特性が大幅に低下するといった問題が発生した。さらに電解液中の重合性化合物の加熱重合(ゲル化)反応は、酸素が多量に存在する大気中では抑制されるため、充電時に残存している重合開始剤が負極表面で還元分解し、電池反応を阻害する原因となる問題も有していた。
【0009】
本発明は上記した従来の課題を解決するものであり、高性能なリチウムポリマー二次電池を効率的に生産するための製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明のリチウムポリマー二次電池の製造方法は、正極、負極、多孔質体からなる発電要素を外装体内に収容する工程と、外装体内に第1の電解液を注入し減圧含浸する工程と、この工程後に、第2の電解液と重合性化合物と熱重合開始剤を少なくとも含むプレゲル電解質溶液を注入し減圧含浸する工程と、このプレゲル電解質溶液が注入された外装体を減圧雰囲気下で密封する工程と、この外装体を加熱してプレゲル電解質溶液をゲル化させる工程とを備える構成とする。
【0011】
このように従来のプレゲル電解質溶液の一括注入とは異なり、まず電解液のみを注入減圧含浸し、その後、プレゲル電解質溶液を注入減圧含浸することにより、正極/多孔質膜/負極からなる極板群の内部にプレゲル電解質溶液が充分に浸透し電池内部で加熱重合(ゲル化)が均一に生ずるために、優れた充放電特性を有するリチウムポリマー二次電池を提供することが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図1、図2を用いて説明する。
【0013】
図1は、本発明のリチウムポリマー二次電池の構成を示す概略図である。また図2は、本発明のゲル状ポリマー電解質膜4を形成するための製造プロセスの中で、電解液及びプレゲル電解質溶液の発電要素への注入含浸を行うための製造装置の一例を示す概念図である。
【0014】
図1中、1は正極、2は負極、3は多孔質膜、4はゲル状ポリマー電解質膜、5は正極リード、6は負極リード、7は外装体、8は上シール部、9は下シール部、10は絶縁保護フィルムである。図2中、11は真空槽であり、真空ポンプ12、電磁弁13を用いて真空槽11内部の圧力を調整している。真空槽11内には、加熱ヒータ入りの電池ホルダー14が設置されており、その温度は温度コントローラー15により制御されている。7は正極1、負極2、多孔質体3からなる発電要素が収容された外装体であり、上シール部8のみが封口されている。電解液及びプレゲル電解質溶液は外装体7の下シール部9側より注入される。16は電解液用の貯蔵タンクであり、電解液は計量後に注入ノズル17より外装体7内部に供給される。また18はプレゲル電解質溶液用の貯蔵タンクであり、プレゲル電解質溶液は計量後に注入ノズル19より外装体7内部に供給される。
【0015】
本発明は、▲1▼正極1、負極2、多孔質体3からなる発電要素を外装体7に収容する工程、▲2▼外装体7内に第1の電解液を注入し減圧含浸する工程、▲3▼外装体7内に第2の電解液と重合性化合物と熱重合開始剤を少なくとも含むプレゲル電解質溶液を注入し減圧含浸する工程、▲4▼プレゲル電解質溶液が注入された外装体7を減圧雰囲気下で密封する工程、▲5▼外装体7を加熱してプレゲル電解質溶液をゲル化させる工程、からなる。以下、各工程について詳細に説明する。
【0016】
▲1▼正極1、負極2、多孔質体3からなる発電要素を外装体7に収容する工程
正極1、負極2、多孔質膜3からなる発電要素の作製方法及び発電要素の外装体7内への収容について説明する。
【0017】
正極1は、正極活物質に導電材と結着剤等を所定比で混合し、水系もしくは有機系溶媒によりペースト化した後、上記ペーストを集電体(Al箔)の両面にダイコーター等で均一に塗布、乾燥、圧延し、所定の大きさに切断することで得られる。正極1には正極リード5を集電体の端部に溶接する。尚、正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiFeO2等のリチウム含有遷移金属酸化物を使用することができる。
【0018】
負極2は、負極活物質に導電材と結着剤等を所定比で混合し、水系もしくは有機系溶媒によりペースト化した後、上記ペーストを集電体(Cu箔)の両面にダイコーター等で均一に塗布、乾燥、圧延し、所定の大きさに切断することで得られる。負極2には負極リード6を集電体の端部に溶接する。尚、負極活物質としては、リチウムイオンを電気化学的に吸蔵・放出し得るカーボン材料、好ましくは、天然黒鉛、人造黒鉛、黒鉛化メソフェーズ小球体等の黒鉛材料を使用することができる。
【0019】
上記の正極1と負極2とを多孔質膜3を介して重ね合わせ、図1中にあるような楕円状又は円形状に捲回する。多孔質膜3としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂の微多孔質膜を用いており、その膜厚は、電池特性、実用信頼性の観点から、5〜30μmが好ましい。
【0020】
正極1、負極2、多孔質膜3からなる発電要素を作製した後、外装体7に収容する。外装体7としては、例えば、Al箔を中間の1層とし、その内側にポリプロピレンフィルムを、外側にポリエチレンテレフタレートフィルムとナイロンフィルムを積層し一体化したAlラミネート材からなる偏平状の袋を使用することができる。この発電要素が収納された後、正極リード5と負極リード6の先端部が外部に突出した状態で外装体7の上シール部8を封口する。尚、リードの上シール部8に接する部分に絶縁保護フィルム10を貼りつけるとよい。この絶縁保護フィルム10は、正極リード5、負極リード6の先端部を外部に突出させた状態で外装体7の開口部を熱融着等で封口する際に、正負の電極間の電気的絶縁と電池内部の気密性を確保するために設けた部材である。
【0021】
▲2▼外装体7内に第1の電解液を注入し減圧含浸する工程
正極1、負極2、多孔質体3からなる発電要素が収容された外装体7内に第1の電解液を注入し減圧含浸する工程を説明する。
【0022】
図2の注入含浸装置の真空槽11内部に設置してある加熱ヒータ入りの電池ホルダー14に、発電要素が収納されている外装体7を、封口した上シール部8を下にした状態で挿入する。その後、電池ホルダー14の温度を温度コントローラ15により適温に設定する。この温度は常温よりも高くすることが望ましく、特に40〜60℃が好ましい。
【0023】
さらに真空槽11内部の真空圧を真空ポンプ12により3.0×104Pa以下となるように真空排気する。その後、電解液用の注入ノズル17より外装体7の内部に第1の電解液を注入し減圧含浸させる。この電解液は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の環状カーボネート類とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート類との混合有機溶媒中に、LiPF6、LiClO4、LiBF4等の支持電解質を溶解させたものを使用することができる。尚、電解液への注入含浸時の真空圧は3×104Pa以下であることが好ましい。さらに好ましくは、2×103Pa以下である。
【0024】
▲3▼外装体7内に第2の電解液と重合性化合物と熱重合開始剤を少なくとも含むプレゲル電解質溶液を注入し減圧含浸する工程
第1の電解液を注入し減圧含浸した後、プレゲル電解質溶液を注入ノズル19より注入し減圧含浸させる。第1の電解液を注入する工程と、プレゲル電解質溶液を注入する工程は連続している必要はないが、連続して行うことが好ましい。
【0025】
プレゲル電解質溶液は第2の電解液と重合性化合物と熱重合開始剤を少なくとも含む。電解液としては、第1の電解液と同様のものが使用できるが、有機溶媒の種類、組成を変化させてもよい。重合性化合物としては、例えば、ポリエチレンオキシド(PEO)末端アクリレート変性タイプのポリマー材料、アクリレート系ポリマー材料等を用いることができる。熱重合開始剤としては、t−へキシルパーオキシピパレート、t−ブチルパーオキシネオデカノエート等の有機過酸化物を適用することができる。尚、プレゲル電解質溶液の発電要素への注入含浸時の真空圧は、3×104Pa以下であることが好ましい。さらに好ましくは、2×103Pa以下である。注入含浸時の温度は40℃〜60℃であると好適である。
【0026】
▲4▼プレゲル電解質溶液が注入された外装体7を減圧雰囲気下で密封する工程
プレゲル電解質溶液を注入し減圧含浸した後、減圧封口装置を用いて、真空圧3.0×104Pa以下、さらに好ましくは2×103Pa以下の条件にて、外装体7の下シール部9を封口する。
【0027】
▲5▼外装体7を加熱してプレゲル電解質溶液をゲル化させる工程
外装体7を加熱することにより、プレゲル電解質溶液を電池内部で加熱重合(ゲル化)させ、ゲル状ポリマー電解質膜4とする。この温度は、プレゲル電解質溶液中の重合性化合物が三次元架橋する温度であればよく、重合性化合物と熱重合開始剤により適温を選択する。例えば、上記した重合性化合物と熱重合開始剤であれば、40〜80℃が好ましい。また、加熱時間についても適切な時間に設定すればよい。
【0028】
尚、捲回型のリチウムポリマー二次電池について説明したが、これに限定されるものではなく、正極、多孔質膜、負極を順次重ね合わせた積層型のリチウムポリマー二次電池等にも適用することができる。
【0029】
【実施例】
次に実施例により本発明をさらに詳細に説明する。
【0030】
(実施例1)
1.正極の作製
正極活物質として、LiCoO2を用い、これに導電材(アセチレンブラック)と結着剤(ポリビニリデンフルオライド(PVDF))を90:7:3の重量比で混合し、有機溶媒(N−メチルピロリドン)によりペースト化した。次にダイコーターを用いて集電体(Al箔)の両面に均一に塗布し乾燥させることで正極用の原反を作製した。さらにこの原反をロールプレス機により圧延した後、所定の大きさに切断して厚みが0.16mmの正極1を作製した。次に正極1の集電体の端部に正極リード5を溶接した。
【0031】
2.負極の作製
負極活物質として、天然黒鉛粉末を用い、これに結着剤(ポリビニリデンフルオライド(PVDF))を97:3の重量比で混合し、有機溶媒(N−メチルピロリドン)によりペースト化した。次にダイコーターを用いて集電体(Cu箔)の両面に均一に塗布し乾燥させることで負極用の原反を作製した。さらにこの原反をロールプレス機により圧延した後、所定の大きさに切断して厚みが0.16mmの負極2を作製した。次に負極2の集電体の端部に負極リード6を溶接した。
【0032】
3.第1の電解液及びプレゲル電解質溶液の調製
第1の電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を1:3の体積比で混合した有機溶媒中に、支持電解質LiPF6を1.2mol/lの濃度となるように溶解することにより調製した。またプレゲル電解質溶液は、第1の電解液と同一組成である第2の電解液、ポリエーテルアクリレート(分子量:1万)を90:10の重量比で混合した後、熱重合開始剤(t−へキシルパーオキシピパレート)を上記混合溶液に対して0.3重量%添加することにより調製した。
【0033】
4.リチウムポリマー二次電池の作製
上記した方法で作製した正極1と負極2をポリエチレン製の多孔質体3(膜厚:27μm)を介して重ね合わせ捲回することで楕円状の発電要素を作製する。次にこの発電要素をAlラミネート材からなる偏平状の外装体7に挿入し、正極リード5、負極リード6の先端部が外部に突出した状態で外装体7の上シール部8を封口する。
【0034】
次に図2に示した注入含浸装置の真空槽11内部に設置してある加熱ヒータ入りの電池ホルダー14に外装体7を封口した上シール部8を下にした状態で挿入した後、電池ホルダー14の温度を40℃に設定する。真空槽11内部の真空圧を2.8×104Paとなるように真空排気した後、電解液用の注入ノズル17より外装体7の内部に上記電解液を1.6g注入し、10分間減圧含浸させる。さらに連続的にプレゲル電解質溶液用の注入ノズル19より外装体7の内部に上記プレゲル電解質溶液を2.0g注入し、10分間減圧含浸させる。
【0035】
次に減圧封口装置を用い、真空圧2.8×104Paの条件にて、外装体7の下シール部9を封口した後、80℃にて1時間加熱することにより、プレゲル電解質溶液を電池内部で加熱重合(ゲル化)させ、リチウムポリマー二次電池を作製した。この電池を電池Aとする。
【0036】
また比較のために、プレゲル電解質溶液の一括注入、即ち、第1の電解液の注入・減圧含浸工程を省いた以外は、電池Aと同様な方法でリチウムポリマー二次電池を作製した。この電池を電池Z1とする。尚、この場合のプレゲル電解質溶液の注入量は3.6gである。
【0037】
5.ハイレート放電特性
作製した各電池について、室温(25℃)において定電流420mA(0.7C)で4.2Vまで充電した後、4.2Vの定電圧にて2時間充電する。その後、室温にて120mA(0.2C)の放電容量で終止電圧が3.0Vになるまで放電させ、放電時間より放電容量を算出した。また上記同一条件にて充電した各電池を室温にて1200mA(2C)の放電容量で終止電圧が3.0Vになるまで放電させ、放電時間より放電容量を算出した。以上得られた測定データより、0.2Cでの放電容量に対する2Cでの放電容量の割合(百分率)を算出し、この値をハイレート放電特性と定義した。
【0038】
6.低温放電特性
作製した各電池について、25℃において定電流420mA(0.7C)で4.2Vまで充電した後、4.2Vの定電圧にて2時間充電する。その後、25℃にて600mA(1C)の放電容量で終止電圧が3.0Vになるまで放電させ、放電時間より放電容量を算出した。また上記同一条件にて充電した各電池を−10℃にて600mA(1C)の放電容量で終止電圧が3.0Vになるまで放電させ、放電時間より放電容量を算出した。以上得られた測定データより、25℃での放電容量に対する−10℃での放電容量の割合(百分率)を算出し、この値を低温放電特性と定義した。
【0039】
7.耐漏液性
耐漏液性としては、加熱重合後の電池を分解し、相分離した電解液の存在有無を目視観察した。評価は漏液が認められないものを○とし、電解液が漏れ出ているものを×とした。
【0040】
作製したリチウムポリマー二次電池のハイレート放電特性、低温放電特性、耐漏液性の評価結果を(表1)に示す。
【0041】
【表1】

Figure 0004507345
【0042】
(表1)から明らかなように、本実施例のリチウムポリマー二次電池(電池A)は、プレゲル電解質溶液が発電要素に充分に浸透し、外装体内部で加熱重合(ゲル化)が均一に生ずるために、ハイレート放電特性、低温放電特性が、比較電池(電池Z)より大幅に向上した。これは、第1の電解液の注入減圧含浸により発電要素内部を予め電解液で湿潤させることができるため、プレゲル電解質溶液の浸透性が改善されたためである。
【0043】
比較電池(電池Z1)では、第1の電解液を注入せずに、プレゲル電解質溶液を一括注入しているために、プレゲル電解質溶液の発電要素への含浸性が改善されず、ハイレート放電特性、低温放電特性が低下する結果となった。
【0044】
(実施例2)
次に電解液及びプレゲル電解質溶液の発電要素への注入含浸時の真空圧を変化させた場合について検討を行った。
【0045】
注入含浸時の真空圧を、1.3×104Pa、2.8×104Pa、4.2×104Paとし、これ以外は実施例1と同様な方法によりリチウムポリマー二次電池を作製した。この電池を電池B〜Dとする。尚、電池Aと電池Cは同一条件で作製された電池である。また比較のために、プレゲル電解質溶液の一括注入、即ち、第1の電解液の注入・減圧含浸工程を省いた以外は、電池B〜Dと同様な方法でリチウムポリマー二次電池を作製した。この電池を電池Z2〜Z4とする。尚、電池Z1と電池Z3は同一条件で作製された電池である。さらにプレゲル電解質溶液を大気圧(0.1MPa)にて一括注入すること、即ち、プレゲル電解質溶液を一括注入し、且つ、減圧含浸を行わないこと以外は、電池Aと同様な方法でリチウムポリマー二次電池を作製した。この電池を電池Z5とする。作製したリチウムポリマー二次電池のハイレート放電特性、低温放電特性、耐漏液性の評価結果を(表2)に示す。
【0046】
【表2】
Figure 0004507345
【0047】
(表2)から明らかなように、真空圧が1.3×104Pa、2.8×104Paである電池B及び電池Cは、ハイレート放電特性、低温放電特性において、真空圧が4.2×104Paである電池Dより良好な結果を示した。これは真空圧が小さいほど電解液及びプレゲル電解質溶液の発電要素への含浸性が向上し、発電要素内部でゲル化が均一に生じているためである。
【0048】
(実施例3)
電解液及びプレゲル電解質溶液の発電要素への注入含浸を行う際の外装体の温度を変化させた場合について検討を行った。
【0049】
注入含浸時の外装体の温度を、20℃、40℃、60℃、80℃とし、注入含浸時の真空圧を1.3×104Paとした以外は実施例1と同様な方法によりリチウムポリマー二次電池を作製した。この電池を電池E〜Hとする。尚、電池Bと電池Fは同一条件で作製された電池である。作製したリチウムポリマー二次電池のハイレート放電特性、低温放電特性、耐漏液性の評価結果を(表3)に示す。
【0050】
【表3】
Figure 0004507345
【0051】
(表3)から明らかなように、注入含浸時の外装体の温度を40〜60℃に設定した場合に良好な電池特性が得られることが判明した。これは外装体を加温することによりプレゲル電解質溶液の粘度が低下し、発電要素への含浸性が向上したためである。しかしながら、電池Hが電池Gよりも良好な結果が得られなかった原因としては、▲1▼支持電解質LiPF6の熱分解、▲2▼プレゲル電解質溶液の部分的なゲル化による発電要素への含浸性の悪化、等が考えられる。
【0052】
(実施例4)
外装体を密封する際の真空圧を変化させた場合について検討を行った。
【0053】
外装体を密封する際の真空圧を、1.3×104Pa、2.8×104Pa、4.2×104Paとし、これ以外は実施例1と同様な方法によりリチウムポリマー二次電池を作製した。この電池を電池I〜Kとする。尚、電池Aと電池Jは同一条件で作製された電池である。また比較のために、外装体を密封する際の真空圧を大気圧(0.1MPa)とし、これ以外は電池Z1と同様な方法によりリチウムポリマー二次電池を作製した。この電池を電池Z6とする。作製したリチウムポリマー二次電池のハイレート放電特性、低温放電特性、耐漏液性の評価結果を(表4)に示す。
【0054】
【表4】
Figure 0004507345
【0055】
(表4)から明らかなように、外装体を密封する際の真空圧が小さいほど、ハイレート放電特性、低温放電特性、耐漏液性が向上する結果となった。これは外装体内部を酸素遮断雰囲気とすることにより、重合性化合物の三次元架橋反応が促進され、電解液をポリマーマトリックス内に多量に取り込むことが可能となったためと考えられる。
【0056】
【発明の効果】
以上のように本発明は、ゲル状ポリマー電解質を含有した多孔質体を介して正極と負極とが対向してなる発電要素を外装体内に収容させたリチウムポリマー二次電池の製造方法において、正極、負極、多孔質体からなる発電要素を前記外装体内に収容する工程と、前記外装体内に第1の電解液を注入し減圧含浸する工程と、前記外装体内に第2の電解液と重合性化合物と熱重合開始剤を少なくとも含むプレゲル電解質溶液を注入し減圧含浸する工程と、前記プレゲル電解質溶液が注入された前記外装体を減圧雰囲気下で密封する工程と、前記外装体を加熱して前記プレゲル電解質溶液をゲル化させる工程とを備えることにより、プレゲル電解質溶液が発電要素に充分に浸透し、外装体内部で加熱重合(ゲル化)が均一に生ずるために、優れたハイレート放電特性、低温放電特性を有し、且つ、耐漏液性の良好なリチウムポリマー二次電池を効率よく提供することが可能となり、その実用上の価値は大なるものがある。
【図面の簡単な説明】
【図1】本発明のリチウムポリマー二次電池の構成を示す概略図
【図2】電解液及びプレゲル電解質溶液の注入含浸装置を示す図
【符号の説明】
1.正極
2.負極
3.多孔質膜
4.ゲル状ポリマー電解質膜
5.正極リード
6.負極リード
7.外装体
8.上シール部
9.下シール部
10.絶縁保護フィルム
11.真空槽
12.真空ポンプ
13.電磁弁
14.電池ホルダー
15.温度コントローラー
16.電解液用の貯蔵タンク
17.注入ノズル
18.プレゲル電解質溶液用の貯蔵タンク
19.注入ノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lithium polymer secondary battery in which an electrolytic solution is held in a polymer solid electrolyte.
[0002]
[Prior art]
In recent years, with the rapid progress of miniaturization and weight reduction and high performance of portable information equipment, an ultra-thin high-capacity battery has been demanded as a driving power source. As an ultra-thin high-capacity battery, a gel polymer electrolyte in which a polymer solid electrolyte is impregnated with an electrolyte solution is used instead of the electrolyte solution, and a laminate material in which an aluminum foil and a resin film are laminated is used as a battery outer package. Lithium polymer secondary batteries (gel polymer electrolyte batteries) are promising, and their development and practical application are being actively carried out.
[0003]
Gel polymer electrolyte is an electrolyte that is retained in the three-dimensional network structure of the polymer by gelation, and it has excellent ionic conductivity and can prevent leakage due to immobilization of the electrolyte. It has the characteristics.
[0004]
Conventionally, as a method for producing such a lithium polymer secondary battery, a pregel electrolyte solution containing an electrolytic solution, a polymerizable compound, and a polymerization initiator is applied to the positive electrode and / or the negative electrode, and then heated, ultraviolet, electron beam, etc. The gel polymer electrolyte membrane is formed on the surface of the electrode by irradiating the electrode, and then the composite electrode obtained through the porous body is opposed to the gel polymer electrolyte membrane or the porous body prepared in advance. A method has been proposed in which a gelled polymer electrolyte membrane is sandwiched between a positive electrode and a negative electrode.
[0005]
Japanese Patent Application Laid-Open No. 11-214038 and Japanese Patent Application Laid-Open No. 11-283673 disclose a polymerizable compound and an electrolytic solution in an exterior body in which a power generation body in which a positive electrode and a carbon negative electrode are opposed to each other through a porous body. And a pregel solution containing a specific polymerization initiator are collectively injected, and then this is heated and polymerized (gelled) inside the outer package to produce a lithium polymer secondary battery.
[0006]
[Problems to be solved by the invention]
However, with the above-described conventional configuration, it is difficult to efficiently produce a high-performance lithium polymer secondary battery, and many problems arise.
[0007]
The pregel electrolyte solution was applied on the electrode plate and then gelled, and then the composite electrode obtained through the porous body was opposed to each other and integrated with a previously prepared gel polymer electrolyte membrane or porous body. In the structure in which the gel polymer electrolyte membrane is sandwiched between the positive electrode and the negative electrode, the gel polymer electrolyte is easily affected by external environmental factors (for example, humidity, oxygen concentration, etc.), and has a uniform property and film thickness. It was extremely difficult to obtain a film at a mass production level. Moreover, the gel polymer electrolyte has a problem of damaging and corroding the manufacturing apparatus.
[0008]
In addition, in the configuration in which the pregel electrolyte solution is collectively injected and heated and polymerized (gelled) inside the battery, the viscosity of the pregel electrolyte solution is high, and the permeability of the solution to the positive electrode, the carbon negative electrode, and the porous body deteriorates. As a result, a problem arises in that the charge / discharge characteristics of the battery are significantly reduced. Furthermore, since the heat polymerization (gelation) reaction of the polymerizable compound in the electrolyte is suppressed in the atmosphere containing a large amount of oxygen, the polymerization initiator remaining at the time of charging is reduced and decomposed on the negative electrode surface. It also had problems that caused the reaction to be inhibited.
[0009]
The present invention solves the above-described conventional problems, and an object thereof is to provide a production method for efficiently producing a high-performance lithium polymer secondary battery.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a lithium polymer secondary battery of the present invention includes a step of housing a power generation element composed of a positive electrode, a negative electrode, and a porous body in an exterior body, and injecting a first electrolyte into the exterior body A step of impregnating under reduced pressure, a step of injecting a pregel electrolyte solution containing at least a second electrolytic solution, a polymerizable compound and a thermal polymerization initiator after this step and impregnating under reduced pressure, and an outer package in which the pregel electrolyte solution is injected Are sealed in a reduced-pressure atmosphere, and the outer body is heated to gel the pregel electrolyte solution.
[0011]
Thus, unlike the conventional batch injection of the pregel electrolyte solution, the electrode plate group consisting of positive electrode / porous membrane / negative electrode is prepared by first injecting only the electrolyte solution and impregnating under reduced pressure and then injecting the pregel electrolyte solution under reduced pressure. Since the pregel electrolyte solution sufficiently penetrates into the inside of the battery and heat polymerization (gelation) occurs uniformly inside the battery, it is possible to provide a lithium polymer secondary battery having excellent charge / discharge characteristics.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0013]
FIG. 1 is a schematic view showing the configuration of the lithium polymer secondary battery of the present invention. FIG. 2 is a conceptual diagram showing an example of a manufacturing apparatus for performing injection impregnation of the electrolytic solution and the pregel electrolyte solution into the power generation element in the manufacturing process for forming the gel polymer electrolyte membrane 4 of the present invention. It is.
[0014]
In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a porous membrane, 4 is a gel polymer electrolyte membrane, 5 is a positive electrode lead, 6 is a negative electrode lead, 7 is an exterior body, 8 is an upper seal portion, and 9 is a lower portion. The seal part 10 is an insulating protective film. In FIG. 2, 11 is a vacuum chamber, and the pressure inside the vacuum chamber 11 is adjusted using a vacuum pump 12 and an electromagnetic valve 13. A battery holder 14 with a heater is installed in the vacuum chamber 11, and its temperature is controlled by a temperature controller 15. Reference numeral 7 denotes an outer package in which a power generation element composed of the positive electrode 1, the negative electrode 2, and the porous body 3 is accommodated, and only the upper seal portion 8 is sealed. The electrolyte solution and the pregel electrolyte solution are injected from the lower seal portion 9 side of the outer package 7. Reference numeral 16 denotes a storage tank for the electrolytic solution, and the electrolytic solution is supplied into the exterior body 7 from the injection nozzle 17 after measurement. Reference numeral 18 denotes a storage tank for the pregel electrolyte solution, and the pregel electrolyte solution is supplied into the exterior body 7 from the injection nozzle 19 after measurement.
[0015]
The present invention includes (1) a step of housing a power generation element composed of a positive electrode 1, a negative electrode 2, and a porous body 3 in an exterior body 7, and (2) a step of injecting a first electrolyte into the exterior body 7 and impregnating it under reduced pressure. (3) A step of injecting a pregel electrolyte solution containing at least a second electrolytic solution, a polymerizable compound and a thermal polymerization initiator into the outer package 7 and impregnating under reduced pressure, and (4) an outer package 7 in which the pregel electrolyte solution is injected. And (5) heating the exterior body 7 to gel the pregel electrolyte solution. Hereinafter, each step will be described in detail.
[0016]
(1) Step of housing the power generation element composed of the positive electrode 1, the negative electrode 2, and the porous body 3 in the exterior body 7 A method for producing the power generation element composed of the positive electrode 1, the negative electrode 2 and the porous film 3, and the inside of the exterior body 7 of the power generation element The housing will be described.
[0017]
In the positive electrode 1, a conductive material and a binder are mixed with a positive electrode active material at a predetermined ratio and made into a paste with an aqueous or organic solvent, and then the paste is placed on both sides of a current collector (Al foil) with a die coater or the like. It is obtained by uniformly coating, drying, rolling, and cutting into a predetermined size. A positive electrode lead 5 is welded to the positive electrode 1 at the end of the current collector. As the positive electrode active material, lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and LiFeO 2 can be used.
[0018]
The negative electrode 2 is prepared by mixing a negative electrode active material with a conductive material and a binder at a predetermined ratio and forming a paste with an aqueous or organic solvent, and then applying the paste to both sides of a current collector (Cu foil) with a die coater or the like. It is obtained by uniformly coating, drying, rolling, and cutting into a predetermined size. A negative electrode lead 6 is welded to the end of the current collector. As the negative electrode active material, a carbon material capable of electrochemically occluding and releasing lithium ions, preferably a graphite material such as natural graphite, artificial graphite, graphitized mesophase spherules or the like can be used.
[0019]
The positive electrode 1 and the negative electrode 2 are overlapped via the porous film 3 and wound into an elliptical shape or a circular shape as shown in FIG. As the porous film 3, a microporous film of polyolefin resin such as polyethylene or polypropylene is used, and the film thickness is preferably 5 to 30 μm from the viewpoint of battery characteristics and practical reliability.
[0020]
After the power generation element composed of the positive electrode 1, the negative electrode 2, and the porous film 3 is produced, it is accommodated in the outer package 7. As the outer package 7, for example, a flat bag made of an Al laminate material in which an Al foil is an intermediate layer, a polypropylene film is laminated on the inside, and a polyethylene terephthalate film and a nylon film are laminated on the outside is used. be able to. After the power generation element is housed, the upper seal portion 8 of the outer package 7 is sealed with the leading ends of the positive electrode lead 5 and the negative electrode lead 6 protruding to the outside. Insulating protective film 10 may be attached to a portion in contact with upper seal portion 8 of the lead. This insulating protective film 10 is used to electrically insulate between positive and negative electrodes when the opening of the outer package 7 is sealed by thermal fusion or the like with the leading ends of the positive electrode lead 5 and the negative electrode lead 6 protruding to the outside. And a member provided to ensure airtightness inside the battery.
[0021]
(2) Step of injecting the first electrolytic solution into the exterior body 7 and impregnating under reduced pressure Injecting the first electrolyte into the exterior body 7 in which the power generation elements composed of the positive electrode 1, the negative electrode 2, and the porous body 3 are accommodated Next, the step of impregnating under reduced pressure will be described.
[0022]
Inserted into the battery holder 14 with a heater installed in the vacuum chamber 11 of the injection impregnation apparatus of FIG. 2, the exterior body 7 containing the power generation element is inserted with the sealed upper seal 8 facing down. To do. Thereafter, the temperature of the battery holder 14 is set to an appropriate temperature by the temperature controller 15. This temperature is desirably higher than room temperature, and is preferably 40 to 60 ° C.
[0023]
Further, the vacuum pressure in the vacuum chamber 11 is evacuated by the vacuum pump 12 so as to be 3.0 × 10 4 Pa or less. Thereafter, the first electrolytic solution is injected into the exterior body 7 from the injection nozzle 17 for electrolytic solution and impregnated under reduced pressure. Examples of the electrolytic solution include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), and dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). A solution obtained by dissolving a supporting electrolyte such as LiPF 6 , LiClO 4 , LiBF 4 in a mixed organic solvent with a chain carbonate can be used. In addition, it is preferable that the vacuum pressure at the time of the injection | pouring impregnation to electrolyte solution is 3 * 10 < 4 > Pa or less. More preferably, it is 2 × 10 3 Pa or less.
[0024]
(3) A step of injecting a pregel electrolyte solution containing at least a second electrolytic solution, a polymerizable compound and a thermal polymerization initiator into the outer package 7 and impregnating under reduced pressure After injecting the first electrolytic solution and impregnating under reduced pressure, the pregel electrolyte The solution is injected from the injection nozzle 19 and impregnated under reduced pressure. The step of injecting the first electrolytic solution and the step of injecting the pregel electrolyte solution need not be continuous, but are preferably performed continuously.
[0025]
The pregel electrolyte solution includes at least a second electrolyte solution, a polymerizable compound, and a thermal polymerization initiator. As the electrolytic solution, the same one as the first electrolytic solution can be used, but the type and composition of the organic solvent may be changed. As the polymerizable compound, for example, a polyethylene oxide (PEO) terminal acrylate-modified polymer material, an acrylate polymer material, or the like can be used. As the thermal polymerization initiator, organic peroxides such as t-hexyl peroxypiparate and t-butyl peroxyneodecanoate can be applied. The vacuum pressure during the impregnation of the pregel electrolyte solution into the power generation element is preferably 3 × 10 4 Pa or less. More preferably, it is 2 × 10 3 Pa or less. The temperature during the impregnation is preferably 40 ° C to 60 ° C.
[0026]
(4) A process of sealing the exterior body 7 injected with the pregel electrolyte solution in a reduced pressure atmosphere After injecting the pregel electrolyte solution and impregnating under reduced pressure, using a vacuum sealing device, a vacuum pressure of 3.0 × 10 4 Pa or less, More preferably, the lower seal portion 9 of the outer package 7 is sealed under the condition of 2 × 10 3 Pa or less.
[0027]
(5) Step of heating the exterior body 7 to gel the pregel electrolyte solution By heating the exterior body 7, the pregel electrolyte solution is heated and polymerized (gelled) inside the battery to obtain the gel polymer electrolyte membrane 4. . This temperature may be a temperature at which the polymerizable compound in the pregel electrolyte solution is three-dimensionally cross-linked, and an appropriate temperature is selected depending on the polymerizable compound and the thermal polymerization initiator. For example, if it is an above-described polymeric compound and a thermal-polymerization initiator, 40-80 degreeC is preferable. Further, the heating time may be set to an appropriate time.
[0028]
The wound type lithium polymer secondary battery has been described. However, the present invention is not limited to this, and the present invention is also applicable to a laminated type lithium polymer secondary battery in which a positive electrode, a porous film, and a negative electrode are sequentially stacked. be able to.
[0029]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0030]
Example 1
1. Preparation of positive electrode LiCoO 2 was used as a positive electrode active material, and a conductive material (acetylene black) and a binder (polyvinylidene fluoride (PVDF)) were mixed at a weight ratio of 90: 7: 3, and an organic solvent ( N-methylpyrrolidone). Next, the raw material for positive electrodes was produced by apply | coating uniformly on both surfaces of a collector (Al foil) using a die coater, and making it dry. Furthermore, this raw fabric was rolled by a roll press machine, and then cut into a predetermined size to produce a positive electrode 1 having a thickness of 0.16 mm. Next, the positive electrode lead 5 was welded to the end of the current collector of the positive electrode 1.
[0031]
2. Fabrication of negative electrode Natural graphite powder is used as the negative electrode active material, and binder (polyvinylidene fluoride (PVDF)) is mixed in a weight ratio of 97: 3 and pasted with an organic solvent (N-methylpyrrolidone). did. Next, the raw material for negative electrodes was produced by apply | coating uniformly on both surfaces of a collector (Cu foil) using a die coater, and making it dry. Furthermore, this raw fabric was rolled by a roll press and then cut into a predetermined size to produce a negative electrode 2 having a thickness of 0.16 mm. Next, the negative electrode lead 6 was welded to the end of the current collector of the negative electrode 2.
[0032]
3. Preparation of First Electrolyte Solution and Pregel Electrolyte Solution The first electrolyte solution comprises a supporting electrolyte LiPF 6 in an organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 3. It was prepared by dissolving to a concentration of 1.2 mol / l. The pregel electrolyte solution is prepared by mixing a second electrolyte solution having the same composition as the first electrolyte solution and polyether acrylate (molecular weight: 10,000) at a weight ratio of 90:10, and then adding a thermal polymerization initiator (t- Hexylperoxypiparate) was prepared by adding 0.3% by weight to the above mixed solution.
[0033]
4). Production of lithium polymer secondary battery The positive electrode 1 and the negative electrode 2 produced by the above-described method are overlapped and wound through a polyethylene porous body 3 (film thickness: 27 μm) to produce an elliptical power generation element. . Next, this power generation element is inserted into a flat outer package 7 made of an Al laminate material, and the upper seal portion 8 of the outer package 7 is sealed with the tip portions of the positive electrode lead 5 and the negative electrode lead 6 protruding outside.
[0034]
Next, the battery holder 14 is inserted into the battery holder 14 with a heater installed inside the vacuum tank 11 of the injection impregnation apparatus shown in FIG. The temperature of 14 is set to 40 ° C. After evacuating the vacuum pressure inside the vacuum chamber 11 to 2.8 × 10 4 Pa, 1.6 g of the electrolyte solution is injected into the exterior body 7 from the injection nozzle 17 for electrolyte solution, and 10 minutes. Impregnation under reduced pressure. Further, 2.0 g of the pregel electrolyte solution is continuously injected into the exterior body 7 from the injection nozzle 19 for the pregel electrolyte solution and impregnated under reduced pressure for 10 minutes.
[0035]
Next, after sealing the lower seal portion 9 of the outer package 7 under a vacuum pressure of 2.8 × 10 4 Pa using a vacuum sealing device, the pregel electrolyte solution is heated at 80 ° C. for 1 hour. Heat polymerization (gelation) was performed inside the battery to produce a lithium polymer secondary battery. This battery is referred to as battery A.
[0036]
For comparison, a lithium polymer secondary battery was produced in the same manner as battery A, except that the pre-gel electrolyte solution batch injection, that is, the first electrolyte injection / vacuum impregnation step was omitted. This battery is referred to as a battery Z1. In this case, the injection amount of the pregel electrolyte solution is 3.6 g.
[0037]
5). Each battery fabricated with high-rate discharge characteristics is charged to 4.2 V at a constant current of 420 mA (0.7 C) at room temperature (25 ° C.) and then charged at a constant voltage of 4.2 V for 2 hours. Thereafter, the battery was discharged at room temperature with a discharge capacity of 120 mA (0.2 C) until the final voltage reached 3.0 V, and the discharge capacity was calculated from the discharge time. Each battery charged under the same conditions was discharged at room temperature with a discharge capacity of 1200 mA (2C) until the final voltage reached 3.0 V, and the discharge capacity was calculated from the discharge time. From the measurement data obtained above, the ratio (percentage) of the discharge capacity at 2C to the discharge capacity at 0.2C was calculated, and this value was defined as the high rate discharge characteristic.
[0038]
6). About each battery which produced the low-temperature discharge characteristic, it charges to 4.2V with the constant current 420mA (0.7C) at 25 degreeC, Then, it charges for 2 hours with the constant voltage of 4.2V. Thereafter, the battery was discharged at 25 ° C. with a discharge capacity of 600 mA (1 C) until the final voltage reached 3.0 V, and the discharge capacity was calculated from the discharge time. Further, each battery charged under the same conditions was discharged at −10 ° C. with a discharge capacity of 600 mA (1C) until the end voltage reached 3.0 V, and the discharge capacity was calculated from the discharge time. From the measurement data obtained above, the ratio (percentage) of the discharge capacity at −10 ° C. to the discharge capacity at 25 ° C. was calculated, and this value was defined as the low temperature discharge characteristics.
[0039]
7). As the leakage resistance, the battery after heat polymerization was disassembled, and the presence or absence of the phase separated electrolyte was visually observed. In the evaluation, a case where no leakage was observed was rated as “◯”, and a case where electrolyte was leaking was rated as “X”.
[0040]
Table 1 shows the evaluation results of the high-rate discharge characteristics, low-temperature discharge characteristics, and leakage resistance of the produced lithium polymer secondary battery.
[0041]
[Table 1]
Figure 0004507345
[0042]
As is clear from Table 1, in the lithium polymer secondary battery (battery A) of this example, the pregel electrolyte solution sufficiently penetrates into the power generation element, and the heat polymerization (gelation) is uniform inside the outer package. As a result, the high-rate discharge characteristics and the low-temperature discharge characteristics were significantly improved over the comparative battery (battery Z). This is because the permeability of the pregel electrolyte solution is improved because the inside of the power generation element can be preliminarily wetted with the electrolyte solution by injecting the first electrolyte solution under reduced pressure.
[0043]
In the comparative battery (battery Z1), since the pregel electrolyte solution was injected all at once without injecting the first electrolyte solution, the impregnation property of the pregel electrolyte solution into the power generation element was not improved, and high-rate discharge characteristics, As a result, the low-temperature discharge characteristics deteriorated.
[0044]
(Example 2)
Next, the case where the vacuum pressure during the injection impregnation of the electrolytic solution and the pregel electrolyte solution into the power generation element was changed was examined.
[0045]
The vacuum pressure during the impregnation was set to 1.3 × 10 4 Pa, 2.8 × 10 4 Pa, 4.2 × 10 4 Pa, and the lithium polymer secondary battery was prepared in the same manner as in Example 1 except for this. Produced. This battery is referred to as batteries B to D. Battery A and battery C are batteries manufactured under the same conditions. For comparison, lithium polymer secondary batteries were fabricated in the same manner as in batteries B to D except that the pre-gel electrolyte solution batch injection, that is, the first electrolyte injection / vacuum impregnation step was omitted. This battery is referred to as batteries Z2 to Z4. The battery Z1 and the battery Z3 are batteries manufactured under the same conditions. Further, the lithium polymer solution is injected in the same manner as in the battery A except that the pregel electrolyte solution is collectively injected at atmospheric pressure (0.1 MPa), that is, the pregel electrolyte solution is collectively injected and no impregnation under reduced pressure is performed. A secondary battery was produced. This battery is referred to as a battery Z5. Table 2 shows the evaluation results of the high-rate discharge characteristics, low-temperature discharge characteristics, and leakage resistance of the produced lithium polymer secondary battery.
[0046]
[Table 2]
Figure 0004507345
[0047]
As is clear from Table 2, the battery B and the battery C having a vacuum pressure of 1.3 × 10 4 Pa and 2.8 × 10 4 Pa have a vacuum pressure of 4 in the high rate discharge characteristics and the low temperature discharge characteristics. Better results than battery D, which is 2 × 10 4 Pa. This is because as the vacuum pressure is smaller, the impregnation property of the electrolytic solution and the pregel electrolyte solution into the power generation element is improved, and gelation occurs uniformly within the power generation element.
[0048]
(Example 3)
The case where the temperature of the exterior body at the time of carrying out the injection | pouring impregnation to the electric power generation element of electrolyte solution and a pregel electrolyte solution was examined.
[0049]
Lithium was prepared in the same manner as in Example 1 except that the temperature of the outer casing during injection impregnation was 20 ° C., 40 ° C., 60 ° C., 80 ° C., and the vacuum pressure during injection impregnation was 1.3 × 10 4 Pa. A polymer secondary battery was produced. This battery is referred to as batteries E to H. Battery B and battery F are batteries manufactured under the same conditions. The evaluation results of the high-rate discharge characteristics, low-temperature discharge characteristics, and liquid leakage resistance of the prepared lithium polymer secondary battery are shown in Table 3.
[0050]
[Table 3]
Figure 0004507345
[0051]
As is clear from (Table 3), it has been found that good battery characteristics can be obtained when the temperature of the outer package during the impregnation is set to 40 to 60 ° C. This is because the viscosity of the pregel electrolyte solution is lowered by heating the exterior body, and the impregnation property to the power generation element is improved. However, the reasons why the battery H did not achieve better results than the battery G are as follows: (1) thermal decomposition of the supporting electrolyte LiPF 6 and (2) impregnation of the power generation element by partial gelation of the pregel electrolyte solution Sexual deterioration, etc. can be considered.
[0052]
Example 4
The case where the vacuum pressure at the time of sealing an exterior body was changed was examined.
[0053]
The vacuum pressure at the time of sealing the outer package was set to 1.3 × 10 4 Pa, 2.8 × 10 4 Pa, 4.2 × 10 4 Pa. A secondary battery was produced. This battery is referred to as batteries I to K. Battery A and battery J are batteries manufactured under the same conditions. For comparison, a lithium polymer secondary battery was produced in the same manner as the battery Z1, except that the vacuum pressure when sealing the outer package was atmospheric pressure (0.1 MPa). This battery is referred to as a battery Z6. Table 4 shows the evaluation results of the high-rate discharge characteristics, low-temperature discharge characteristics, and leakage resistance of the produced lithium polymer secondary battery.
[0054]
[Table 4]
Figure 0004507345
[0055]
As is clear from (Table 4), the lower the vacuum pressure when sealing the outer package, the higher the high rate discharge characteristics, the low temperature discharge characteristics, and the liquid leakage resistance. This is presumably because by setting the inside of the outer package to an oxygen-blocking atmosphere, the three-dimensional crosslinking reaction of the polymerizable compound was promoted, and the electrolyte solution could be taken in a large amount into the polymer matrix.
[0056]
【The invention's effect】
As described above, the present invention provides a method for producing a lithium polymer secondary battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other through a porous body containing a gel polymer electrolyte is accommodated in an outer package. , A step of accommodating a power generation element composed of a negative electrode and a porous body in the exterior body, a step of injecting a first electrolytic solution into the exterior body and impregnating under reduced pressure, and a polymerization property with the second electrolyte solution in the exterior body A step of injecting a pregel electrolyte solution containing at least a compound and a thermal polymerization initiator and impregnating under reduced pressure; a step of sealing the outer body into which the pregel electrolyte solution has been injected in a reduced-pressure atmosphere; and heating the outer body to And the step of gelling the pregel electrolyte solution, the pregel electrolyte solution is sufficiently penetrated into the power generation element, and heat polymerization (gelation) is uniformly generated inside the exterior body. Ireto discharge characteristics, has a low-temperature discharge characteristic, it is possible to efficiently provide excellent lithium polymer secondary battery of the leakage resistance, its practical value is what great made.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a lithium polymer secondary battery of the present invention. FIG. 2 is a diagram showing an injection impregnation apparatus for an electrolyte solution and a pregel electrolyte solution.
1. Positive electrode 2. Negative electrode 3. Porous membrane 4. 4. Gel-like polymer electrolyte membrane Positive electrode lead 6. 6. Negative electrode lead Exterior body 8. 8. Upper seal part Lower seal part 10. 10. Insulating protective film Vacuum chamber 12. Vacuum pump 13. Solenoid valve 14. Battery holder 15. Temperature controller 16. Storage tank for electrolyte 17. Injection nozzle 18. 18. Storage tank for pregel electrolyte solution Injection nozzle

Claims (10)

ゲル状ポリマー電解質を含有した多孔質体を介して正極と負極とが対向してなる発電要素を外装体内に収容させたリチウムポリマー二次電池の製造方法であって、
正極、負極、多孔質体からなる発電要素を前記外装体内に収容する工程と、
前記外装体内に第1の電解液を注入し減圧含浸する工程と、
前記外装体内に第2の電解液と重合性化合物と熱重合開始剤を少なくとも含むプレゲル電解質溶液を注入し減圧含浸する工程と、
前記プレゲル電解質溶液が注入された前記外装体を減圧雰囲気下で密封する工程と、
前記外装体を加熱して前記プレゲル電解質溶液をゲル化させる工程と、
を備えたことを特徴とするリチウムポリマー二次電池の製造方法。
A method for producing a lithium polymer secondary battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other through a porous body containing a gel polymer electrolyte is housed in an exterior body,
A step of accommodating a power generation element composed of a positive electrode, a negative electrode, and a porous body in the exterior body;
Injecting a first electrolyte into the outer package and impregnating under reduced pressure;
Injecting a pregel electrolyte solution containing at least a second electrolyte solution, a polymerizable compound and a thermal polymerization initiator into the outer package and impregnating under reduced pressure;
Sealing the outer package infused with the pregel electrolyte solution under a reduced pressure atmosphere;
Heating the exterior body to gel the pregel electrolyte solution;
A method for producing a lithium polymer secondary battery, comprising:
第1の電解液を注入し減圧含浸する工程と、プレゲル電解質溶液を注入し減圧含浸する工程とを、この順序で連続して行うことを特徴とする請求項1記載のリチウムポリマー二次電池の製造方法。The lithium polymer secondary battery according to claim 1, wherein the step of injecting the first electrolytic solution and impregnating under reduced pressure and the step of injecting the pregel electrolyte solution and impregnating under reduced pressure are successively performed in this order. Production method. 第1の電解液及びプレゲル電解質溶液の発電要素への注入含浸を真空圧3×104Pa以下の減圧雰囲気下にて行うことを特徴とする請求項1、2のいずれかに記載のリチウムポリマー二次電池の製造方法。The lithium polymer according to any one of claims 1 and 2, wherein the impregnation of the first electrolytic solution and the pregel electrolyte solution into the power generation element is performed in a reduced pressure atmosphere having a vacuum pressure of 3 x 10 4 Pa or less. A method for manufacturing a secondary battery. 第1の電解液及びプレゲル電解質溶液の発電要素への注入含浸を40℃〜60℃の環境下にて行うことを特徴とする請求項1〜3のいずれかに記載のリチウムポリマー二次電池の製造方法。The lithium polymer secondary battery according to any one of claims 1 to 3, wherein the impregnation of the first electrolytic solution and the pregel electrolyte solution into the power generation element is performed in an environment of 40 ° C to 60 ° C. Production method. 外装体を3×104Pa以下の減圧雰囲気下にて密封した後、上記外装体を40℃〜80℃の温度で加熱してプレゲル電解質溶液をゲル化させることを特徴とする請求項1〜4のいずれかに記載のリチウムポリマー二次電池の製造方法。The hermetic body is sealed in a reduced pressure atmosphere of 3 × 10 4 Pa or less, and then the outer body is heated at a temperature of 40 ° C. to 80 ° C. to gel the pregel electrolyte solution. 5. A method for producing a lithium polymer secondary battery according to any one of 4 above. 第1の電解液と第2の電解液とが同一組成であることを特徴とする請求項1記載のリチウムポリマー二次電池の製造方法。The method for producing a lithium polymer secondary battery according to claim 1, wherein the first electrolytic solution and the second electrolytic solution have the same composition. 重合性化合物がポリエチレンオキシド末端アクリレート変性タイプのポリマー材料、アクリレート系ポリマー材料のいずれかであることを特徴とする請求項1記載のリチウムポリマー二次電池の製造方法。2. The method for producing a lithium polymer secondary battery according to claim 1, wherein the polymerizable compound is either a polyethylene oxide-terminated acrylate-modified polymer material or an acrylate polymer material. 熱重合開始剤が有機過酸化物であることを特徴とする請求項1記載のリチウムポリマー二次電池の製造方法。2. The method for producing a lithium polymer secondary battery according to claim 1, wherein the thermal polymerization initiator is an organic peroxide. 有機過酸化物がt−ヘキシルパーオキシピパレート、t−ブチルパーオキシネオデカノエートのいずれかであることを特徴とする請求項8記載のリチウムポリマー二次電池の製造方法。9. The method for producing a lithium polymer secondary battery according to claim 8, wherein the organic peroxide is t-hexyl peroxypiparate or t-butyl peroxyneodecanoate. 外装体が、金属箔を中間の1層とした樹脂フィルム主体の多層ラミネート材からなり、且つ、偏平状であることを特徴とする請求項1記載のリチウムポリマー二次電池の製造方法。2. The method for producing a lithium polymer secondary battery according to claim 1, wherein the exterior body is made of a multilayer laminate material mainly composed of a resin film having a metal foil as an intermediate layer and has a flat shape.
JP2000097318A 2000-03-31 2000-03-31 Method for producing lithium polymer secondary battery Expired - Fee Related JP4507345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097318A JP4507345B2 (en) 2000-03-31 2000-03-31 Method for producing lithium polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097318A JP4507345B2 (en) 2000-03-31 2000-03-31 Method for producing lithium polymer secondary battery

Publications (2)

Publication Number Publication Date
JP2001283916A JP2001283916A (en) 2001-10-12
JP4507345B2 true JP4507345B2 (en) 2010-07-21

Family

ID=18611953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097318A Expired - Fee Related JP4507345B2 (en) 2000-03-31 2000-03-31 Method for producing lithium polymer secondary battery

Country Status (1)

Country Link
JP (1) JP4507345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612650B (en) * 2013-10-04 2018-01-05 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841303B2 (en) * 2001-01-17 2005-01-11 Skc Co., Ltd. High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
KR20040005956A (en) * 2001-05-10 2004-01-16 닛신보세키 가부시키 가이샤 Polymer gel electrolyte-use composition and method of pouring non-aqueous electrolyte solution
KR20030024055A (en) * 2001-09-15 2003-03-26 삼성에스디아이 주식회사 Method for manufacturing lithium battery
KR100560208B1 (en) * 2002-03-12 2006-03-10 에스케이씨 주식회사 Composition for gel polymer electrolyte gellationable at ambient temperature
JP4609707B2 (en) * 2005-03-14 2011-01-12 ソニー株式会社 battery
US8216724B2 (en) 2005-03-14 2012-07-10 Sony Corporation Polymer electrolyte and battery
JP4737273B2 (en) * 2008-11-05 2011-07-27 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle, battery-equipped device, and method of manufacturing lithium ion secondary battery
JP5195838B2 (en) * 2010-07-27 2013-05-15 ソニー株式会社 Battery manufacturing method
US20120183825A1 (en) * 2011-01-14 2012-07-19 Seung-Hun Lee Secondary battery and method of manufacturing the same
KR102304737B1 (en) * 2018-05-31 2021-09-24 주식회사 엘지에너지솔루션 Method for manufacturing lithium secondary battery
CN116014259A (en) * 2023-03-28 2023-04-25 河南省动力电池创新中心有限公司 Gel lithium ion battery and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755067A (en) * 1980-09-18 1982-04-01 Matsushita Electric Ind Co Ltd Manufacture of cell
JPH0922731A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH11121035A (en) * 1997-10-08 1999-04-30 Ricoh Co Ltd Manufacture of solid electrolyte secondary battery
JPH11265616A (en) * 1998-03-18 1999-09-28 Ricoh Co Ltd Ion conductive polymer gel electrolyte and battery containing this gel electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755067A (en) * 1980-09-18 1982-04-01 Matsushita Electric Ind Co Ltd Manufacture of cell
JPH0922731A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH11121035A (en) * 1997-10-08 1999-04-30 Ricoh Co Ltd Manufacture of solid electrolyte secondary battery
JPH11265616A (en) * 1998-03-18 1999-09-28 Ricoh Co Ltd Ion conductive polymer gel electrolyte and battery containing this gel electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612650B (en) * 2013-10-04 2018-01-05 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method

Also Published As

Publication number Publication date
JP2001283916A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
EP1401037B1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
KR100833808B1 (en) Polymer electrolyte battery and method of producing same
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
KR100767196B1 (en) Solid electrolyte cell
JP2001167743A (en) Secondary battery and electronic device using the same
WO2005124919A2 (en) Methods for fabricating lithium rechargeable batteries
WO2000041263A1 (en) Thin battery and method of manufacturing
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP2007305453A (en) Lithium ion polymer battery
JP2001357883A (en) Gel-like electrolytic solution and lithium battery using the same
KR20030002072A (en) Lithium battery and process for preparing the same
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
JP2001035535A (en) Nonaqueous secondary battery and manufacture thereof
WO2001089023A1 (en) A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
JP2002025618A (en) Method for manufacturing lithium polymer secondary battery
JP3806505B2 (en) Method for producing polymer solid electrolyte battery
JP2001110405A (en) Gel high-molecular solid electrolyte battery and method for manufacturing the same
KR100364965B1 (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
JP2002231196A (en) Method of manufacturing thin battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2013235826A (en) Nonaqueous electrolyte secondary battery manufacturing method
JPH11214038A (en) Gel high polymer solid electrolyte battery and manufacture thereof
JP2004079310A (en) Manufacturing method for polymer lithium secondary battery
JP2002100406A (en) Polymer lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees