JP3850977B2 - Method for producing polymer solid electrolyte battery - Google Patents

Method for producing polymer solid electrolyte battery Download PDF

Info

Publication number
JP3850977B2
JP3850977B2 JP08581298A JP8581298A JP3850977B2 JP 3850977 B2 JP3850977 B2 JP 3850977B2 JP 08581298 A JP08581298 A JP 08581298A JP 8581298 A JP8581298 A JP 8581298A JP 3850977 B2 JP3850977 B2 JP 3850977B2
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
negative electrode
electrode current
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08581298A
Other languages
Japanese (ja)
Other versions
JPH11283672A (en
Inventor
紫織 前田
幹也 山崎
孝則 藤井
育朗 中根
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08581298A priority Critical patent/JP3850977B2/en
Publication of JPH11283672A publication Critical patent/JPH11283672A/en
Application granted granted Critical
Publication of JP3850977B2 publication Critical patent/JP3850977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電解液を含むゲル状高分子固体電解質を用いた高分子固体電解質電池に関する。
【0002】
【従来の技術】
高分子固体電解質を用いた電池は、漏液等に起因する機器の損傷の恐れがなく、また電解質がセパレータを兼ねるので、電池を小型化し易いという特徴を有している。しかし、固体電解質は、液体電解質に比べイオン導電性に劣るとともに、活物質に対する接触性が悪いため、十分な電池容量を得られにくい。そこで近年、このような問題点を克服する手段として、液体電解質と高分子固体電解質とを共に用いたゲル状高分子固体電解質電池が開発され、実用化されつつある。
【0003】
ゲル状高分子固体電解質は、高分子の網目構造内に液体電解質が保持されてゲル状となったものであり、固体電解質に比べ活物質との接触性がよく、また液体電解質を含むのでイオン導電性に優れる。更に、電解液が網目構造内に閉じ込められているので、漏液を生じにくく、また柔軟であるので電池形状における自由度が大きいという特徴を有している。
【0004】
しかしながら、従来のゲル状高分子固体電解質電池は、電極集電体と活物質との密着性や、活物質とゲル状高分子固体電解質との接触性に問題を有しており、未だ十分な放電容量やサイクル特性が得られていないのが現状である。また、生産性にも課題を有している。
【0005】
【発明が解決しようとする課題】
本発明は、電極集電体と活物質との密着性や、活物質とゲル状高分子固体電解質との接触性を改善して、高放電容量でかつサイクル特性にも優れたゲル状高分子固体電解質電池を提供することを目的とする。
【0006】
【発明が解決しようとする課題】
上記目的を達成するための本発明製造方法は、正極活物質を正極集電体に保持させる正極作製工程と、リチウムイオンを吸蔵放出することのできる炭素粉末を負極集電体に保持させる負極作製工程とからなる第1の工程と、離間部材を介して上記正極と負極とを対向させ発電素体となし、この発電素体を外装体内に収容し、更に外装体内に重合性化合物と電解液とを含むプレゲル溶液を注入し、正負電極間にプレゲル溶液を浸入させる第2の工程と、上記第2の工程の後、上記外装体を加熱し、重合性化合物を重合硬化することによりプレゲル溶液をゲル化する第3の工程と、を備える高分子固体電解質電池の製造方法であって、上記外装体として、アルミニウムラミネート材からなる外装体(アルミニウムラミネート外装体)を用い、上記重合性化合物として、アクリル化合物を用い、上記正極集電体および/または負極集電体として、空孔率が85〜98%の発泡金属多孔体を用いることを特徴とする。
【0007】
上記構成の作用効果は次のようである。先ず第1の工程において、空孔率が85〜98%の発泡金属多孔体に活物質を保持させるが、発泡金属多孔体を用いると、多孔が活物質を保持する空間として作用するので、平板状の金属箔に活物質を保持させる場合に比べて、電極からの活物質の脱落が少なくなるとともに、電極のエネルギー密度が高まる。
【0008】
次に第2の工程において、第1の工程で作製した電極(正極および/または負極)と対極とを離間部材を介して対向させてアルミニウムラミネート外装体に収容し、当該外装体にアクリル化合物を含んでなるプレゲル溶液を注入するが、注入されたプレゲル溶液は、発泡金属多孔体の孔に浸入し更に活物質相互の隙間に浸透する。このような状態に至った段階で、外装体を加熱(第3の工程)すると、電極全体にゲル状高分子固体電解質が分散された好適な電極が作製される。
【0009】
以上から、本発明製造方法によると、電池のエネルギー密度を高めることができる。また、電池組み立て工程において、ゲル状高分子固体電解質膜から電解液が漏れ出て電解質膜のイオン導電性が低下したり、漏れ出た電解液が製造機械を損傷したりすることがない。更に、正負電極の対向面に凹凸や波うちがあっても、電極表面の凹凸に沿ってアクリル化合物を含んでなるプレゲル溶液が浸入し、凹凸を埋めるとともに活物質相互間の隙間にまで入り込み、ここでゲル化されることになる。よって、活物質と電解質膜との接触性が格段に向上し、活物質相互や正負電極間におけるイオン導電性が高まり、この結果として、放電容量に優れ、かつサイクル特性に優れた電池が得られる。
【0010】
ここで、本発明においては、活物質を保持させる正極集電体および/または負極集電体として、上記発泡金属多孔体に代えて、開口率が10〜95%の金属箔を用いることができ、また正負集電体の何れか一方に上記金属箔を用いる場合においては、もう一方の集電体として上記発泡金属多孔体を用いることもできる。
【0011】
ところで、金属箔は発泡金属多孔体に比べて取扱い易くかつ安価であるが、活物質の保持性が弱い。また、プレゲル溶液の浸透性が悪い。然るに、開口率が10〜95%の金属箔を用いると、開孔が活物質の保持性を高めるとともに、アクリル化合物を含んでなるプレゲル溶液の浸透を可能にする。よって、このような金属箔を集電体として用いると、上記発泡金属多孔体を用いた場合と同様、放電容量が高く、サイクル特性に優れた高分子固体電解質電池が得られる。
【0012】
具体的には、例えば金属箔の両面に活物質ペーストを塗布した場合、開孔が設けられている部分では活物質が開孔に入り込み表裏面の活物質層が連結されるので、活物質層が金属箔に強固に保持される(第1の工程)。また、このような金属箔よりなる電極(正極および/または負極)で構成した発電素体をアルミニウムラミネート外装体に入れ、アクリル化合物を含んでなるプレゲル溶液を注入した場合(第2の工程)、開孔がプレゲル溶液の浸透を助ける役割をする。よって、プレゲル溶液の浸透が容易になり、速やかに活物質相互の隙間にで浸透する。この後、外装体を加熱すると(第3の工程)、電極全体に行き渡った形でゲル状高分子固体電解質が形成される。このような電極からなる発電体は、放電容量が高くサイクル特性に優れる。なお、このことは後記表1および図5,6で実証されている。
【0013】
上記正極集電体および/または負極集電体として使用する金属箔の開孔率としては、好ましくは75%〜95%とするのがよい。開孔率がこの範囲であると、後記の表1に示すように、無開孔の金属箔を用いた場合に比べ放電容量が大幅に向上するからである。
【0014】
更に、より好ましくは上記正極集電体と正極集電体の両者を、開孔率が75%〜95%の金属箔で構成するのがよい。この構成であると、後記表1の実施例14、15に示すように、電池の放電容量が顕著に向上するからである。
【0015】
また、本発明製造方法における離間部材としては、好ましくは多孔質フィルムを用いるのがよい。離間部材として多孔質フィルムを用いると、外装体内に注入されたプレゲル溶液を正負電極間に集めることができるので、プレゲル溶液を浸入させるための時間(エイジング時間)を短くできるとともに、加熱重合により正負電極間に十分な厚みのゲル状高分子固体電解質膜を形成することができる。なお、プレゲル溶液を正負電極間に集めることができる理由は、注入されたプレゲル溶液が多孔質フィルムに吸収されるからである。
【0016】
また、前記第2の工程における加熱操作は、好ましくは外装体にプレゲル溶液を注入した後、外装体を密閉して行うのがよい。なぜなら、外装体の密閉により発電要素を外部環境と遮断でき、その後は外部環境条件(例えば湿度、酸素の存在等)に配慮することなく、加熱硬化作業を行うことができ、また密閉により電池形状が確定するので、この段階で重合硬化すると、電池形状によく適合したゲル状高分子固体電解質膜を形成できるからである。
【0017】
【実施の形態】
以下、本発明の実施の形態である実施例を通して本発明の内容を明らかにする。
(実施例1〜5)
図1および図2を参照しながら、本発明の実施の形態である実施例1〜5のゲル状高分子固体電解質電池の全体構造を説明する。図1は電池の正面図であり、符号3は外装体の本体部、4は外装体の上シール部、5は外装体の下シール部、13は正極集電タブ、14は負極集電タブを示す。図2は、図1のA−A矢視断面模式図であり、符号1は正極集電体、2は負極集電体、10は正極、11は負極、12は多孔質フィルムに保持形成されたゲル状高分子固体電解質の層(多孔質フィルムは不図示)である。そして、正極集電タブ13は正極集電体1の端部に連結され、負極集電タブ14は負極集電体2の端部に連結されている。なお、正負集電タブ13・14が、正負集電体1・2と一体的に構成してもよい。
【0018】
上記構造を有し、正負集電体とも開孔率0%のものを使用した場合における電池容量が127mAhのゲル状高分子固体電解質電池を、次のようにして作製した。
【0019】
正極の作製
700℃〜900℃の温度で熱処理したリチウム含有二酸化コバルトと黒鉛粉末(導電剤)とケッチェンブラック(導電剤)とフッ素樹脂PVdF(結着剤)とを、90:3:2:5の重量比で混合したものをドクターブレード法により無開孔(開孔率0)のアルミニウム箔(厚み20μm)からなる正極集電体(正極芯体)1の両面に塗布した。その後、100〜150℃で真空熱処理して正極となした。この正極の活物質層片面の厚みは80μmであり、電極面積は52cm2 であった。
【0020】
負極の作製
活物質としての黒鉛粉末(平均粒径5〜50μm)と、結着剤であるフッ素樹脂PVdFとを95:5の重量比で混合したものを、ドクターブレード法により、それぞれ開孔率10%、30%、50%、75%、95%の銅箔(厚み16μm)からなる負極集電体(負極芯体)2の片面に塗布した。その後、100〜150℃で真空熱処理して負極となした。負極活物質層の厚み(片面のみ)は65μmであり、電極面積は58cm2 であった。
【0021】
電池の組立
ポリプロピレン/変性ポリプロピレン/アルミニウム/変性ポリプロピレン/ポリプロピレンからなる5層構造のアルミニウムラミネート材を2つ折りにして重ね合わせ、長手方向のみシールした。なお、図1は長手方向に平行するシール部を省略して描いてある。
【0022】
上記負極の活物質層側に多孔質ポリエチレンフィルムを重ねてU字型に折り曲げ、この内側に前記正極を挟み発電素体となした。この発電素体を上記アルミニウムラミネート外装体内に入れ、上シール部4を熱融着してシールした。次いで、この外装体内にプレゲル溶液3mlを注液し、速やかに下シール部5を熱融着してシールした。そして、プレゲル溶液の注入後、30分間静置(エージング)し、しかる後、外装体を60℃で1時間加熱した。この加熱により、プレゲル溶液中の重合性化合物が重合して、ゲル状の高分子固体電解質が形成される。
【0023】
上記プレゲル溶液としては、重合性化合物としてのポリエチレングリコールジアクリレート(分子量500)と、エチレンカーボネイト:ジエチルカーボネイト=3:7(体積比)の混合溶媒にLiPF6 を1mol/L濃度溶解した電解液とを重量比1:10の割合で混合し、さらにこれに過酸化ベンゾイルを2000ppm添加したものを用いた。
【0024】
以上のようにして実施例1〜5にかかるゲル状固体電解質電池を作製した。ここで、エージング時間とは、外装体内へのプレゲル溶液の注入完了時から重合のための加熱を開始するまでの時間をいう。また、開孔率とは、集電体一方表面の全表面積に対する開孔の総和面積を百分率で表したものをいう。
【0025】
(実施例6〜10)
正極集電体として開孔率10%、30%、50%、75%、95%のアルミニウム箔を用い、負極集電体として無開孔の銅箔を用いたこと以外は、上記実施例1〜5と同様にして実施例6〜10のゲル状固体電解質電池を作製した。
【0026】
(実施例11)
正極集電体として開孔率50%のアルミニウム箔、負極集電体として開孔率50%の銅箔を用いたこと以外は、上記実施例1〜5と同様にして実施例11のゲル状固体電解質電池を作製した。
【0027】
(実施例12)
正極集電体として開孔率75%のアルミニウム箔、負極集電体として開孔率75%の銅箔を用いたこと以外は、上記実施例1〜5と同様にして実施例12のゲル状固体電解質電池を作製した。
【0028】
(実施例13)
正極集電体として開孔率95%のアルミニウム箔、負極集電体として開孔率95%の銅箔を用いたこと以外は、上記実施例1〜5と同様にして実施例13のゲル状固体電解質電池を作製した。
【0029】
(実施例14〜16、20
正極集電体として無開孔のアルミニウム箔を用い、負極集電体として空孔率が85%、90%、95%、98%の発泡銅多孔体を用いて図3に示す実施例20及び14〜16のゲル状固体電解質電池を作製した。発泡銅多孔体への正極活物質の充填は、ドクターブレード法により、発泡銅多孔体へ負極活物質を塗布した。その他の事項については上記実施例1〜5と同様に行い、電池構造についても、負極活物質の支持体(集電体)が発泡銅多孔体である点を除き、実施例1〜5と同様である。なお、図3の21が、発泡銅多孔体に負極活物質を保持させてなる負極である。
【0030】
(実施例17〜19、21
正極集電体として空孔率が85%、90%、95%、98%の発泡アルミニウム多孔体を用い、負極集電体として無開孔の銅箔を用いて、図4に示す実施例21及び17〜19のゲル状固体電解質電池を作製した。発泡アルミニウム多孔体への正極活物質の充填方法は、上記実施例14〜16の場合と同様であり、その他の事項については上記実施例6〜10と同様である。なお、図4の符号22が、発泡アルミニウム多孔体に正極活物質を保持させてなる正極であり、正極構造のみが上記図2および図3と異なる。
【0031】
ここで、上記空孔率とは、発泡体の単位体積当たりの空間体積の比率いう。
【0032】
(比較例1)
正負集電体とも無開孔の金属箔を用いたこと以外は、上記実施例1〜5と同様にして比較例1のゲル状固体電解質電池を作製した。
【0033】
(比較例2)
負極集電体として開孔率5%の銅箔を用いたこと以外は、上記比較例1と同様にして比較例2のゲル状固体電解質電池を作製した。
【0034】
(比較例3)
負極集電体として開孔率96%の銅箔を用いたこと以外は、上記比較例1と同様にして比較例3のゲル状固体電解質電池の作製を試みた。但し、負極の作製に際し、銅箔より活物質が崩れ落ちるため、良好な負極の作製が困難であった。
【0035】
(比較例4)
正極集電体として開孔率5%のアルミニウム箔を用いたこと以外は、上記比較例1と同様にして比較例4のゲル状固体電解質電池を作製した。
(比較例5)
正極集電体として開孔率96%のアルミニウム箔を用いたこと以外は、上記比較例1と同様にして比較例5のゲル状固体電解質電池の作製を試みた。但し、比較例3と同様な理由により良好な正極の作製が困難であった。
【0036】
(比較例6、8
正極集電体として無開孔(開孔率0%)のアルミニウム箔を用い、負極集電体としてそれぞれ空孔率が80%、99%の発泡銅多孔体を用い、他の条件は実施例1〜5と同様にして比較例6及び8のゲル状固体電解質電池の作製した。
但し、99%の発泡銅多孔体を用いた比較例8では、上記比較例3および5と同様な理由により、良好な負極の作製が困難であった。
【0037】
(比較例9、11)正極集電体としてそれぞれ空孔率が80%、99%の発泡アルミニウム多孔体を用い、他の条件は実施例14〜16と同様にして比較例9及び11のゲル状固体電解質電池の作製した。但し、99%の発泡アルミニウム多孔体を用いた比較例11では、上記比較例8と同様、良好な正極の作製が困難であった。
【0038】
(比較例12)
正負集電体とも無開孔の金属箔を用いたこと、およびエージング時間を60分としたこと以外は、上記実施例1〜5と同様にして比較例12のゲル状固体電解質電池を作製した。なお、実施例1〜19、20、21のエージング時間は、30分である。
【0039】
(電池放電容量およびサイクル特性の測定)
以上で作製した各種電池について下記条件で放電容量を調べた。また金属箔を用いた各電池についてサイクル特性を調べた。
放電容量
室温にて1C定電流、4.1V定電圧で充電を行ったのち、1C定電流で放電終止電圧が2.75Vになるまで放電を行い、放電容量を測定した。この結果を表1〜3に示した。
【0040】
サイクル特性
上記条件で充放電を繰り返し、放電容量が初期放電容量の70%になるまでのサイクル数を測定した。この結果を図5、図6に集電体の開孔率と70%になるまでのサイクル数(70%放電容量サイクル数とする)との関係で示した。
【0041】
【表1】

Figure 0003850977
【0042】
表1において、正負集電体のいずれか一方に開孔率10%〜95%の金属箔を用いた実施例1〜実施例10は、正負集電体ともに無開孔の金属箔を用いた比較例1、及び正負集電体の何れか一方に開孔率5%の金属箔(アルミニウム箔または銅箔)を用いた比較例2、4に比べて、放電容量が高いことが認められた。そして、開孔率が75〜95%の金属箔を用いた実施例4〜5、及び実施例9〜10において、より高い放電容量が得られ、更に正負集電体の両者に開孔率50%以上の金属箔を用いた実施例12〜13において、一層高い放電容量が得られることが認められた。
【0043】
他方、開孔率96%の比較例3、5においては、電極作製に際して集電体から活物質がくずれ落ちる現象が認められた。これは、開孔率が95%を超えると、活物質を支える非開孔部分の面積が過少になり、活物質を十分に保持できないためと考えられる。
【0044】
一方、図5、6より、正負集電体の何れか一方に、開孔率が10%以上の金属箔を用いると、70%放電容量サイクル数が顕著に大きくなることが判った。なお、70%放電容量サイクル数は、サイクル特性の良否を表す指標でありこの値が大きいほど、サイクル特性に優れることを意味している。
【0045】
以上により、正負集電体の何れか一方に開孔率10%〜95%、より好ましくは開孔率75%〜95%の金属箔を使用し、さらに好ましくは正負集電体の双方を開孔率75%〜95%の金属箔とすることにより、ゲル状高分子固体電解質電池の放電容量およびサイクル特性を向上させることができることが確認された。
【0046】
【表2】
Figure 0003850977
【0047】
【表3】
Figure 0003850977
【0048】
表2および表3より、次のことが明らかになった。すなわち、正負集電体の何れか一方に発泡金属多孔体を用いた実施例14〜19、20、21は、前記比較例1や比較例6、8、9に比べて高い放電容量が得られた。このことから、空孔率が85%〜98%の発泡金属多孔体を用いた場合においても、上記と同様な作用効果が得られることが判る。また、空孔率が99%の高空孔率の発泡金属多孔体(比較例8、11)を用いると、電極の作製が困難になることが認められた。これは空孔率が高過ぎるため、活物質の支持が不十分になるからであり、活物質が崩れるとエネルギー密度の低下を招くので好ましくない。以上から、発泡金属多孔体を用いる場合には、空孔率を85%〜95%にする必要がある。
【0049】
また、エージング時間を60分とした比較例12とエージング時間を30分とした実施例1〜19、20、21との比較から、無開孔の金属箔を用いた場合、エージング時間を長くしても殆ど放電容量を高めることができないが、本発明製造方法によると、短いエージング時間で格段に優れた放電容量およびサイクル特性を有するゲル状高分子固体電解質電池が製造できることが判る。なお、本発明製造方法によると、短いエージング時間で優れた特性を有する電池が構成できるのは、適度な開孔率の金属箔(または発泡金属多孔体)であると、活物質相互の隙間にプレゲル溶液が浸入し易いので、電極全体にゲル状高分子固体電解質が行き渡った状態の電極が構成でき、このような電極であると、活物質の発電能力が十分に引き出されるからであると考えられる。
【0050】
(その他の事項)
本発明の適用は図1〜4に示す構造の電池に限定されるものではない。例えば電極を巻回した渦巻型の発電体構造の電池とすることもでき、また平板状の正負電極をゲル状高分子固体電解質を介して交互に積層した構造の電池とすることもできる。
【0051】
また、本発明にかかるゲル状高分子固体電解質電池の構成要素である正極、炭素負極、重合性化合物、電解液を組成する有機溶媒等は、上記に実施例に記載したものに限定されない。上記以外の正極活物質としては、例えばLiNiO2 、LiMnO2 、LiFeO2 などが使用でき、負極活物質としては、リチウムイオンを吸蔵・放出できる天然黒鉛や人造黒鉛などの黒鉛質材料、部分的に黒鉛構造をもった炭素質材料、或いは両者の混合物などが使用できる。
【0052】
また、重合性化合物としては、例えばポリエチレングリコールジアクリレートなどのアクリル化合物が使用でき、電解液としては、例えばエチレンカーボネート、ビニレンカーボネート、プロピレンカーボネートなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6 、LiClO4 、LiCF3 SO3 などの溶質を溶かした溶液などが使用できる。
【0053】
更に、上記実施例における外装体としては、柔軟で形状自由度が大きいことからアルミニウムラミネート外装体を用いるが、この場合、腐食防止と電気絶縁性の保持のため、アルミニウム層を樹脂層で覆った3層構造以上のものが好ましく、より好ましくは集電体に対する接着性が高まることから、集電体に対向する面の樹脂層を酸変性ポリプロピレンで構成したものがよい。なお、アルミニウムラミネート外装体の各層の厚みは、特に限定されるものではないが、一般には10〜100μmとする。
【0054】
【発明の効果】
以上で説明したように、空孔率が85〜98%の発泡金属多孔体または開口率が10〜95%の金属箔を集電体として用いる本発明によると、活物質の充填密度が向上するとともに、集電体と活物質との密着性や活物質とゲル状高分子固体電解質との接触性が改善され、電極活物質の利用率が向上する。そして、この結果として高放電容量でサイクル特性に優れたゲル状高分子固体電解質電池が得られる。
【0055】
更に、本発明では、発電素体とプレゲル溶液とを外装体内に収容した後に、プレゲル溶液を重合硬化してゲル状の高分子固体電解質を形成する方法を採用するが、この方法であると、上記した高性能な電池が生産性よく製造できるという顕著な効果が得られる。
【図面の簡単な説明】
【図1】偏平状外装体を用いた本発明にかかるゲル状高分子固体電解質電池の正面外観図である。
【図2】図1のA−A線における断面模式図である。
【図3】本発明にかかるゲル状高分子固体電解質電池の他の態様を示す断面模式図である。
【図4】本発明にかかるゲル状高分子固体電解質電池の他の態様を示す断面模式図である。
【図5】負極集電体の開孔率と70%放電容量サイクル数との関係を示すグラフである。
【図6】正極集電体の開孔率と70%放電容量サイクル数との関係を示すグラフである。
【符号の説明】
1 正極集電体
2 負極集電体
3 ラミネート外装体
4 上シール部
5 下シール部
10 正極
11 炭素負極
12 ゲル状高分子固体電解質膜(多孔質フィルムを含む)
13 正極集電タブ
14 負極集電タブ
21 発泡金属多孔体を用いた負極
22 発泡金属多孔体を用いた正極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer solid electrolyte battery using a gel polymer solid electrolyte containing an electrolytic solution.
[0002]
[Prior art]
A battery using a solid polymer electrolyte has the characteristics that there is no risk of damage to equipment due to leakage or the like, and the electrolyte also serves as a separator, so that the battery can be easily miniaturized. However, since the solid electrolyte is inferior in ionic conductivity as compared with the liquid electrolyte and has poor contact with the active material, it is difficult to obtain a sufficient battery capacity. Therefore, in recent years, as a means for overcoming such a problem, a gel polymer solid electrolyte battery using both a liquid electrolyte and a polymer solid electrolyte has been developed and put into practical use.
[0003]
The gel polymer solid electrolyte is a gel formed by holding the liquid electrolyte in the polymer network structure, and has better contact with the active material than the solid electrolyte, and also contains the liquid electrolyte. Excellent conductivity. Further, since the electrolytic solution is confined in the network structure, it is difficult to cause liquid leakage and is flexible, and thus has a feature that the degree of freedom in the battery shape is large.
[0004]
However, the conventional gel polymer solid electrolyte battery has a problem in the adhesion between the electrode current collector and the active material and the contact property between the active material and the gel polymer solid electrolyte. At present, the discharge capacity and cycle characteristics are not obtained. There is also a problem in productivity.
[0005]
[Problems to be solved by the invention]
The present invention improves the adhesion between the electrode current collector and the active material and the contact between the active material and the gel polymer solid electrolyte, and has a high discharge capacity and excellent cycle characteristics. An object is to provide a solid electrolyte battery.
[0006]
[Problems to be solved by the invention]
In order to achieve the above object, the production method of the present invention comprises a positive electrode preparation step in which a positive electrode active material is held in a positive electrode current collector, and a negative electrode production in which carbon powder capable of occluding and releasing lithium ions is held in the negative electrode current collector. A positive electrode and a negative electrode are opposed to each other through a spacing member to form a power generation element, and the power generation element is accommodated in the exterior body, and the polymerizable compound and the electrolytic solution are further contained in the exterior body. A pregel solution containing a pregel solution that is injected between the positive and negative electrodes, and after the second step, the exterior body is heated to polymerize and cure the polymerizable compound. the a third step and method for producing a polymer solid electrolyte battery comprising the gelling, used as the exterior body, exterior body made of an aluminum laminate material (aluminum laminate battery case), the As polymerizable compound, an acrylic compound, as the positive electrode current collector and / or anode current collector, the porosity is characterized by using a 85 to 98% of the foamed metallic porous body.
[0007]
The operational effects of the above configuration are as follows. First, in the first step, the active material is held in the foamed metal porous body having a porosity of 85 to 98%. However, if the foamed metal porous body is used, the pore acts as a space for holding the active material. As compared with the case where the active material is held on the metal foil, the active material is less dropped from the electrode and the energy density of the electrode is increased.
[0008]
Next, in the second step, the electrode (positive electrode and / or negative electrode) prepared in the first step and the counter electrode are opposed to each other with a spacing member and accommodated in an aluminum laminate outer package, and an acrylic compound is placed in the outer package. The pregel solution that is included is injected, and the injected pregel solution enters the pores of the foam metal porous body and further penetrates into the gaps between the active materials. When the outer body is heated (third step) at this stage, a suitable electrode in which the gel-like polymer solid electrolyte is dispersed throughout the electrode is produced.
[0009]
From the above, according to the production method of the present invention, the energy density of the battery can be increased. Further, in the battery assembly process, the electrolyte solution does not leak from the gel polymer solid electrolyte membrane, and the ionic conductivity of the electrolyte membrane does not decrease, or the leaked electrolyte solution does not damage the manufacturing machine. Furthermore, even if there are irregularities and undulations on the opposing surfaces of the positive and negative electrodes, the pregel solution containing an acrylic compound infiltrates along the irregularities on the electrode surface, filling the irregularities and entering the gaps between the active materials, It will be gelled here. Therefore, the contact between the active material and the electrolyte membrane is remarkably improved, and the ionic conductivity between the active materials and between the positive and negative electrodes is increased. As a result, a battery having excellent discharge capacity and excellent cycle characteristics can be obtained. .
[0010]
Here, in the present invention, a metal foil having an opening ratio of 10 to 95% can be used as the positive electrode current collector and / or the negative electrode current collector for holding the active material, instead of the foam metal porous body. In addition, when the metal foil is used for one of the positive and negative current collectors, the foamed metal porous body can be used as the other current collector.
[0011]
By the way, although metal foil is easy to handle and cheap compared with a foam metal porous body, the retention property of an active material is weak. Further, the permeability of the pregel solution is poor. However, when the aperture ratio is employed 10 to 95 percent of the metal foil, the aperture is to increase the retention of the active material to allow penetration of pre-gel solution comprising an acrylic compound. Therefore, when such a metal foil is used as a current collector, a polymer solid electrolyte battery having a high discharge capacity and excellent cycle characteristics can be obtained as in the case of using the foamed metal porous body.
[0012]
Specifically, for example, when the active material paste is applied to both surfaces of the metal foil, the active material enters the opening at the portion where the opening is provided, and the active material layers on the front and back surfaces are connected. Is firmly held on the metal foil (first step). Further, when a power generating element composed of electrodes (positive electrode and / or negative electrode) made of such metal foil is put into an aluminum laminate outer package and a pregel solution containing an acrylic compound is injected (second step), The opening serves to help the penetration of the pregel solution. Therefore, the penetration of the pregel solution is facilitated and quickly penetrates into the gaps between the active materials. Thereafter, when the exterior body is heated (third step), a gel-like polymer solid electrolyte is formed in a form that spreads over the entire electrode. A power generator composed of such electrodes has a high discharge capacity and excellent cycle characteristics. This is demonstrated in Table 1 and FIGS.
[0013]
The porosity of the metal foil used as the positive electrode current collector and / or the negative electrode current collector is preferably 75% to 95%. This is because, when the open area ratio is within this range, as shown in Table 1 described later, the discharge capacity is greatly improved as compared with the case of using a non-open metal foil.
[0014]
More preferably, both the positive electrode current collector and the positive electrode current collector are made of a metal foil having a porosity of 75% to 95%. This is because the discharge capacity of the battery is remarkably improved as shown in Examples 14 and 15 in Table 1 below.
[0015]
In addition, as the separating member in the production method of the present invention, a porous film is preferably used. When a porous film is used as the spacing member, the pregel solution injected into the exterior body can be collected between the positive and negative electrodes, so that the time for immersing the pregel solution (aging time) can be shortened and positive and negative by heating polymerization. A gel-like polymer solid electrolyte membrane having a sufficient thickness can be formed between the electrodes. The reason why the pregel solution can be collected between the positive and negative electrodes is that the injected pregel solution is absorbed by the porous film.
[0016]
The heating operation in the second step is preferably performed after the pregel solution is injected into the exterior body and then the exterior body is sealed. This is because the power generation element can be shut off from the external environment by sealing the exterior body, and then the heat-curing operation can be performed without considering the external environmental conditions (for example, the presence of humidity and oxygen). This is because, when polymerized and cured at this stage, a gel polymer solid electrolyte membrane that is well suited to the battery shape can be formed.
[0017]
Embodiment
Hereinafter, the content of the present invention will be clarified through examples which are embodiments of the present invention.
(Examples 1-5)
With reference to FIG. 1 and FIG. 2, the whole structure of the gel polymer solid electrolyte battery of Examples 1-5 which are embodiments of the present invention will be described. FIG. 1 is a front view of a battery. Reference numeral 3 denotes a main body portion of the outer package, 4 denotes an upper seal portion of the outer package, 5 denotes a lower seal portion of the outer package, 13 denotes a positive current collecting tab, and 14 denotes a negative current collecting tab. Indicates. 2 is a schematic cross-sectional view taken along the line AA in FIG. 1. Reference numeral 1 denotes a positive electrode current collector, 2 denotes a negative electrode current collector, 10 denotes a positive electrode, 11 denotes a negative electrode, and 12 denotes a porous film. It is a layer of a gel-like solid polymer electrolyte (a porous film is not shown). The positive current collector tab 13 is connected to the end of the positive current collector 1, and the negative current collector tab 14 is connected to the end of the negative current collector 2. The positive and negative current collecting tabs 13 and 14 may be configured integrally with the positive and negative current collectors 1 and 2.
[0018]
A gel polymer solid electrolyte battery having a battery capacity of 127 mAh in the case where a positive and negative current collector having a porosity of 0% was used was prepared as follows.
[0019]
Production of Positive Electrode Lithium-containing cobalt dioxide heat-treated at a temperature of 700 ° C. to 900 ° C., graphite powder (conductive agent), ketjen black (conductive agent), and fluororesin PVdF (binder) are 90: 3: 2: The mixture at a weight ratio of 5 was applied to both surfaces of a positive electrode current collector (positive electrode core) 1 made of an aluminum foil (thickness 20 μm) having no openings (opening ratio 0) by a doctor blade method. Then, it vacuum-heat-processed at 100-150 degreeC, and became a positive electrode. The thickness of one surface of the positive electrode active material layer was 80 μm, and the electrode area was 52 cm 2 .
[0020]
Production of negative electrode A mixture of graphite powder (average particle size of 5 to 50 m) as an active material and fluororesin PVdF as a binder at a weight ratio of 95: 5 was obtained by a doctor blade method. It apply | coated to the single side | surface of the negative electrode collector (negative electrode core) 2 which consists of copper foil (thickness 16 micrometers) of 10%, 30%, 50%, 75%, and 95% of the hole area ratio, respectively. Then, it vacuum-heated at 100-150 degreeC, and was set as the negative electrode. The thickness (one side only) of the negative electrode active material layer was 65 μm, and the electrode area was 58 cm 2 .
[0021]
Assembling the battery A five-layer aluminum laminate made of polypropylene / modified polypropylene / aluminum / modified polypropylene / polypropylene was folded in two, and sealed only in the longitudinal direction. In FIG. 1, the seal portion parallel to the longitudinal direction is omitted.
[0022]
A porous polyethylene film was overlapped on the active material layer side of the negative electrode and bent into a U shape, and the positive electrode was sandwiched inside to form a power generating element. The power generation element was placed in the aluminum laminate outer package, and the upper seal portion 4 was heat-sealed and sealed. Next, 3 ml of the pregel solution was poured into the exterior body, and the lower seal portion 5 was quickly heat-sealed and sealed. And after injection | pouring of a pregel solution, it left still (aging) for 30 minutes, and the exterior body was heated at 60 degreeC after that for 1 hour. By this heating, the polymerizable compound in the pregel solution is polymerized to form a gel-like polymer solid electrolyte.
[0023]
Examples of the pregel solution include polyethylene glycol diacrylate (molecular weight 500) as a polymerizable compound, and an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio) at a concentration of 1 mol / L. Were mixed at a weight ratio of 1:10, and benzoyl peroxide was further added to 2000 ppm.
[0024]
As described above, gel-like solid electrolyte batteries according to Examples 1 to 5 were produced. Here, the aging time refers to the time from the completion of the injection of the pregel solution into the outer package until the start of heating for polymerization. Moreover, a hole area rate means what expressed the sum total area of the hole with respect to the total surface area of the collector one surface in percentage.
[0025]
(Examples 6 to 10)
Example 1 except that an aluminum foil having a porosity of 10%, 30%, 50%, 75%, and 95% was used as the positive electrode current collector, and a non-open copper foil was used as the negative electrode current collector. In the same manner as in -5, gel-like solid electrolyte batteries of Examples 6-10 were produced.
[0026]
(Example 11)
The gel state of Example 11 was the same as in Examples 1 to 5 except that an aluminum foil with a porosity of 50% was used as the positive electrode current collector and a copper foil with a porosity of 50% was used as the negative electrode current collector. A solid electrolyte battery was produced.
[0027]
(Example 12)
The gel form of Example 12 was the same as Examples 1-5 except that an aluminum foil with a porosity of 75% was used as the positive electrode current collector and a copper foil with a porosity of 75% was used as the negative electrode current collector. A solid electrolyte battery was produced.
[0028]
(Example 13)
The gel-like form of Example 13 is the same as Examples 1 to 5 except that an aluminum foil with a porosity of 95% is used as the positive electrode current collector and a copper foil with a porosity of 95% is used as the negative electrode current collector. A solid electrolyte battery was produced.
[0029]
(Examples 14 to 16 , 20 )
Example 20 shown in FIG. 3 using a non-perforated aluminum foil as the positive electrode current collector and a foamed copper porous body having a porosity of 85%, 90%, 95%, and 98% as the negative electrode current collector and 14 to 16 gelled solid electrolyte batteries were produced. For filling the foamed copper porous body with the positive electrode active material, the negative electrode active material was applied to the foamed copper porous body by the doctor blade method. About other matters, it carries out similarly to the said Examples 1-5, and the battery structure is also the same as that of Examples 1-5 except the point that the support body (current collector) of a negative electrode active material is a foamed copper porous body. It is. In addition, 21 of FIG. 3 is a negative electrode formed by holding a negative electrode active material in a foamed copper porous body.
[0030]
(Example 17 to 19, 21)
Example 21 shown in FIG. 4 using a foamed aluminum porous body having a porosity of 85%, 90%, 95%, and 98% as the positive electrode current collector and a non-open copper foil as the negative electrode current collector. And the gel-like solid electrolyte battery of 17-19 was produced. The filling method of the positive electrode active material in the foamed aluminum porous body is the same as in Examples 14 to 16, and the other matters are the same as in Examples 6 to 10. Reference numeral 22 in FIG. 4 is a positive electrode in which a positive electrode active material is held in a foamed aluminum porous body, and only the positive electrode structure is different from those in FIGS.
[0031]
Here, the said porosity means the ratio of the space volume per unit volume of a foam.
[0032]
(Comparative Example 1)
A gel-like solid electrolyte battery of Comparative Example 1 was produced in the same manner as in Examples 1 to 5 except that a metal foil having no holes was used for both the positive and negative current collectors.
[0033]
(Comparative Example 2)
A gel-like solid electrolyte battery of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that a copper foil having a porosity of 5% was used as the negative electrode current collector.
[0034]
(Comparative Example 3)
A gelled solid electrolyte battery of Comparative Example 3 was tried in the same manner as Comparative Example 1 except that a copper foil having a porosity of 96% was used as the negative electrode current collector. However, when the negative electrode was produced, the active material collapsed from the copper foil, making it difficult to produce a good negative electrode.
[0035]
(Comparative Example 4)
A gel-like solid electrolyte battery of Comparative Example 4 was produced in the same manner as Comparative Example 1 except that an aluminum foil having a porosity of 5% was used as the positive electrode current collector.
(Comparative Example 5)
A gelled solid electrolyte battery of Comparative Example 5 was tried in the same manner as Comparative Example 1 except that an aluminum foil having a porosity of 96% was used as the positive electrode current collector. However, it was difficult to produce a good positive electrode for the same reason as in Comparative Example 3.
[0036]
(Comparative Examples 6 and 8 )
An aluminum foil having no open pores (opening rate of 0%) was used as the positive electrode current collector , and a foamed copper porous body having a porosity of 80% and 99% was used as the negative electrode current collector. The gel-like solid electrolyte batteries of Comparative Examples 6 and 8 were produced in the same manner as in 1-5.
However, in Comparative Example 8 using 99% foamed copper porous body, it was difficult to produce a good negative electrode for the same reason as in Comparative Examples 3 and 5 above.
[0037]
(Comparative Examples 9 and 11 ) As the positive electrode current collector , a foamed aluminum porous body having a porosity of 80% and 99%, respectively, and the other conditions were the same as in Examples 14 to 16, and the gels of Comparative Examples 9 and 11 A solid electrolyte battery was prepared. However, in Comparative Example 11 using 99% foamed aluminum porous body, as in Comparative Example 8, it was difficult to produce a good positive electrode.
[0038]
(Comparative Example 12)
A gel-like solid electrolyte battery of Comparative Example 12 was produced in the same manner as in Examples 1 to 5 except that a metal foil having no holes was used for both the positive and negative current collectors and the aging time was 60 minutes. . In addition, the aging time of Examples 1-19 , 20 , and 21 is 30 minutes.
[0039]
(Measurement of battery discharge capacity and cycle characteristics)
The discharge capacity of the various batteries prepared above was examined under the following conditions. In addition, the cycle characteristics of each battery using metal foil were examined.
Discharge capacity After charging at a constant current of 1C and a constant voltage of 4.1V at room temperature, discharging was performed at a constant current of 1C until the discharge end voltage reached 2.75V, and the discharge capacity was measured. The results are shown in Tables 1-3.
[0040]
Cycle characteristics Charging / discharging was repeated under the above conditions, and the number of cycles until the discharge capacity reached 70% of the initial discharge capacity was measured. The results are shown in FIGS. 5 and 6 in relation to the aperture ratio of the current collector and the number of cycles up to 70% (referred to as 70% discharge capacity cycle number).
[0041]
[Table 1]
Figure 0003850977
[0042]
In Table 1, Examples 1 to 10 using a metal foil having a porosity of 10% to 95% for any one of the positive and negative current collectors used a metal foil having no holes for both the positive and negative current collectors. It was recognized that the discharge capacity was higher than that of Comparative Examples 2 and 4 in which a metal foil (aluminum foil or copper foil) having a porosity of 5% was used for either one of Comparative Example 1 and positive and negative current collectors. . In Examples 4 to 5 and Examples 9 to 10 using a metal foil with a porosity of 75 to 95%, a higher discharge capacity was obtained, and a porosity of 50 was provided to both the positive and negative current collectors. In Examples 12 to 13 using a metal foil of% or more, it was confirmed that a higher discharge capacity was obtained.
[0043]
On the other hand, in Comparative Examples 3 and 5 having an open area ratio of 96%, a phenomenon was observed in which the active material fell off from the current collector during electrode production. This is presumably because if the open area ratio exceeds 95%, the area of the non-open holes supporting the active material becomes too small to hold the active material sufficiently.
[0044]
On the other hand, from FIGS. 5 and 6, it was found that the 70% discharge capacity cycle number was remarkably increased when a metal foil having a porosity of 10% or more was used for either the positive or negative current collector. The 70% discharge capacity cycle number is an index representing the quality of cycle characteristics, and the larger the value, the better the cycle characteristics.
[0045]
As described above, a metal foil having an aperture ratio of 10% to 95%, more preferably an aperture ratio of 75% to 95% is used for one of the positive and negative current collectors, and more preferably, both the positive and negative current collectors are opened. It was confirmed that the discharge capacity and cycle characteristics of the gel polymer solid electrolyte battery can be improved by using a metal foil having a porosity of 75% to 95%.
[0046]
[Table 2]
Figure 0003850977
[0047]
[Table 3]
Figure 0003850977
[0048]
Table 2 and Table 3 revealed the following. That is, embodiments using either one foamed metal porous body of the positive and negative current collectors Example 14-19, 20 and 21, a high discharge capacity is obtained as compared with the Comparative Example 1 and Comparative Example 6, 8 and 9 It was. From this, it can be seen that even when a foam metal porous body having a porosity of 85% to 98% is used, the same effect as described above can be obtained. In addition, it was confirmed that the use of a foam metal porous body having a porosity of 99% (Comparative Examples 8 and 11) makes it difficult to produce an electrode. This is because the porosity is too high, so that the active material is not sufficiently supported. If the active material is broken, the energy density is lowered, which is not preferable. From the above, when using a foam metal porous body, the porosity needs to be 85% to 95%.
[0049]
Further, from the comparison between Comparative Example 12 in which the aging time was 60 minutes and Examples 1 to 19 , 20 and 21 in which the aging time was 30 minutes, the aging time was lengthened when the non-open metal foil was used. However, although the discharge capacity can hardly be increased, it can be seen that according to the production method of the present invention, a gel polymer solid electrolyte battery having remarkably excellent discharge capacity and cycle characteristics can be produced in a short aging time. In addition, according to the manufacturing method of the present invention, a battery having excellent characteristics with a short aging time can be constituted by a metal foil (or a foamed metal porous body) having an appropriate porosity, in a gap between active materials. Since the pregel solution easily penetrates, it is possible to construct an electrode in which the gel-like solid polymer electrolyte is spread over the entire electrode, and it is considered that such an electrode sufficiently draws the power generation capability of the active material. It is done.
[0050]
(Other matters)
The application of the present invention is not limited to the battery having the structure shown in FIGS. For example, a battery having a spiral power generation structure in which electrodes are wound may be used, or a battery having a structure in which flat positive and negative electrodes are alternately stacked via a gel polymer solid electrolyte may be used.
[0051]
Further, the positive electrode, the carbon negative electrode, the polymerizable compound, the organic solvent composing the electrolytic solution, etc., which are the constituent elements of the gel polymer solid electrolyte battery according to the present invention, are not limited to those described in the above examples. As the positive electrode active material other than the above, for example LiNiO 2, LiMnO 2, LiFeO 2, etc. can be used as the negative electrode active material, graphite materials such as natural graphite or artificial graphite capable of intercalating and deintercalating lithium ions, partially A carbonaceous material having a graphite structure or a mixture of both can be used.
[0052]
Further, as the polymerizable compound, for example, an acrylic compound such as polyethylene glycol diacrylate can be used, and as the electrolytic solution, for example, an organic solvent such as ethylene carbonate, vinylene carbonate, propylene carbonate, and dimethyl carbonate, diethyl carbonate, 1 A solution in which a solute such as LiPF 6 , LiClO 4 , or LiCF 3 SO 3 is dissolved in a mixed solvent with a low boiling point solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, or ethoxymethoxyethane can be used.
[0053]
Further, as the exterior body in the above embodiment, an aluminum laminate exterior body is used because it is flexible and has a high degree of freedom in shape . In this case, the aluminum layer is covered with a resin layer in order to prevent corrosion and maintain electrical insulation. Those having a three-layer structure or more are preferable, and more preferably, the adhesiveness to the current collector is increased. Therefore, the resin layer on the surface facing the current collector is preferably made of acid-modified polypropylene. In addition, the thickness of each layer of the aluminum laminate outer package is not particularly limited, but is generally 10 to 100 μm.
[0054]
【The invention's effect】
As described above, according to the present invention using a foamed metal porous body having a porosity of 85 to 98% or a metal foil having an opening ratio of 10 to 95% as a current collector, the packing density of the active material is improved. In addition, the adhesion between the current collector and the active material and the contact between the active material and the gel polymer solid electrolyte are improved, and the utilization factor of the electrode active material is improved. As a result, a gel polymer solid electrolyte battery having a high discharge capacity and excellent cycle characteristics is obtained.
[0055]
Furthermore, in the present invention, after the power generation element body and the pregel solution are accommodated in the exterior body, a method of polymerizing and curing the pregel solution to form a gel polymer solid electrolyte is employed. The remarkable effect that the above-described high-performance battery can be manufactured with high productivity is obtained.
[Brief description of the drawings]
FIG. 1 is a front external view of a gel polymer solid electrolyte battery according to the present invention using a flat outer package.
FIG. 2 is a schematic cross-sectional view taken along line AA in FIG.
FIG. 3 is a schematic cross-sectional view showing another embodiment of the gel polymer solid electrolyte battery according to the present invention.
FIG. 4 is a schematic cross-sectional view showing another embodiment of the gel polymer solid electrolyte battery according to the present invention.
FIG. 5 is a graph showing the relationship between the aperture ratio of the negative electrode current collector and the number of 70% discharge capacity cycles.
FIG. 6 is a graph showing the relationship between the aperture ratio of the positive electrode current collector and the 70% discharge capacity cycle number.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Negative electrode collector 3 Laminate exterior body 4 Upper seal part 5 Lower seal part 10 Positive electrode 11 Carbon negative electrode 12 Gel-like polymer solid electrolyte membrane (a porous film is included)
13 Positive Electrode Current Collection Tab 14 Negative Electrode Current Collection Tab 21 Negative Electrode Using Foamed Metal Porous Material 22 Positive Electrode Using Foamed Metal Porous Material

Claims (5)

正極活物質を正極集電体に保持させる正極作製工程と、
リチウムイオンを吸蔵放出することのできる炭素粉末を負極集電体に保持させる負極作製工程とからなる第1の工程と、
離間部材を介して上記正極と負極とを対向させて外装体内に収容すると共に、上記外装体内に重合性化合物と電解液とを含むプレゲル溶液を注入し、正負電極間にプレゲル溶液を浸入させる第2の工程と、
上記第2の工程の後、上記外装体を加熱し、重合性化合物を重合硬化することによりプレゲル溶液をゲル化する第3の工程と、
を備える高分子固体電解質電池の製造方法であって、
上記外装体として、アルミニウムラミネート材からなる外装体を用い、
上記重合性化合物として、アクリル化合物を用い、
上記正極集電体および/または負極集電体として、空孔率が85〜98%の発泡金属多孔体を用いる
ことを特徴とする高分子固体電解質電池の製造方法。
A positive electrode preparation step for holding the positive electrode active material on the positive electrode current collector;
A first step comprising a negative electrode preparation step of holding a carbon powder capable of occluding and releasing lithium ions in a negative electrode current collector;
The positive electrode and the negative electrode are accommodated in the outer package with the positive electrode and the negative electrode facing each other through a spacing member, and a pregel solution containing a polymerizable compound and an electrolytic solution is injected into the outer package to infiltrate the pregel solution between the positive and negative electrodes. Two steps;
After the second step, the outer step is heated, and a third step of gelling the pregel solution by polymerizing and curing the polymerizable compound;
A method for producing a polymer solid electrolyte battery comprising:
As the exterior body, an exterior body made of an aluminum laminate material is used.
As the polymerizable compound, an acrylic compound is used,
A method for producing a solid polymer electrolyte battery, wherein a foamed metal porous body having a porosity of 85 to 98% is used as the positive electrode current collector and / or the negative electrode current collector.
正極活物質を正極集電体に保持させる正極作製工程と、
リチウムイオンを吸蔵放出することのできる炭素粉末を負極集電体に保持させる負極作製工程とからなる第1の工程と、
離間部材を介して上記正極と負極とを対向させて外装体内に収容すると共に、上記外装体内に重合性化合物と電解液とを含むプレゲル溶液を注入し、正負電極間にプレゲル溶液を浸入させる第2の工程と、
上記第2の工程の後、上記外装体を加熱し、重合性化合物を重合硬化することによりプレゲル溶液をゲル化する第3の工程と、
を備える高分子固体電解質電池の製造方法であって、
上記外装体として、アルミニウムラミネート材からなる外装体を用い、
上記重合性化合物として、アクリル化合物を用い、
上記正極集電体および/または負極集電体として、開口率が10〜95%の金属箔を用いる
ことを特徴とする高分子固体電解質電池の製造方法。
A positive electrode preparation step for holding the positive electrode active material on the positive electrode current collector;
A first step comprising a negative electrode preparation step of holding a carbon powder capable of occluding and releasing lithium ions in a negative electrode current collector;
The positive electrode and the negative electrode are accommodated in the outer package with the positive electrode and the negative electrode facing each other through a spacing member, and a pregel solution containing a polymerizable compound and an electrolytic solution is injected into the outer package to infiltrate the pregel solution between the positive and negative electrodes. Two steps;
After the second step, the outer step is heated, and a third step of gelling the pregel solution by polymerizing and curing the polymerizable compound;
A method for producing a polymer solid electrolyte battery comprising:
As the exterior body, an exterior body made of an aluminum laminate material is used.
As the polymerizable compound, an acrylic compound is used,
A method for producing a solid polymer electrolyte battery, wherein a metal foil having an aperture ratio of 10 to 95% is used as the positive electrode current collector and / or the negative electrode current collector.
前記正極集電体および/または負極集電体として、開口率が75〜95%の金属箔を用いる
ことを特徴とする請求項2に記載の高分子固体電解質電池の製造方法。
The method for producing a polymer solid electrolyte battery according to claim 2, wherein a metal foil having an aperture ratio of 75 to 95% is used as the positive electrode current collector and / or the negative electrode current collector.
前記第2の工程において、前記離間部材として多孔質フィルムを用い、この多孔質フィルムに外装体内に注液されたプレゲル溶液を含浸させる
ことを特徴とする請求項1ないし3の何れかに記載の高分子固体電解質電池の製造方法。
In the second step, as the spacer member using a porous film, according to any one of claims 1 to 3, characterized in that impregnating the injected been pre-gel solution into the outer body in the porous film A method for producing a solid polymer electrolyte battery.
前記第3の工程における加熱を、プレゲル溶液が注入された外装体を密閉したのちに行う
ことを特徴とする請求項1ないし4の何れかに記載の高分子固体電解質電池の製造方法。
The method for producing a solid polymer electrolyte battery according to any one of claims 1 to 4, wherein the heating in the third step is performed after the outer package into which the pregel solution has been injected is sealed.
JP08581298A 1998-03-31 1998-03-31 Method for producing polymer solid electrolyte battery Expired - Fee Related JP3850977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08581298A JP3850977B2 (en) 1998-03-31 1998-03-31 Method for producing polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08581298A JP3850977B2 (en) 1998-03-31 1998-03-31 Method for producing polymer solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11283672A JPH11283672A (en) 1999-10-15
JP3850977B2 true JP3850977B2 (en) 2006-11-29

Family

ID=13869285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08581298A Expired - Fee Related JP3850977B2 (en) 1998-03-31 1998-03-31 Method for producing polymer solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3850977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495787B2 (en) 2016-09-01 2022-11-08 Lg Energy Solution, Ltd. Method of preparing electrode using current collector having through-pores or holes

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597294B2 (en) * 1999-12-20 2010-12-15 サンスター技研株式会社 Polymer solid electrolyte lithium ion secondary battery
JP4201459B2 (en) * 2000-03-31 2008-12-24 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4009410B2 (en) * 2000-07-19 2007-11-14 三菱化学株式会社 Flat plate battery and method for manufacturing flat plate battery
JP2002110241A (en) 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery and its production method
JP4781547B2 (en) * 2001-03-13 2011-09-28 株式会社クレハ Polymer gel electrolyte and battery
CN1528029A (en) * 2001-05-10 2004-09-08 �����֯��ʽ���� Polymer gel electrlyte-use composition and method of pouring non-aqueous electrolyte solution
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
WO2003028144A1 (en) * 2001-09-21 2003-04-03 Daiso Co., Ltd. Element using polymer gel electrolyte
JP5384162B2 (en) * 2009-03-27 2014-01-08 Jmエナジー株式会社 Lithium ion capacitor
CN104094465B (en) 2012-05-29 2016-09-21 株式会社Lg化学 Secondary cell and manufacture method thereof
WO2015181666A1 (en) 2014-05-29 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
KR101666714B1 (en) * 2014-08-30 2016-10-14 주식회사 제낙스 Flexible rechargeable battery and method of fabricating the same
JP7302593B2 (en) * 2018-04-03 2023-07-04 株式会社村田製作所 lithium polymer battery
CN112055909A (en) * 2018-05-03 2020-12-08 株式会社Lg化学 Method for manufacturing all-solid-state battery including polymer solid electrolyte and all-solid-state battery obtained by the method
JP6983147B2 (en) * 2018-12-26 2021-12-17 本田技研工業株式会社 Solid-state battery electrodes and solid-state batteries
CN113471406B (en) * 2020-03-30 2022-10-11 宁德新能源科技有限公司 Negative pole piece and electrochemical device comprising same
WO2024070724A1 (en) * 2022-09-28 2024-04-04 マクセル株式会社 Flexible battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495787B2 (en) 2016-09-01 2022-11-08 Lg Energy Solution, Ltd. Method of preparing electrode using current collector having through-pores or holes

Also Published As

Publication number Publication date
JPH11283672A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
US6890684B2 (en) Method of binding an electrolyte assembly to form a non-aqueous electrolyte secondary battery
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
JP3225867B2 (en) Lithium ion secondary battery and method of manufacturing the same
US6653015B2 (en) Lithium ion secondary battery
US6232014B1 (en) Lithium ion secondary battery and manufacture thereof
KR100354947B1 (en) Nonaqueous electrolyte secondary battery
JP4281129B2 (en) Lithium ion secondary battery
JP4365098B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JP2001167743A (en) Secondary battery and electronic device using the same
US6268087B1 (en) Method of preparing lithium ion polymer battery
JP2001319689A (en) Lithium-polymer secondary battery
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP3752913B2 (en) Secondary battery
JP3806505B2 (en) Method for producing polymer solid electrolyte battery
JP4015827B2 (en) Non-aqueous electrolyte battery
JP4031407B2 (en) Secondary battery
JP2013235826A (en) Nonaqueous electrolyte secondary battery manufacturing method
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP2004079310A (en) Manufacturing method for polymer lithium secondary battery
JPH11214038A (en) Gel high polymer solid electrolyte battery and manufacture thereof
US6376125B2 (en) Lithium ion secondary battery and process for producing the same
JP2003100348A (en) Composite polymer electrolyte and electrochemical device using the same
JP2002100406A (en) Polymer lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

LAPS Cancellation because of no payment of annual fees