JP3752913B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP3752913B2
JP3752913B2 JP26353299A JP26353299A JP3752913B2 JP 3752913 B2 JP3752913 B2 JP 3752913B2 JP 26353299 A JP26353299 A JP 26353299A JP 26353299 A JP26353299 A JP 26353299A JP 3752913 B2 JP3752913 B2 JP 3752913B2
Authority
JP
Japan
Prior art keywords
separator
battery
secondary battery
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26353299A
Other languages
Japanese (ja)
Other versions
JP2001084985A (en
Inventor
道雄 村井
隆之 犬塚
育弘 吉田
浩司 浜野
久 塩田
茂 相原
大吾 竹村
広明 漆畑
淳 荒金
隆 西村
省二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26353299A priority Critical patent/JP3752913B2/en
Publication of JP2001084985A publication Critical patent/JP2001084985A/en
Application granted granted Critical
Publication of JP3752913B2 publication Critical patent/JP3752913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は携帯用電子機器等に使用される二次電池に関するものである。特に、薄型の形状を有し得るリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
携帯用電子機器の小型・軽量化への要望は非常に大きいが、その実現のためには電池の性能向上と小型化が不可欠であり、そのために現在、種々の電池開発、改良が進められている。電池に要求されている特性は、高電圧、高エネルギー密度、信頼性、形状の任意性などである。リチウムイオン二次電池は、これまでの電池の中で最も高電圧かつ高エネルギー密度が実現されることが期待される二次電池であり、現在でもその改良が盛んに進められている。
【0003】
リチウムイオン二次電池はその主要な構成要素として、正極および負極と、これらの正極および負極との間に挟まれるイオン伝導層を有する。現在実用されているリチウムイオン二次電池においては、正極には活物質としてのリチウムコバルト酸化物等の粉末を集電体に塗布し板状にしたもの、負極には活物質として炭素系材料の粉末を集電体に塗布し板状にしたものが用いられている。イオン伝導層にはポリエチレン、ポリプロピレンからなる多孔質フィルムであるセパレータに非水系の電解液を満たしたものが用いられている。
【0004】
従来のリチウムイオン二次電池においては、例えば、特開平8−83608号公報に示されるように、構成要素である正極、セパレータおよび負極の電気的接触を維持するために、これら構成要素に対して金属等の強固な外装缶により外部から圧力を与えることにより、上記構成要素全ての面間の接触を保つようにしている。
【0005】
また、例えば特開平5−159802号公報に記載された固体二次電池の例では、イオン伝導性固体電解質層と電極層とを熱可塑性樹脂結着剤で加熱結着することにより、電極層と電解質層とを一体化する製造方法が示されている。この場合、電極層と電解質層とを一体化することにより電気的接触を維持しているため外部から圧力を加えなくても電池として働くものである。
【0006】
また、薄型電池に関して、イオン伝導体に高分子ゲルを用いたものが知られているが、この薄型電池においては高分子ゲルとしてポリフッ化ビニリデンを用いることにより、正極、セパレータおよび負極を一体化させている。
【0007】
上記のような問題点を解決するために、例えば特開平10−172537号公報に示されているような多孔質の接着層により電極活物質層とセパレータ層を接着し一体化させる方法がある。同公報では、接着剤樹脂溶液をセパレータに塗布後、電極活物質層を貼り合わせ、溶剤を乾燥させることにより接着層を多孔化することが特徴となっている。
【0008】
【発明が解決しようとする課題】
従来の電池は以上のように構成されているので、正極とセパレータ、負極とセパレータを電気的に充分に接触させるために、外部から圧力をかけ得るような金属等でできた強固な外装缶を使用しなければならず、その結果、電池の体積および重量において、発電部以外の外装缶が占める割合が大きくなり、体積および重量に対するエネルギー密度の高い電池を形成するには不利であるという問題点があった。
【0009】
また、電極層と電解質層とを結着剤や高分子ゲルで接合した電池においては、電極層と電解質との界面が固体の結着剤で覆われているため、電極層と電解質との界面におけるイオン伝導性の観点から、例えば、上記のような液体電解質を用いて外装缶で外部から圧力をかけるタイプの電池に比べて不利である。また、結着剤や高分子ゲルを使用した場合においても液体電解質と同等以上のイオン伝導性を有する結着剤や高分子ゲルは一般に見いだされておらず、液体電解質を用いた電池と同等のイオン伝導性を得ることができない。
【0010】
また、特開平10−172537号公報に示されているような多孔質の接着層により電極活物質層とセパレータ層を接着し一体化させる方法においては、接着剤により一体化される電極活物質層及びセパレータのいずれもが多孔質構造を有するため、電極活物質層とセパレータとの界面に存在し接着力の発現に寄与すべき接着剤溶液層が、溶剤乾燥時に多孔質構造である電極活物質層やセパレータに吸引されてしまい、塗布された接着剤の多くが接着力の発現に寄与できない。一方、電池特性向上の点からイオン伝導性に乏しい接着剤樹脂の塗布量は低減されることが望ましいが、前記理由から一定以上の接着強度を有するためには接着剤塗布量の低減が困難であることが課題であった。
【0011】
本発明は上記のような課題を解消するためになされたものであり、電極活物質層とセパレータとをより少量の接着剤で接合することによって、外部から圧力を与えるための強固な外装缶を使用することなく、電極層と電解質層との間の良好な電気的接触を有する電池体を形成せしめ、良好な充放電特性と高い安全性を有する電池を得ることを目的とするものである。
【0012】
【課題を解決するための手段】
本発明に係る第1の二次電池は、活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜の極大孔径が100〜300nmであるものである。
【0014】
本発明に係る第の二次電池は、活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜の100℃における熱収縮率が10%以下であるものである。
【0015】
本発明に係る第の二次電池は、活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜が2種類以上のポリオレフィン樹脂を積層してなる多層膜構造であるものである。
【0016】
本発明に係る第の二次電池は、上記第1ないし第3のいずれかの二次電池において、正極と負極との間にセパレータが配置されたものを1単位とし、複数の単位を有するものである。
【0017】
本発明に係る第の二次電池は、上記第の二次電池において、切り離された正極、セパレータおよび負極を積み重ねて複数の単位が形成されているものである。
【0018】
本発明に係る第の二次電池は、上記第の二次電池において、連続した正極、セパレータおよび負極を巻き上げて複数の単位が形成されているものである。
【0019】
【発明の実施の形態】
本発明の特徴は、多孔質の接着層により電極活物質層とセパレータとを接着し、一体化させた電池において、セパレータに使用する多孔膜の物性にあり、特定の空孔率、孔径および熱収縮率を有する多孔膜をセパレータとして使用する点にある。
【0020】
本発明者等は、多孔質の接着層により電極活物質層とセパレータを接着し一体化させた二次電池にあって、いかに充放電効率を高くし、安全性を向上させるかに関し、種々の研究を重ねた結果、上述のように、セパレータに特定の空孔率、孔径、熱収縮率を有する多孔膜を使用することにより、より少量の接着剤により電極活物質層とセパレータが強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られることを見出した。
【0021】
即ち、本発明者等の研究によれば、セパレータとして空孔率45〜55%のポリオレフィン製多孔膜を用いることにより、より少量の接着剤により電極活物質層とセパレータが強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られることを見出した。このように、より少量の接着剤により電極活物質層とセパレータが強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られた理由は、電極活物質層とセパレータ層の接着において、もっとも接着力に影響する部分が接着層とセパレータとの界面であり、接着層とセパレータとの界面での接着力が接着剤の一部がセパレータの孔に入り込む投錨効果によるものであって、空孔率が45〜55%の範囲で投錨効果が特に有効に作用したためと考えられる。
【0022】
また、本発明等者の研究によれば、セパレータに使用される多孔膜の孔径が1000〜300nmの範囲にある場合、特に電極活物質層とセパレータとの接着力が強くなり、さらにより少量の接着剤により電極活物質層とセパレータ層が強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られることを見出した。この多孔膜の孔径の作用についての詳細は不明であるが、接着剤溶液を塗布した後、電極活物質層とセパレータを貼り合わせ、溶剤を乾燥する際に、接着剤溶液層が多孔質構造である電極活物質層やセパレータに吸引されてしまう問題に対して、多孔膜の孔径が100〜300nmの範囲にある場合、毛細管力に基づく電極活物質層の吸引力とセパレータの吸引力が釣り合い、より多くの接着剤溶液が電極活物質層とセパレータの界面に残存した結果、電極活物質層とセパレータが強固に接合できたためと考えられる。
【0023】
また、セパレータに用いられる多孔膜は、100℃における熱収縮率が10%以下であることが望ましい。セパレータに用いられる多孔膜は一般に製造の際延伸されることが多く、延伸されたものは加熱により収縮し、もとの形状に復元しようとする。電池が短絡等の何らかの要因で発熱した場合、熱収縮率が大きなセパレータの場合、収縮により例えば電池体端面部において正極と負極が短絡し、さらに電池の発熱が促進される危険性がある。このような危険性を回避するために、セパレータを電極に強固に接合させるとともに、熱収縮率が小さな多孔膜をセパレータに使用されることが望まれる。
【0024】
なお、セパレータに用いられるポリオレフィン製多孔膜としては、ポリエチレン、ポリプロピレン、ポリブテン及び、少なくともこれらのうち1つを含む共重合体などの樹脂からなる単層多孔膜もしくは2種類以上の樹脂からなる積層多孔膜が使用可能である。セパレータが電池温度上昇時に閉孔してイオンの流れを遮断するシャットダウン特性が期待されるが、シャットダウン機能が発現する温度はセパレータに用いる多孔膜材料の融点による。このシャットダウン機能の観点からセパレータにはポリエチレンまたはポリプロピレン層を少なくとも1層以上含む多孔膜を使用することが特に望ましい。
【0025】
上記電池を製造するに当たっては、電解液としてリチウム塩の非水溶媒溶液が使用される。
【0026】
リチウム塩には、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiPF6、LiI、LiBr、LiSCN、Li210Cl10、LiCF3CO2及びその混合物を挙げることができる。
【0027】
また、非水溶媒として、プロピレンカーボネート、γ−ブチルラクトン、エチレンカーボネート、テトラヒドロフラン、2−テトラヒドロフラン、1,3−ジオキソラン、4,4−ジメチル−1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、スルホラン、3ーメチルスルホラン、tert−ブチルエーテル、iso−ブチルエーテル、1,2−ジメトキシエタン、1,2−エトキシメトキシエタン及びその混合物を使用することができる。
【0028】
【実施例】
以下に実施例及び比較例を挙げて本発明をさらにくわしく説明するが、本発明はこれら実施例に限定されるものではない。なお、本発明により得られた電池の電池充放電特性、過充電特性は以下の方法に従って行なった。
【0029】
〈電池充放電特性〉
以下の実施例に記載する方法で電池を作製し、この作製した電池について、電流値2Cに於ける充放電特性を電池便覧(電池便覧編集委員会編 丸善 平成2年発行)に記載されている方法に従い、以下の条件で測定した。
充電:定電流+定電圧法、上限電圧4.2V
放電:定電流 下限電圧2.5V
充放電効率(%)=放電された電気容量÷充電された電気容量×100
【0030】
〈過充電特性〉
以下の実施例に記載する方法で電池を作製し、この作製した電池について、電流値2Cで10Vまで充電を行い、その際の電池外観変化、電池容器表面の最高到達温度、セパレータがシャットダウンした後に流れた電流値を測定した。
【0031】
〈多孔膜の物性〉
セパレータに使用する多孔膜の空孔率、孔径、100℃における熱収縮率は以下のように決定した。
(1)空孔率
液体置換法により求められる多孔膜の真比重Dと、多孔膜の重量と寸法を計測することにより求まる、かさ密度dより、以下の算式を用いて計算した。
空孔率(%)=(1−d/D)×100
(2)孔径
水銀圧入法により求められる多孔膜の極大孔径を採用した。
(3)熱収縮率
10cm角(面積100cm2)に切り出した多孔膜を100℃雰囲気に3時間曝した後、面積Sを測定し、以下の算式を用いて計算した。
熱収縮率(%)=(100−S/100)×100
【0032】
〈正極の作製〉
LiCoO2を87重量%、黒鉛粉を8重量%、ポリフッ化ビニリデンを5重量%に調整した正極活物質ペーストを、ドクターブレード法で厚さ300μmに調整しつつ塗布して活物質薄膜を形成した。この活物質薄膜上部に正極集電体となる厚さ30μmのアルミニウム網を載せ、さらに、このアルミニウム網上部にドクターブレード法で厚さ300μmに調整して正極活物質ペーストを塗布した。これを60℃の乾燥機中に60分間放置して半乾き状態にして、積層体電極とした。この作製した積層体電極を400μmになるように圧延することにより正極を作製した。
【0033】
〈負極の作製〉
メソフェーズマイクロビーズカーボンを95重量%、ポリフッ化ビニリデンを5重量%に調整した負極活物質ペーストを、ドクターブレード法で厚さ300μmに調整しつつ塗布して活物質薄膜を形成した。この活物質薄膜上部に負極集電体となる厚さ20μmの帯状の銅網を載せ、さらに、この銅網上部にドクターブレード法で厚さ300μmに調整して負極活物質ペーストを塗布した。これを60℃の乾燥機中に60分間放置して半乾き状態にして、積層体電極とした。この作製した積層体電極を400μmになるように圧延することにより負極を作製した。
【0034】
〈接着剤の調製〉
ポリフッ化ビニリデン10重量部、N−メチルピロリドン(以下NMPと略する)70重量部からなる均一溶液に、20重量部のアルミナ粒子を均一に分散させることにより接着剤を得た。
【0035】
〈積層構造電池体の作製〉
図1は、本発明の積層構造電池体の一実施例を模式的に示す断面図である。図において、1は正極、2は負極、3はセパレータ、4は接着層であり、5は正極1、セパレータ3および負極を接着層4で接合した1単位の積層体である。
【0036】
図1に示した積層構造電池体の作製方法を以下に示す。
まず、2枚のセパレータの各々片面に接着剤を塗布し、接着剤を塗布した2枚のセパレータの間に負極を挟み、密着させ貼り合わせた後、加熱乾燥することによりセパレータと負極を接着させた。
【0037】
次に、セパレータ付き負極を所定の大きさとし、このセパレータの一方の面に接着剤を塗布し、この接着剤塗布面上に所定の大きさの正極を密着させ貼り合わせた。ついで、新たなセパレータ付き負極を準備し、このセパレータの一方の面に接着剤を塗布し、先に密着させ貼り合わせた正極の他方の面に密着させ貼り合わせた。この工程を所定回数繰り返すことで、1単位を複数積層した電池体を構成した後、電池体を加熱しながら乾燥し、正極とセパレータ付き負極とを接着し、図1に示したような平板状の積層構造電池体を得た。
【0038】
得られた電池体に、リチウム塩としてLiPF6を用い、非水溶媒としてエチレンカーボネートとジエチルカーボネートの混合溶媒を用いて、リチウム塩濃度を1.2mol/lに調製した電解液を含浸させた。その後、前記電池体をアルミラミネートフィルムからなる容器に挿入し、熱融着により封口し、積層構造のリチウムイオン二次電池を得た。
【0039】
〈巻型構造電池体の作成〉
図2は、本発明の巻型構造電池体の一実施例を模式的に示す断面図である。図において、1は正極、2は負極、3はセパレータ、4は接着層であり、5は正極1、セパレータ3および負極を接着層4で接合した1単位の積層体である。
【0040】
図2に示した巻型構造電池体の作製方法を以下に示す。
2枚の帯状のセパレータを準備し、セパレータの各々片面に接着剤を塗布し、接着剤を塗布した2枚のセパレータの間に帯状の負極を挟み、密着させ貼り合わせた後、加熱乾燥することによりセパレータと負極を接着させた。次に、セパレータ付き負極の一方の帯状セパレータ面に接着剤を塗布し、この接着剤塗布面上に帯状の正極を密着させ貼り合わせた。ついで、前記セパレータ付き負極の、先程接着剤を塗布した面と反対の面に接着剤を塗布し、長円状に巻き込んでいった。巻き上げた長円状の電池体を加圧しながら乾燥し、正極とセパレータ付き負極とを接着し、図2に示したような、平板状の巻型構造電池体を得た。得られた電池体に、前記積層構造電池と同様に、電解液を含浸し、容器に挿入後、封口して巻型構造のリチウムイオン二次電池を得た。
【0041】
実施例1〜42.及び比較例1〜17.
上記のように作製される電池において、セパレータとして、図3ないし図7に示す多孔膜を用いて、実施例1〜42及び比較例1〜17に示す電池を作製し、その電池特性を評価した。評価結果を図3ないし図7に併せて示した。
【0042】
電池特性の評価は、室温にて充放電特性を測定し、下記基準で判定した結果、図3ないし図6に示したように実施例1〜42の電池はいずれも良好な充放電特性を示した。
○○:充放電効率が90%以上
○:充放電効率が80%以上90%未満
△:充放電効率が70%以上80%未満
×:充放電効率が70%以下
【0043】
また、比較例により得られた電池を用いて、室温にて過充電特性を検討し、下記各項目(1)ないし(3)について以下の基準で判定した結果、図3ないし図6に示したように、実施例1〜42の電池はいずれも、過充電により電池外観が変化することなく、高温に発熱せず、シャットダウン後は電流がほぼ流れることなく良好な過充電特性を示した。
(1)電池外観
過充電後電池外観を目視観察し、以下の基準で判定した。
○:過充電により変化なし
×:過充電により電池外観に何らかの変化あり
(2)電池最高到達温度
○:最高到達温度が120℃未満
△:最高到達温度が120℃以上140℃未満
×:最高到達温度が140℃以上
(3)シャットダウン後電流値
○:電流値0
△:電流値が50mA未満
×:電流値が50mA以上
【0044】
多孔質の接着層により電極活物質層とセパレータを接着し一体化させた二次電池にあって、セパレータに特定の空孔率、孔径、熱収縮率を有する多孔膜を使用することにより、より少量の接着剤により電極活物質層とセパレータ層が強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られた。
【0045】
即ち、セパレータとして空孔率45〜55%のポリオレフィン製多孔膜を用いることにより、良好な充放電特性と高い安全性を有する二次電池が得られることを見出した。比較例3、6および9に示したように多孔膜の空孔率が55%より大きくなると、充放電特性は向上するものの、過充電特性が低下し電池の安全性が低下した。また比較例1、2、4、5、7および8によれば空孔率が45%より小さくなると充放電特性が低下した。
【0046】
また、セパレータに使用される多孔膜の孔径が100〜300nmの範囲にある場合、特に良好な充放電特性と高い安全性を有する二次電池が得られることを見出した。比較例10、12および14のように多孔膜の孔径が100nm未満となると充放電特性が低下した。また比較例11、13、15に示したように多孔膜の孔径が300nmより大きくなると充放電特性は向上するものの、過充電特性が低下し電池の安全性が低下した。
【0047】
また、比較例16および17の結果からセパレータの熱収縮率が10%以下である方が、過充電特性の観点からより望ましいことがわかった。
【0048】
実施例3、12および21と実施例6、15および24との結果の比較より、同じ多孔膜の物性を有していても、膜材質がポリエチレン単層膜より、ポリエチレンとポリプロピレンの多層膜の方がより高い過充電特性を示すことがわかった。
【0049】
【発明の効果】
本発明に係る第1の二次電池によれば、活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜の極大孔径が100〜300nmであるので、少量の接着剤により電極活物質層とセパレータが強固に接合でき、良好な充放電特性と高い安全性を有する二次電池が得られる。
【0051】
本発明に係る第2あるいは第3の二次電池によれば、電池体端面部において正極と負極が短絡するのを防止し、さらに電池の発熱が促進される危険性を回避することができる。
【0052】
本発明に係る第4ないし第6のいずれかの二次電池によれば、正極と負極との間にセパレータが配置されたものを1単位とし、複数の単位を有するので、電池容量を大きくできる。
【図面の簡単な説明】
【図1】 本発明の一実施例における電池の主要部の構成を示す断面図である。
【図2】 本発明の他の実施例における電池の主要部の構成を示す断面図である。
【図3】 本発明の実施例1ないし15の電池特性評価結果を示すものである。
【図4】 本発明の実施例16ないし28の電池特性評価結果を示すものである。
【図5】 本発明の実施例29ないし40の電池特性評価結果を示すものである。
【図6】 本発明の実施例41および42、並びに比較例1ないし11の電池特性評価結果を示すものである。
【図7】 比較例12ないし17の電池特性評価結果を示すものである。
【符号の説明】
1 正極、2 負極、3 セパレータ、4 接着層、5 積層体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery used in a portable electronic device or the like. In particular, the present invention relates to a lithium ion secondary battery that can have a thin shape.
[0002]
[Prior art]
There is a great demand for miniaturization and weight reduction of portable electronic devices, but in order to realize this, it is indispensable to improve the performance and miniaturization of the battery. To that end, various battery developments and improvements are currently underway. Yes. The characteristics required for the battery include high voltage, high energy density, reliability, and arbitrary shape. The lithium ion secondary battery is a secondary battery that is expected to achieve the highest voltage and high energy density among the conventional batteries, and its improvement is actively promoted even now.
[0003]
A lithium ion secondary battery has, as main components, a positive electrode and a negative electrode, and an ion conductive layer sandwiched between the positive electrode and the negative electrode. In the lithium ion secondary battery currently in practical use, the positive electrode is made by applying a powder of lithium cobalt oxide or the like as an active material to a current collector, and the negative electrode is made of a carbon-based material as an active material. A powder is applied to a current collector to form a plate. As the ion conductive layer, a separator, which is a porous film made of polyethylene or polypropylene, filled with a non-aqueous electrolyte is used.
[0004]
In a conventional lithium ion secondary battery, for example, as shown in Japanese Patent Laid-Open No. 8-83608, in order to maintain the electrical contact of the positive electrode, the separator, and the negative electrode, which are constituent elements, By applying pressure from the outside with a strong outer can such as metal, contact between the surfaces of all the components is maintained.
[0005]
Further, in the example of the solid secondary battery described in, for example, JP-A-5-159802, the ion conductive solid electrolyte layer and the electrode layer are heated and bonded with a thermoplastic resin binder, whereby the electrode layer and A manufacturing method for integrating the electrolyte layer is shown. In this case, since the electrical contact is maintained by integrating the electrode layer and the electrolyte layer, it functions as a battery without applying pressure from the outside.
[0006]
In addition, a thin battery using a polymer gel as an ion conductor is known. In this thin battery, the positive electrode, the separator, and the negative electrode are integrated by using polyvinylidene fluoride as the polymer gel. ing.
[0007]
In order to solve the above-described problems, there is a method in which an electrode active material layer and a separator layer are bonded and integrated by a porous adhesive layer as disclosed in, for example, JP-A-10-172537. This publication is characterized in that after the adhesive resin solution is applied to the separator, the electrode active material layer is bonded, and the solvent is dried to make the adhesive layer porous.
[0008]
[Problems to be solved by the invention]
Since the conventional battery is configured as described above, in order to make the positive electrode and the separator, and the negative electrode and the separator sufficiently in electrical contact, a strong outer can made of a metal that can be pressurized from the outside is used. As a result, the ratio of the outer can other than the power generation unit to the volume and weight of the battery increases, which is disadvantageous for forming a battery having a high energy density with respect to the volume and weight. was there.
[0009]
In addition, in a battery in which the electrode layer and the electrolyte layer are joined with a binder or a polymer gel, the interface between the electrode layer and the electrolyte is covered with a solid binder, so that the interface between the electrode layer and the electrolyte is From the viewpoint of ion conductivity in the case, for example, it is disadvantageous compared to a battery of the type in which pressure is applied from the outside with an outer can using a liquid electrolyte as described above. Even when a binder or polymer gel is used, a binder or polymer gel having an ionic conductivity equal to or higher than that of a liquid electrolyte is not generally found, and is equivalent to a battery using a liquid electrolyte. Ion conductivity cannot be obtained.
[0010]
In the method of bonding and integrating the electrode active material layer and the separator layer with a porous adhesive layer as disclosed in JP-A-10-172537, the electrode active material layer integrated with an adhesive Since both of the separator and the separator have a porous structure, the adhesive solution layer that exists at the interface between the electrode active material layer and the separator and should contribute to the expression of the adhesive force has a porous structure when the solvent is dried. Many of the applied adhesives cannot be contributed to the expression of the adhesive force because they are sucked by the layer or the separator. On the other hand, it is desirable to reduce the coating amount of adhesive resin with poor ion conductivity from the viewpoint of improving battery characteristics, but for the above reasons, it is difficult to reduce the coating amount of adhesive to have a certain level of adhesive strength. There was a problem.
[0011]
The present invention has been made in order to solve the above-described problems, and by bonding an electrode active material layer and a separator with a smaller amount of adhesive, a strong outer can for applying pressure from the outside is provided. An object of the present invention is to form a battery body having good electrical contact between an electrode layer and an electrolyte layer without using it, and to obtain a battery having good charge / discharge characteristics and high safety.
[0012]
[Means for Solving the Problems]
A first secondary battery according to the present invention is a secondary battery in which a separator is bonded and integrated by an adhesive layer between the active material layers of a positive electrode and a negative electrode in which an active material layer is bonded to a current collector. , what polyolefin porous membrane der of porosity 45% to 55%, and those maximum pore diameter of the porous membrane is 100 to 300 nm.
[0014]
Second secondary battery according to the present invention is a secondary battery separator in the active material layers of adhered positive electrode and a negative electrode active material layer on the current collector is integrated is bonded by an adhesive layer, said separator A porous membrane made of polyolefin having a porosity of 45 to 55%, and the thermal shrinkage rate at 100 ° C. of the porous membrane is 10% or less.
[0015]
A third secondary battery according to the present invention is a secondary battery in which a separator is bonded and integrated by an adhesive layer between the active material layers of the positive electrode and the negative electrode in which an active material layer is bonded to a current collector. A porous film made of polyolefin having a porosity of 45 to 55%, and the porous film has a multilayer film structure in which two or more kinds of polyolefin resins are laminated.
[0016]
A fourth secondary battery according to the present invention has a plurality of units, wherein one of the first to third secondary batteries is a unit in which a separator is disposed between a positive electrode and a negative electrode. Is.
[0017]
A fifth secondary battery according to the present invention is the fourth secondary battery in which a plurality of units are formed by stacking the separated positive electrode, separator, and negative electrode.
[0018]
A sixth secondary battery according to the present invention is the fourth secondary battery in which a plurality of units are formed by winding up a continuous positive electrode, separator, and negative electrode.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A feature of the present invention resides in the physical properties of a porous film used for a separator in a battery in which an electrode active material layer and a separator are bonded and integrated by a porous adhesive layer, and has a specific porosity, pore diameter, and heat. A porous film having a shrinkage rate is used as a separator.
[0020]
In the secondary battery in which the electrode active material layer and the separator are bonded and integrated by the porous adhesive layer, the present inventors have various ways to improve charge / discharge efficiency and improve safety. As a result of repeated research, the electrode active material layer and the separator are firmly bonded with a smaller amount of adhesive by using a porous film having a specific porosity, hole diameter, and heat shrinkage rate as described above. It was found that a secondary battery having good charge / discharge characteristics and high safety can be obtained.
[0021]
That is, according to the study by the present inventors, by using a polyolefin porous film having a porosity of 45 to 55% as a separator, the electrode active material layer and the separator can be firmly bonded with a smaller amount of adhesive, which is good. It was found that a secondary battery having excellent charge / discharge characteristics and high safety can be obtained. Thus, the reason why the electrode active material layer and the separator can be firmly bonded with a smaller amount of the adhesive and the secondary battery having good charge / discharge characteristics and high safety was obtained is that the electrode active material layer and the separator layer The most influential part of the adhesive is the interface between the adhesive layer and the separator, and the adhesive force at the interface between the adhesive layer and the separator is due to the anchoring effect that part of the adhesive enters the separator hole. It is considered that the anchoring effect was particularly effective when the porosity was 45 to 55%.
[0022]
Further, according to the research of the present inventors, when the pore diameter of the porous membrane used in the separator is in the range of 1000 to 300 nm, the adhesive force between the electrode active material layer and the separator is particularly strong, and even a smaller amount It has been found that an electrode active material layer and a separator layer can be firmly bonded with an adhesive, and a secondary battery having good charge / discharge characteristics and high safety can be obtained. The details of the effect of the pore size of this porous membrane are unknown, but after applying the adhesive solution, the electrode active material layer and the separator are bonded together, and when the solvent is dried, the adhesive solution layer has a porous structure. When the pore diameter of the porous membrane is in the range of 100 to 300 nm for the problem of being sucked by a certain electrode active material layer or separator, the suction force of the electrode active material layer based on the capillary force is balanced with the suction force of the separator, It is considered that as a result of more adhesive solution remaining at the interface between the electrode active material layer and the separator, the electrode active material layer and the separator were firmly bonded.
[0023]
The porous film used for the separator preferably has a heat shrinkage rate at 100 ° C. of 10% or less. In general, a porous film used for a separator is often stretched during production, and the stretched film shrinks by heating and attempts to restore its original shape. When the battery generates heat due to some cause such as a short circuit, in the case of a separator having a large heat shrinkage rate, there is a risk that the positive electrode and the negative electrode are short-circuited at the end face portion of the battery body due to contraction and further the heat generation of the battery is promoted. In order to avoid such a risk, it is desired that the separator is firmly bonded to the electrode and a porous film having a small heat shrinkage rate is used for the separator.
[0024]
The polyolefin porous film used for the separator is a single-layer porous film made of a resin such as polyethylene, polypropylene, polybutene, and a copolymer containing at least one of them, or a laminated porous film made of two or more kinds of resins. A membrane can be used. A shutdown characteristic in which the separator closes when the battery temperature rises to block the flow of ions is expected, but the temperature at which the shutdown function appears depends on the melting point of the porous membrane material used for the separator. From the viewpoint of the shutdown function, it is particularly desirable to use a porous film including at least one polyethylene or polypropylene layer as the separator.
[0025]
In manufacturing the battery, a non-aqueous solvent solution of lithium salt is used as the electrolytic solution.
[0026]
Lithium salts can include LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiPF 6 , LiI, LiBr, LiSCN, Li 2 B 10 Cl 10 , LiCF 3 CO 2 and mixtures thereof.
[0027]
Further, as a non-aqueous solvent, propylene carbonate, γ-butyl lactone, ethylene carbonate, tetrahydrofuran, 2-tetrahydrofuran, 1,3-dioxolane, 4,4-dimethyl-1,3-dioxolane, diethyl carbonate, dimethyl carbonate, sulfolane, 3-Methylsulfolane, tert-butyl ether, iso-butyl ether, 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane and mixtures thereof can be used.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, the battery charging / discharging characteristic and overcharge characteristic of the battery obtained by this invention were performed in accordance with the following method.
[0029]
<Battery charge / discharge characteristics>
A battery was manufactured by the method described in the following examples, and the charge / discharge characteristics at a current value of 2C were described in the battery manual (Battery Manual Editorial Board edited by Maruzen, published in 1990). According to the method, it measured on condition of the following.
Charging: Constant current + constant voltage method, upper limit voltage 4.2V
Discharge: Constant current Lower limit voltage 2.5V
Charge / discharge efficiency (%) = discharged electric capacity / charged electric capacity × 100
[0030]
<Overcharge characteristics>
A battery was prepared by the method described in the following examples, and the battery thus manufactured was charged up to 10 V at a current value of 2 C. After that, the battery appearance change, the maximum temperature reached on the surface of the battery container, and the separator shut down The flowing current value was measured.
[0031]
<Physical properties of porous membrane>
The porosity, pore diameter, and heat shrinkage at 100 ° C. of the porous film used for the separator were determined as follows.
(1) From the true specific gravity D of the porous membrane determined by the porosity liquid replacement method and the bulk density d determined by measuring the weight and dimensions of the porous membrane, the following formula was used.
Porosity (%) = (1−d / D) × 100
(2) Pore diameter The maximum pore diameter of the porous membrane determined by the mercury intrusion method was adopted.
(3) After exposing a porous film cut out to a 10 cm square heat shrinkage (area 100 cm 2 ) in a 100 ° C. atmosphere for 3 hours, the area S was measured and calculated using the following formula.
Thermal shrinkage (%) = (100−S / 100) × 100
[0032]
<Preparation of positive electrode>
An active material thin film was formed by applying a positive electrode active material paste adjusted to 87% by weight of LiCoO 2 , 8% by weight of graphite powder and 5% by weight of polyvinylidene fluoride while adjusting the thickness to 300 μm by the doctor blade method. . An aluminum net with a thickness of 30 μm serving as a positive electrode current collector was placed on the active material thin film, and a positive electrode active material paste was applied onto the aluminum net with a doctor blade method adjusted to a thickness of 300 μm. This was left in a drier at 60 ° C. for 60 minutes to be in a semi-dry state to obtain a laminate electrode. The produced laminate electrode was rolled to 400 μm to produce a positive electrode.
[0033]
<Preparation of negative electrode>
A negative electrode active material paste in which mesophase microbead carbon was adjusted to 95% by weight and polyvinylidene fluoride was adjusted to 5% by weight was applied to a thickness of 300 μm by a doctor blade method to form an active material thin film. A 20 μm-thick belt-shaped copper net serving as a negative electrode current collector was placed on the active material thin film, and a negative electrode active material paste was applied to the upper part of the copper net by adjusting the thickness to 300 μm by a doctor blade method. This was left in a drier at 60 ° C. for 60 minutes to be in a semi-dry state to obtain a laminate electrode. The produced laminate electrode was rolled to 400 μm to produce a negative electrode.
[0034]
<Preparation of adhesive>
An adhesive was obtained by uniformly dispersing 20 parts by weight of alumina particles in a uniform solution comprising 10 parts by weight of polyvinylidene fluoride and 70 parts by weight of N-methylpyrrolidone (hereinafter abbreviated as NMP).
[0035]
<Preparation of laminated battery assembly>
FIG. 1 is a cross-sectional view schematically showing one embodiment of a laminated structure battery body of the present invention. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an adhesive layer, and 5 is a unitary laminate in which the positive electrode 1, the separator 3 and the negative electrode are joined by an adhesive layer 4.
[0036]
A method for producing the laminated structure battery body shown in FIG. 1 will be described below.
First, an adhesive is applied to one side of each of the two separators, and the negative electrode is sandwiched between the two separators coated with the adhesive, adhered and bonded, and then heated and dried to bond the separator and the negative electrode. It was.
[0037]
Next, the negative electrode with a separator was set to a predetermined size, an adhesive was applied to one surface of the separator, and a positive electrode having a predetermined size was adhered to and bonded to the adhesive-coated surface. Next, a new negative electrode with a separator was prepared, an adhesive was applied to one surface of the separator, and the negative electrode was adhered to the other surface of the positive electrode that had been adhered to the first surface. By repeating this step a predetermined number of times, a battery body in which a plurality of units are stacked is constructed, and then the battery body is dried while being heated, and the positive electrode and the negative electrode with a separator are bonded to each other to form a flat plate shape as shown in FIG. The laminated structure battery body was obtained.
[0038]
The obtained battery body was impregnated with an electrolytic solution prepared using LiPF 6 as a lithium salt and a mixed solvent of ethylene carbonate and diethyl carbonate as a non-aqueous solvent so that the lithium salt concentration was adjusted to 1.2 mol / l. Thereafter, the battery body was inserted into a container made of an aluminum laminate film, and sealed by heat sealing to obtain a lithium ion secondary battery having a laminated structure.
[0039]
<Creation of a wound structure battery body>
FIG. 2 is a cross-sectional view schematically showing one embodiment of the wound structure battery body of the present invention. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an adhesive layer, and 5 is a unitary laminate in which the positive electrode 1, the separator 3 and the negative electrode are joined by an adhesive layer 4.
[0040]
A method for manufacturing the wound structure battery body shown in FIG. 2 will be described below.
Prepare two strip-shaped separators, apply an adhesive to each side of the separator, sandwich the strip-shaped negative electrode between the two separators coated with the adhesive, adhere them together, and then dry by heating. Thus, the separator and the negative electrode were bonded. Next, an adhesive was applied to one of the strip-shaped separator surfaces of the separator-attached negative electrode, and the strip-shaped positive electrode was brought into close contact with and bonded to the adhesive-coated surface. Next, an adhesive was applied to the surface of the negative electrode with a separator opposite to the surface on which the adhesive was previously applied, and was wound into an oval shape. The rolled oval battery body was dried while being pressurized, and the positive electrode and the negative electrode with a separator were bonded together to obtain a flat wound structure battery body as shown in FIG. The obtained battery body was impregnated with an electrolytic solution in the same manner as in the laminated battery, inserted into a container, and sealed to obtain a lithium ion secondary battery having a wound structure.
[0041]
Examples 1-42. And Comparative Examples 1-17.
In the battery produced as described above, using the porous film shown in FIGS. 3 to 7 as a separator, the batteries shown in Examples 1-42 and Comparative Examples 1-17 were produced, and the battery characteristics were evaluated. . The evaluation results are also shown in FIGS.
[0042]
The battery characteristics were evaluated by measuring the charge / discharge characteristics at room temperature and judging the following criteria. As a result, the batteries of Examples 1 to 42 showed good charge / discharge characteristics as shown in FIGS. It was.
◯: Charging / discharging efficiency is 90% or more ◯: Charging / discharging efficiency is 80% or more and less than 90% Δ: Charging / discharging efficiency is 70% or more and less than 80% ×: Charging / discharging efficiency is 70% or less
Moreover, as a result of examining the overcharge characteristic at room temperature using the battery obtained by the comparative example and determining the following items (1) to (3) according to the following criteria, the results are shown in FIGS. As described above, the batteries of Examples 1 to 42 all showed good overcharge characteristics with no change in battery appearance due to overcharge, no heat generation at high temperatures, and almost no current flow after shutdown.
(1) Battery appearance After overcharging, the battery appearance was visually observed and judged according to the following criteria.
○: No change due to overcharge ×: Some change in battery appearance due to overcharge (2) Maximum battery temperature ○: Maximum temperature reached below 120 ° C Δ: Maximum temperature reached from 120 ° C to below 140 ° C ×: Maximum reached Temperature is 140 ° C or higher (3) Current value after shutdown ○: Current value 0
Δ: Current value is less than 50 mA ×: Current value is 50 mA or more
In a secondary battery in which an electrode active material layer and a separator are bonded and integrated with a porous adhesive layer, and a porous film having a specific porosity, pore diameter, and heat shrinkage rate is used for the separator, The electrode active material layer and the separator layer could be firmly bonded with a small amount of adhesive, and a secondary battery having good charge / discharge characteristics and high safety was obtained.
[0045]
That is, it was found that a secondary battery having good charge / discharge characteristics and high safety can be obtained by using a polyolefin porous film having a porosity of 45 to 55% as a separator. As shown in Comparative Examples 3, 6 and 9, when the porosity of the porous film was larger than 55%, the charge / discharge characteristics were improved, but the overcharge characteristics were lowered and the safety of the battery was lowered. Further, according to Comparative Examples 1, 2, 4, 5, 7, and 8, when the porosity was lower than 45%, the charge / discharge characteristics were lowered.
[0046]
Moreover, when the pore diameter of the porous film used for a separator exists in the range of 100-300 nm, it discovered that the secondary battery which has especially favorable charging / discharging characteristics and high safety | security is obtained. When the pore diameter of the porous film was less than 100 nm as in Comparative Examples 10, 12, and 14, the charge / discharge characteristics were lowered. In addition, as shown in Comparative Examples 11, 13, and 15, when the pore diameter of the porous film was larger than 300 nm, the charge / discharge characteristics were improved, but the overcharge characteristics were lowered and the safety of the battery was lowered.
[0047]
Further, from the results of Comparative Examples 16 and 17, it was found that the separator having a thermal shrinkage rate of 10% or less is more desirable from the viewpoint of overcharge characteristics.
[0048]
From the comparison of the results of Examples 3, 12 and 21 and Examples 6, 15 and 24, even though the physical properties of the porous film were the same, the film material was a polyethylene and polypropylene multilayer film rather than a polyethylene single layer film. It was found that the higher overcharge characteristics were exhibited.
[0049]
【The invention's effect】
According to the first secondary battery of the present invention, in the secondary battery in which the separator is adhered and integrated with the adhesive layer between the active material layers of the positive electrode and the negative electrode in which the active material layer is adhered to the current collector, separator, porosity I 45% to 55% of the polyolefin porous membrane der, and the porous film of the maximum pore diameter is 100~300nm der Runode, firmly the electrode active material layer and the separator by a small amount of adhesive A secondary battery having good charge / discharge characteristics and high safety can be obtained.
[0051]
According to the second or third secondary battery of the present invention, it is possible to prevent the positive electrode and the negative electrode from being short-circuited at the battery body end face portion, and further to avoid the risk of promoting the heat generation of the battery.
[0052]
According to any one of the fourth to sixth secondary batteries according to the present invention, the unit in which the separator is disposed between the positive electrode and the negative electrode is defined as one unit, and has a plurality of units, so that the battery capacity can be increased. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a main part of a battery according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a main part of a battery according to another embodiment of the present invention.
FIG. 3 shows the battery characteristic evaluation results of Examples 1 to 15 of the present invention.
FIG. 4 shows the battery characteristic evaluation results of Examples 16 to 28 of the present invention.
FIG. 5 shows the battery characteristic evaluation results of Examples 29 to 40 of the present invention.
6 shows battery characteristic evaluation results of Examples 41 and 42 of the present invention and Comparative Examples 1 to 11. FIG.
7 shows battery characteristic evaluation results of Comparative Examples 12 to 17. FIG.
[Explanation of symbols]
1 positive electrode, 2 negative electrode, 3 separator, 4 adhesive layer, 5 laminate

Claims (6)

活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜の極大孔径が100〜300nmであることを特徴とする二次電池。In a secondary battery in which a separator is adhered and integrated with an adhesive layer between the active material layers of a positive electrode and a negative electrode in which an active material layer is bonded to a current collector, the separator is made of a polyolefin having a porosity of 45 to 55%. secondary batteries I membrane der, and maximum pore size of the porous membrane is characterized in that it is a 100 to 300 nm. 活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜の100℃における熱収縮率が10%以下であることを特徴とする二次電池。 In a secondary battery in which a separator is adhered and integrated with an adhesive layer between the active material layers of a positive electrode and a negative electrode in which an active material layer is bonded to a current collector, the separator is made of a polyolefin having a porosity of 45 to 55%. A secondary battery comprising a porous film and having a heat shrinkage rate of 10% or less at 100 ° C. of the porous film. 活物質層を集電体に接着した正極および負極の上記活物質層間にセパレータが接着層により接着され一体化された二次電池において、上記セパレータが、空孔率45〜55%のポリオレフィン製の多孔膜であって、かつ上記多孔膜が2種類以上のポリオレフィン樹脂を積層してなる多層膜構造であることを特徴とする二次電池。 In a secondary battery in which a separator is adhered and integrated with an adhesive layer between the active material layers of a positive electrode and a negative electrode in which an active material layer is bonded to a current collector, the separator is made of a polyolefin having a porosity of 45 to 55%. secondary battery, characterized by a porous membrane, and a multilayer film structure in which the porous film is formed by laminating two or more kinds of polyolefin resins. 正極と負極との間にセパレータが配置されたものを1単位とし、複数の単位を有することを特徴とする請求項1〜のいずれかに記載の二次電池。The secondary battery according to any one of claims 1 to 3 , wherein a unit in which a separator is disposed between a positive electrode and a negative electrode is defined as one unit, and the unit includes a plurality of units. 切り離された正極、セパレータおよび負極を積み重ねて複数の単位が形成されていることを特徴とする請求項記載の二次電池。The secondary battery according to claim 4, wherein the plurality of units are formed by stacking the separated positive electrode, separator, and negative electrode. 連続した正極、セパレータおよび負極を巻き上げて複数の単位が形成されていることを特徴とする請求項記載の二次電池。The secondary battery according to claim 4, wherein a plurality of units are formed by rolling up a continuous positive electrode, separator, and negative electrode.
JP26353299A 1999-09-17 1999-09-17 Secondary battery Expired - Fee Related JP3752913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26353299A JP3752913B2 (en) 1999-09-17 1999-09-17 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26353299A JP3752913B2 (en) 1999-09-17 1999-09-17 Secondary battery

Publications (2)

Publication Number Publication Date
JP2001084985A JP2001084985A (en) 2001-03-30
JP3752913B2 true JP3752913B2 (en) 2006-03-08

Family

ID=17390856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26353299A Expired - Fee Related JP3752913B2 (en) 1999-09-17 1999-09-17 Secondary battery

Country Status (1)

Country Link
JP (1) JP3752913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095383A (en) * 2002-08-30 2004-03-25 Toshiba Corp Nonaqueous electrolyte secondary battery
JP6106913B2 (en) * 2013-06-28 2017-04-05 エルジー・ケム・リミテッド Method for manufacturing electrode assembly including separator cutting step
US20160344060A1 (en) * 2014-03-12 2016-11-24 Panasonic Intellectual Property Management Co., Lt Thin battery and battery-mounted device
US10388930B2 (en) 2014-06-26 2019-08-20 Zeon Corporation Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
JP6004037B2 (en) * 2015-05-01 2016-10-05 ソニー株式会社 Separator and non-aqueous electrolyte battery using the same
JP7179463B2 (en) 2015-11-27 2022-11-29 日本ゼオン株式会社 Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
JP6519570B2 (en) 2016-11-17 2019-05-29 トヨタ自動車株式会社 Separator integrated electrode plate, electrode plate pair, laminated type storage element, and method of manufacturing separator integrated electrode plate
JP7268675B2 (en) 2018-03-26 2023-05-08 日本ゼオン株式会社 Method for manufacturing laminate for non-aqueous secondary battery and method for manufacturing non-aqueous secondary battery
EP4106045A4 (en) * 2020-02-14 2024-01-17 Sanyo Electric Co Non-aqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011309B2 (en) * 1994-05-12 2000-02-21 宇部興産株式会社 Battery separator and method of manufacturing the same
JP3866458B2 (en) * 1998-09-17 2007-01-10 株式会社東芝 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
US9293752B2 (en) 2007-01-30 2016-03-22 Asahi Kasei E-Materials Corporation Multilayer porous membrane and production method thereof
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith

Also Published As

Publication number Publication date
JP2001084985A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP3225867B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3393145B2 (en) Lithium ion secondary battery
JP3471244B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP2001167743A (en) Secondary battery and electronic device using the same
JP2006351386A (en) Battery and its manufacturing method
JP4008508B2 (en) Method for producing lithium ion secondary battery
JPH10275633A (en) Lithium ion secondary battery
JPH10284131A (en) Lithium ion secondary battery and its manufacture
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
JP4031635B2 (en) Electrochemical devices
JP4414165B2 (en) Electronic component separator and electronic component
JP2001085065A (en) Electrochemical device
JP2004327183A (en) Battery and its manufacturing method
JP2000030742A (en) Lithium-ion secondary battery element
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
JP3752913B2 (en) Secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
WO1999067836A1 (en) Cell and method of producing the same
JP6243666B2 (en) Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same
JP2018147769A (en) Separator for electrochemical element and nonaqueous electrolyte battery
CN115552706A (en) Separator for electrochemical device, and electronic device
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JP2003151638A (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees