JP4781547B2 - Polymer gel electrolyte and battery - Google Patents

Polymer gel electrolyte and battery Download PDF

Info

Publication number
JP4781547B2
JP4781547B2 JP2001070041A JP2001070041A JP4781547B2 JP 4781547 B2 JP4781547 B2 JP 4781547B2 JP 2001070041 A JP2001070041 A JP 2001070041A JP 2001070041 A JP2001070041 A JP 2001070041A JP 4781547 B2 JP4781547 B2 JP 4781547B2
Authority
JP
Japan
Prior art keywords
polymer
vinylidene fluoride
gel electrolyte
weight
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070041A
Other languages
Japanese (ja)
Other versions
JP2002270236A (en
Inventor
巧 葛尾
俊男 細川
信男 阿彦
司 池田
智昭 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2001070041A priority Critical patent/JP4781547B2/en
Publication of JP2002270236A publication Critical patent/JP2002270236A/en
Application granted granted Critical
Publication of JP4781547B2 publication Critical patent/JP4781547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電池、特にリチウムイオン電池、を形成するに適した高分子ゲル電解質、該高分子ゲル電解質を使用した非水系電池、該非水系電池の製造法ならびに該高分子ゲル電解質の形成用前駆体組成物に関する。
【0002】
【従来の技術】
近年電子技術の発展はめざましく、各種の機器が小型軽量化されてきている。この電子機器の小型軽量化と相まって、その電源となる電池の小型軽量化の要望も非常に大きくなってきている。少ない容積及び重量でより大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水系二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダーなどの家庭で用いられる小型電子機器の電源として用いられてきた。このリチウム非水系二次電池を更に高性能化するため、正極−負極間にイオン移動媒体として高分子電解質を使用することが提案されている。
【0003】
すなわち、高分子電解質をイオン移動媒体とすることにより、従来の電解液をイオン移動媒体とするものよりも、漏液が無いため、信頼性、安全性が向上し、さらに薄型化、形状自由度が高くなるという利点が得られ、更にパッケージの簡略化、軽量化が期待されている。
【0004】
電解液を含まない高分子電解質は、イオン伝導度が低く電池の放電容量が小さくなるなど、電池への応用に要求される特性を満たしがたいので、電解液(電解質溶液)を含み、イオン伝導度が高い高分子ゲル電解質が注目されている。イオン伝導度は、一般に高分子ゲル電解質中の電解液量が高くなる程高くなることが知られている。他方、この高分子ゲル電解質には、電池の小型化、高エネルギー密度化などの観点から膜強度が強いこと、並びに電池の使用温度範囲、安全性などの観点からは、高温でも正極と負極との間の絶縁性を維持すること、つまり耐熱性の向上が望まれている。
【0005】
しかし、上述した電解液の高濃度化による電気化学的特性向上と、耐熱性を含めた膜強度の向上という、要求とは、一般には相反するものであり、これらを両立する高分子ゲル電解質を得ることは容易なことではない。
【0006】
上記のような特性を改善した高分子ゲル電解質を与えるために、電気化学的特性に優れたフッ化ビニリデン重合体と、架橋重合体とを主成分とする複合マトリックス樹脂に電解液を含浸保持させて、高分子ゲル電解質を形成する試みも、以下のようにいくつかなされている。
【0007】
(A)フッ化ビニリデン重合体溶解能を有し且つ揮発性のTHF(テトラヒドロフラン)等の有機溶媒と電解液との混合物中にフッ化ビニリデン重合体を溶解した溶液に、更に二以上の官能基を有する多官能モノマーと、カルボキシル基含有モノマーとを溶解し、得られた溶液をキャスティング後、THFを蒸発させて得た膜状物中のモノマーを架橋重合させて高分子ゲル電解質を得る方法(特開平11−185524号公報)。カルボキシル基含有モノマーの重合体により、電解液を高濃度で保持することが意図されている。
【0008】
(B)フッ化ビニリデン重合体の電解液中への分散液中に多官能モノマーを溶解させて、該多官能モノマーを架橋重合することにより電解液で膨潤したフッ化ビニリデン重合体を生成した架橋重合体で保持させた高分子ゲル電解質を得る方法(特開平11−086630号公報)。
【0009】
しかしながら、これら方法で実現される高分子ゲル電解質中の電解液含量は60〜80重量%程度であり、イオン伝導度の向上の観点で、未だ充分とはいい難い。本発明者等の研究によれば、後で本発明に関連してより詳述するが、上記方法においては、フッ化ビニリデン重合体が電解液単独では、膨潤はするが溶解しない系を採用しているために、電解液の含有率の向上が不充分になっているものと理解される。事実フッ化ビニリデン重合体が従来の電解液をイオン伝導媒体するタイプの非水系電池において、優れた正極あるいは負極バインダーとして用いられた理由は、主としてその電気化学的安定性に加えて、電解液には、膨潤はするが溶解しないという優れた耐電解液特性によるが、本発明者らは、このようなフッ化ビニリデン重合体の耐電解液特性が、高分子ゲル電解質の形成には必ずしも有利でないことを見出したのである。
【0010】
【発明が解決しようとする課題】
すなわち、本発明の主要な目的は、高い濃度で電解液を保持可能であり、高いイオン伝導度を示す高分子ゲル電解質を提供することにある。
【0011】
本発明の他の目的は、上記高分子ゲル電解質を含む非水系電池、その効率的な製造方法、ならびに上記高分子ゲル電解質の形成用前駆体組成物を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らの研究によれば、上述の目的の達成のためには、電解質溶液(電解液)とフッ化ビニリデン重合体とが相溶性を有する組合せを採用することが極めて望ましいことが見出された。
【0013】
本発明の高分子ゲル電解質は、上述の知見に基づくものであり、イオン性化合物をab initio法分子軌道計算によるHOMO準位が−11eV以下でLUMO準位が+4.0eV以上である有機溶媒に溶解した電解質溶液(I)を、少なくとも(a)単独では少なくとも加温下において上記電解質溶液に溶解し得種類および量のフッ化ビニリデン重合体と(b)二以上のビニル基を有する多官能モノマーの架橋重合体とからなるマトリックス樹脂(II)で固定してなり、マトリックス樹脂(II)を構成するフッ化ビニリデン重合体(a)と多官能モノマーの架橋重合体(b)との合計重量に対するフッ化ビニリデン重合体(a)の割合が10〜90重量%であり、マトリックス樹脂(II)中において前記フッ化ビニリデン重合体(a)と前記多官能モノマーの架橋重合体(b)とが相互に分子レベルで絡み合った高分子網目構造を形成しており、且つ電解質溶液(I)の含有量が80〜99重量%であることを特徴とするものである。本発明の高分子ゲル電解質においては、好ましくは、上記高分子ゲル電解質は、フッ化ビニリデン重合体(a)が溶解された電解質溶液(I)中で多官能モノマーを架橋重合することにより得られる。フッ化ビニリデン重合体(a)と電解質溶液(I)との相互溶解性を改善するために、より好ましくは加温がなされる。
【0014】
上述の製法からも理解されるように、本発明の高分子ゲル電解質を形成するマトリックス樹脂は、フッ化ビニリデン重合体(a)と生成した多官能モノマーの架橋重合体(b)の両者の高分子網目が相互に分子レベルで絡み合ったいわゆる相互侵入高分子網目構造(Interpenetratig Polymer Networks;以下、「IPN構造」と称することがある。但し、通常IPN構造においては、構成二ポリマー鎖間の化学結合が生じていない方が普通であるが、本発明では、フッ化ビニリデン重合体(a)と架橋重合体(b)間の化学結合はあっても差し支えない)。このフッ化ビニリデン重合体(a)と架橋重合体(b)との間での良好なIPN構造が電解液の高濃度保持特性を発現させているものと解される。これに対し、前記特開平11−086630号公報の方法では、フッ化ビニリデン重合体が電解液に膨潤はされるが、溶解していない状態で多官能モノマーの架橋重合が行われており、分子レベルでの良好なIPN構造は形成されていないため、電解液保持特性が不充分となっており、また不均一なゲルであるためイオンの均一伝導性にも欠けるものと解される。他方、特開平11−185524号公報の方法では、フッ化ビニリデン重合体と、架橋重合体と、カルボキシル基含有モノマーの重合体との間に一応のIPN構造が形成されているものと解されるが、大量に使用した揮発性有機溶媒の蒸発の過程で、良好な電解液保持特性を発現させるIPN構造の形成が阻害されているのではないかと解される。また、本発明では,フッ化ビニリデン重合体(a)と電解質溶液(I)とが相互溶解性を示す程度に親和性の良い組合せを採用しているため、これもIPN構造の電解質溶液保持特性を向上しているものと解される。
【0015】
また本発明の非水系電池は、上記本発明の高分子ゲル電解質を正極と負極との間に配置してなることを特徴とするものである。
【0016】
更に、本発明の非水系電池の製造方法は、上記非水系電池の効率的な製造方法に相当するものであり、フッ化ビニリデン重合体(a)と、多官能モノマーと、該多官能モノマーの重合開始剤とを電解質溶液(I)に溶解させてなる溶液を、正極および負極を収容する外装体の、該正極および負極間に注入し、その後上記外装体を加熱して前記溶液をゲル化させる工程を有することを特徴とする。
【0017】
また、本発明の高分子ゲル電解質注入形成用組成物は、上記非水系電池の製造方法の効率的な実施を可能とする高分子ゲル電解質の形成用前駆体組成物に相当するものであり、フッ化ビニリデン重合体(a)と、多官能モノマーと、該多官能モノマーの重合開始剤とを、電解質溶液(I)に溶解させてなる溶液からなることを特徴とする。
【0018】
【発明の実施の形態】
(I)電解質溶液
本発明の高分子ゲル電解質を構成する量的にも第一の成分は電解質溶液(電解液)であり、これはイオン性化合物を有機溶媒に溶解することにより得られる。
【0019】
(i)イオン性化合物
本発明において用いるイオン性化合物は、リチウムイオン電池をはじめとする非水系電池において、電解質として用いられるものであり、一般式M+-(M+は周期律表のI族又はII族に属する金属のイオン、X-は任意のアニオン)で表わされるものが好ましい。特にM+がLi+、Na+又はK+から選ばれるものが好ましく、より好ましいイオン性化合物の具体例としてはLiPF6、LiAsF6、LiClO4、LiBF4、LiCl、LiBr、LiCH3SO3、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、を挙げることが出来る。
【0020】
(ii)有機溶媒
イオン性化合物とともに電解質溶液を構成する有機溶媒は、本発明において、主として、上記イオン性化合物に加えて、後述するフッ化ビニリデン重合体に対する溶解能の高いものを用いることが好ましいが、更に非水系電池で使用するために必要な電気化学的安定性を確保する意味で、ab initio法によるHOMO(最高被占分子軌道エネルギー)準位が−11eV以下であることで表わされる優れた耐酸化性と、LUMO(最低空位分子軌道エネルギー準位)が+4.0eV以上、特に+4.5eV以上、であることで表わされる優れた耐還元性を有する有機溶媒が好ましい。
【0021】
溶媒のHOMO準位とLUMO準位は、分子軌道計算(ab initio法)により市販のプログラムを用いて計算できる。(因に、本明細書の記載値は、Carnegie Office Park Building 6,Pittsburgh,PA15106 U.S.A.(アメリカ合衆国)のGaussian,Inc.から発行された市販汎用プログラム「Gaussian 94」を用い基底関数系3−21G(*) により本発明者らが計算した値に基づいている。)HOMO準位が−12eV以下且つLUMO準位が+4.0eV以上である有機溶媒の具体例としては、アセトニトリル(HOMO−12.62eV、LUMO+5.97eV)、エチレン−カーボネート(HOMO−12.46eV、LUMO+5.87eV)、ジメチルカーボネート(HOMO−12.21eV、LUMO+6.10eV)、ジエチルカーボネート(HOMO−12.08eV、LUMO+6.22eV)、エチルメチルカーボネート(HOMO−12.14eV、LUMO+6.16eV)、プロピレンカーボネート(HOMO−12.34eV、LUMO+5.88eV)、プロピオニトリル(HOMO−12.42eV、LUMO+5.76eV)、ブチレンカーボネート(HOMO−12.31eV、LUMO+5.87eV)、γ−ブチロラクトン(HOMO−11.50eV、LUMO+5.06eV)などを挙げることが出来るが、上記に限定されるものではない。
【0022】
参考までに、従来電極バインダー溶液を形成するためにフッ化ビニリデン系重合体用溶媒として慣用されている溶媒は、例えばN−メチルピロリドン(HOMO−10.18eV、LUMO+5.81eV)、N,N−ジメチルホルムアミド(−9.85eV、+5.80eV)、アセトン(−10.93eV、+4.53eV)、N,N−ジメチルアセトアミド(−9.66eV、+5.67eV)、トルエン(−8.88eV、+2.87eV)、フタル酸ジメチル(−9.70eV、+1.74eV)、1,4−ジオキサン(−10.36eV、+7.39eV)、テトラハイドロフラン(−10.79eV、+6.93eV)などであって、いずれも主として、HOMO準位が−11eV以下の要件を満たさないため、耐酸化性の点で、本発明の目的のためには好ましくない。
【0023】
本発明の高分子ゲル電解質を形成するためには、従来フッ化ビニリデン重合体の良溶媒あるいは潜在溶媒として用いられてきた、例えばアセトン、THF等の沸点が100℃以下の揮発性有機溶媒を用いて、フッ化ビニリデン重合体を溶解後に有機溶媒を蒸発除去する工程は採用しないことが望ましい。これにより、製造プロセスが簡略化するだけでなく、高分子ゲル電解質中の電解液含量を高く保つことができ、更にはジメチルカーボネート(沸点90〜91℃)、ジエチルカーボネート(沸点127℃)、エチルメチルカーボネート(沸点、108℃)等の良好な電気化学特性を有し、また低粘度電解液の調製に好ましいが、比較的低沸点である有機溶媒の、同伴による電解液の組成変化が防止でき、良好な組成制御が可能になる。すなわち、本発明の高分子ゲル電解質を構成する電解質溶液(I)を形成するために用いられる有機溶媒は、実質的に全量が高分子ゲル電解質中に採り込まれることが好ましい。
【0024】
有機溶媒は、二種以上を混合してフッ化ビニリデン重合体の溶解能を調整することも、好ましく、その1リットルに対して、前記イオン性化合物が0.1〜10mol、特に0.5〜5molとなる割合で溶解して、電解質溶液(I)を形成することが好ましい。
【0025】
(II)マトリックス樹脂
本発明の高分子ゲル電解質は、上記電解質溶液(I)を、マトリックス樹脂(II)で保持固定することにより得られる。マトリックス樹脂(II)は、少なくともフッ化ビニリデン重合体(a)と、多官能モノマーの架橋重合体(b)とからなる。
【0026】
(a)フッ化ビニリデン重合体
本発明で用いるフッ化ビニリデン重合体(a)としては、フッ化ビニリデンの単独重合体または、フッ化ビニリデン50重量パーセント以上とこれと共重合可能な単量体1重量パーセント以上との共重合体が用いられるが、前記電解質溶液に対しての可溶性の観点で、特にフッ化ビニリデン含量が60〜95重量パーセントである共重合体が好ましく用いられる。(但し、後記インヘレント粘度の調整、加温の併用等によりフッ化ビニリデン単独重合体も用いられる。)
フッ化ビニリデン単量体と共重合可能な単量体としては、例えばエチレン、プロピレン、等の炭化水素系単量体、フッ化ビニル、3フッ化エチレン、3フッ化塩化エチレン、4フッ化エチレン、6フッ化プロピレン、フルオロアルキルビニルエーテル、等の含フッ素単量体、マレイン酸モノメチル、シトラコン酸モノメチル、等のカルボキシル基含有単量体、またはアリルグリシジルエーテル、クロトン酸グリシジルエステル、等のエポキシ基含有ビニル単量体、が挙げられるが、必ずしもこれらに限定されるものではない。なかでも6フッ化プロピレンや3フッ化塩化エチレンを含むフッ化ビニリデン共重合体が好ましく用いられる。
【0027】
フッ化ビニリデン重合体は、前記電解質溶液に対して、少なくとも100℃以下、好ましくは80℃以下での加温により可溶である必要があり、この観点で、インヘレント粘度が2.5dl/g以下、更に2.2dl/g、特に2.0dl/g以下であることが好ましい。また得られる高分子ゲル電解質の機械強度、耐熱性などの点から、0.2dl/g以上、特に0.4dl/g以上であることが好ましい。ここでいうインヘレント粘度とはポリマーの分子量の目安として用いられるもので、樹脂4gを1リットルのN,N−ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度をいう。
【0028】
またフッ化ビニリデン重合体(a)は、少なくとも加温下に、前記電解質溶液に対して可溶であるとともに、後記多官能モノマーの架橋重合体(b)との組合せにより電解質溶液を高濃度で安定に保持して、電気化学的に安定で、且つ少なくとも自立性があり、耐熱性の高分子ゲル電解質を形成するためのマトリックス樹脂(II)を構成する必要があり、前記電解質溶液(I)の100重量部当り、1〜10重量部、特に1〜7重量部の割合で用いられることが好ましい。
【0029】
(b)多官能モノマーの架橋重合体
上記フッ化ビニリデン重合体(a)とともに、マトリックス樹脂を構成する架橋重合体(a)は、多官能モノマーの架橋重合により得られるものである。多官能モノマーは、二以上の重合性官能基を持つものであり、重合性官能基としてはビニル基、特に(ビニル基を含む)アクリロイル基が好ましい。多官能モノマーの具体例としては、ジメチロールトリシクロデカンジアクリレート、ジビニルベンゼン、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸1,3−ブチルグリコール、ジメタクリル酸ブロピレングリコール、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、メタクリル酸アリル、アクリル酸アリル、ビスフェノール系ジメタクリレート、ビスフェノール系ジアクリレート、環状脂肪族ジアクリレート、ジアクリル化イソシアヌレート、トリメタクリル酸トリメチロールプロパン、トリアクリルホルマール、トリアクリルイソシアヌネート、トリアリルシアヌネート、脂肪族トリアクリレート、テトラメタクリル酸ペンタエリスリトール、テトラアクリル酸ペンタエリスリトール、脂肪族テトラアクリレート、等が好適に用いられるが、これらに限定されるものではない。
【0030】
上記多官能モノマーは、上記フッ化ビニリデン重合体(a)の電解質溶液(I)中への溶液に溶解された状態で、加熱、可視あるいは紫外光照射、電子線あるいはγ線照射などの方法により架橋重合される。必要に応じて重合開始剤を添加することができる。熱重合開始剤としては、各種の有機過酸化物が使用可能であり、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド類、ベンゾイルパーオキシドなどのジアシルパーオキシド類、2,5−ジメチル−ジ(t−ブチルパーオキシ)ヘキサン等のパーオキシケタール類、ジ−i−プロピルパーオキシジカーボネート類、等が好適に用いられ、アゾビスイソブチロニトリル類等も好適に用いる事ができる。
【0031】
光重合開始剤としては、ジメトキシフェニルアセトフェノン、2−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキ−2−メチル−1−フェニルプロパンノン−1、1−(4−イソプロピルフェニル)−2−ヒドロキ2−メチルプロパンノン−1等が好適に用いられる。
【0032】
本発明の高分子ゲル電解質の好ましい形成法の一つは、上記重合開始剤をも添加した架橋重合前の組成物、すなわちフッ化ビニリデン重合体(a)と、多官能モノマーと、該多官能モノマーの重合開始剤とを電解質溶液(I)に溶解させてなる溶液を、非水系電池を構成する正極および負極を収容する外装体の、該正極および負極間に注入し、その後、上記外装体を加熱して、前記溶液をゲル化することにより、高分子ゲル電解質をその場で形成することである。これにより、非水系電池の主要部分が、一挙に形成される。すなわち、高分子ゲル電解質層を形成後、正極および負極層と積層して、電池を構成して行く過程が著しく簡略化される。
【0033】
この目的で上記前駆体組成物中に添加される熱重合開始剤は、30〜80℃程度の温度での架橋重合を可能にするものであることが好ましく、また上記多官能モノマー100重量部に対し、0.01〜30重量部の割合で使用することが好ましい。
【0034】
このようにして形成された架橋重合体(b)は、上記フッ化ビニリデン重合体(a)との合計量(すなわちマトリックス樹脂(II)の量)が、本発明の高分子ゲル電解質の1〜20重量%、より好ましくは2〜15重量%、特に好ましくは2〜10重量%、を占める量となるようにすることが好ましい。この割合が1重量%以下であると、必要な高分子ゲル電解質の自立性、耐熱性が得られないおそれがあり、20重量%を超えると、イオン伝導度の向上効果が乏しくなり、また均質な前駆体組成物の溶液状態が加温下においても損なわれるおそれがあり、得られるIPN構造の均質性が損なわれるおそれが生ずる。
【0035】
またマトリックス樹脂(II)中における、フッ化ビニリデン重合体(a)と架橋重合体(b)の合計量に対するフッ化ビニリデン重合体(a)の占める割合は、10〜90重量%、更に10〜80重量%、特に20〜75重量%、の範囲とすることが好ましい。この割合が10重量%未満であると、得られる高分子ゲル電解質の電気化学的特性、特にイオン伝導度が低下するおそれがあり、また弾性に富むゲルが得られにくくなる。他方90重量%を超えると、高分子ゲル電解質の強度(自立性)、耐熱性が不充分となりがちである。
【0036】
本発明の非水系電池の基本構造は、上述のようにして得られた高分子ゲル電解質の層を正極および負極間に配置することにより得られる。高分子ゲル電解質層は厚さが2〜1000μm、特に5〜200μm程度であることが好ましい。
【0037】
非水系電池の例として、リチウムイオン電池としての構成を例にとった場合、正極活物質としては、例えば一般式LiMY2(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表わされる複合金属カルコゲン化合物、特にLiNixCo1-x2(0≦x≦1)をはじめとする複合金属酸化物やLiMn24などのスピネル構造をとる複合金属酸化物等が好適に用いられる。
【0038】
上記した積層電池基本構造体は、必要に応じて、捲回し、折り返し等により更に積層して、容積当たりの電極面積を増大させ、さらには比較的簡単な容器に収容して取り出し電極を形成する等の処理により、例えば、角形、円筒型、コイン型、ペーパー型等の全体構造を有する非水系電池が形成される。但し、前述したように、非水系電池外装体中に注入したのちに高分子ゲル電解質を架橋重合により形成する態様が最も好ましい。
【0039】
本発明の高分子ゲル電解質は、その優れた特性を活かして、上記リチウムイオン二次電池以外にも電気二重層キャパシタ、エレクトロクロミックディスプレイ、センサ等の電気化学デバイスに用いることができる。
【0040】
【実施例】
以下、実施例および比較例により、本発明を更に具体的に説明する。まず、フッ化ビニリデン重合体の調製例について述べる。
【0041】
(重合体調製例−1)
内容量10リットルのオートクレーブ中に、イオン交換水8013重量部(g)、メチルセルロース1.565重量部、フロン225cb 25.04重量部、酢酸エチル93.9重量部、ジイソプロピルパーオキシジカーボネ−ト(IPP)25.04重量部、フッ化ビニリデン(VdF)2442重量部、6フッ化プロピレン(HFP)689重量部を仕込み、28℃で13時間45分懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗後、80℃で20時間乾燥して重合体粉末Aを得た。重合率は63%で、得られたインヘレント粘度(ηinh)は0.817dl/gであった。19F−NMR分析の結果、重合体中のフッ化ビニリデン単量体と6フッ化プロピレン単量体の重合比は、87:13であった。
【0042】
(重合体調製例−2)
内容量2リットルのオートクレーブ中に、イオン交換水1075重量部、メチルセルロース0.21重量部、フロン225cb 4.2重量部、酢酸エチル12.6重量部、ジイソプロピルパーオキシジカーボネ−ト(IPP)4.2重量部、フッ化ビニリデン(VdF)344.4重量部、6フッ化プロピレン(HFP)42重量部、3フッ化塩化エチレン(CTFE)8重量部を仕込み、29℃で26時間30分懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗後、80℃で20時間乾燥して重合体粉末Bを得た。重合率は90%で、得られたηinhは0.836dl/gであった。19F−NMR分析の結果、重合体中のフッ化ビニリデン単量体、6フッ化プロピレン、3フッ化塩化エチレン単量体の重合比は、83:8:9であった。
【0043】
(重合体調製例−3〜5)
重合体調製例−2に準じ、但しモノマー組成、比等の重合条件を変化させて重合した。このときの重合条件及び得られた重合体の特性を表1にまとめて記す。
【0044】
【表1】

Figure 0004781547
【0045】
19F−NMR分析の分析法)
フッ化ビニリデン系重合体の19F−NMR分析の分析法スペクトルの回折ピークから求めた。
【0046】
具体的には、フッ化ビニリデン系重合体試料約5mgを、ジメチルホルムアミド(DMF)0.4mlとNMR測定溶媒である重水素ジメチルホルムアミド(DMF−d7)0.1mlとの混合溶媒に溶解し、室温で19F−NMRを測定した。
【0047】
(インヘレント粘度の測定法)
粉末状の試料80mgを20mlのN,N−ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローテ粘度計を用い次式によりインヘレント粘度ηinhを求めた:
ηinh=(1/C)・ln(η/ηo
ここで、ηは重合体溶液の粘度、ηoは溶媒のN,N−ジメチルホルムアミド単独の粘度、Cは0.4(g/dl)である。
【0048】
<実施例1>
50mlの密閉容器中に、調製例−1で得られた重合体粉末Aを1重量部秤量し、電解液(エチレンカーボネート(EC)/プロピレンカーボネート(PC)/ジエチレンカーボネート(DEC)=1/1/2(体積比)混合液中に、LiPF6を1モル濃度で溶解)100重量部(10g)を用いて60℃で加熱溶解させた後、室温まで自然冷却させた。
【0049】
ここに、テトラメチロールメタンテトラアクリレート(A−TMMT)3重量部を加え室温で数分間撹拌した後、0.5重量部のイソプロピルパーオキシジカーボネート(IPP)を加えて60℃で1時間重合した。
【0050】
得られた重合物について、室温で目視観察下スパチュラ等で軽く押圧することにより弾力性を確認した。また同重合物について80℃×1時間および100℃×1時間の加熱処理を施し、重合物(ゲル)の崩壊の有無により耐熱性を評価した。
【0051】
その結果、上記例によれば、弾力性のあるゲルが得られ、いずれの加熱処理によってもゲルの崩壊のない耐熱が示された。
【0052】
<実施例2〜10>
フッ化ビニリデン重合体粉末Aの量ならびに多官能モノマー(テトラメチロールメタンテトラアクリレート(A−TMMT))の量を下表2のように変化する以外は、実施例1と同様にして重合物(ゲル)を得、評価した。その結果、いずれの場合も、実施例1と同様の結果が得られた。
【0053】
<比較例1>
フッ化ビニリデン重合体粉末Aを用いないで、A−TMMTを2重量部用いた以外は、実施例1と同様にして、重合を試みた。
【0054】
その結果、ゲル化重合物は得られなかった。
【0055】
<比較例2>
フッ化ビニリデン重合体粉末Aを用いないで、A−TMMTを6重量部用いた以外は、実施例1と同様にして重合物を得、評価をした。
【0056】
その結果、弾力性のあるゲル状重合物を得ることができず、弾力性のない固化物が得られた。
【0057】
<実施例11>
実施例1と同じ電解液(EC/PC/DEC=1/1/2(体積比)にLiPF6を1モル濃度で溶解)100重量部に対し、重合体粉末2重量部およびメタクリレートモノマー(商品名「4G」、新中村化学(株)製;「MM4G」と略記)9重量部を用いる以外は実施例1と同様にして重合物(ゲル)を得、評価した。その結果、実施例1との同様の結果が得られた。
【0058】
<実施例12>
メタクリレートモノマ−(MM4G)に代え、メタクリレートモノマー(商品名「9PG」、新中村化学(株)製;「MM9PG」と略記)を用いる以外は実施例1と同様にして重合物(ゲル)を得、評価した。その結果、実施例1との同様の結果が得られた。
【0059】
<実施例13〜21>
フッ化ビニリデン重合体粉末A、B、Cを1〜3重量部用い、A−TMMTを3重量部に固定して表2のように組成変化する以外は実施例1と同様にして重合物(ゲル)を得、評価した。その結果、いずれの場合も、実施例1と同様の結果が得られた。
【0060】
<実施例22>
50mlの密閉容器中に、重合体粉末Fを6.7重量部秤量し、実施例1と同じ電解液100重量部(4.5g)を用いて60℃で加熱溶解後、室温まで冷却した。
【0061】
次いで実施例1と同じ多官能モノマー(A−TMMT)2.2重量部を加え室温で数分間撹拌した後、1.1重量部のIPPを加えて50℃で1時間重合した。
【0062】
得られた重合物は、弾力性のあるゲルであり、50℃×1時間加熱処理によっては、ゲルの崩壊が見られず、耐熱性を示したが60℃×1時間の加熱処理の後には、流動性が認められた。
【0063】
【表2】
Figure 0004781547
【0064】
上記各例を含めて、実施例1の電解液(EC/PC/DEC=1/1/2(体積比)にLiPF6を1モル濃度で溶解)100重量部に対し、可変量の重合体粉末Aと多官能モノマー(テトラメチロールプロパンテトラアクリレート(A−TMMT))を加えて重合した際の重合物の状態は、次表3のようにまとめられる。
【0065】
【表3】
Figure 0004781547
【0066】
<実施例23>
重合体粉末Dの2重量部を、実施例1と同じ電解液(EC/PC/DEC=1/1/2(体積比)にLiPF6を1モル濃度で溶解)100重量部に60℃で加熱溶解した後、室温まで自然冷却した。次いで、不飽和二重結合をもつ2−メタクリロイルオキシイソシアネート(MEI)3重量部、触媒としてジブチル錫ジラウレート1重量部を加えて70℃で1時間反応させた。IRの測定結果から重合物Dのカルボン酸とイソシアネート(−N=C=O)が反応していることが確認された。
【0067】
ここに、A−TMMT3重量部を加え室温で数分間撹拌した後、0.5重量部のIPPを加えて60℃で1時間重合した。得られた重合物は弾力性のあるゲルであり、実施例1と同様に耐熱試験(80℃×1h、100℃×1h)を行ったところ、ゲルの崩壊が見られず、耐熱性に優れることが分かった。
【0068】
<実施例24>
実施例23の重合体粉末Dに代わり重合体粉末Eを用い、また電解液(EC/PC/DEC=1/1/2(体積比)1MLiPF6)100重量部の代わりに電解液(γ−ブチロラクトンにLiPF6を1モル濃度で溶解)100重量部を用いた以外は実施例23と同様にして、重合物を得た。
【0069】
その結果、得られた重合物は弾力性のあるゲルであり、実施例1と同様に耐熱試験(80℃×1h、100℃×1h)を行ったところ、ゲルの崩壊が見られず、耐熱性に優れることが分かった。
【0070】
<比較例3>
50mlの密閉容器中にて、重合体粉末A12.5重量部と、電解液(γ−ブチロラクトンにLiBF4を1モル濃度で溶解)100重量部(8g)とを、室温で15分間撹拌したところ重合体粉末Aは膨潤したが溶解はしなかった。
【0071】
次いで、ポリオキシエチレン(n=23)ジメタクリレート(分子量1136)12.5重量部を加え数分間撹拌した後、IPP1.25重量部を加えて、60℃で1時間重合した。
【0072】
重合物は、無色透明に近い薄い上層ゲルと、重合体粉末Aを含む白濁した下層ゲルに分離していることが観察され、ゲル自体は弾力性を有していた。
【0073】
上記で得られた、実施例4、11、12、23および参考例1(上記実施例の電解液のみ)ならび実施例24および参考例2(上記実施例24の電解液のみ)、更には比較例3のゲル原料あるいは電解液を用いて、下記のようにしてイオン伝導度測定を行った。
【0074】
<イオン伝導度測定>
すなわち、各例の架橋重合前の液状前駆体、あるいは電解液のみを、それぞれSUS製のセルに入れ、60℃のオーブンで1時間重合した。このセルについて、Cole−Coleプロットによりインピーダンス測定を行った。測定機器としては、ソーラトロン社製インピーダンスアナライザー/ポテンションスタットを行い、周波数の範囲は1kHz〜100kHzとした。
【0075】
結果をまとめて、下表4に示す。
【0076】
【表4】
Figure 0004781547
【0077】
本発明の実施例においては、従来の高分子ゲル電解質において実現されていた1ms/cm前後のイオン伝導度に比べてはるかに高く、電解液単独(参考例1および2)とも比較し得る程度に高いイオン伝導度が得られていることが注目される。
【0078】
[電池性能評価]
(負極電極の作製)
フッ化ビニリデン重合体KF#9100(呉羽化学工業製)0.8gを炭素材料MCMB25−28(大阪ガスケミカル製)9.2gおよびN−メチル−2−ピロリドン9.2gと混合した。得られたスラリーを厚さ10μmの銅箔上に塗布し、130℃で乾燥させ、N−メチル−2−ピロリドンを蒸発除去した後、直径15mmの円盤状に打ち抜き、厚さ約120μmの乾燥電極を得た。
【0079】
(正極電極の作製)
フッ化ビニリデン重合体KF#1300(呉羽化学工業製)0.3gをLiCoO29.4g、デンカブラックHS−100(電気化学工業製)0.3gおよびN−メチル−2−ピロリドン4.7gと混合した。得られたスラリーを厚さ10μmのアルミ箔上に塗布し、130℃で乾燥させ、N−メチル−2−ピロリドンを蒸発除去した後、直径14mmの円盤状に打ち抜き、厚さ約110μmの乾燥電極を得た。
【0080】
(ゲル前駆体溶液調製例)
<実施例25>
50ml密閉容器中に、調製例−1で得られた重合粉末体Aを2重量部秤量し、電解液(エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=1/1(重量比)混合液中に、LiPF6を1モル濃度で溶解)100重量部(10g)を用いて加熱溶解させた後、室温まで自然冷却させた。
【0081】
ここに、テトラメチロールメタンテトラアクリレート(A−TMMT)3重量部を加え室温で数分間撹拌した後、0.5重量部のイソプロピルパーオキシジカーボネート(IPP)を加えてゲル前駆体溶液を調製した。
【0082】
(電池の作製と評価)
<実施例26>
上記で作製した正極と負極との間に、ポリプロピレン製セパレータ(厚さ20μm)を挾んで電極構造を作り、ステンレススチール製缶体中に装入して、コイン形電池缶体を構成した。そこに実施例25で調製したゲル前駆体溶液を注入した後、ステンレススチール製缶体をかしめ、次に60℃で1時間架橋反応を進行させ、ゲル電解質電池を作製した。25℃において0.4mAで4.0Vまで充電した後、25時間定電圧で充電を継続し、その後0.4mAの定電流で3.0Vまで放電する充放電するサイクルを1回行った後、2回目からは4.0mAで4.1Vまで充電した後、1.5時間定電圧で充電を継続し、その後3.0mAの定電流で3.0Vまで放電する充放電するサイクルを31回繰り返した。31回目の放電容量を2回目の放電容量で除した値に100を乗じて容量保持率(%)とした。結果を下表5に示す。
【0083】
<比較例4>
実施例26において、実施例25で調製した溶液に代わり、電解液(エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=1/1(重量比)混合液中に、LiPF6を1モル濃度で溶解)を、コイン型電池缶体に注入し、60℃で1時間の加熱を行わない以外は、実施例26と同様に電池を作製して、充放電を行い、同様に31回目の容量保持率を測定した。結果を下表5に示す。
【0084】
【表5】
Figure 0004781547
【0085】
上表から、本発明による高分子ゲル電解質を用いた電池性能は、比較例4の電解液のみからなる電池を用いた場合と同様に高い容量保持率を示すことが分かった。
【0086】
【発明の効果】
上述したように、本発明によれば、電解質溶液とフッ化ビニリデン重合体とが相溶し、実質的に全量が高分子ゲル電解質に含まれる有機溶媒を用いた系において、多官能モノマーを架橋重合することにより、フッ化ビニリデン重合体と架橋重合体とにより構成された均一なIPN構造中に電解質溶液が高濃度で保持されることにより極めて高いイオン伝導度を示す高分子ゲル電解質が与えられる。また、その架橋重合前の前駆体組成物を用いることにより、高性能な非水系電池ならびにその効率的な製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer gel electrolyte suitable for forming a non-aqueous battery, particularly a lithium ion battery, a non-aqueous battery using the polymer gel electrolyte, a method for producing the non-aqueous battery, and formation of the polymer gel electrolyte. The present invention relates to a precursor composition.
[0002]
[Prior art]
In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Coupled with the reduction in size and weight of electronic devices, there is an increasing demand for reduction in size and weight of batteries that serve as power sources. Non-aqueous secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain more energy with a small volume and weight. I came. In order to further improve the performance of this lithium non-aqueous secondary battery, it has been proposed to use a polymer electrolyte as an ion transfer medium between the positive electrode and the negative electrode.
[0003]
In other words, by using a polymer electrolyte as an ion transfer medium, there is no liquid leakage compared to a conventional electrolyte using an ion transfer medium, thereby improving reliability and safety, and further reducing the thickness and freedom of shape In addition, there is an advantage that the package becomes high, and further simplification and weight reduction of the package are expected.
[0004]
Since polymer electrolytes that do not contain electrolytes do not satisfy the characteristics required for battery applications, such as low ionic conductivity and low battery discharge capacity, they contain electrolytes (electrolyte solutions) and ion conduction A high degree of polymer gel electrolyte has attracted attention. It is known that the ionic conductivity generally increases as the amount of the electrolyte in the polymer gel electrolyte increases. On the other hand, this polymer gel electrolyte has a high membrane strength from the viewpoints of battery miniaturization and high energy density, and from the viewpoint of battery operating temperature range, safety, etc. It is desired to maintain the insulating property between the layers, that is, to improve the heat resistance.
[0005]
However, the above-mentioned demands for improving the electrochemical properties by increasing the concentration of the electrolytic solution and for improving the film strength including heat resistance are generally contradictory to each other. It is not easy to get.
[0006]
In order to provide a polymer gel electrolyte with improved properties as described above, an electrolyte solution is impregnated and held in a composite matrix resin mainly composed of a vinylidene fluoride polymer having excellent electrochemical characteristics and a crosslinked polymer. Some attempts have been made to form polymer gel electrolytes as follows.
[0007]
(A) Two or more functional groups are added to a solution in which a vinylidene fluoride polymer is dissolved in a mixture of an organic solvent such as THF (tetrahydrofuran) having an ability to dissolve a vinylidene fluoride polymer and volatile, and an electrolytic solution. A method for obtaining a polymer gel electrolyte by dissolving a polyfunctional monomer having a carboxyl group and a carboxyl group-containing monomer, casting the resulting solution, and then cross-linking the monomers in the film-like product obtained by evaporating THF ( JP-A-11-185524). It is intended to maintain the electrolyte at a high concentration by the polymer of the carboxyl group-containing monomer.
[0008]
(B) Crosslinking in which a polyfunctional monomer is dissolved in a dispersion of a vinylidene fluoride polymer in an electrolytic solution, and the polyfunctional monomer is crosslinked to form a vinylidene fluoride polymer swollen with the electrolytic solution. A method for obtaining a polymer gel electrolyte held by a polymer (Japanese Patent Laid-Open No. 11-086630).
[0009]
However, the content of the electrolytic solution in the polymer gel electrolyte realized by these methods is about 60 to 80% by weight, which is still not sufficient from the viewpoint of improving the ionic conductivity. According to the researches of the present inventors, as will be described in detail later in connection with the present invention, the above method employs a system in which the vinylidene fluoride polymer swells but does not dissolve when the electrolytic solution alone is used. Therefore, it is understood that the content of the electrolytic solution is insufficiently improved. In fact, the reason why vinylidene fluoride polymer was used as an excellent positive electrode or negative electrode binder in conventional non-aqueous batteries in which the electrolytic solution is an ion-conducting medium is mainly because of its electrochemical stability, Is due to the excellent anti-electrolyte properties that swell but not dissolve, but the present inventors have shown that the anti-electrolyte properties of such vinylidene fluoride polymers are not necessarily advantageous for the formation of polymer gel electrolytes. I found out.
[0010]
[Problems to be solved by the invention]
That is, the main object of the present invention is to provide a polymer gel electrolyte capable of holding an electrolyte solution at a high concentration and exhibiting high ionic conductivity.
[0011]
Another object of the present invention is to provide a non-aqueous battery containing the polymer gel electrolyte, an efficient production method thereof, and a precursor composition for forming the polymer gel electrolyte.
[0012]
[Means for Solving the Problems]
According to the studies by the present inventors, it has been found that it is extremely desirable to employ a combination in which the electrolyte solution (electrolytic solution) and the vinylidene fluoride polymer are compatible in order to achieve the above-described object. It was done.
[0013]
The polymer gel electrolyte of the present invention is based on the above-mentioned knowledge, and an ionic compound is used. The HOMO level by an ab initio molecular orbital calculation is -11 eV or less and the LUMO level is +4.0 eV or more. Electrolyte solution (I) dissolved in an organic solvent, at least (a) alone At least under heating Types and amounts of vinylidene fluoride polymers that can be dissolved in the electrolyte solution When( b) two or more Vinyl group A matrix resin comprising a cross-linked polymer of a polyfunctional monomer having II (II )so Fix it The ratio of the vinylidene fluoride polymer (a) to the total weight of the vinylidene fluoride polymer (a) constituting the matrix resin (II) and the cross-linked polymer (b) of the polyfunctional monomer is 10 to 90% by weight. In the matrix resin (II), the vinylidene fluoride polymer (a) and the cross-linked polymer (b) of the polyfunctional monomer form a polymer network structure entangled with each other at the molecular level, And content of electrolyte solution (I) is 80 to 99 weight% It is characterized by this. In the polymer gel electrolyte of the present invention Is good Preferably, the polymer gel electrolyte is obtained by crosslinking and polymerizing a polyfunctional monomer in the electrolyte solution (I) in which the vinylidene fluoride polymer (a) is dissolved. In order to improve the mutual solubility between the vinylidene fluoride polymer (a) and the electrolyte solution (I), heating is more preferable.
[0014]
As can be understood from the above-described production method, the matrix resin forming the polymer gel electrolyte of the present invention is high in both of the vinylidene fluoride polymer (a) and the cross-linked polymer (b) of the produced polyfunctional monomer. The so-called interpenetrating polymer networks (hereinafter referred to as “IPN structures”) in which molecular networks are entangled with each other at the molecular level are sometimes referred to as “IPN structures”. However, in the present invention, there may be a chemical bond between the vinylidene fluoride polymer (a) and the crosslinked polymer (b). It is understood that a good IPN structure between the vinylidene fluoride polymer (a) and the crosslinked polymer (b) exhibits the high concentration retention property of the electrolytic solution. In contrast, in the method of JP-A-11-086630, the vinylidene fluoride polymer is swollen in the electrolytic solution, but the polyfunctional monomer is crosslinked and polymerized in a state where it is not dissolved. Since a good IPN structure at the level is not formed, the electrolyte retention property is insufficient, and it is understood that the non-uniform gel lacks the uniform conductivity of ions. On the other hand, in the method of JP-A-11-185524, it is understood that a temporary IPN structure is formed between the vinylidene fluoride polymer, the crosslinked polymer, and the polymer of the carboxyl group-containing monomer. However, it is understood that the formation of the IPN structure that exhibits good electrolyte retention characteristics is hindered in the process of evaporation of the volatile organic solvent used in large quantities. Further, in the present invention, since the vinylidene fluoride polymer (a) and the electrolyte solution (I) employ a combination having a good affinity to the extent that they exhibit mutual solubility, this is also an electrolyte solution holding characteristic of an IPN structure. It is understood that it is improving.
[0015]
The non-aqueous battery of the present invention is characterized in that the polymer gel electrolyte of the present invention is disposed between a positive electrode and a negative electrode.
[0016]
Furthermore, the method for producing a non-aqueous battery of the present invention corresponds to the above-mentioned efficient method for producing a non-aqueous battery. The vinylidene fluoride polymer (a), the polyfunctional monomer, and the polyfunctional monomer A solution obtained by dissolving the polymerization initiator in the electrolyte solution (I) is injected between the positive electrode and the negative electrode of the outer package containing the positive electrode and the negative electrode, and then the outer package is heated to gel the solution. It has the process to make it feature.
[0017]
Further, the polymer gel electrolyte injection forming composition of the present invention corresponds to a precursor composition for forming a polymer gel electrolyte that enables efficient implementation of the method for producing a non-aqueous battery, It is characterized by comprising a solution obtained by dissolving a vinylidene fluoride polymer (a), a polyfunctional monomer, and a polymerization initiator of the polyfunctional monomer in the electrolyte solution (I).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(I) Electrolyte solution
The quantitatively constituting first component of the polymer gel electrolyte of the present invention is an electrolyte solution (electrolytic solution), which is obtained by dissolving an ionic compound in an organic solvent.
[0019]
(I) Ionic compounds
The ionic compound used in the present invention is used as an electrolyte in a non-aqueous battery such as a lithium ion battery. + X - (M + Is an ion of a metal belonging to Group I or Group II of the periodic table, X - Is preferably any anion). Especially M + Li + , Na + Or K + Preferred examples of ionic compounds are LiPF. 6 , LiAsF 6 LiClO Four , LiBF Four , LiCl, LiBr, LiCH Three SO Three , LiCF Three SO Three , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three Can be mentioned.
[0020]
(Ii) Organic solvent
In the present invention, the organic solvent that constitutes the electrolyte solution together with the ionic compound is preferably mainly used in addition to the above ionic compound, but also has a high solubility in the vinylidene fluoride polymer described later. Excellent oxidation resistance represented by an ab initio HOMO (maximum occupied molecular orbital energy) level of −11 eV or less, in order to ensure the electrochemical stability necessary for use in batteries. An organic solvent having excellent reduction resistance represented by a LUMO (minimum vacancy molecular orbital energy level) of +4.0 eV or more, particularly +4.5 eV or more is preferable.
[0021]
The HOMO level and LUMO level of the solvent can be calculated by a molecular orbital calculation (ab initio method) using a commercially available program. (Incidentally, the values described in this specification are based on the basis function using a commercially available general-purpose program “Gaussian 94” issued by Gaussian, Inc. of Carnegie Office Park Building 6, Pittsburgh, PA 15106 USA (USA). Series 3-21G (*) Based on the value calculated by the present inventors. ) Specific examples of organic solvents having a HOMO level of −12 eV or less and a LUMO level of +4.0 eV or more include acetonitrile (HOMO-12.62 eV, LUMO + 5.97 eV), ethylene-carbonate (HOMO-12.46 eV, LUMO + 5.87 eV), dimethyl carbonate (HOMO-12.21 eV, LUMO + 6.10 eV), diethyl carbonate (HOMO-12.08 eV, LUMO + 6.22 eV), ethyl methyl carbonate (HOMO-12.14 eV, LUMO + 6.16 eV), propylene carbonate (HOMO-12.34 eV, LUMO + 5.88 eV), propionitrile (HOMO-12.42 eV, LUMO + 5.76 eV), butylene carbonate (HOMO-12.31 eV, LUM) + 5.87eV), γ- butyrolactone (HOMO-11.50eV, LUMO + 5.06eV) can be mentioned, such as, but not limited to the above.
[0022]
For reference, conventionally used solvents for vinylidene fluoride polymers to form an electrode binder solution include, for example, N-methylpyrrolidone (HOMO-10.18 eV, LUMO + 5.81 eV), N, N- Dimethylformamide (-9.85 eV, +5.80 eV), acetone (-10.93 eV, +4.53 eV), N, N-dimethylacetamide (-9.66 eV, +5.67 eV), toluene (-8.88 eV, +2 .87 eV), dimethyl phthalate (-9.70 eV, +1.74 eV), 1,4-dioxane (-10.36 eV, +7.39 eV), tetrahydrofuran (-10.79 eV, +6.93 eV) and the like. In any case, since the HOMO level does not satisfy the requirement of -11 eV or less, , For the purposes of the present invention is not preferred.
[0023]
In order to form the polymer gel electrolyte of the present invention, a volatile organic solvent having a boiling point of 100 ° C. or less, such as acetone or THF, which has been conventionally used as a good solvent or a latent solvent for a vinylidene fluoride polymer, is used. Thus, it is desirable not to employ the step of evaporating and removing the organic solvent after dissolving the vinylidene fluoride polymer. This not only simplifies the manufacturing process, but also keeps the electrolyte content in the polymer gel electrolyte high. Furthermore, dimethyl carbonate (boiling point 90-91 ° C.), diethyl carbonate (boiling point 127 ° C.), ethyl It has good electrochemical characteristics such as methyl carbonate (boiling point, 108 ° C) and is preferable for the preparation of low-viscosity electrolytes, but it can prevent changes in electrolyte composition due to entrainment of organic solvents with relatively low boiling points. Therefore, good composition control becomes possible. That is, it is preferable that substantially all of the organic solvent used for forming the electrolyte solution (I) constituting the polymer gel electrolyte of the present invention is incorporated into the polymer gel electrolyte.
[0024]
It is also preferable to adjust the solubility of the vinylidene fluoride polymer by mixing two or more organic solvents. The ionic compound is 0.1 to 10 mol, particularly 0.5 to It is preferable to dissolve at a ratio of 5 mol to form the electrolyte solution (I).
[0025]
(II) Matrix resin
The polymer gel electrolyte of the present invention can be obtained by holding and fixing the electrolyte solution (I) with the matrix resin (II). The matrix resin (II) comprises at least a vinylidene fluoride polymer (a) and a cross-linked polymer (b) of a polyfunctional monomer.
[0026]
(A) Vinylidene fluoride polymer
As the vinylidene fluoride polymer (a) used in the present invention, a homopolymer of vinylidene fluoride or a copolymer of 50% by weight or more of vinylidene fluoride and 1% by weight or more of a monomer copolymerizable therewith However, from the viewpoint of solubility in the electrolyte solution, a copolymer having a vinylidene fluoride content of 60 to 95 weight percent is preferably used. (However, a vinylidene fluoride homopolymer may also be used by adjusting the inherent viscosity, which will be described later, or by combining heating.)
Examples of the monomer copolymerizable with the vinylidene fluoride monomer include hydrocarbon monomers such as ethylene and propylene, vinyl fluoride, ethylene trifluoride, ethylene trifluoride, tetrafluoroethylene. , Fluorine-containing monomers such as propylene hexafluoride and fluoroalkyl vinyl ether, carboxyl group-containing monomers such as monomethyl maleate and monomethyl citraconic acid, or epoxy groups such as allyl glycidyl ether and crotonic acid glycidyl ester Examples of the vinyl monomer include, but are not necessarily limited to these. Of these, a vinylidene fluoride copolymer containing propylene hexafluoride or ethylene trifluoride chloride is preferably used.
[0027]
The vinylidene fluoride polymer must be soluble in the electrolyte solution by heating at least 100 ° C. or less, preferably 80 ° C. or less. In this respect, the inherent viscosity is 2.5 dl / g or less. Further, it is preferably 2.2 dl / g, particularly preferably 2.0 dl / g or less. Moreover, it is preferable that it is 0.2 dl / g or more, especially 0.4 dl / g or more from points, such as the mechanical strength of a polymer gel electrolyte obtained, and heat resistance. Here, the inherent viscosity is used as a measure of the molecular weight of the polymer, and refers to the logarithmic viscosity at 30 ° C. of a solution in which 4 g of resin is dissolved in 1 liter of N, N-dimethylformamide.
[0028]
The vinylidene fluoride polymer (a) is soluble in the electrolyte solution at least under heating, and the electrolyte solution can be concentrated at a high concentration by combination with the polyfunctional monomer crosslinked polymer (b) described later. It is necessary to constitute a matrix resin (II) for forming a heat-resistant polymer gel electrolyte that is stably held, electrochemically stable, and at least self-supporting, and the electrolyte solution (I) It is preferably used in a ratio of 1 to 10 parts by weight, particularly 1 to 7 parts by weight per 100 parts by weight of
[0029]
(B) Cross-linked polymer of polyfunctional monomer
The crosslinked polymer (a) constituting the matrix resin together with the vinylidene fluoride polymer (a) is obtained by crosslinking polymerization of a polyfunctional monomer. The polyfunctional monomer has two or more polymerizable functional groups, and the polymerizable functional group is preferably a vinyl group, particularly an acryloyl group (including a vinyl group). Specific examples of the polyfunctional monomer include dimethylol tricyclodecane diacrylate, divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butyl glycol dimethacrylate, Dipropyl methacrylate dipropylene, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, allyl methacrylate, allyl acrylate, bisphenol dimethacrylate, bisphenol diacrylate, cyclic Aliphatic diacrylate, diacrylated isocyanurate, trimethylolpropane trimethacrylate, triacryl formal, triacryl isocyanurate, triary Shianuneto, aliphatic triacrylate, tetra methacrylate pentaerythritol, pentaerythritol tetraacrylate, aliphatic tetraacrylate, but like is preferably used, but is not limited thereto.
[0030]
The polyfunctional monomer is dissolved in a solution of the vinylidene fluoride polymer (a) in the electrolyte solution (I) by a method such as heating, visible or ultraviolet light irradiation, electron beam or γ-ray irradiation. Crosslinked and polymerized. A polymerization initiator can be added as needed. As the thermal polymerization initiator, various organic peroxides can be used, dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as benzoyl peroxide, 2,5-dimethyl-di- Peroxyketals such as (t-butylperoxy) hexane, di-i-propyl peroxydicarbonates and the like are preferably used, and azobisisobutyronitriles and the like can also be preferably used.
[0031]
As photopolymerization initiators, dimethoxyphenylacetophenone, 2-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone-1, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane Non-1 etc. are preferably used.
[0032]
One of preferred methods for forming the polymer gel electrolyte of the present invention is a composition before cross-linking polymerization to which the above polymerization initiator is also added, that is, a vinylidene fluoride polymer (a), a polyfunctional monomer, and the polyfunctional monomer. A solution obtained by dissolving the monomer polymerization initiator in the electrolyte solution (I) is injected between the positive electrode and the negative electrode of the outer package containing the positive electrode and the negative electrode constituting the nonaqueous battery, and then the outer package. Is heated to gel the solution, thereby forming a polymer gel electrolyte in situ. Thereby, the main part of a non-aqueous battery is formed at a stretch. That is, the process of forming a battery after forming the polymer gel electrolyte layer and laminating it with the positive and negative electrode layers is greatly simplified.
[0033]
The thermal polymerization initiator added to the precursor composition for this purpose is preferably one that enables cross-linking polymerization at a temperature of about 30 to 80 ° C., and is added to 100 parts by weight of the polyfunctional monomer. On the other hand, it is preferably used at a ratio of 0.01 to 30 parts by weight.
[0034]
The crosslinked polymer (b) thus formed has a total amount (namely, the amount of the matrix resin (II)) with the vinylidene fluoride polymer (a) of 1 to 1 of the polymer gel electrolyte of the present invention. It is preferable that the amount accounts for 20% by weight, more preferably 2 to 15% by weight, particularly preferably 2 to 10% by weight. If this ratio is 1% by weight or less, the necessary self-supporting property and heat resistance of the polymer gel electrolyte may not be obtained, and if it exceeds 20% by weight, the effect of improving the ionic conductivity becomes poor and homogeneous. The solution state of such a precursor composition may be impaired even under heating, and the homogeneity of the resulting IPN structure may be impaired.
[0035]
The proportion of the vinylidene fluoride polymer (a) in the total amount of the vinylidene fluoride polymer (a) and the crosslinked polymer (b) in the matrix resin (II) is 10 to 90% by weight, A range of 80% by weight, particularly 20 to 75% by weight is preferred. If this proportion is less than 10% by weight, the electrochemical properties of the resulting polymer gel electrolyte, in particular, ionic conductivity may be lowered, and it becomes difficult to obtain an elastic gel. On the other hand, when it exceeds 90% by weight, the strength (self-supporting property) and heat resistance of the polymer gel electrolyte tend to be insufficient.
[0036]
The basic structure of the nonaqueous battery of the present invention can be obtained by disposing the polymer gel electrolyte layer obtained as described above between the positive electrode and the negative electrode. The polymer gel electrolyte layer preferably has a thickness of 2 to 1000 μm, particularly about 5 to 200 μm.
[0037]
As an example of a non-aqueous battery, when a configuration as a lithium ion battery is taken as an example, as a positive electrode active material, for example, a general formula LiMY 2 (M is at least one kind of transition metal such as Co, Ni, Fe, Mn, Cr, and V; Y is a chalcogen element such as O and S), particularly LiNi x Co 1-x O 2 Complex metal oxides such as (0 ≦ x ≦ 1) and LiMn 2 O Four A composite metal oxide having a spinel structure such as is preferably used.
[0038]
The laminated battery basic structure described above is further laminated by winding, folding, or the like, if necessary, to increase the electrode area per volume, and further housed in a relatively simple container to form a takeout electrode. For example, a non-aqueous battery having an overall structure such as a square shape, a cylindrical shape, a coin shape, and a paper shape is formed. However, as described above, the aspect in which the polymer gel electrolyte is formed by cross-linking polymerization after being injected into the non-aqueous battery exterior body is most preferable.
[0039]
The polymer gel electrolyte of the present invention can be used for electrochemical devices such as an electric double layer capacitor, an electrochromic display, and a sensor in addition to the lithium ion secondary battery, taking advantage of its excellent characteristics.
[0040]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. First, preparation examples of vinylidene fluoride polymer will be described.
[0041]
(Polymer Preparation Example-1)
In an autoclave having an internal volume of 10 liters, 8013 parts by weight of ion-exchanged water (g), 1.565 parts by weight of methylcellulose, 25.04 parts by weight of Freon 225cb, 93.9 parts by weight of ethyl acetate, diisopropyl peroxydicarbonate (IPP) 25.04 parts by weight, vinylidene fluoride (VdF) 2442 parts by weight, and hexafluoropropylene (HFP) 689 parts by weight were charged, and suspension polymerization was performed at 28 ° C. for 13 hours and 45 minutes. After the polymerization was completed, the polymer slurry was dehydrated, washed with water, and dried at 80 ° C. for 20 hours to obtain a polymer powder A. The polymerization rate was 63%, and the obtained inherent viscosity (η inh ) Was 0.817 dl / g. 19 As a result of F-NMR analysis, the polymerization ratio of the vinylidene fluoride monomer and the hexafluoropropylene monomer in the polymer was 87:13.
[0042]
(Polymer Preparation Example-2)
In an autoclave having an internal volume of 2 liters, 1075 parts by weight of ion exchange water, 0.21 part by weight of methylcellulose, 4.2 parts by weight of Freon 225cb, 12.6 parts by weight of ethyl acetate, diisopropyl peroxydicarbonate (IPP) 4.2 parts by weight, vinylidene fluoride (VdF) 344.4 parts by weight, propylene hexafluoride (HFP) 42 parts by weight, trifluoroethylene chloride (CTFE) 8 parts by weight were charged at 29 ° C. for 26 hours 30 minutes. Suspension polymerization was performed. After the completion of the polymerization, the polymer slurry was dehydrated, washed with water, and dried at 80 ° C. for 20 hours to obtain a polymer powder B. The polymerization rate was 90% and the obtained η inh Was 0.836 dl / g. 19 As a result of F-NMR analysis, the polymerization ratio of vinylidene fluoride monomer, propylene hexafluoride, and trifluoroethylene chloride monomer in the polymer was 83: 8: 9.
[0043]
(Polymer Preparation Examples-3-5)
Polymerization was performed according to Polymer Preparation Example-2 except that the polymerization conditions such as monomer composition and ratio were changed. The polymerization conditions at this time and the characteristics of the obtained polymer are summarized in Table 1.
[0044]
[Table 1]
Figure 0004781547
[0045]
( 19 Analysis method of F-NMR analysis)
Of vinylidene fluoride polymer 19 It calculated | required from the diffraction peak of the analysis method spectrum of F-NMR analysis.
[0046]
Specifically, about 5 mg of a vinylidene fluoride polymer sample was mixed with 0.4 ml of dimethylformamide (DMF) and deuterium dimethylformamide (DMF-d) as an NMR measurement solvent. 7 ) Dissolve in a mixed solvent with 0.1 ml and at room temperature 19 F-NMR was measured.
[0047]
(Inherent viscosity measurement method)
80 mg of a powdery sample was dissolved in 20 ml of N, N-dimethylformamide, and the inherent viscosity η was expressed by the following formula using a Ubbelote viscometer in a thermostat at 30 ° C inh Sought:
η inh = (1 / C) · ln (η / η o )
Where η is the viscosity of the polymer solution, η o Is the viscosity of the solvent N, N-dimethylformamide alone, and C is 0.4 (g / dl).
[0048]
<Example 1>
In a 50 ml sealed container, 1 part by weight of the polymer powder A obtained in Preparation Example-1 was weighed, and an electrolytic solution (ethylene carbonate (EC) / propylene carbonate (PC) / diethylene carbonate (DEC) = 1/1. / 2 (volume ratio) in the mixed solution, LiPF 6 Was dissolved at 60 ° C. using 100 parts by weight (10 g), and then naturally cooled to room temperature.
[0049]
To this was added 3 parts by weight of tetramethylol methane tetraacrylate (A-TMMT) and stirred for several minutes at room temperature, and then 0.5 parts by weight of isopropyl peroxydicarbonate (IPP) was added and polymerized at 60 ° C. for 1 hour. .
[0050]
About the obtained polymer, elasticity was confirmed by pressing lightly with a spatula etc. under visual observation at room temperature. Further, the polymer was subjected to heat treatment at 80 ° C. × 1 hour and 100 ° C. × 1 hour, and the heat resistance was evaluated by the presence or absence of the collapse of the polymer (gel).
[0051]
As a result, according to the above example, an elastic gel was obtained, and any heat treatment showed heat resistance without gel collapse.
[0052]
<Examples 2 to 10>
A polymer (gel) was prepared in the same manner as in Example 1 except that the amount of the vinylidene fluoride polymer powder A and the amount of the polyfunctional monomer (tetramethylolmethanetetraacrylate (A-TMMT)) were changed as shown in Table 2 below. ) And evaluated. As a result, in each case, the same result as in Example 1 was obtained.
[0053]
<Comparative Example 1>
Polymerization was attempted in the same manner as in Example 1 except that 2 parts by weight of A-TMMT was used without using the vinylidene fluoride polymer powder A.
[0054]
As a result, a gelled polymer was not obtained.
[0055]
<Comparative example 2>
A polymer was obtained and evaluated in the same manner as in Example 1 except that 6 parts by weight of A-TMMT was used without using the vinylidene fluoride polymer powder A.
[0056]
As a result, an elastic gel-like polymer could not be obtained, and a solidified product having no elasticity was obtained.
[0057]
<Example 11>
LiPF in the same electrolytic solution as in Example 1 (EC / PC / DEC = 1/1/2 (volume ratio)) 6 Except that 2 parts by weight of the polymer powder and 9 parts by weight of the methacrylate monomer (trade name “4G”, manufactured by Shin-Nakamura Chemical Co., Ltd .; abbreviated as “MM4G”) are used per 100 parts by weight. In the same manner as in Example 1, a polymer (gel) was obtained and evaluated. As a result, the same result as in Example 1 was obtained.
[0058]
<Example 12>
A polymer (gel) was obtained in the same manner as in Example 1 except that methacrylate monomer (trade name “9PG”, manufactured by Shin-Nakamura Chemical Co., Ltd .; abbreviated as “MM9PG”) was used instead of methacrylate monomer (MM4G). ,evaluated. As a result, the same result as in Example 1 was obtained.
[0059]
<Examples 13 to 21>
A polymer (in the same manner as in Example 1 except that 1 to 3 parts by weight of vinylidene fluoride polymer powders A, B, and C were used, A-TMMT was fixed to 3 parts by weight, and the composition was changed as shown in Table 2. Gel) was obtained and evaluated. As a result, in each case, the same result as in Example 1 was obtained.
[0060]
<Example 22>
In a 50 ml sealed container, 6.7 parts by weight of the polymer powder F was weighed, and 100 parts by weight (4.5 g) of the same electrolytic solution as in Example 1 was heated and dissolved at 60 ° C., and then cooled to room temperature.
[0061]
Next, 2.2 parts by weight of the same polyfunctional monomer (A-TMMT) as in Example 1 was added and stirred for several minutes at room temperature. Then, 1.1 parts by weight of IPP was added and polymerized at 50 ° C. for 1 hour.
[0062]
The polymer obtained was an elastic gel, and the heat treatment at 50 ° C. for 1 hour showed no gel collapse and showed heat resistance, but after the heat treatment at 60 ° C. for 1 hour. Fluidity was observed.
[0063]
[Table 2]
Figure 0004781547
[0064]
Including the above examples, the electrolyte solution of Example 1 (EC / PC / DEC = 1/1/2 (volume ratio)) was LiPF. 6 The amount of polymer powder A and polyfunctional monomer (tetramethylolpropane tetraacrylate (A-TMMT)) added and polymerized with respect to 100 parts by weight of 100 parts by weight is as follows. These are summarized in Table 3.
[0065]
[Table 3]
Figure 0004781547
[0066]
<Example 23>
2 parts by weight of the polymer powder D was added to the same electrolytic solution as in Example 1 (EC / PC / DEC = 1/1/2 (volume ratio)) by LiPF. 6 Was dissolved in 100 parts by weight at 60 ° C. and then naturally cooled to room temperature. Next, 3 parts by weight of 2-methacryloyloxyisocyanate (MEI) having an unsaturated double bond and 1 part by weight of dibutyltin dilaurate as a catalyst were added and reacted at 70 ° C. for 1 hour. From the IR measurement results, it was confirmed that the carboxylic acid of the polymer D and the isocyanate (-N = C = O) were reacted.
[0067]
To this, 3 parts by weight of A-TMMT was added and stirred at room temperature for several minutes, and then 0.5 parts by weight of IPP was added and polymerized at 60 ° C. for 1 hour. The obtained polymer was an elastic gel. When a heat resistance test (80 ° C. × 1 h, 100 ° C. × 1 h) was conducted in the same manner as in Example 1, no gel collapse was observed, and the heat resistance was excellent. I understood that.
[0068]
<Example 24>
The polymer powder E was used in place of the polymer powder D of Example 23, and the electrolyte (EC / PC / DEC = 1/1/2 (volume ratio)) 1 M LiPF 6 ) Electrolyte instead of 100 parts by weight (γ-butyrolactone and LiPF 6 The polymer was obtained in the same manner as in Example 23 except that 100 parts by weight was used.
[0069]
As a result, the obtained polymer was an elastic gel. When the heat resistance test (80 ° C. × 1 h, 100 ° C. × 1 h) was conducted in the same manner as in Example 1, no gel collapse was observed, and the heat resistance It was found to be excellent in performance.
[0070]
<Comparative Example 3>
In a 50 ml sealed container, 12.5 parts by weight of the polymer powder A and an electrolyte (γ-butyrolactone and LiBF Four When 100 parts by weight (8 g) was stirred at room temperature for 15 minutes, the polymer powder A swelled but did not dissolve.
[0071]
Next, after adding 12.5 parts by weight of polyoxyethylene (n = 23) dimethacrylate (molecular weight 1136) and stirring for several minutes, 1.25 parts by weight of IPP was added and polymerization was performed at 60 ° C. for 1 hour.
[0072]
It was observed that the polymer was separated into a thin upper layer gel that was nearly colorless and transparent, and a cloudy lower layer gel containing the polymer powder A, and the gel itself had elasticity.
[0073]
Examples 4, 11, 12, 23 and Reference Example 1 (only the electrolyte solution of the above example) obtained above, Example 24 and Reference Example 2 (only the electrolyte solution of Example 24), and comparison Using the gel raw material or the electrolyte solution of Example 3, the ion conductivity was measured as follows.
[0074]
<Ion conductivity measurement>
That is, the liquid precursor before cross-linking polymerization in each example, or only the electrolytic solution was placed in a cell made of SUS and polymerized in an oven at 60 ° C. for 1 hour. This cell was subjected to impedance measurement by Cole-Cole plot. As a measuring instrument, an impedance analyzer / potentiostat manufactured by Solartron was used, and the frequency range was 1 kHz to 100 kHz.
[0075]
The results are summarized and shown in Table 4 below.
[0076]
[Table 4]
Figure 0004781547
[0077]
In the examples of the present invention, the ionic conductivity of about 1 ms / cm, which was realized in the conventional polymer gel electrolyte, is much higher than that of the electrolyte solution alone (Reference Examples 1 and 2). It is noted that high ionic conductivity is obtained.
[0078]
[Battery performance evaluation]
(Preparation of negative electrode)
0.8 g of vinylidene fluoride polymer KF # 9100 (Kureha Chemical Industries) was mixed with 9.2 g of carbon material MCMB25-28 (Osaka Gas Chemical) and 9.2 g of N-methyl-2-pyrrolidone. The obtained slurry was applied on a copper foil having a thickness of 10 μm, dried at 130 ° C., N-methyl-2-pyrrolidone was removed by evaporation, and then punched out into a disk shape having a diameter of 15 mm, and a dry electrode having a thickness of about 120 μm. Got.
[0079]
(Preparation of positive electrode)
0.3g of vinylidene fluoride polymer KF # 1300 (Kureha Chemical Industries) 2 9.4 g, Denka Black HS-100 (manufactured by Denki Kagaku Kogyo) 0.3 g and N-methyl-2-pyrrolidone 4.7 g were mixed. The obtained slurry was applied onto an aluminum foil having a thickness of 10 μm, dried at 130 ° C., N-methyl-2-pyrrolidone was removed by evaporation, and then punched out into a disk shape having a diameter of 14 mm, and a dry electrode having a thickness of about 110 μm. Got.
[0080]
(Gel precursor solution preparation example)
<Example 25>
In a 50 ml sealed container, 2 parts by weight of the polymer powder A obtained in Preparation Example-1 was weighed, and an electrolytic solution (ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 1/1 (weight ratio) mixed solution. Inside, LiPF 6 Was dissolved with heating at 100 parts by weight (10 g) and then allowed to cool to room temperature.
[0081]
To this was added 3 parts by weight of tetramethylolmethane tetraacrylate (A-TMMT) and stirred for several minutes at room temperature, and then 0.5 parts by weight of isopropyl peroxydicarbonate (IPP) was added to prepare a gel precursor solution. .
[0082]
(Production and evaluation of batteries)
<Example 26>
An electrode structure was formed by sandwiching a polypropylene separator (thickness 20 μm) between the positive electrode and the negative electrode prepared above, and inserted into a stainless steel can body to constitute a coin-type battery can body. After injecting the gel precursor solution prepared in Example 25, a stainless steel can body was caulked, and then a crosslinking reaction was allowed to proceed at 60 ° C. for 1 hour to produce a gel electrolyte battery. After charging to 4.0 V at 0.4 mA at 25 ° C., charging was continued at a constant voltage for 25 hours, and then charging and discharging were performed once to discharge to 3.0 V at a constant current of 0.4 mA, From the second time, after charging to 4.1 V at 4.0 mA, charging is continued at a constant voltage for 1.5 hours, and then a charge and discharge cycle of discharging to 3.0 V at a constant current of 3.0 mA is repeated 31 times. It was. The value obtained by dividing the discharge capacity at the 31st time by the discharge capacity at the second time was multiplied by 100 to obtain a capacity retention rate (%). The results are shown in Table 5 below.
[0083]
<Comparative example 4>
In Example 26, instead of the solution prepared in Example 25, LiPF was used in an electrolyte solution (ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 1/1 (weight ratio) mixed solution. 6 Is dissolved in 1 mol concentration) into a coin-type battery can body, and a battery is prepared and charged and discharged in the same manner as in Example 26 except that heating is not performed at 60 ° C. for 1 hour. The 31st capacity retention was measured. The results are shown in Table 5 below.
[0084]
[Table 5]
Figure 0004781547
[0085]
From the above table, it was found that the battery performance using the polymer gel electrolyte according to the present invention showed a high capacity retention rate as in the case of using the battery consisting only of the electrolytic solution of Comparative Example 4.
[0086]
【The invention's effect】
As described above, according to the present invention, the electrolyte solution and the vinylidene fluoride polymer are compatible with each other, and the polyfunctional monomer is crosslinked in a system using an organic solvent that is substantially contained in the polymer gel electrolyte. Polymerization provides a polymer gel electrolyte exhibiting extremely high ionic conductivity by holding the electrolyte solution at a high concentration in a uniform IPN structure composed of a vinylidene fluoride polymer and a crosslinked polymer. . Further, by using the precursor composition before the cross-linking polymerization, a high-performance nonaqueous battery and its efficient production can be realized.

Claims (10)

イオン性化合物をab initio法分子軌道計算によるHOMO準位が−11eV以下でLUMO準位が+4.0eV以上である有機溶媒に溶解した電解質溶液(I)を、少なくとも(a)単独では少なくとも加温下において上記電解質溶液に溶解し得る種類および量のフッ化ビニリデン重合体と(b)二以上のビニル基を有する多官能モノマーの架橋重合体とからなるマトリックス樹脂(II)で固定してなり、マトリックス樹脂(II)を構成するフッ化ビニリデン重合体(a)と多官能モノマーの架橋重合体(b)との合計重量に対するフッ化ビニリデン重合体(a)の割合が10〜90重量%であり、マトリックス樹脂(II)中において前記フッ化ビニリデン重合体(a)と前記多官能モノマーの架橋重合体(b)とが相互に分子レベルで絡み合った高分子網目構造を形成しており、且つ電解質溶液(I)の含有量が80〜99重量%であることを特徴とする高分子ゲル電解質。An ionic compound ab initio methods molecular orbital calculation electrolyte solution HOMO level was dissolved in an organic solvent or less in LUMO level is + 4.0 eV or more -11eV by (I), wherein the at least (a) alone least warming Ri Na fixed above can be dissolved in the electrolyte solution type and amount of vinylidene fluoride polymer (b) a matrix resin comprising a crosslinked polymer of a polyfunctional monomer having two or more vinyl groups (II) in the lower The ratio of the vinylidene fluoride polymer (a) to the total weight of the vinylidene fluoride polymer (a) constituting the matrix resin (II) and the crosslinked polymer (b) of the polyfunctional monomer is 10 to 90% by weight. In the matrix resin (II), the vinylidene fluoride polymer (a) and the crosslinked polymer (b) of the polyfunctional monomer are mutually Forms entangled polymer network at the child level, and the polymer gel electrolyte, characterized in that the content of the electrolyte solution (I) is 80 to 99 wt%. 前記有機溶媒が、アセトニトリル、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、プロピオニトリル、ブチレンカーボネートおよびγ−ブチロラクトンからなる群より選ばれた有機溶媒である請求項1に記載の高分子ゲル電解質。The organic solvent is an organic solvent selected from the group consisting of acetonitrile, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, propionitrile, butylene carbonate, and γ-butyrolactone. Polymer gel electrolyte. フッ化ビニリデン重合体(a)が、フッ化ビニリデン含量が60〜95重量%のフッ化ビニリデン共重合体である請求項1または2に記載の高分子ゲル電解質。 The polymer gel electrolyte according to claim 1 or 2, wherein the vinylidene fluoride polymer (a) is a vinylidene fluoride copolymer having a vinylidene fluoride content of 60 to 95 wt%. フッ化ビニリデン重合体(a)のインヘレント粘度が0.2〜2.5dl/gである請求項1〜3のいずれかに記載の高分子ゲル電解質。The polymer gel electrolyte according to any one of claims 1 to 3 , wherein the vinylidene fluoride polymer (a) has an inherent viscosity of 0.2 to 2.5 dl / g. フッ化ビニリデン重合体(a)が官能基を有するフッ化ビニリデン重合体である請求項1〜4のいずれかに記載の高分子ゲル電解質。The polymer gel electrolyte according to any one of claims 1 to 4 , wherein the vinylidene fluoride polymer (a) is a vinylidene fluoride polymer having a functional group. 少なくとも50℃において非流動性である請求項1〜のいずれかに記載の高分子ゲル電解質。The polymer gel electrolyte according to any one of claims 1 to 5 , which is non-flowable at least at 50 ° C. フッ化ビニリデン重合体(a)が溶解された電解質溶液(I)中で、多官能モノマーを架橋重合して得られる請求項1〜のいずれかに記載の高分子ゲル電解質。The polymer gel electrolyte according to any one of claims 1 to 6 , which is obtained by crosslinking polymerization of a polyfunctional monomer in the electrolyte solution (I) in which the vinylidene fluoride polymer (a) is dissolved. 請求項1〜のいずれかに記載の高分子ゲル電解質を正極と負極との間に配置してなることを特徴とする非水系電池。Non-aqueous battery, characterized by comprising disposed between the positive electrode and the negative electrode of the polymer gel electrolyte according to any one of claims 1-7. フッ化ビニリデン重合体(a)と、多官能モノマーと、該多官能モノマーの重合開始剤とを電解質溶液(I)に溶解させてなる溶液を、正極および負極を収容する外装体の、該正極および負極間に注入し、その後上記外装体を加熱して前記溶液をゲル化させる工程を有することを特徴とする請求項に記載の非水系電池の製造方法。The positive electrode of the outer package containing the positive electrode and the negative electrode, a solution obtained by dissolving the vinylidene fluoride polymer (a), the polyfunctional monomer, and the polymerization initiator of the polyfunctional monomer in the electrolyte solution (I) The method for producing a nonaqueous battery according to claim 8 , further comprising a step of injecting between the negative electrode and the negative electrode, and then heating the outer package to gel the solution. フッ化ビニリデン重合体(a)と、多官能モノマーと、該多官能モノマーの重合開始剤とを、電解質溶液(I)に溶解させてなる溶液からなることを特徴とする、請求項1〜7のいずれかに記載の高分子ゲル電解質注入形成するための組成物。Vinylidene fluoride polymer and (a), the polyfunctional monomer and a polymerization initiator of the multi-functional monomer, characterized by comprising the solution prepared by dissolving an electrolyte solution (I), according to claim 1 to 7 compositions for injecting forming a polymer gel electrolyte according to any one of.
JP2001070041A 2001-03-13 2001-03-13 Polymer gel electrolyte and battery Expired - Fee Related JP4781547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070041A JP4781547B2 (en) 2001-03-13 2001-03-13 Polymer gel electrolyte and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070041A JP4781547B2 (en) 2001-03-13 2001-03-13 Polymer gel electrolyte and battery

Publications (2)

Publication Number Publication Date
JP2002270236A JP2002270236A (en) 2002-09-20
JP4781547B2 true JP4781547B2 (en) 2011-09-28

Family

ID=18927980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070041A Expired - Fee Related JP4781547B2 (en) 2001-03-13 2001-03-13 Polymer gel electrolyte and battery

Country Status (1)

Country Link
JP (1) JP4781547B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529085B1 (en) * 2003-09-24 2005-11-15 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery fabricated using same
JP2007179745A (en) * 2004-08-26 2007-07-12 Yokohama National Univ Proton conductor
JP4486013B2 (en) * 2005-09-02 2010-06-23 株式会社リコー Resin material and manufacturing method thereof, ion conductive membrane, fuel cell, power source and electronic device
KR101093295B1 (en) 2006-02-27 2011-12-14 주식회사 엘지화학 Elecrochemical Device Decompressed by Chemical Reaction
JP5002995B2 (en) * 2006-03-29 2012-08-15 住友ベークライト株式会社 Ion conductive electrolyte and secondary battery using the ion conductive electrolyte
EP2790259B1 (en) * 2012-05-29 2016-09-14 LG Chem, Ltd. Secondary battery and method for manufacturing same
CN103474697B (en) * 2013-09-10 2016-09-07 东莞新能源科技有限公司 A kind of gel polymer lithium ion battery
JPWO2015186517A1 (en) * 2014-06-05 2017-04-20 ソニー株式会社 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6933478B2 (en) 2017-03-21 2021-09-08 株式会社クレハ Gel electrolyte
KR102578307B1 (en) * 2018-10-31 2023-09-13 가부시끼가이샤 구레하 Gel electrolyte and non-aqueous electrolyte secondary batteries
KR20210018153A (en) * 2019-08-08 2021-02-17 주식회사 엘지화학 Copolymer for polymer electrolyte, gel polymer electrolyte comprising the same and lithium secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032019A (en) * 1996-07-17 1998-02-03 Matsushita Electric Ind Co Ltd Polymer electrolyte and lithium polymer battery using polymer electrolyte
KR100269204B1 (en) * 1997-04-10 2000-10-16 윤종용 Polymer solid electolyte and lithium secondary cell adopting the same
JPH1135765A (en) * 1997-07-24 1999-02-09 Sharp Corp Solid polyelectrolyte and its production
JP3875806B2 (en) * 1998-02-19 2007-01-31 株式会社日立製作所 Liquid crystal display
JPH11260407A (en) * 1998-03-16 1999-09-24 Mitsubishi Paper Mills Ltd Polymer electrolyte for lithium secondary battery
JP3850977B2 (en) * 1998-03-31 2006-11-29 三洋電機株式会社 Method for producing polymer solid electrolyte battery
JP4402192B2 (en) * 1999-01-20 2010-01-20 株式会社クレハ Composition for forming polymer electrolyte
JP2001035535A (en) * 1999-07-16 2001-02-09 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacture thereof

Also Published As

Publication number Publication date
JP2002270236A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
JP4370079B2 (en) Lithium polymer battery
US8354188B2 (en) Polymer for lithium ion secondary battery and lithium ion secondary battery using same
JP5867550B2 (en) Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery
KR102510293B1 (en) Composite for solid polymer electrolytes and all solid polymer electrolytes comprising the same
KR100371954B1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JPH11195419A (en) Depolarizing mix for nonaqueous battery and nonaqueous battery
JP4781547B2 (en) Polymer gel electrolyte and battery
JPH10283839A (en) Polymer solid electrolyte, production thereof, and lithium secondary battery using thereof
KR20200095188A (en) Composite for solid polymer electrolytes and all solid polymer electrolytes comprising the same
JP4421107B2 (en) Polymer electrolyte and non-aqueous battery using the same
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JPWO1999034372A6 (en) Polymer electrolyte and non-aqueous battery using the same
JP5633817B2 (en) Non-aqueous electrolyte for electric device and secondary battery using the same
JP2003331838A (en) Lithium secondary battery
JP4163295B2 (en) Gel-like solid electrolyte battery
JP4402192B2 (en) Composition for forming polymer electrolyte
KR20030077453A (en) Gel electrolyte, process for producing the same, and use thereof
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JPH1180296A (en) Gel form polymer electrolyte
KR100327915B1 (en) Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same
KR100325876B1 (en) Polymer electrolyte compositions polymerized acrylate monomer and lithium secondary battery comprising the same
JP3496287B2 (en) Battery using ion-conductive polymer compound
JP2013152849A (en) Lithium-ion secondary battery subjected to aging treatment and method for manufacturing the same
JPH10116513A (en) Polymeric solid electrolyte for combining eletrode and its usage
US20040048159A1 (en) Lithium polymer secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees