JP3615699B2 - Sealed battery and method for manufacturing the same - Google Patents

Sealed battery and method for manufacturing the same Download PDF

Info

Publication number
JP3615699B2
JP3615699B2 JP2000291881A JP2000291881A JP3615699B2 JP 3615699 B2 JP3615699 B2 JP 3615699B2 JP 2000291881 A JP2000291881 A JP 2000291881A JP 2000291881 A JP2000291881 A JP 2000291881A JP 3615699 B2 JP3615699 B2 JP 3615699B2
Authority
JP
Japan
Prior art keywords
battery
pressure
gap
electrolyte
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000291881A
Other languages
Japanese (ja)
Other versions
JP2002100329A (en
Inventor
清秀 滝本
博至 花房
Original Assignee
Necトーキン栃木株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン栃木株式会社 filed Critical Necトーキン栃木株式会社
Priority to JP2000291881A priority Critical patent/JP3615699B2/en
Priority to TW090123573A priority patent/TW518777B/en
Priority to KR1020010059685A priority patent/KR100795651B1/en
Priority to CNB011384395A priority patent/CN1310346C/en
Publication of JP2002100329A publication Critical patent/JP2002100329A/en
Application granted granted Critical
Publication of JP3615699B2 publication Critical patent/JP3615699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電池缶の開口部に載置した蓋体を溶接によって封口した密閉型電池に関し、とくに電解液の注液に特徴を有する密閉型電池およびその製造方法に関する。
【0002】
【従来の技術】
密閉型電池においては、電池缶の開口部にガスケットを介して蓋体を装着して電池缶と一体にかしめて封口した電池、あるいは電池缶の開口部に蓋体を載置した後にレーザー溶接等の方法によって封口した密閉型電池が知られている。
小型の電子機器等の電源として用いられている密閉型電池は、電池収納空間を有効に利用することが可能な角型の密閉型電池がひろく用いられている。
例えば、小型の電子機器用の角型のリチウムイオン電池は、正極集電体および負極集電体に、それぞれ活物質を塗布して製造した正極電極および負極電極をセパレータを介在させて積層したものを巻回した電池要素を、電池缶内に収納した後に電池缶の開口部に蓋体を載置して封口し、蓋体もしくは電池缶に設けた電解液注液口から電解液を注液した後に、電解液注液口に封口片を設けて封口片と注液口の壁面との間を溶接によって封口することが行われている。
【0003】
図9は、従来の密閉型電池の組立工程を説明する図である。
図9(A)に示すように、電池缶2内に電池要素を収納し、電池缶2の上部の開口部に電解液注液口9、外部電極取り出し端子3、および電池内部の圧力上昇時に電池の破裂等を防止する圧力開放弁等を有した蓋体4をレーザー5の照射による溶接等の方法によって取り付けた後に、図9(B)に示すように、蓋体4に設けた電解液注液口9に電解液注液装置の注液ノズル7を気密を保持して取り付け、電池缶内部の空気を所定の減圧度まで排気した後に、注液ノズル7から所定量の電解液8を注液している。
次いで、図9(C)に示すように、電解液注液口9に封口片10を取り付けてレーザー5による溶接を行って電解液注液口を封口している。
【0004】
ところが、このような密閉型電池においては、電解液注液口を封口するために、電解液注液口に、板状、棒状、球状等の各種の形状の封口片を装着する工程が不可欠であった。また、封口片が注液口に正確に装着されていないと封口が不良となるという問題点があった。そこで、封口片を仮止めしたり、あるいは封口時に照射するレーザーの照射方向を調節する等の方法が提案されているが、封口片を使用して封口することによって生じる問題点を解決するものではなかった。とくに、小型の電池においては電解液注液口も小さく、封口片も小さなものとなるが、ピン状、球状等の小さな封口片の自動搬送においては、搬送不良が生じやすく、封口片を電解液注液口に正確に装着されたか否かを確認する工程も必要であった。
【0005】
また、電池の製造時に電池缶内に発電要素等を収納した後に、電解液を充填し、次いで外部接続端子等を取り付けた蓋体を電池缶の開口部に載置してレーザー溶接によって封口する方法も考えられるが、現実にはこのような方法は行われてこなかった。これは、電池缶の開口部の全面をレーザー溶接によって封口する際には大量の熱によって電解液の劣化が考えられ、また付着した電解液によるピンホールの発生の危険、蓋体が定められた位置に載置されていない場合には、レーザーが電池缶内部に照射されて、電解液として可燃性の物質を用いた場合には、火災の発生の危険等がある等の理由によるものであった。
【0006】
【発明が解決しようとする課題】
本発明は、密閉型電池への電解液の注液を、蓋体もしくは電池缶に電解液注液口を設けずに、注液して封口した電池を提供することを課題とするものであり、注液口への封口片の装着、装着の確認、封口片の溶接による封口工程等の一連の工程が不要な密閉型電池およびその製造方法を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明の課題は、電池缶の開口部に載置された蓋体を溶接によって封口した密閉型電池において、電池缶と蓋体との会合部を封口した封口部と、電池缶と蓋体との間に形成された幅が10〜150μmである間隙部を封口した封口部とを備えた密閉型電池によって解決することができる。
間隙部の長さが3〜10mmである前記の密閉型電池である。
また、電池缶の開口部に蓋体を載置し溶接によって封口した密閉型電池の製造方法において、電池缶内に電池要素を収納した後に、電池缶の開口部に蓋体を載置し、蓋体と電池缶の開口部との会合部の一部に間隙部を形成した状態で溶接によって封口した後に、間隙部から電解液を注液し、次いで間隙部を溶接によって封口する密閉型電池の製造方法である。
また、電解液の注液が、間隙部を底部に位置させて収容するとともに注液すべき電解液を入れた注液槽を内部に設けた注液室内において、注液室内の圧力を大気圧以下に少なくとも1回減圧した後に、大気圧もしくは大気圧以上の圧力に保持することによって行ったものである前記の密閉型電池の製造方法である。
【0008】
【発明の実施の形態】
本発明は、電池缶の開口部に装着する蓋体として、蓋体の特定の個所に電池缶の内壁面と蓋体との間に間隙部が形成されるものを用いることによって、間隙部を残して電池缶と蓋体とをレーザー溶接等の方法によって封口した後に、未封口の間隙部から電解液を注液し、その後に間隙部を封口することによって密閉型電池を製造したものである。
そして、本発明によって、電池缶の開口部と蓋体との会合部以外には、注液の後にレーザー溶接によって封口した電解液注液口をはじめとする封口部を有さない密閉型電池を提供することができる。また、本発明の密閉型電池は、蓋体、あるいは電池缶に専用の電解液注液口を設けて封口片を装着し、封口する工程が必要がないという特徴も有している。
【0009】
以下に図面を参照して本発明を説明する。
図1は、本発明の密閉型電池の製造工程を説明する図である。
図1(A)に斜視図を示すように、本発明の密閉型電池1は、電池要素を収納した電池缶2の開口部に、絶縁性部材を介して導電接続端子3を取り付けた蓋体4を載置し、電池缶と蓋体との会合部にレーザー5を照射して封口部6を形成する際に、電池缶の壁面と蓋体との間に、間隙を有する部分を設け、間隙部分にはレーザーを照射せずに間隙部11とする。
次いで、図1(B)に示すように、間隙部11に電解液注液ヘッド7を取り付けて電解液8を注入する。電解液注液ヘッド7には、減圧装置を結合し、電池缶内の気体を吸引除去した後に、電解液を注液することが好ましく、電池缶内部に収納した電池要素の細部への速やかな電解液の充填が可能となる。
図1(C)に示すように、電解液注液後に、レーザー5を間隙部11へ照射して密閉型電池の封口を完了する。
本発明の密閉型電池においては、電池缶と蓋体との間には常に一定の範囲に間隙が形成されるように、電池缶、もしくは蓋体を加工することが好ましく、とくに蓋体の一部に、電池缶の開口部に載置した場合に間隙部が形成されるように幅等が小さな部分を設けて、間隙部が形成することが好ましい。
【0010】
図2は、間隙部の形成個所の一例を説明する図である。
図2(A)ないし(D)は、平面図であり、電池缶の内壁面で形成される空間よりも蓋体の大きさを部分的に小さくしたものであり、電池缶と蓋体との会合部では常に同じ位置に間隙が形成されるので、その部分を間隙部11とすることができる。このような蓋体は、蓋体を金属加工によって製造する際に所定の金型を用いることによって容易に製造することができる。間隙の形成部はいずれの部分としても良いが、常に同じ個所に間隙が形成され、その部分を間隙部とすることが好ましい。
【0011】
また、間隙の大きさ(幅)は10〜150μmとすることが好ましく、間隙の大きさが10μmよりも小さいと、間隙部からの電解液の注液に時間を要することとなるので好ましくなく、一方、150μmよりも大きい場合には、レーザーによる封口の際に封口部にピンホールが生じる等の溶接不良が起きやすくなるという問題点がある。
間隙部の大きさ、すなわち幅を大きくすると、電解液の注液速度は速くなるので製造時間を短縮することができるので有利であるが、レーザ溶接によって封口した場合には、ピンホールが生じる等の問題が生じる可能性があるので、そのような場合には、電池缶の間隙部を押圧する等の方法によって間隙部の大きさを小さくした後に、レーザー溶接を行ったり、あるいは電池缶の間隙部を押圧した状態でレーザー溶接を行うことによって封口部の特性を良好なものとすることができる。
また、間隙の長さも電解液の注液速度に影響を与えるので、間隙の長さは電解液の注液速度の観点からは長い方が好ましいが、注液した電池の取り扱い時の電解液の漏れ、あるいは注液後に封口する部分が長くなるという問題点があるので、長さは3ないし10mmとすることが好ましい。
【0012】
本発明の電池においては、電解液の注液は、電池缶の内壁面と蓋体の間の間隙部によって形成される間隙に電解液注液ヘッドを装着し、電池缶内を減圧した後に行うことができる。
また、電解液の注液は、本出願人が特願2000−305865(特開2001−196050号公報)として提案している電解液中に開口部を位置させて、系内の圧力を変化させることによる注液装置を用いて注液することが好ましい。従来の注液ヘッドを装着する方法では、間隙部の形状に応じた注液ヘッドを準備することが必要であるが、この方法では、電解液を注液する間隙の位置を電解液の液面下に設定することができれば、間隙部の形状等に依存せずに電解液の注液が可能である。
【0013】
図3に、圧力の変化によって注液する注液装置を用いた注液を方法を説明する。
電解液注液装置21は、複数の単位注液槽22を有する注液槽23を内部に設けた注液室24を有し、注液室24には注液室内の圧力を任意に調整可能な圧力調整手段25が結合されている。圧力調整手段25は、注液室24内の圧力を大気圧以下の圧力に減圧することができる排気手段26、大気開放弁27を有している。
一部に間隙部11を残した電池缶2の複数個を、間隙部11を底部にして、電解液9を入れた注液槽23に設けた単位注液槽22に収容した後に、注液室24内の圧力を圧力調整手段25の排気手段26を作動させて注液室24内の圧力を減圧して予め定められた時間保持する。
【0014】
次いで、大気開放弁27を開放し、注液室24内の圧力を大気圧として所定の時間保持した後に、さらに注液室24内の圧力を圧力調整手段25の排気手段26を作動させて注液室24内の圧力を減圧した後に、大気開放弁27を開放して注液室24内の圧力を大気圧として予め定められた時間保持する。
このように、注液室24内の圧力を変動させることによって、減圧された電池缶2内へ間隙部11から電解液が注液される。電解液が注液された後に、注液室内から電池缶を取り出す。
間隙部に形成される間隙は、充分に小さなものであるので、注液槽から電池缶を取り出した際に間隙部からは電解液が落下することはない。
次いで、電解液が付着した間隙部の周辺を有機溶剤で洗浄し、間隙部をレーザー溶接によって封口処理を行うことができる。洗浄に使用する有機溶剤としては、電解液中に混入しても悪影響を及ぼさないものであって、揮発速度が速いものが好ましく、具体的には、炭酸ジエチルを挙げることができる。また、これらの有機溶媒には、特に水分の含有量の少ないものを用いることが好ましい。
【0015】
注液室内の減圧の程度および減圧下での保持時間は、注液する電解液の特性等に応じて考慮することが好ましく、揮発性が大きな液体が含まれており、減圧によって混合比が変化する場合には、減圧状態での保持時間は短時間とすることが好ましい。
注液室内の減圧と大気圧に開放して大気圧下で保持する回数は、少なくとも2回以上とするとすることが好ましい。
また、複数回の減圧を行う場合には、第2回目以降の減圧度を第1回目の圧力よりも低く設定しても良く、減圧速度においても第1回目よりも大きくしても良く、これによって注液速度を高めることができる。
また、大気圧下での保持は、最終的に装置内を大気圧として注液後の容器を取り出す必要から行うものであり、大気圧に限らず任意の圧力下で保持した後に、大気圧に戻して取り出す等の多段階に圧力を変更する方法を採用しても良い。
【0016】
また、図4に、他の電解液の注液装置の例を示す。
図4(A)に示す電解液注液装置21は、複数の単位注液槽22からなる注液槽23を内部に有した注液室24を有し、注液室24には、注液室内の圧力を任意に調整可能な圧力調整手段25が結合されている。圧力調整手段25は、注液室24内の圧力を大気圧以下の圧力に減圧することができる排気手段26、雰囲気気体供給手段28を有しており、間隙部11を残して密閉した電池缶2を、間隙部11を底部に位置させて、電解液9を入れた複数の単位注液槽22を有する注液槽23内に収容した後に、注液室24内の圧力を圧力調整手段25の排気手段26を作動させて注液室24内の圧力を減圧し、予め定められた時間保持した後に、雰囲気気体供給弁29を開放し、注液室24内に所定の雰囲気気体を供給して所定の時間保持した後に、雰囲気気体供給弁29を閉じる。
さらに注液室24内の圧力を圧力調整手段25の排気手段26を作動させて注液室24内の圧力を減圧した後に、雰囲気気体供給弁29を開放する。これによって注液室24内に雰囲気気体を供給して所定の時間保持することによって、減圧された電池缶内に電解液が注液される。次いで、大気開放弁27を開いて雰囲気気体を空気で置換した後に、注液室内から間隙部を上部に向けた状態で電池缶を取り出した後に封口処理を行うことができる。
【0017】
このような電解液注液装置を用いることによって、雰囲気気体供給手段から窒素、ヘリウム、二酸化炭素等の気体を供給してこれらの気体の雰囲気を形成することができるので、容器内をこれらの気体の雰囲気で満たすことが可能となり、液体が空気と触れることによる問題点を解決することができる。
特に、ヘリウム等の漏洩検知に使用することができる特殊気体を用いるならば、これらの気体の充填工程を設けることなく、電池の封口後において漏洩検知を行うことが可能となる。
【0018】
また、図4(B)に示す電解液注液装置21は、複数の単位注液槽22を有する注液槽23を内部に有した注液室24を有し、注液室24には、注液室内の圧力を任意に調整可能な圧力調整手段25が結合されている。圧力調整手段25は、注液室24内の圧力を大気圧以下の圧力に減圧することができる排気手段26、加圧手段30を有しており、間隙部11を残して密閉した電池缶2を、間隙部11を底部に位置させて、電解液9を入れた単位注液槽22内に収容した後に、注液室24内の圧力を圧力調整手段25の排気手段26を作動させて注液室24内の圧力を減圧して予め定められた時間保持した後に、加圧手段30によって注液室内の圧力を大気圧以上に保って予め定められた時間保持することによって、減圧された電池缶内に電解液が注液される。また、注液室24内の圧力の減圧と所定の圧力での保持の工程を繰り返し行っても良い。次いで、大気開放弁27を開いて雰囲気気体を空気で置換して注液室内を大気圧とする。
注液が行われた電池缶は、間隙部を上部に向けた状態で取り出して封口処理を行うことができる。
また、図4(B)に示した加圧手段30には、図4(A)示した雰囲気気体供給手段を結合して、大気圧以上の圧力で所定の雰囲気気体を供給しても良い。
このように注液室内を大気圧以上の圧力で加圧することにより、電解液の注液速度を高めることができる。
【0019】
図5は、圧力変化による電解液の注液装置の注液室内の減圧の速度と減圧度の一例を説明する図であり、縦軸に圧力を横軸に経過時間を示す。
図5(A)において、Aで示す1回目の減圧速度が大きい場合には、容器内から取り出される気体の速度が大きくなり、発生する気泡によって容器内から液が溢れやすくなるので減圧速度は単位注液槽の壁面の高さ等を考慮して決めることが必要となる。
まず、所定の減圧度Bまで減圧する。減圧度Bは、注液すべき電解液のその温度での蒸気圧以下の圧力としないことが好ましく、減圧度が大きいと沸騰状態となり単位注液槽から液体が失われることとなる。次いで、所定の減圧度Bに達した後に、大気圧に戻して所定の保持時間Cの間、大気圧に保持する。
【0020】
次いで、第1回目の減圧速度よりも大きな減圧速度Dで第2回目の減圧操作を行い、第1回目の減圧度Bよりも低い所定の減圧度Eまで減圧を行う。この状態では、かなりの量の電解液が電池缶内へ注液される。したがって、電池缶内部にセパレータ、活物質等の液が浸透するものが存在している場合には、減圧度を高めたり減圧速度を大きくしても単位注液槽からの液体のあふれ等の現象は生じない。
所定の減圧度Eに達した後に、圧力を大気圧に戻して所定の保持時間Fが経過した後に容器を取り出す。
また、図5(B)は、減圧した後に減圧状態の圧力を所定のB1からB2までの時間保持し、大気圧に戻して所定の時間を保持した後に、再度減圧して以前よりも減圧度を大きくしてE1からE2まで保持する例を示している。
減圧状態において所定の時間保持する方法は、電解液注液口が注液すべき電池の大きさに比べて小さい場合、電解液の粘性が大きな場合には特に有効である。
【0021】
図6は、電解液の注液槽を説明する斜視図である。
注液槽23は、仕切り板31によって複数の区画に分離された単位注液槽22を有していることが好ましい。一つの注液槽内に複数の電池缶を収容しても良いが、注液口の状態、注液口と注液槽の壁面との接触状態等によって、注液工程での個々の電池缶内への注液速度が一定とはならないために、注液される液体の量が一定しなくなる。そこで、一度の注液工程において複数の容器内へ同時に注液するためには、仕切板31で区画した単位注液槽22を形成することが好ましい。
また、注液槽23の個々の仕切り毎に形成される単位注液槽22は、内部に注液すべき所定量の電解液を入れた状態で、電池缶を収容しても電解液が溢れることがない大きさとすることが必要であり、さらに注液室内を排気して減圧した際に、電池缶内の気体が電解液中を上昇する際に電解液が泡だって単位注液槽22から失われることがない深さとすることが必要である。
【0022】
また、図7は、単位注液槽の一例を説明する図である。図7(A)は、単位注液槽の断面を示す図であり、図7(B)は平面図である。
単位注液槽22の底部32は中心部に向かって傾斜を有していることが好まししく、また単位注液槽22の側壁面33との会合部34は曲面を形成していることが液体の残留量を少なくするので好ましい。
さらに、底部32は、注液すべき電池缶を収容した際に電池缶に設けた外部接続端子等の凸部を受け入れるための凹部35を形成することが好ましく、凹部を形成することによって、間隙部からの確実な注液が可能となる。
【0023】
注液槽は注液すべき電解液との濡れ性が小さな材料で製作することが好ましく、濡れ性を小さな材料を用いることによって、注液槽に残留する液体の量を減少させることができるので電解液の損失量が小さくなる。また、注液槽の基材に金属等の強度が大きく安定した材料を使用し、注液槽の内面のみを注液すべき電解液との濡れ性が小さな材料で被覆しても良い。
濡れ性が小さな材料としては、注液すべき電解液によって異なるが、ポリプロピレン、フッ素樹脂等の合成樹脂を用いることができる。また、ステンレス等の金属材料を基材としてこれらの被覆を形成しても良い。
【0024】
以上のように圧力変化を利用して電池缶内に注液する方法を用いる場合には、多数の単位注液槽を設けた注液槽に、多数の注液ノズルを有する定量注液手段を用いて電解液の所定量を注入した後に、注液すべき電池缶の多数個を収容し、減圧と圧力を大気圧に戻す動作を所定の回数行うことによって、多数個の電池缶内へ所定の量の液体を一度に注液することができる。
【0025】
【実施例】
以下に実施例を示し、本発明を説明する。
実施例1
電池缶の上部の長辺29mm、短辺4.8mmからなる開口部に、電極取り出し端子を有したヘッダーを取り付けて、長辺側に70μm、短辺側に55μmの間隙を形成し、次いで、間隙部を形成する個所を図8に示すように、a=0.02mm、b=3mmとした蓋体を作製し、cの領域を残してレーザー溶接によって封口して間隙部を有する電池缶を作製した。
次いで、内部の大きさが幅50mm、高さ42mm、厚さ12mmであって、底部に深さ0.8mmの電極取り出し端子部の収容部を設けた単位注入槽に、炭酸ジエチル(DEC)、炭酸エチレン(EC)および6フッ化リン酸リチウム(LiPF )を含有する電解液を3.1gを入れた後に、電池缶の間隙部を底面に向けて収容した後に、注液室内に装着し、注液室内を排気をし、減圧度が0.005MPaに達した時点で、減圧度を5秒間保持した後に、注液室内の圧力を大気圧と、5分間大気圧で保持した後に電池缶を取り出した。電池缶の電解液注入口からは電解液が落下することはなかった。
電解液を注液した電池缶各10個の注液前後の質量を測定し、注液量を表1に示すように、平均3.00gの電解液を注液することができた。
【0026】
比較例1
ヘッダーに1mmの電解液注液口を設けたことを除き、実施例1と同様に、電解液の注液操作を行い、得られた電池の10個の注液前後の質量を測定したところ、平均注液量は3.00gであった。
【0027】
【表1】

Figure 0003615699
【0028】
【発明の効果】
本発明の密閉型電池は、電池缶の開口部を封口する際に、間隙部を残して封口し、形成した間隙部を電解液の注液に利用したので、電解液注液口を設ける必要がない。また、電解液注液口を設けた場合には封口の際に不可欠である注液口を塞ぐための封口片が不要であり、封口工程を簡素化するとともに、封口片の装着不良等による問題も解消することができる。
また、注液室の圧力変動による電解液注液方法を適用することによって一度の処理工程において大量の電池缶へ注液することができるので、個々の容器へ注液する方法に比べて生産性を高めることも可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の密閉型電池の製造工程を説明する図である。
【図2】図2は、間隙部の形成個所の一例を説明する図である。
【図3】図3に、圧力の変化によって注液する注液装置を用いた注液を方法を説明する。
【図4】図4に、他の電解液の注液装置の例を示す。
【図5】図5は、圧力変化による電解液の注液装置の注液室内の減圧の速度と減圧度の一例を説明する図であり、縦軸に圧力を横軸に経過時間を示す。
【図6】図6は、電解液の注液槽を説明する斜視図である。
【図7】図7は、単位注液槽の一例を説明する図である。
【図8】図8は、実施例の電池の間隙部を形成する個所を説明する図である。
【図9】図9は、従来の密閉型電池の組立工程を説明する図である。
【符号の説明】
1…密閉型電池、2…電池缶、3…導電接続端子、4…蓋体、5…レーザー、6…封口部、7…電解液注液ヘッド、8…電解液、9…電解液注液口、10…封口片、11…間隙部、21…電解液注液装置、22…単位注液槽、23…注液槽、24…注液室、25…圧力調整手段、26…排気手段、27…大気開放弁、28…雰囲気気体供給手段、29…雰囲気気体供給弁、30…加圧手段、31…仕切り板、32…底部、33…側壁面、34…会合部、35…凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery in which a lid placed in an opening of a battery can is sealed by welding, and more particularly to a sealed battery characterized by electrolyte injection and a method for manufacturing the sealed battery.
[0002]
[Prior art]
In a sealed battery, a battery with a lid attached to the opening of the battery can via a gasket and caulked integrally with the battery can, or laser welding after placing the lid on the opening of the battery can A sealed battery sealed by this method is known.
As a sealed battery used as a power source for a small electronic device or the like, a rectangular sealed battery that can effectively use the battery storage space is widely used.
For example, a rectangular lithium ion battery for a small electronic device is obtained by stacking a positive electrode and a negative electrode manufactured by applying an active material to a positive electrode current collector and a negative electrode current collector with a separator interposed therebetween. After the battery element is wound in the battery can, the lid is placed on the opening of the battery can and sealed, and the electrolyte is injected from the electrolyte injection port provided on the lid or the battery can. After that, a sealing piece is provided in the electrolyte injection port, and the gap between the sealing piece and the wall surface of the injection port is sealed by welding.
[0003]
FIG. 9 is a diagram illustrating an assembly process of a conventional sealed battery.
As shown in FIG. 9 (A), the battery element is housed in the battery can 2, and the electrolyte injection port 9, the external electrode lead-out terminal 3, and the pressure inside the battery rise when the battery can 2 is opened. After the lid 4 having a pressure release valve or the like for preventing the battery from rupturing or the like is attached by a method such as welding by irradiation of the laser 5, as shown in FIG. 9B, the electrolytic solution provided on the lid 4 A liquid injection nozzle 7 of an electrolytic solution injection device is attached to the liquid injection port 9 while maintaining airtightness, and after the air inside the battery can is exhausted to a predetermined pressure reduction degree, a predetermined amount of the electrolytic solution 8 is discharged from the liquid injection nozzle 7. Injecting liquid.
Next, as shown in FIG. 9 (C), a sealing piece 10 is attached to the electrolytic solution injection port 9 and welding is performed with a laser 5 to seal the electrolytic solution injection port.
[0004]
However, in such a sealed battery, in order to seal the electrolyte solution injection port, it is indispensable to attach a sealing piece of various shapes such as a plate shape, a rod shape, and a spherical shape to the electrolyte solution injection port. there were. In addition, there is a problem in that the sealing piece becomes defective unless the sealing piece is accurately attached to the liquid injection port. Therefore, methods such as temporarily fixing the sealing piece or adjusting the laser irradiation direction at the time of sealing have been proposed, but it does not solve the problems caused by sealing using the sealing piece. There wasn't. In particular, in small batteries, the electrolyte injection port is small and the sealing piece is small, but in the automatic conveyance of small sealing pieces such as pins and spheres, poor conveyance tends to occur, and the sealing piece is A step of confirming whether or not the liquid injection port was correctly attached was also necessary.
[0005]
In addition, after the power generation element or the like is stored in the battery can at the time of manufacturing the battery, the electrolytic solution is filled, and then the lid body to which the external connection terminal is attached is placed on the opening of the battery can and sealed by laser welding. Although a method can be considered, in reality, such a method has not been performed. This is because when the entire surface of the opening of the battery can is sealed by laser welding, the electrolyte solution may be deteriorated by a large amount of heat, the risk of pinholes due to the attached electrolyte solution, and the lid was determined. If it is not placed in position, the laser is irradiated inside the battery can, and if a flammable substance is used as the electrolyte, there is a risk of fire, etc. It was.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a battery in which an electrolyte solution is injected into a sealed battery without being provided with an electrolyte solution injection port on a lid or a battery can. It is an object of the present invention to provide a sealed battery that does not require a series of steps such as attachment of a sealing piece to a liquid inlet, confirmation of attachment, and a sealing step by welding of the sealing piece, and a manufacturing method thereof.
[0007]
[Means for Solving the Problems]
An object of the present invention is to provide a sealed battery in which a lid placed in an opening of a battery can is sealed by welding, a sealing portion that seals a meeting portion between the battery can and the lid, the battery can and the lid, This can be solved by a sealed battery provided with a sealing portion formed by sealing a gap portion having a width of 10 to 150 μm.
In the sealed battery, the gap portion has a length of 3 to 10 mm.
Further, in the method for manufacturing a sealed battery in which a lid is placed in the opening of the battery can and sealed by welding, after the battery element is stored in the battery can, the lid is placed in the opening of the battery can. A sealed battery in which a gap is formed in a part of the meeting part between the lid and the opening of the battery can and sealed by welding, and then an electrolytic solution is injected from the gap and then the gap is sealed by welding. It is a manufacturing method.
In addition, the pressure of the liquid injection chamber is adjusted to atmospheric pressure in the liquid injection chamber in which the liquid injection is stored with the gap portion positioned at the bottom and the electrolyte tank into which the electrolyte to be injected is placed. The following is a method for producing the above sealed battery, which is performed by reducing the pressure at least once and then maintaining the pressure at atmospheric pressure or a pressure higher than atmospheric pressure.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, as a lid attached to the opening of the battery can, a gap is formed by using a gap formed between the inner wall surface of the battery can and the lid at a specific portion of the lid. After sealing the battery can and the lid by a method such as laser welding, an electrolytic solution is injected from the gap portion of the unsealed seal, and then the gap portion is sealed to manufacture a sealed battery. .
According to the present invention, there is provided a sealed battery that does not have a sealing portion including an electrolyte injection port that is sealed by laser welding after injection, other than the meeting portion between the opening of the battery can and the lid. Can be provided. In addition, the sealed battery of the present invention has a feature that there is no need for a step of sealing the cover or battery can by providing a dedicated electrolyte injection port and attaching a sealing piece.
[0009]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining a manufacturing process of a sealed battery according to the present invention.
As shown in the perspective view of FIG. 1 (A), the sealed battery 1 of the present invention has a lid in which a conductive connecting terminal 3 is attached to an opening of a battery can 2 containing a battery element via an insulating member. 4, when the sealing portion 6 is formed by irradiating the laser 5 to the meeting portion between the battery can and the lid, a portion having a gap is provided between the wall surface of the battery can and the lid, The gap portion is made the gap portion 11 without irradiating the laser.
Next, as shown in FIG. 1B, the electrolyte solution injection head 7 is attached to the gap portion 11 and the electrolyte solution 8 is injected. A pressure reducing device is connected to the electrolyte solution injection head 7, and it is preferable to inject the electrolyte solution after sucking and removing the gas in the battery can. The electrolyte can be filled.
As shown in FIG. 1C, after pouring the electrolyte, the gap 5 is irradiated with the laser 5 to complete the sealing of the sealed battery.
In the sealed battery of the present invention, it is preferable to process the battery can or the lid so that a gap is always formed in a certain range between the battery can and the lid. It is preferable that the gap portion is formed by providing a portion having a small width or the like so that the gap portion is formed when placed in the opening of the battery can.
[0010]
FIG. 2 is a diagram for explaining an example of a portion where a gap is formed.
FIGS. 2A to 2D are plan views in which the size of the lid is partially smaller than the space formed by the inner wall surface of the battery can. Since the gap is always formed at the same position in the meeting part, the part can be the gap part 11. Such a lid can be easily manufactured by using a predetermined mold when the lid is manufactured by metal processing. The gap forming portion may be any portion, but it is preferable that the gap is always formed at the same location, and that portion is the gap portion.
[0011]
Further, the size (width) of the gap is preferably 10 to 150 μm, and if the size of the gap is smaller than 10 μm, it takes time to inject the electrolytic solution from the gap, which is not preferable. On the other hand, when it is larger than 150 μm, there is a problem that poor welding is likely to occur, for example, a pinhole is generated in the sealing portion when sealing with a laser.
Increasing the size of the gap, i.e., the width, is advantageous because the injection rate of the electrolyte is increased, so that the manufacturing time can be shortened. In such a case, laser welding may be performed after reducing the size of the gap by a method such as pressing the gap of the battery can, or the gap of the battery can By performing laser welding while pressing the part, the characteristics of the sealing part can be improved.
Also, since the length of the gap also affects the injection rate of the electrolyte, it is preferable that the length of the gap is long from the viewpoint of the injection rate of the electrolyte. The length is preferably 3 to 10 mm because there is a problem in that the portion to be sealed after leakage or liquid injection becomes long.
[0012]
In the battery of the present invention, the electrolyte solution is injected after the electrolyte solution injection head is attached to the gap formed by the gap between the inner wall surface of the battery can and the lid, and the inside of the battery can is decompressed. be able to.
In addition, the electrolytic solution is injected by changing the pressure in the system by positioning an opening in the electrolytic solution proposed by the present applicant as Japanese Patent Application No. 2000-305865 (Japanese Patent Laid-Open No. 2001-196050). It is preferable to inject using a liquid injection device. In the conventional method of mounting a liquid injection head, it is necessary to prepare a liquid injection head corresponding to the shape of the gap. In this method, the position of the gap for injecting the electrolytic solution is set to the level of the electrolytic solution. If it can be set below, it is possible to inject the electrolyte without depending on the shape of the gap.
[0013]
FIG. 3 illustrates a method of injecting liquid using an injecting device that injects liquid according to changes in pressure.
The electrolytic solution injection device 21 has a liquid injection chamber 24 provided therein with a liquid injection tank 23 having a plurality of unit liquid injection tanks 22, and the pressure in the liquid injection chamber can be arbitrarily adjusted in the liquid injection chamber 24. A suitable pressure adjusting means 25 is coupled. The pressure adjusting means 25 includes an exhaust means 26 and an atmosphere release valve 27 that can reduce the pressure in the liquid injection chamber 24 to a pressure equal to or lower than the atmospheric pressure.
A plurality of battery cans 2 with a gap 11 left in part are accommodated in a unit injection tank 22 provided in an injection tank 23 containing the electrolyte 9 with the gap 11 as a bottom, The pressure in the liquid injection chamber 24 is reduced by operating the exhaust means 26 of the pressure adjusting means 25 to maintain the pressure in the chamber 24 for a predetermined time.
[0014]
Next, after opening the air release valve 27 and maintaining the pressure in the liquid injection chamber 24 at atmospheric pressure for a predetermined time, the pressure in the liquid injection chamber 24 is further increased by operating the exhaust means 26 of the pressure adjusting means 25. After reducing the pressure in the liquid chamber 24, the air release valve 27 is opened, and the pressure in the liquid injection chamber 24 is maintained as atmospheric pressure for a predetermined time.
In this way, by changing the pressure in the liquid injection chamber 24, the electrolytic solution is injected from the gap portion 11 into the decompressed battery can 2. After the electrolytic solution is injected, the battery can is taken out from the injection chamber.
Since the gap formed in the gap is sufficiently small, the electrolyte does not fall from the gap when the battery can is taken out from the liquid injection tank.
Next, the periphery of the gap where the electrolytic solution is adhered can be washed with an organic solvent, and the gap can be sealed by laser welding. As the organic solvent used for washing, those having no adverse effect even if mixed in the electrolytic solution and having a high volatilization rate are preferable, and specific examples thereof include diethyl carbonate. In addition, it is preferable to use an organic solvent having a low water content.
[0015]
It is preferable to consider the degree of pressure reduction in the injection chamber and the holding time under reduced pressure, depending on the characteristics of the electrolyte to be injected. In this case, the holding time in the reduced pressure state is preferably short.
It is preferable that the number of times that the inside of the injection chamber is released to the reduced pressure and the atmospheric pressure and maintained under the atmospheric pressure is at least two times.
In addition, when performing multiple times of decompression, the degree of decompression after the second time may be set lower than the first pressure, and the decompression speed may be larger than the first time. The injection rate can be increased.
In addition, holding under atmospheric pressure is performed because it is necessary to finally take out the container after injection with the inside of the apparatus as atmospheric pressure. After holding under any pressure, not only atmospheric pressure, You may employ | adopt the method of changing a pressure in multiple steps, such as returning and taking out.
[0016]
FIG. 4 shows an example of another electrolyte injection device.
An electrolyte solution injection device 21 shown in FIG. 4 (A) has a solution injection chamber 24 having a solution injection tank 23 composed of a plurality of unit solution injection tanks 22 inside. A pressure adjusting means 25 capable of arbitrarily adjusting the indoor pressure is coupled. The pressure adjusting means 25 has an exhaust means 26 and an atmospheric gas supply means 28 that can reduce the pressure in the liquid injection chamber 24 to a pressure equal to or lower than the atmospheric pressure, and is sealed with the gap 11 remaining. 2 is accommodated in a liquid injection tank 23 having a plurality of unit liquid injection tanks 22 containing the electrolytic solution 9 with the gap portion 11 positioned at the bottom, and then the pressure in the liquid injection chamber 24 is adjusted to the pressure adjusting means 25. The exhaust means 26 is operated to reduce the pressure in the liquid injection chamber 24 and is held for a predetermined time, and then the atmospheric gas supply valve 29 is opened to supply a predetermined atmospheric gas into the liquid injection chamber 24. After holding for a predetermined time, the atmospheric gas supply valve 29 is closed.
Further, after the pressure in the liquid injection chamber 24 is operated to operate the exhaust means 26 of the pressure adjusting means 25 to reduce the pressure in the liquid injection chamber 24, the atmospheric gas supply valve 29 is opened. As a result, the atmospheric gas is supplied into the liquid injection chamber 24 and held for a predetermined time, whereby the electrolytic solution is injected into the decompressed battery can. Next, after opening the air release valve 27 and replacing the atmospheric gas with air, the sealing process can be performed after the battery can is taken out from the injection chamber with the gap portion facing upward.
[0017]
By using such an electrolyte solution injection device, it is possible to form an atmosphere of these gases by supplying a gas such as nitrogen, helium or carbon dioxide from the atmosphere gas supply means. It is possible to fill in the atmosphere, and it is possible to solve the problems caused by the liquid coming into contact with air.
In particular, if a special gas that can be used for leakage detection such as helium is used, leakage detection can be performed after the battery is sealed without providing a filling step for these gases.
[0018]
Moreover, the electrolyte solution injection device 21 shown in FIG. 4 (B) has a liquid injection chamber 24 having a liquid injection tank 23 having a plurality of unit liquid injection tanks 22 inside. A pressure adjusting means 25 capable of arbitrarily adjusting the pressure in the liquid injection chamber is coupled. The pressure adjusting means 25 includes an exhaust means 26 and a pressurizing means 30 that can reduce the pressure in the liquid injection chamber 24 to a pressure equal to or lower than the atmospheric pressure. The battery can 2 is sealed with the gap 11 remaining. Is placed in the unit injection tank 22 containing the electrolytic solution 9 with the gap 11 positioned at the bottom, and the pressure in the injection chamber 24 is adjusted by operating the exhaust means 26 of the pressure adjusting means 25. After the pressure in the liquid chamber 24 is reduced and held for a predetermined time, the pressure is reduced by holding the pressure in the liquid injection chamber at atmospheric pressure or higher by the pressurizing means 30 and holding it for a predetermined time. An electrolyte is poured into the can. Further, the process of reducing the pressure in the liquid injection chamber 24 and holding it at a predetermined pressure may be repeated. Next, the atmosphere release valve 27 is opened, the atmosphere gas is replaced with air, and the inside of the liquid injection chamber is brought to atmospheric pressure.
The battery can that has been injected can be removed and sealed with the gap facing upward.
Moreover, the atmospheric gas supply unit shown in FIG. 4A may be coupled to the pressurizing unit 30 shown in FIG. 4B to supply a predetermined atmospheric gas at a pressure equal to or higher than the atmospheric pressure.
Thus, by pressurizing the liquid injection chamber at a pressure equal to or higher than the atmospheric pressure, the injection speed of the electrolytic solution can be increased.
[0019]
FIG. 5 is a diagram for explaining an example of the rate of pressure reduction and the degree of pressure reduction in the injection chamber of the electrolytic solution injection device due to pressure change, with pressure on the vertical axis and elapsed time on the horizontal axis.
In FIG. 5 (A), when the first decompression speed indicated by A is large, the speed of the gas taken out from the container increases and the liquid tends to overflow from the container due to the generated bubbles. It is necessary to decide in consideration of the height of the wall surface of the injection tank.
First, the pressure is reduced to a predetermined pressure reduction degree B. The degree of vacuum B is preferably not lower than the vapor pressure at the temperature of the electrolyte to be injected, and when the degree of vacuum is high, the liquid is boiled and the liquid is lost from the unit liquid tank. Next, after reaching a predetermined degree of pressure reduction B, the pressure is returned to atmospheric pressure and maintained at atmospheric pressure for a predetermined holding time C.
[0020]
Next, the second decompression operation is performed at a decompression speed D higher than the first decompression speed, and the decompression is performed to a predetermined decompression degree E lower than the first decompression degree B. In this state, a considerable amount of electrolyte is injected into the battery can. Therefore, if there is something that can penetrate the separator, active material, etc. inside the battery can, a phenomenon such as overflow of liquid from the unit injection tank even if the degree of decompression is increased or the decompression speed is increased. Does not occur.
After reaching a predetermined pressure reduction degree E, the pressure is returned to atmospheric pressure, and the container is taken out after a predetermined holding time F has elapsed.
Further, FIG. 5B shows that after the pressure is reduced, the pressure in the reduced pressure state is maintained for a predetermined time from B1 to B2, and after returning to the atmospheric pressure and holding the predetermined time, the pressure is reduced again and the degree of pressure reduction is higher than before. In this example, E1 is increased and held from E1 to E2.
The method of holding for a predetermined time in the reduced pressure state is particularly effective when the electrolyte solution injection port is smaller than the size of the battery to be injected or when the viscosity of the electrolyte solution is large.
[0021]
FIG. 6 is a perspective view for explaining an electrolyte injection tank.
The liquid injection tank 23 preferably has a unit liquid injection tank 22 separated into a plurality of compartments by a partition plate 31. A plurality of battery cans may be accommodated in one injection tank. However, depending on the condition of the injection port, the contact state between the injection port and the wall of the injection tank, etc., individual battery cans in the injection process Since the injecting speed into the inside is not constant, the amount of liquid to be injected is not constant. Therefore, in order to inject simultaneously into a plurality of containers in one injection process, it is preferable to form the unit injection tank 22 partitioned by the partition plate 31.
The unit injection tank 22 formed for each partition of the injection tank 23 is filled with a predetermined amount of electrolyte to be injected, and the electrolyte overflows even when the battery can is accommodated. When the pressure in the liquid injection chamber is exhausted and reduced in pressure, the gas in the battery can rises from the unit injection tank 22 when the gas rises in the electrolyte. It must be deep enough not to be lost.
[0022]
Moreover, FIG. 7 is a figure explaining an example of a unit injection tank. FIG. 7 (A) is a view showing a cross section of the unit injection tank, and FIG. 7 (B) is a plan view.
It is preferable that the bottom portion 32 of the unit injection tank 22 has an inclination toward the center, and the meeting portion 34 with the side wall surface 33 of the unit injection tank 22 forms a curved surface. This is preferable because the residual amount of liquid is reduced.
Furthermore, it is preferable that the bottom 32 is formed with a recess 35 for receiving a protrusion such as an external connection terminal provided in the battery can when the battery can to be injected is accommodated. The liquid can be reliably injected from the part.
[0023]
The injection tank is preferably made of a material that has low wettability with the electrolyte to be injected, and the amount of liquid remaining in the injection tank can be reduced by using a material with low wettability. The amount of electrolyte loss is reduced. Further, a material having high strength such as metal may be used for the base material of the liquid injection tank, and only the inner surface of the liquid injection tank may be coated with a material having low wettability with the electrolyte to be injected.
As a material having low wettability, a synthetic resin such as polypropylene or fluororesin can be used although it varies depending on the electrolyte to be injected. These coatings may be formed using a metal material such as stainless steel as a base material.
[0024]
When using the method of injecting into the battery can using the pressure change as described above, the quantitative injection means having a large number of liquid injection nozzles in the liquid injection tank provided with a large number of unit liquid injection tanks. After injecting a predetermined amount of electrolytic solution, a large number of battery cans to be injected are accommodated, and a predetermined number of times the pressure reduction and pressure return to atmospheric pressure are performed in a predetermined number of battery cans. The amount of liquid can be injected at once.
[0025]
【Example】
The following examples illustrate the invention.
Example 1
A header having an electrode takeout terminal is attached to an opening having a long side of 29 mm and a short side of 4.8 mm at the top of the battery can to form a gap of 70 μm on the long side and 55 μm on the short side, As shown in FIG. 8, a lid with a = 0.02 mm and b = 3 mm is prepared, and a battery can having a gap portion is sealed by laser welding while leaving the region c. Produced.
Subsequently, diethyl carbonate (DEC), a unit injection tank having an internal size of 50 mm in width, 42 mm in height, and 12 mm in thickness, and provided with an accommodating portion for an electrode extraction terminal portion having a depth of 0.8 mm at the bottom, After 3.1 g of an electrolytic solution containing ethylene carbonate (EC) and lithium hexafluorophosphate (LiPF 6 ) was placed, the gap portion of the battery can was accommodated toward the bottom surface, and then installed in the injection chamber. When the pressure inside the injection chamber is evacuated and the degree of pressure reduction reaches 0.005 MPa, the pressure reduction degree is maintained for 5 seconds, and then the pressure in the injection chamber is maintained at atmospheric pressure and at atmospheric pressure for 5 minutes. Was taken out. The electrolyte did not fall from the electrolyte inlet of the battery can.
The mass before and after the injection of 10 battery cans into which the electrolyte solution was injected was measured, and as shown in Table 1, an average amount of 3.00 g of the electrolyte solution could be injected.
[0026]
Comparative Example 1
Except for providing a 1 mm electrolyte solution injection port in the header, the electrolyte solution injection operation was performed in the same manner as in Example 1, and the mass of the obtained battery before and after 10 injections was measured. The average injection amount was 3.00 g.
[0027]
[Table 1]
Figure 0003615699
[0028]
【The invention's effect】
In the sealed battery of the present invention, when the opening of the battery can is sealed, the gap is left behind and the formed gap is used for injecting the electrolyte. Therefore, it is necessary to provide an electrolyte injection port. There is no. In addition, when an electrolyte injection port is provided, a sealing piece for closing the injection port, which is indispensable for sealing, is unnecessary, simplifying the sealing process, and problems due to poor mounting of the sealing piece Can also be resolved.
In addition, by applying the electrolyte injection method based on pressure fluctuations in the injection chamber, it is possible to inject a large number of battery cans in a single processing step, so productivity compared to the method of injecting into individual containers. It is also possible to increase.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a manufacturing process of a sealed battery according to the present invention.
FIG. 2 is a diagram for explaining an example of a portion where a gap is formed.
FIG. 3 illustrates a method for injecting liquid using an injecting device that injects liquid according to a change in pressure.
FIG. 4 shows an example of another electrolyte injection device.
FIG. 5 is a diagram for explaining an example of the rate of pressure reduction and the degree of pressure reduction in a liquid injection chamber of an electrolytic solution injection device due to pressure change, with pressure on the vertical axis and elapsed time on the horizontal axis.
FIG. 6 is a perspective view illustrating an electrolyte injection tank.
FIG. 7 is a diagram for explaining an example of a unit injection tank.
FIG. 8 is a diagram for explaining a portion for forming a gap portion of the battery according to the example.
FIG. 9 is a diagram illustrating an assembly process of a conventional sealed battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sealed battery, 2 ... Battery can, 3 ... Conductive connection terminal, 4 ... Cover body, 5 ... Laser, 6 ... Sealing part, 7 ... Electrolyte injection head, 8 ... Electrolyte, 9 ... Electrolyte injection Mouth, 10 ... Sealing piece, 11 ... Gap, 21 ... Electrolyte injection device, 22 ... Unit injection tank, 23 ... Injection tank, 24 ... Injection chamber, 25 ... Pressure adjusting means, 26 ... Exhaust means, DESCRIPTION OF SYMBOLS 27 ... Air release valve, 28 ... Atmospheric gas supply means, 29 ... Atmospheric gas supply valve, 30 ... Pressurization means, 31 ... Partition plate, 32 ... Bottom part, 33 ... Side wall surface, 34 ... Meeting part, 35 ... Recessed part

Claims (4)

電池缶の開口部に載置された蓋体を溶接によって封口した密閉型電池において、電池缶と蓋体との会合部を封口した封口部と、電池缶と蓋体との間に形成された幅が10〜150μmである間隙部を封口した封口部とを備えたことを特徴とする密閉型電池。In a sealed battery in which a lid placed in an opening of a battery can is sealed by welding, a sealing portion that seals a meeting portion between the battery can and the lid is formed between the battery can and the lid. A sealed battery comprising: a sealing portion that seals a gap portion having a width of 10 to 150 μm. 間隙部の長さが3〜10mmであることを特徴とする請求項1記載の密閉型電池。The sealed battery according to claim 1, wherein the length of the gap is 3 to 10 mm. 電池缶の開口部に蓋体を載置し溶接によって封口した密閉型電池の製造方法において、電池缶内に電池要素を収納した後に、電池缶の開口部に蓋体を載置し、蓋体と電池缶の開口部との会合部の一部に間隙部を形成した状態で溶接によって封口した後に、間隙部から電解液を注液し、次いで間隙部を溶接によって封口することを特徴とする密閉型電池の製造方法。In a manufacturing method of a sealed battery in which a lid is placed in an opening of a battery can and sealed by welding, after the battery element is stored in the battery can, the lid is placed in the opening of the battery can. After sealing with welding in a state where a gap is formed at a part of the meeting part between the battery and the opening of the battery can, an electrolyte is injected from the gap, and then the gap is sealed by welding. A manufacturing method of a sealed battery. 電解液の注液が、間隙部を底部に位置させて収容するとともに注液すべき電解液を入れた注液槽を内部に設けた注液室内において、注液室内の圧力を大気圧以下に少なくとも1回減圧した後に、大気圧もしくは大気圧以上の圧力に保持することによって行ったものであることを特徴とする請求項3記載の密閉型電池の製造方法。Electrolyte solution is accommodated with the gap positioned at the bottom, and the pressure in the solution chamber is reduced to atmospheric pressure or less in a solution chamber provided with an electrolyte tank containing the electrolyte to be injected. 4. The method for producing a sealed battery according to claim 3, wherein the method is carried out by holding at atmospheric pressure or a pressure equal to or higher than atmospheric pressure after depressurizing at least once.
JP2000291881A 2000-09-26 2000-09-26 Sealed battery and method for manufacturing the same Expired - Lifetime JP3615699B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000291881A JP3615699B2 (en) 2000-09-26 2000-09-26 Sealed battery and method for manufacturing the same
TW090123573A TW518777B (en) 2000-09-26 2001-09-25 Sealed type battery and its manufacturing method
KR1020010059685A KR100795651B1 (en) 2000-09-26 2001-09-26 Sealed battery and method for manufacturing the same
CNB011384395A CN1310346C (en) 2000-09-26 2001-09-26 Closed cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000291881A JP3615699B2 (en) 2000-09-26 2000-09-26 Sealed battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002100329A JP2002100329A (en) 2002-04-05
JP3615699B2 true JP3615699B2 (en) 2005-02-02

Family

ID=18774902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291881A Expired - Lifetime JP3615699B2 (en) 2000-09-26 2000-09-26 Sealed battery and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP3615699B2 (en)
KR (1) KR100795651B1 (en)
CN (1) CN1310346C (en)
TW (1) TW518777B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617784B2 (en) * 2004-09-07 2011-01-26 株式会社明電舎 Electrolyte injection method and apparatus for electric double layer capacitor
JP2007313544A (en) * 2006-05-26 2007-12-06 Pioneer Electronic Corp Beam welding equipment and beam welding method
JP5994640B2 (en) 2011-01-31 2016-09-21 株式会社Gsユアサ Electricity storage element
JP5670854B2 (en) * 2011-09-29 2015-02-18 株式会社東芝 Manufacturing method of secondary battery
JP5935526B2 (en) * 2012-06-12 2016-06-15 株式会社村田製作所 Electrolyte injection method
JP5790604B2 (en) * 2012-08-07 2015-10-07 トヨタ自動車株式会社 Manufacturing method of sealed battery
US9147865B2 (en) 2012-09-06 2015-09-29 Johnson Controls Technology Llc System and method for closing a battery fill hole
JP7373935B2 (en) * 2018-07-30 2023-11-06 マクセル株式会社 Battery case lid and battery
CN115050587A (en) * 2022-05-09 2022-09-13 安徽德渥新能源科技有限公司 Capacitor assembly process with injection molding insulation part

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007855B (en) * 1985-05-03 1990-05-02 三洋电机株式会社 Metal-hydrogen alkaline accumulator
DE4209343A1 (en) * 1992-03-23 1993-09-30 Hoechst Ag 1,2-naphthoquinone-2-diazide-sulfonic acid ester, radiation-sensitive composition prepared therefrom and radiation-sensitive recording material
JP2588535Y2 (en) * 1992-10-30 1999-01-13 三洋電機株式会社 Sealed prismatic batteries
JPH0737611A (en) * 1993-07-16 1995-02-07 Sanyo Electric Co Ltd Laser sealing method for sealed battery
KR960025568U (en) * 1994-12-07 1996-07-22 Sealed Ni-MH Battery
JP3890675B2 (en) * 1996-06-12 2007-03-07 Fdk株式会社 Square electrochemical device and method for producing the same
JP3612931B2 (en) * 1996-10-31 2005-01-26 松下電器産業株式会社 Cylindrical alkaline battery
JP2000048803A (en) * 1998-07-27 2000-02-18 Japan Storage Battery Co Ltd Organic electrolyte battery

Also Published As

Publication number Publication date
TW518777B (en) 2003-01-21
JP2002100329A (en) 2002-04-05
CN1310346C (en) 2007-04-11
KR100795651B1 (en) 2008-01-21
CN1350337A (en) 2002-05-22
KR20020024806A (en) 2002-04-01

Similar Documents

Publication Publication Date Title
CN104428924B (en) Cell manufacturing method
KR101082496B1 (en) Method of preparation of lithium ion polymer battery, dry cell and lithium ion polymer battery the same
US4061163A (en) Method of filling electrochemical cells with electrolyte
KR100634151B1 (en) Apparatus for injecting liquid into container and method therefor
JP3615699B2 (en) Sealed battery and method for manufacturing the same
JPWO2013118804A1 (en) Method and apparatus for manufacturing film-covered electrical device
JP2001110400A (en) Device and method for puring electrolyte
JP2014022337A (en) Nonaqueous secondary battery and liquid injection method therefor
JP2013197035A (en) Manufacturing apparatus of battery and manufacturing method of battery
JP2014022336A (en) Liquid injection device and liquid injection method for nonaqueous secondary battery
JP2009238508A (en) Electrochemical device, and manufacturing method of electrochemical device
JP4010477B2 (en) Apparatus and method for injecting liquid into container
JP6014993B2 (en) Electric device manufacturing method, manufacturing apparatus, and electric device
CN105122531A (en) Production method for sealed batteries
JP4117867B2 (en) Electrolyte injection device
US11749837B2 (en) Battery pack and production method for battery pack
JP2003257414A (en) Sealed battery and its manufacturing method
JP2815880B2 (en) Impregnation method and equipment
JPS61171061A (en) Method of pouring electrolyte into cylindrical battery after it is evacuated
JP4008058B2 (en) Method of filling the case with electrolyte from the small-diameter filling hole
JPH09199108A (en) Device and method for injecting electrolyte in manufacture of battery
JPH09231960A (en) Manufacture for sealed lead-acid battery
KR20180081916A (en) Electrolyte Injection Method Using Vacuum
JPH09199110A (en) Device and method for injecting electrolyte in manufacture of battery
JP2000260463A (en) Liquid injection method into battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3615699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250