JP2010209384A - Method for recovering manganese - Google Patents

Method for recovering manganese Download PDF

Info

Publication number
JP2010209384A
JP2010209384A JP2009055064A JP2009055064A JP2010209384A JP 2010209384 A JP2010209384 A JP 2010209384A JP 2009055064 A JP2009055064 A JP 2009055064A JP 2009055064 A JP2009055064 A JP 2009055064A JP 2010209384 A JP2010209384 A JP 2010209384A
Authority
JP
Japan
Prior art keywords
sulfuric acid
leaching
manganese
hydrogen peroxide
leachate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055064A
Other languages
Japanese (ja)
Other versions
JP5495418B2 (en
Inventor
Hirofumi Nakamura
浩文 中村
Kosuke Inoguchi
康祐 井野口
Daisuke Aoki
大輔 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2009055064A priority Critical patent/JP5495418B2/en
Publication of JP2010209384A publication Critical patent/JP2010209384A/en
Application granted granted Critical
Publication of JP5495418B2 publication Critical patent/JP5495418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering manganese which can obtain a leachate in which manganese is sufficiently leached and also iron is hardly leached from a raw material such as manganese ore including a manganese compound and iron. <P>SOLUTION: A raw material comprising a manganese compound and iron is dissolved into a sulfuric acid aqueous solution, sulfuric acid is further added to the aqueous solution, while retaining its pH to <3, preferably to ≤2.5, leaching with sulfuric acid is performed, thereafter, hydrogen peroxide is added to the aqueous solution as a reducing agent, so as to adjust the pH of the aqueous solution to 3 to 7, and, hydrogen peroxide and sulfuric acid are further added to the aqueous solution, and while retaining its pH to 3 to 7, leaching is performed with hydrogen peroxide and sulfuric acid, thus iron is separated from the leachate, and manganese is recovered into the leachate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マンガンの回収方法に関し、特に、マンガン酸化物のようなマンガン化合物と鉄を含むマンガン鉱石などの原料からマンガンを回収する方法に関する。   The present invention relates to a method for recovering manganese, and more particularly to a method for recovering manganese from raw materials such as manganese ore containing manganese compounds such as manganese oxide and iron.

マンガン酸化物には、マンガンの酸化状態により、酸化第一マンガン(一酸化マンガン、MnO)、酸化第二マンガン(三酸化二マンガン、Mn)、四酸化三マンガン(Mn、MnO・2MnO)、二酸化マンガン(MnO)などの様々なマンガン酸化物があり、天然に産するマンガンを主成分とするマンガン鉱石には、マンガンの酸化状態による様々な形態のマンガン酸化物が種々の割合で含まれている。 Manganese oxide includes manganese oxide (manganese monoxide, MnO), manganese oxide (manganese trioxide, Mn 2 O 3 ), manganese trioxide (Mn 3 O 4 , There are various manganese oxides such as MnO 2 · 2MnO) and manganese dioxide (MnO 2 ). Manganese ores mainly composed of manganese produced in nature have various forms of manganese oxides depending on the oxidation state of manganese. It is included in various proportions.

このようなマンガン鉱石からマンガンを回収するために、マンガン鉱石を硫酸で浸出する方法が知られている。しかし、この方法では、酸化第一マンガン(MnO)の2価マンガンを硫酸に溶解させて浸出することができるが、酸化第二マンガン(Mn)、四酸化三マンガン(Mn、MnO・2MnO)、二酸化マンガン(MnO)などの4価マンガン(Mn4+)を浸出することができないので、マンガンの浸出率が低いという問題がある。そのため、マンガン鉱石を硫酸で浸出する前に、マンガン鉱石を酸化第一マンガン(MnO)まで還元する必要がある。 In order to recover manganese from such manganese ore, a method of leaching manganese ore with sulfuric acid is known. However, in this method, divalent manganese of manganese oxide (MnO) can be dissolved and dissolved in sulfuric acid. However, manganese oxide (Mn 2 O 3 ), trimanganese tetroxide (Mn 3 O 4 ) can be leached. , MnO 2 .2MnO), manganese dioxide (MnO 2 ) and other tetravalent manganese (Mn 4+ ) cannot be leached, and there is a problem that the leaching rate of manganese is low. Therefore, it is necessary to reduce the manganese ore to manganese oxide (MnO) before leaching the manganese ore with sulfuric acid.

このような4価マンガンを含むマンガン鉱石を還元してマンガンを回収する方法として、四酸化三マンガン(Mn)のマンガン鉱石を、二酸化硫黄(SO)などの還元剤の存在下において、pH3以下で硫酸による浸出を行った後、その浸出液に中和剤および酸化剤を加えて脱鉄するとともに、浸出液に硫黄を加えて重金属類を硫化物として除去し、このようにして脱鉄および重金属類除去した液を使用して、電解により金属マンガンを回収する方法が提案されている(例えば、特許文献1参照)。 As a method for recovering manganese by reducing such manganese ore containing tetravalent manganese, manganese ore of trimanganese tetroxide (Mn 3 O 4 ) is used in the presence of a reducing agent such as sulfur dioxide (SO 2 ). After leaching with sulfuric acid at a pH of 3 or less, neutralization and oxidizing agents are added to the leachate to remove iron, and sulfur is added to the leachate to remove heavy metals as sulfides. In addition, a method for recovering manganese metal by electrolysis using a liquid from which heavy metals have been removed has been proposed (see, for example, Patent Document 1).

米国特許第5,932,086号公報(第1〜3欄)US Pat. No. 5,932,086 (columns 1-3)

しかし、特許文献1の方法では、還元剤の存在下においてpH3以下で硫酸による浸出を行うので、鉄も同時に浸出されて、浸出液に中和剤および酸化剤を加えて鉄を除去する脱鉄工程が必要になる。また、この脱鉄工程では、浸出液のpHが4〜7になるまで十分な量の中和剤を加える必要があり、脱鉄残渣が増大する。   However, in the method of Patent Document 1, since leaching with sulfuric acid is performed at a pH of 3 or less in the presence of a reducing agent, iron is also leached at the same time, and a neutralizing agent and an oxidizing agent are added to the leaching solution to remove iron. Is required. Moreover, in this deironing process, it is necessary to add a sufficient amount of neutralizing agent until the pH of the leachate becomes 4 to 7, and the deironing residue increases.

したがって、本発明は、このような従来の問題点に鑑み、マンガン化合物と鉄を含むマンガン鉱石のような原料から、マンガンが十分に浸出され且つ鉄が殆ど浸出されない浸出液を得ることができる、マンガンを回収する方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can obtain a leachate in which manganese is sufficiently leached and iron is hardly leached from a raw material such as manganese ore containing a manganese compound and iron. It aims at providing the method of collect | recovering.

本発明者らは、上記課題を解決するために鋭意研究した結果、マンガン化合物と鉄を含む原料を硫酸水溶液に溶解し、この水溶液にさらに硫酸を加えてpH3より低いpHを維持しながら硫酸による浸出を行い、その後、水溶液に還元剤として過酸化水素を添加して水溶液のpHを3〜7にし、この水溶液にさらに過酸化水素と硫酸を加えてpH3〜7を維持しながら過酸化水素と硫酸による浸出を行うことにより、マンガン化合物と鉄を含むマンガン鉱石のような原料から、マンガンが十分に浸出され且つ鉄が殆ど浸出されない浸出液を得ることができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have dissolved a raw material containing a manganese compound and iron in an aqueous sulfuric acid solution, and added sulfuric acid to the aqueous solution to maintain a pH lower than pH 3 while using sulfuric acid. After leaching, hydrogen peroxide is added to the aqueous solution as a reducing agent to bring the pH of the aqueous solution to 3-7, and hydrogen peroxide and sulfuric acid are further added to the aqueous solution to maintain the pH of 3-7. By leaching with sulfuric acid, it was found that a leaching solution in which manganese is sufficiently leached and almost no iron is leached can be obtained from a raw material such as manganese ore containing a manganese compound and iron, and the present invention has been completed. It was.

すなわち、本発明によるマンガンの回収方法は、マンガン化合物と鉄を含む原料を硫酸水溶液に溶解し、この水溶液にさらに硫酸を加えてpH3より低いpH、好ましくはpH2.5以下を維持しながら硫酸による浸出を行い、その後、水溶液に還元剤として過酸化水素を添加して水溶液のpHを3〜7にし、この水溶液にさらに過酸化水素と硫酸を加えてpH3〜7を維持しながら過酸化水素と硫酸による浸出を行うことにより、浸出液から鉄を分離して、浸出液中にマンガンを回収することを特徴とする。   That is, in the method for recovering manganese according to the present invention, a raw material containing a manganese compound and iron is dissolved in a sulfuric acid aqueous solution, and sulfuric acid is further added to the aqueous solution to maintain a pH lower than pH 3, preferably pH 2.5 or lower. After leaching, hydrogen peroxide is added to the aqueous solution as a reducing agent to bring the pH of the aqueous solution to 3-7, and hydrogen peroxide and sulfuric acid are further added to the aqueous solution to maintain the pH of 3-7. By leaching with sulfuric acid, iron is separated from the leachate, and manganese is recovered in the leachate.

このマンガンの回収方法において、過酸化水素と硫酸による浸出を行った後にろ過することにより、浸出液から鉄を分離するのが好ましい。また、浸出液から電解によって金属マンガンを得るのが好ましい。また、マンガン化合物が、2価より大きい価数のマンガンの化合物または酸化物であるのが好ましく、酸化第二マンガン、四酸化三マンガンおよび二酸化マンガンからなる群から選ばれる少なくとも一種であるのがさらに好ましい。   In this manganese recovery method, it is preferable to separate iron from the leaching solution by filtration after leaching with hydrogen peroxide and sulfuric acid. Moreover, it is preferable to obtain metal manganese by electrolysis from the leachate. Further, the manganese compound is preferably a manganese compound or oxide having a valence of more than two, and is further at least one selected from the group consisting of manganese oxide, trimanganese tetroxide and manganese dioxide. preferable.

本発明によれば、マンガン化合物と鉄を含むマンガン鉱石のような原料から、マンガンが十分に浸出され且つ鉄が殆ど浸出されない浸出液を得ることができる。   According to the present invention, a leachate in which manganese is sufficiently leached and iron is hardly leached from a raw material such as a manganese ore containing a manganese compound and iron can be obtained.

本発明によるマンガンの回収方法の実施の形態を示す工程図である。It is process drawing which shows embodiment of the collection | recovery method of manganese by this invention. 実施例1において硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。It is a graph which shows the density | concentration of Mn, Fe, and Si in a slurry with respect to the leaching time with a sulfuric acid, hydrogen peroxide, and a sulfuric acid in Example 1. FIG. 実施例1において硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。2 is a graph showing the oxidation-reduction potential and pH of a slurry with respect to leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid in Example 1. 実施例2において硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。It is a graph which shows the density | concentration of Mn in a slurry with respect to the leaching time with a sulfuric acid, hydrogen peroxide, and a sulfuric acid in Example 2, and Fe. 実施例2において硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。In Example 2, it is a graph which shows the oxidation reduction potential and pH of a slurry with respect to the leaching time with a sulfuric acid, hydrogen peroxide, and a sulfuric acid. 実施例3において硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。It is a graph which shows the density | concentration of Mn in a slurry with respect to the leaching time with a sulfuric acid, hydrogen peroxide, and a sulfuric acid in Example 3, and Fe. 実施例3において硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。In Example 3, it is a graph which shows the oxidation reduction potential and pH of a slurry with respect to the leaching time with a sulfuric acid, hydrogen peroxide, and a sulfuric acid. 比較例1において硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。4 is a graph showing the concentrations of Mn, Fe, and Si in a slurry with respect to leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid in Comparative Example 1. 比較例1において硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。4 is a graph showing the oxidation-reduction potential and pH of a slurry with respect to leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid in Comparative Example 1. 比較例2において硫酸およびSOガスによる浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。6 is a graph showing the concentrations of Mn, Fe and Si in a slurry with respect to leaching time with sulfuric acid and SO 2 gas in Comparative Example 2. 比較例2において硫酸およびSOガスによる浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。6 is a graph showing the oxidation-reduction potential and pH of a slurry with respect to the leaching time with sulfuric acid and SO 2 gas in Comparative Example 2. 比較例3において硫酸およびSOガスによる浸出時間に対するスラリー中のMn、FeおよびSiの濃度を示すグラフである。6 is a graph showing the concentrations of Mn, Fe, and Si in a slurry with respect to leaching time with sulfuric acid and SO 2 gas in Comparative Example 3. 比較例3において硫酸およびSOガスによる浸出時間に対するスラリーの酸化還元電位およびpHを示すグラフである。6 is a graph showing the oxidation-reduction potential and pH of a slurry with respect to the leaching time with sulfuric acid and SO 2 gas in Comparative Example 3.

本発明によるマンガンの回収方法の実施の形態は、図1に示すように、マンガン化合物と鉄を含む原料を硫酸で浸出を行う硫酸浸出工程と、この硫酸浸出工程で得られた浸出液に過酸化水素(H)と硫酸を加えて過酸化水素と硫酸による浸出を行う過酸化水素浸出工程と、この過酸化水素浸出工程で得られた浸出液を浄液する浄液工程と、この浄液工程で得られた液を電解して金属マンガンを得る電解工程とを備えている。以下、これらの工程について詳細に説明する。 As shown in FIG. 1, the embodiment of the method for recovering manganese according to the present invention comprises a sulfuric acid leaching process in which a raw material containing a manganese compound and iron is leached with sulfuric acid, and the leachate obtained in this sulfuric acid leaching process is peroxidized. Hydrogen peroxide leaching process in which hydrogen (H 2 O 2 ) and sulfuric acid are added to perform leaching with hydrogen peroxide and sulfuric acid, a liquid cleaning process for purifying the leachate obtained in this hydrogen peroxide leaching process, and this purification And an electrolysis step of obtaining metal manganese by electrolyzing the liquid obtained in the liquid step. Hereinafter, these steps will be described in detail.

(硫酸浸出工程)
まず、マンガン化合物と鉄を含む原料を用意する。マンガン化合物としては、2価より大きい価数のマンガンの化合物であるのが好ましく、酸化第二マンガン(三酸化二マンガン、Mn)、四酸化三マンガン(Mn、MnO・2MnO)、二酸化マンガン(MnO)のような4価マンガン(または2価より大きい価数のマンガン)を含むマンガンの酸化物であるのがさらに好ましい。
(Sulfuric acid leaching process)
First, a raw material containing a manganese compound and iron is prepared. The manganese compound is preferably a manganese compound having a valence of more than two, such as manganese oxide (dimanganese trioxide, Mn 2 O 3 ), trimanganese tetraoxide (Mn 3 O 4 , MnO 2. More preferably, it is a manganese oxide containing tetravalent manganese (or manganese having a valence higher than 2 ) such as 2MnO) or manganese dioxide (MnO 2 ).

このマンガン化合物と鉄を含む原料を硫酸水溶液に溶解し、この水溶液にさらに硫酸を加えてpH3より低いpH、好ましくはpH2.5以下、さらに好ましくはpH2程度を維持しながら硫酸による浸出を行う。   The raw material containing the manganese compound and iron is dissolved in an aqueous sulfuric acid solution, and sulfuric acid is further added to the aqueous solution to perform leaching with sulfuric acid while maintaining a pH lower than pH 3, preferably 2.5 or lower, more preferably about pH 2.

この硫酸による浸出では、四酸化三マンガン(Mn、MnO・2MnO)などのマンガン酸化物を含む原料中の2価マンガン(Mn2+)が浸出されて浸出液中に溶解するが、4価マンガン(Mn4+)は浸出されない。また、pH3より低いpHで浸出を行うので、浸出液中にFeも溶解する。 In this leaching with sulfuric acid, divalent manganese (Mn 2+ ) in the raw material containing manganese oxide such as trimanganese tetroxide (Mn 3 O 4 , MnO 2 .2MnO) is leached and dissolved in the leachate. Valent manganese (Mn 4+ ) is not leached. Further, since leaching is performed at a pH lower than pH 3, Fe is also dissolved in the leaching solution.

(過酸化水素浸出工程)
次に、硫酸浸出工程で得られた浸出液に、還元剤として過酸化水素を添加して浸出液のpHを3〜7にし、この水溶液にさらに過酸化水素と硫酸を加えてpH3〜7を維持しながら過酸化水素と硫酸による浸出を行う。この過酸化水素と硫酸による浸出をpH3〜7で行うと、以下の反応式による反応がほぼ当量で進んで、4価マンガン(Mn4+)が浸出される。なお、pH3より低いpHでは、浸出液中にFeも溶解するため、浸出液から鉄を除去する脱鉄工程が必要になるが、pH3以上では、浸出液中にFeが殆ど溶解しないので、脱鉄工程が不要になる。一方、pH7より高いpHでは、Mnが浸出されない。
MnO+H+HSO→MnSO+2HO+O
(Hydrogen peroxide leaching process)
Next, hydrogen peroxide is added as a reducing agent to the leachate obtained in the sulfuric acid leaching step to bring the pH of the leachate to 3-7, and hydrogen peroxide and sulfuric acid are further added to this aqueous solution to maintain pH 3-7. While leaching with hydrogen peroxide and sulfuric acid. When this leaching with hydrogen peroxide and sulfuric acid is carried out at a pH of 3 to 7, the reaction according to the following reaction formula proceeds at an equivalent amount, and tetravalent manganese (Mn 4+ ) is leached. In addition, since Fe also dissolves in the leachate at a pH lower than pH 3, a deironing step for removing iron from the leachate is necessary. However, at pH 3 or higher, Fe is hardly dissolved in the leachate. It becomes unnecessary. On the other hand, at a pH higher than pH 7, Mn is not leached.
MnO 2 + H 2 O 2 + H 2 SO 4 → MnSO 4 + 2H 2 O + O 2

この過酸化水素と硫酸による浸出では、還元剤として過酸化水素を使用することにより、硫酸浸出工程で浸出されずに溶け残った4価マンガン(Mn4+)が浸出されて浸出液中に溶解する。また、還元剤として二酸化硫黄(SO)を使用しないので、硫酸イオン濃度を一定に保つことができる。 In the leaching with hydrogen peroxide and sulfuric acid, by using hydrogen peroxide as a reducing agent, tetravalent manganese (Mn 4+ ) that has not been leached in the sulfuric acid leaching step and is left undissolved is leached and dissolved in the leachate. Further, since sulfur dioxide (SO 2 ) is not used as the reducing agent, the sulfate ion concentration can be kept constant.

また、pH3〜7で浸出を行うので、浸出液中にFeが溶解するのが抑制され、硫酸浸出工程で溶解したFeも沈澱する。そのため、還元剤として二酸化硫黄(SO)を使用した場合に必要な脱鉄工程が不要になり、脱鉄残渣の発生を防止することができる。また、過酸化水素と硫酸を加えてpH3〜7に中和して浸出を行うので、還元剤として二酸化硫黄(SO)を使用した場合にFeの除去に必要な中和剤が不要になる。さらに、原料中にSiやAlなどが含まれていても、浸出液中にSiやAlなどが溶解する量を低減することができる。なお、還元剤として二酸化硫黄(SO)を使用する場合には、SOガスの吹き込みによりpHが低下するので、pH3以上にすることができない。 Moreover, since leaching is performed at pH 3 to 7, dissolution of Fe in the leaching solution is suppressed, and Fe dissolved in the sulfuric acid leaching step is also precipitated. Therefore, the deironing step required when sulfur dioxide (SO 2 ) is used as the reducing agent becomes unnecessary, and generation of a deiron residue can be prevented. In addition, hydrogen peroxide and sulfuric acid are added to neutralize to pH 3-7 and leaching is performed, so when sulfur dioxide (SO 2 ) is used as a reducing agent, a neutralizing agent necessary for removing Fe becomes unnecessary. . Furthermore, even if Si or Al is contained in the raw material, the amount of Si or Al dissolved in the leachate can be reduced. In the case of using sulfur dioxide (SO 2) as the reducing agent, because the pH is lowered by blowing SO 2 gas can not be to pH3 above.

(浄液工程)
次に、過酸化水素浸出工程で得られた浸出液を浄液する。この浄液工程では、過酸化水素浸出工程で得られた浸出液中に重金属類などの不純物が含まれる場合に、浸出液に硫黄などの硫化剤を添加して重金属類などを硫化して除去する。
(Purification process)
Next, the leachate obtained in the hydrogen peroxide leaching step is purified. In this cleaning step, when impurities such as heavy metals are contained in the leachate obtained in the hydrogen peroxide leaching step, a sulfiding agent such as sulfur is added to the leachate to sulfidize and remove heavy metals.

(電解工程)
次に、浄液工程で得られた液を電解して金属マンガンを得る。この電解工程後に得られた電解後液は、硫酸イオン濃度を調整しなくても、そのまま硫酸浸出工程で再利用することができる。すなわち、従来のように還元剤としてSOを使用する場合には、電解工程後に得られた電解後液中に硫酸イオンが蓄積されるため、中和剤により硫酸イオン濃度を調整しなければ、硫酸浸出工程で再利用することができないが、本発明によるマンガンの回収方法の実施の形態の電解工程後に得られた電解後液は、そのまま硫酸浸出工程で再利用することができる。
(Electrolysis process)
Next, the liquid obtained in the liquid purification step is electrolyzed to obtain metal manganese. The post-electrolysis solution obtained after this electrolysis step can be reused as it is in the sulfuric acid leaching step without adjusting the sulfate ion concentration. That is, when using SO 2 as a reducing agent as in the prior art, since sulfate ions accumulate in the post-electrolysis solution obtained after the electrolysis step, unless the sulfate ion concentration is adjusted with a neutralizer, Although it cannot be reused in the sulfuric acid leaching step, the post-electrolysis solution obtained after the electrolytic step of the embodiment of the manganese recovery method according to the present invention can be reused as it is in the sulfuric acid leaching step.

以下、本発明によるマンガンの回収方法の実施例について詳細に説明する。   Examples of the method for recovering manganese according to the present invention will be described in detail below.

[実施例1]
まず、マンガン化合物と鉄を含む原料として、表1に示すように、66.91質量%のMn(28.10g)と、3.91質量%のFe(1.64g)と、0.96質量%のSi(0.40g)の品位の四酸化三マンガン(Mn)のマンガン鉱石42gを用意した。
[Example 1]
First, as a raw material containing a manganese compound and iron, as shown in Table 1, 66.91 mass% Mn (28.10 g), 3.91 mass% Fe (1.64 g), and 0.96 mass 42 g of manganese ore of trimanganese tetroxide (Mn 3 O 4 ) with a grade of% Si (0.40 g) was prepared.

この原料42gと硫酸アンモニウム72gを純水600mLでリパルプし、得られたスラリーに500g/Lの硫酸を添加してpH2.0にした後、さらに硫酸を加えてpH2を維持しながら2時間浸出を行った。この硫酸による浸出後のスラリーをろ過して得られた浸出液の量は670mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ23790mg/L(15.94g)、374mg/L(0.25g)および216mg/L(0.14g)であり、Mn、FeおよびSiの浸出率は、それぞれ56.7%、15.3%および35.9%であった。なお、この浸出液中のMnなどの量は、スラリーの一部をろ過して得られた浸出液を使用してICPにより測定した。   42 g of this raw material and 72 g of ammonium sulfate were repulped with 600 mL of pure water, 500 g / L sulfuric acid was added to the resulting slurry to pH 2.0, and further leaching was carried out for 2 hours while maintaining pH 2 by adding sulfuric acid. It was. The amount of leachate obtained by filtering the slurry after leaching with sulfuric acid was 670 mL, and the concentrations (and weights) of Mn, Fe and Si in the leachate were 23790 mg / L (15.94 g) and 374 mg, respectively. / L (0.25 g) and 216 mg / L (0.14 g), and the leaching rates of Mn, Fe and Si were 56.7%, 15.3% and 35.9%, respectively. The amount of Mn and the like in this leachate was measured by ICP using a leachate obtained by filtering a part of the slurry.

この硫酸による浸出後のスラリーに1mL/分の割合で過酸化水素5mLを添加した後に10分間攪拌することを繰り返してpH5まで中和し、この中和後のスラリーにさらに1mL/分の割合で過酸化水素5mLを添加した後に10分間攪拌するとともに硫酸を加えてpH5を維持しながら浸出を行った。この過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は720mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ34275mg/L(24.68g)、0.815mg/L(0.00g)および115.8mg/L(0.08g)であり、Mn、FeおよびSiの浸出率は、それぞれ87.8%、0.0%および20.7%であった。また、浸出残渣の重量は13.4g(乾燥後7.9g)であり、この浸出残渣中のMnおよびFeの品位(および重量)は、それぞれ43.37質量%(3.43g)および20.79質量%(1.64g)であった。   The slurry after leaching with sulfuric acid was added with 5 mL of hydrogen peroxide at a rate of 1 mL / min and then stirred for 10 minutes to neutralize to pH 5 and further added to the slurry after neutralization at a rate of 1 mL / min. After adding 5 mL of hydrogen peroxide, leaching was performed while stirring for 10 minutes and adding sulfuric acid to maintain pH of 5. The amount of leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 720 mL, and the concentration (and weight) of Mn, Fe and Si in the leachate was 34275 mg / L (24. 68 g), 0.815 mg / L (0.00 g) and 115.8 mg / L (0.08 g), and the leaching rates of Mn, Fe and Si were 87.8%, 0.0% and 20. 7%. The weight of the leaching residue was 13.4 g (7.9 g after drying), and the grades (and weights) of Mn and Fe in the leaching residue were 43.37% by mass (3.43 g) and 20. It was 79 mass% (1.64 g).

これらの結果を表1に示す。また、硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図2に示し、硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを図3に示す。   These results are shown in Table 1. The concentration of Mn, Fe and Si in the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide and sulfuric acid is shown in FIG. 2, and the oxidation-reduction potential and pH of the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide and sulfuric acid are shown in FIG. Shown in

Figure 2010209384
Figure 2010209384

表1、図2および図3に示すように、本実施例では、硫酸による浸出(pH2で浸出)において溶解したFeが、その後の過酸化水素と硫酸による浸出(pH5で浸出)において沈澱して、Feを含まない浸出液を得ることができるのがわかる。この浸出液を浄液した後に電解液として使用して、電解により金属マンガンを回収することができる。   As shown in Table 1, FIG. 2 and FIG. 3, in this example, Fe dissolved in leaching with sulfuric acid (leaching at pH 2) was precipitated in subsequent leaching with hydrogen peroxide and sulfuric acid (leaching at pH 5). It can be seen that a leachate containing no Fe can be obtained. After this leachate is purified, it can be used as an electrolytic solution, and metal manganese can be recovered by electrolysis.

[実施例2]
まず、マンガン化合物と鉄を含む原料として、表2に示すように、68.27質量%のMn(28.68g)と、2.29質量%のFe(0.96g)と、0.48質量%のSi(0.20g)の品位の四酸化三マンガン(Mn)のマンガン鉱石42gを用意した。
[Example 2]
First, as a raw material containing a manganese compound and iron, as shown in Table 2, 68.27 mass% Mn (28.68 g), 2.29 mass% Fe (0.96 g), 0.48 mass 42 g of manganese ore of trimanganese tetroxide (Mn 3 O 4 ) with a grade of% Si (0.20 g) was prepared.

この原料を使用して、過酸化水素と硫酸による浸出をpH4で行った以外は、実施例1と同様の処理を行った。   Using this raw material, the same treatment as in Example 1 was performed, except that leaching with hydrogen peroxide and sulfuric acid was performed at pH 4.

その結果、硫酸による浸出後のスラリーをろ過して得られた浸出液の量は680mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ28800mg/L(18.22g)、210mg/L(0.14g)および97mg/L(0.07g)であり、Mn、FeおよびSiの浸出率は、それぞれ63.6%、14.8%および32.7%であった。   As a result, the amount of leachate obtained by filtering the slurry after leaching with sulfuric acid was 680 mL, and the concentration (and weight) of Mn, Fe and Si in this leachate was 28800 mg / L (18.22 g), respectively. 210 mg / L (0.14 g) and 97 mg / L (0.07 g), and the leaching rates of Mn, Fe and Si were 63.6%, 14.8% and 32.7%, respectively.

また、過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は700mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ39500mg/L(27.65g)、35mg/L(0.02g)および95mg/L(0.07g)であり、Mn、FeおよびSiの浸出率は、それぞれ96.4%、2.6%および32.8%であった。また、浸出残渣の重量は6.4g(乾燥後3.2g)であり、この浸出残渣中のMnおよびFeの品位(および重量)は、それぞれ32.44質量%(1.03g)および29.64質量%(0.94g)であった。   The amount of the leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 700 mL, and the concentrations (and weights) of Mn, Fe, and Si in the leachate were 39500 mg / L (27 0.65 g), 35 mg / L (0.02 g) and 95 mg / L (0.07 g), and the leaching rates of Mn, Fe and Si were 96.4%, 2.6% and 32.8%, respectively. there were. The weight of the leaching residue was 6.4 g (3.2 g after drying), and the grades (and weight) of Mn and Fe in the leaching residue were 32.44% by mass (1.03 g) and 29. It was 64 mass% (0.94g).

これらの結果を表2に示す。また、硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図4に示し、硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを図5に示す。   These results are shown in Table 2. FIG. 4 shows the concentrations of Mn, Fe, and Si in the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid, and FIG. 5 shows the oxidation-reduction potential and pH of the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid. Shown in

Figure 2010209384
Figure 2010209384

表2、図4および図5に示すように、本実施例では、硫酸による浸出(pH2で浸出)において溶解したFeの大部分が、その後の過酸化水素と硫酸による浸出(pH4で浸出)において沈澱して、Feを殆ど含まない浸出液を得ることができるのがわかる。   As shown in Table 2, FIG. 4 and FIG. 5, in the present example, most of the dissolved Fe in the leaching with sulfuric acid (leaching at pH 2) is in the subsequent leaching with hydrogen peroxide and sulfuric acid (leaching at pH 4). It can be seen that a leachate containing almost no Fe can be obtained by precipitation.

[実施例3]
実施例1と同様の原料を使用して、過酸化水素と硫酸による浸出をpH2〜6に変化させて行った以外は、実施例1と同様の処理を行った。
[Example 3]
The same raw material as in Example 1 was used, and the same treatment as in Example 1 was performed, except that leaching with hydrogen peroxide and sulfuric acid was changed to pH 2-6.

その結果、硫酸による浸出後のスラリーをろ過して得られた浸出液の量は670mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ24300mg/L(16.28g)、276mg/L(0.19g)および214mg/L(0.14g)であり、Mn、FeおよびSiの浸出率は、それぞれ57.9%、11.3%および35.5%であった。   As a result, the amount of leachate obtained by filtering the slurry after leaching with sulfuric acid was 670 mL, and the concentrations (and weights) of Mn, Fe and Si in the leachate were 24300 mg / L (16.28 g), respectively. 276 mg / L (0.19 g) and 214 mg / L (0.14 g), and the leaching rates of Mn, Fe and Si were 57.9%, 11.3% and 35.5%, respectively.

また、過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は690mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ30325mg/L(20.92g)、1mg/L(0.00g)および54mg/L(0.04g)であり、Mn、FeおよびSiの浸出率は、それぞれ74.5%、0.0%および9.3%であった。また、浸出残渣の重量は20.7g(乾燥後13.3g)であった。   The amount of leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 690 mL, and the concentrations (and weights) of Mn, Fe, and Si in the leachate were 30325 mg / L (20 .92 g), 1 mg / L (0.00 g) and 54 mg / L (0.04 g), and the leaching rates of Mn, Fe and Si were 74.5%, 0.0% and 9.3%, respectively. there were. The weight of the leaching residue was 20.7 g (13.3 g after drying).

これらの結果を表3に示す。また、硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図6に示し、硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを図7に示す。   These results are shown in Table 3. Further, FIG. 6 shows the concentrations of Mn, Fe and Si in the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide and sulfuric acid, and FIG. Shown in

Figure 2010209384
Figure 2010209384

表3、図6および図7に示すように、本実施例では、硫酸による浸出(pH2で浸出)において溶解したFeが、その後の過酸化水素と硫酸による浸出において沈澱して、Feを含まない浸出液を得ることができるのがわかる。また、pHの上昇に伴ってSiが沈澱し、pH6では浸出液中のSiが非常に少なくなるのがわかる。   As shown in Table 3, FIG. 6 and FIG. 7, in this example, Fe dissolved in the leaching with sulfuric acid (leaching at pH 2) precipitates in the subsequent leaching with hydrogen peroxide and sulfuric acid and does not contain Fe. It can be seen that a leachate can be obtained. It can also be seen that Si precipitates as the pH increases, and at pH 6, Si in the leachate is very low.

[比較例1]
まず、マンガン化合物と鉄を含む原料として、表4に示すように、69.67質量%のMn(29.26g)と、2.16質量%のFe(0.91g)と、0.48質量%のSi(0.20g)の品位の四酸化三マンガン(Mn)のマンガン鉱石42gを用意した。
[Comparative Example 1]
First, as a raw material containing a manganese compound and iron, as shown in Table 4, 69.67 mass% Mn (29.26 g), 2.16 mass% Fe (0.91 g), and 0.48 mass 42 g of manganese ore of trimanganese tetroxide (Mn 3 O 4 ) with a grade of% Si (0.20 g) was prepared.

この原料を使用して、過酸化水素と硫酸による浸出をpH2で行った以外は、実施例1と同様の処理を行った。なお、過酸化水素によりMn4+が浸出される。 Using this raw material, the same treatment as in Example 1 was performed except that leaching with hydrogen peroxide and sulfuric acid was performed at pH 2. Note that Mn 4+ is leached by hydrogen peroxide.

その結果、硫酸による浸出後のスラリーをろ過して得られた浸出液の量は650mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ28900mg/L(18.79g)、11mg/L(0.01g)および106mg/L(0.07g)であり、Mn、FeおよびSiの浸出率は、それぞれ64.2%、0.8%および34.1%であった。   As a result, the amount of leachate obtained by filtering the slurry after leaching with sulfuric acid was 650 mL, and the concentration (and weight) of Mn, Fe and Si in this leachate was 28900 mg / L (18.79 g), respectively. 11 mg / L (0.01 g) and 106 mg / L (0.07 g), and the leaching rates of Mn, Fe and Si were 64.2%, 0.8% and 34.1%, respectively.

また、過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は700mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ41300mg/L(28.91g)、865mg/L(0.61g)および110mg/L(0.08g)であり、Mn、FeおよびSiの浸出率は、それぞれ98.8%、66.7%および38.2%であった。また、浸出残渣の重量は1.5g(乾燥後1.0g)であり、この浸出残渣中のMnおよびFeの品位(および重量)は、それぞれ34.57質量%(0.35g)および29.64質量%(0.30g)であった。   The amount of leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 700 mL, and the concentrations (and weights) of Mn, Fe, and Si in the leachate were 41300 mg / L (28 .91 g), 865 mg / L (0.61 g) and 110 mg / L (0.08 g), and the leaching rates of Mn, Fe and Si were 98.8%, 66.7% and 38.2%, respectively. there were. The weight of the leaching residue is 1.5 g (1.0 g after drying), and the grades (and weights) of Mn and Fe in the leaching residue are 34.57 mass% (0.35 g) and 29.29%, respectively. It was 64 mass% (0.30 g).

これらの結果を表4に示す。また、硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図8に示し、硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを図9に示す。   These results are shown in Table 4. FIG. 8 shows the concentrations of Mn, Fe, and Si in the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid, and FIG. 9 shows the oxidation-reduction potential and pH of the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid. Shown in

Figure 2010209384
Figure 2010209384

表4、図8および図9に示すように、本比較例では、硫酸による浸出(pH2で浸出)において溶解したFeが、その後の過酸化水素と硫酸による浸出においてもpHが低いために沈澱しないで、浸出液中に含まれるのがわかる。   As shown in Table 4, FIG. 8, and FIG. 9, in this comparative example, Fe dissolved in the leaching with sulfuric acid (leaching at pH 2) does not precipitate because the pH is low in the subsequent leaching with hydrogen peroxide and sulfuric acid. It can be seen that it is contained in the leachate.

[比較例2]
まず、マンガン化合物と鉄を含む原料として、表5に示すように、66.86質量%のMn(28.08g)と、3.53質量%のFe(1.48g)と、0.96質量%のSi(0.40g)の品位の四酸化三マンガン(Mn)のマンガン鉱石42gを用意した。
[Comparative Example 2]
First, as a raw material containing a manganese compound and iron, as shown in Table 5, 66.86 mass% Mn (28.08 g), 3.53 mass% Fe (1.48 g), and 0.96 mass 42 g of manganese ore of trimanganese tetroxide (Mn 3 O 4 ) with a grade of% Si (0.40 g) was prepared.

この原料を使用して、過酸化水素と硫酸による浸出の代わりに、硫酸による浸出後のスラリーにSOガスを吹き込みながらpH2で浸出を行った以外は、実施例1と同様の処理を行った。なお、SOによりMn4+が浸出され、SOによる浸出では、硫酸を添加しなくてもpHが下がる。 Using this raw material, instead of leaching with hydrogen peroxide and sulfuric acid, the same treatment as in Example 1 was performed except that leaching was performed at pH 2 while blowing SO 2 gas into the slurry after leaching with sulfuric acid. . Incidentally, Mn 4+ is leached with SO 2, the leaching SO 2, even pH is lowered without the addition of sulfuric acid.

その結果、硫酸による浸出後のスラリーをろ過して得られた浸出液の量は670mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ24300mg/L(16.31g)、349mg/L(0.23g)および222mg/L(0.15g)であり、Mn、FeおよびSiの浸出率は、それぞれ58.1%、15.8%および37.0%であった。   As a result, the amount of the leachate obtained by filtering the slurry after leaching with sulfuric acid was 670 mL, and the concentrations (and weights) of Mn, Fe and Si in the leachate were 24300 mg / L (16.31 g), respectively. 349 mg / L (0.23 g) and 222 mg / L (0.15 g), and the leaching rates of Mn, Fe and Si were 58.1%, 15.8% and 37.0%, respectively.

また、過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は690mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ39925mg/L(27.55g)、1322mg/L(0.91g)および225mg/L(0.16g)であり、Mn、FeおよびSiの浸出率は、それぞれ98.1%、61.5%および38.5%であった。また、浸出残渣の重量は2.5g(乾燥後1.8g)であり、この浸出残渣中のMnおよびFeの品位(および重量)は、それぞれ29.26質量%(0.53g)および31.31質量%(0.57g)であった。   The amount of leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 690 mL, and the concentrations (and weights) of Mn, Fe, and Si in the leachate were 39925 mg / L (27 .55 g), 1322 mg / L (0.91 g) and 225 mg / L (0.16 g), and the leaching rates of Mn, Fe and Si were 98.1%, 61.5% and 38.5%, respectively. there were. The weight of the leaching residue was 2.5 g (1.8 g after drying), and the grades (and weights) of Mn and Fe in the leaching residue were 29.26% by mass (0.53 g) and 31. It was 31 mass% (0.57 g).

これらの結果を表5に示す。また、硫酸およびSOガスによる浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図10に示し、硫酸およびSOガスによる浸出時間に対するスラリーの酸化還元電位およびpHを図11に示す。 These results are shown in Table 5. Also shows Mn in the slurry for leaching time with sulfuric acid and SO 2 gas, the concentration of Fe and Si in FIG 10, Figure 11 shows the oxidation-reduction potential and pH of the slurry for leaching time with sulfuric acid and SO 2 gas.

Figure 2010209384
Figure 2010209384

表5、図10および図11に示すように、本比較例では、硫酸による浸出(pH2で浸出)において溶解したFeが、その後のSOガスによる浸出においてもpHが低いために沈澱しないで、浸出液中に含まれるのがわかる。 As shown in Table 5, FIG. 10, and FIG. 11, in this comparative example, Fe dissolved in leaching with sulfuric acid (leaching at pH 2) did not precipitate because the pH was low even in leaching with SO 2 gas thereafter, It can be seen that it is contained in the leachate.

[比較例3]
まず、マンガン化合物と鉄を含む原料として、表6に示すように、67.17質量%のMn(28.21g)と、2.17質量%のFe(0.91g)と、0.48質量%のSi(0.20g)の品位の四酸化三マンガン(Mn)のマンガン鉱石42gを用意した。
[Comparative Example 3]
First, as shown in Table 6, 67.17% by mass of Mn (28.21 g), 2.17% by mass of Fe (0.91 g), and 0.48 mass as raw materials containing a manganese compound and iron. 42 g of manganese ore of trimanganese tetroxide (Mn 3 O 4 ) with a grade of% Si (0.20 g) was prepared.

この原料を使用して、硫酸による浸出および過酸化水素と硫酸による浸出のいずれもpH3で行った以外は、実施例1と同様の処理を行った。   Using this raw material, the same treatment as in Example 1 was performed, except that leaching with sulfuric acid and leaching with hydrogen peroxide and sulfuric acid were both performed at pH 3.

その結果、硫酸による浸出後のスラリーをろ過して得られた浸出液の量は610mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ10883mg/L(6.64g)、0mg/L(0.00g)および69mg/L(0.04g)であり、Mn、FeおよびSiの浸出率は、それぞれ23.5%、0.0%および20.9%であった。   As a result, the amount of leachate obtained by filtering the slurry after leaching with sulfuric acid was 610 mL, and the concentration (and weight) of Mn, Fe and Si in this leachate was 10883 mg / L (6.64 g), respectively. 0 mg / L (0.00 g) and 69 mg / L (0.04 g), and the leaching rates of Mn, Fe and Si were 23.5%, 0.0% and 20.9%, respectively.

また、過酸化水素と硫酸による浸出後のスラリーをろ過して得られた浸出液の量は650mLであり、この浸出液中のMn、FeおよびSiの濃度(および重量)は、それぞれ26000mg/L(16.90g)、13mg/L(0.01g)および94mg/L(0.06g)であり、Mn、FeおよびSiの浸出率は、それぞれ59.9%、0.9%および30.3%であった。また、浸出残渣の重量は21.6g(乾燥後16.9g)であり、この浸出残渣中のMnおよびFeの品位(および重量)は、それぞれ67.02質量%(11.31g)および5.34質量%(0.90g)であった。   The amount of leachate obtained by filtering the slurry after leaching with hydrogen peroxide and sulfuric acid was 650 mL, and the concentrations (and weights) of Mn, Fe and Si in this leachate were 26000 mg / L (16 .90 g), 13 mg / L (0.01 g) and 94 mg / L (0.06 g), and the leaching rates of Mn, Fe and Si were 59.9%, 0.9% and 30.3%, respectively. there were. The weight of the leaching residue was 21.6 g (16.9 g after drying), and the grades (and weights) of Mn and Fe in the leaching residue were 67.02% by mass (11.31 g) and 5. It was 34 mass% (0.90 g).

これらの結果を表6に示す。また、硫酸および過酸化水素と硫酸による浸出時間に対するスラリー中のMn、FeおよびSiの濃度を図12に示し、硫酸および過酸化水素と硫酸による浸出時間に対するスラリーの酸化還元電位およびpHを図13に示す。   These results are shown in Table 6. FIG. 12 shows the concentrations of Mn, Fe, and Si in the slurry with respect to the leaching time with sulfuric acid, hydrogen peroxide, and sulfuric acid, and FIG. Shown in

Figure 2010209384
Figure 2010209384

表6、図12および図13に示すように、本比較例では、過酸化水素と硫酸による浸出の際のpHが高いためにFeが浸出されないが、硫酸による浸出の際のpHが高いためにMn2+が十分に浸出されないので、浸出液中にFeが含まれないが、Mnの浸出率が低いのがわかる。
As shown in Table 6, FIG. 12 and FIG. 13, in this comparative example, Fe is not leached because the pH during leaching with hydrogen peroxide and sulfuric acid is high, but because the pH during leaching with sulfuric acid is high. Since Mn 2+ is not sufficiently leached, Fe is not contained in the leaching solution, but it can be seen that the leaching rate of Mn is low.

Claims (7)

マンガン化合物と鉄を含む原料を硫酸水溶液に溶解し、この水溶液にさらに硫酸を加えてpH3より低いpHを維持しながら硫酸による浸出を行い、その後、水溶液に還元剤として過酸化水素を添加して水溶液のpHを3〜7にし、この水溶液にさらに過酸化水素と硫酸を加えてpH3〜7を維持しながら過酸化水素と硫酸による浸出を行うことにより、浸出液から鉄を分離して、浸出液中にマンガンを回収することを特徴とする、マンガンの回収方法。 A raw material containing a manganese compound and iron is dissolved in an aqueous sulfuric acid solution, and further sulfuric acid is added to the aqueous solution to perform leaching with sulfuric acid while maintaining a pH lower than pH 3. Thereafter, hydrogen peroxide is added to the aqueous solution as a reducing agent. The pH of the aqueous solution is adjusted to 3 to 7, and further, hydrogen peroxide and sulfuric acid are added to the aqueous solution to perform leaching with hydrogen peroxide and sulfuric acid while maintaining pH 3 to 7, thereby separating iron from the leachate and A method for recovering manganese, comprising recovering manganese. 前記pH3より低いpHが、pH2.5以下であることを特徴とする、請求項1に記載のマンガンの回収方法。 The method for recovering manganese according to claim 1, wherein the pH lower than pH 3 is pH 2.5 or less. 前記過酸化水素と硫酸による浸出を行った後にろ過することにより、浸出液から鉄を分離することを特徴とする、請求項1または2に記載のマンガンの回収方法。 The method for recovering manganese according to claim 1 or 2, wherein iron is separated from the leachate by performing filtration after the leaching with hydrogen peroxide and sulfuric acid. 前記浸出液から電解によって金属マンガンを得ることを特徴とする、請求項1乃至3のいずれかに記載のマンガンの回収方法。 The method for recovering manganese according to any one of claims 1 to 3, wherein metal manganese is obtained from the leachate by electrolysis. 前記マンガン化合物が、2価より大きい価数のマンガンの化合物であることを特徴とする、請求項1乃至4のいずれかに記載のマンガンの回収方法。 The method for recovering manganese according to any one of claims 1 to 4, wherein the manganese compound is a compound of manganese having a valence greater than two. 前記マンガン化合物が、2価より大きい価数のマンガンの酸化物であることを特徴とする、請求項1乃至4のいずれかに記載のマンガンの回収方法。 5. The method for recovering manganese according to claim 1, wherein the manganese compound is an oxide of manganese having a valence greater than 2. 前記マンガン化合物が、酸化第二マンガン、四酸化三マンガンおよび二酸化マンガンからなる群から選ばれる少なくとも一種であることを特徴とする、請求項1乃至4のいずれかに記載のマンガンの回収方法。
5. The method for recovering manganese according to claim 1, wherein the manganese compound is at least one selected from the group consisting of manganic oxide, trimanganese tetroxide, and manganese dioxide.
JP2009055064A 2009-03-09 2009-03-09 Method for recovering manganese Expired - Fee Related JP5495418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055064A JP5495418B2 (en) 2009-03-09 2009-03-09 Method for recovering manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055064A JP5495418B2 (en) 2009-03-09 2009-03-09 Method for recovering manganese

Publications (2)

Publication Number Publication Date
JP2010209384A true JP2010209384A (en) 2010-09-24
JP5495418B2 JP5495418B2 (en) 2014-05-21

Family

ID=42969854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055064A Expired - Fee Related JP5495418B2 (en) 2009-03-09 2009-03-09 Method for recovering manganese

Country Status (1)

Country Link
JP (1) JP5495418B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002416A1 (en) * 2011-06-29 2013-01-03 Jfeスチール株式会社 Manganese recovery method
WO2013105291A1 (en) 2012-01-10 2013-07-18 Jx日鉱日石金属株式会社 High-purity manganese and method for producing same
CN103757208A (en) * 2013-12-29 2014-04-30 四川师范大学 Method for leaching manganese carbonate ore
KR20150125721A (en) 2013-10-25 2015-11-09 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
KR20150126662A (en) 2013-10-25 2015-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
CN105238932A (en) * 2015-11-27 2016-01-13 江苏理工学院 Method for separating and recovering cobalt and manganese in cobalt-manganese waste
CN105349789A (en) * 2015-11-27 2016-02-24 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-sodium carbonate
CN105349790A (en) * 2015-11-27 2016-02-24 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-ammonium bicarbonate
CN113772734A (en) * 2021-11-04 2021-12-10 四川省盈达锂电新材料有限公司 Method for recovering manganese and iron resources from manganese slag
CN114455636A (en) * 2022-01-26 2022-05-10 贵州金瑞新材料有限责任公司 Method for reducing turbidity of qualified manganese sulfate liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283429A (en) * 1984-06-04 1987-04-16 ザ スタンダ−ド オイル カンパニ− Method relating to extraction of metal from laterite and ocean manganese nodule
JPH05311267A (en) * 1991-12-16 1993-11-22 Nikko Kinzoku Kk Method for recovering indium from indium-containing matter
JP2000234130A (en) * 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk Method of recovering valuable metal from oxide ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283429A (en) * 1984-06-04 1987-04-16 ザ スタンダ−ド オイル カンパニ− Method relating to extraction of metal from laterite and ocean manganese nodule
JPH05311267A (en) * 1991-12-16 1993-11-22 Nikko Kinzoku Kk Method for recovering indium from indium-containing matter
JP2000234130A (en) * 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk Method of recovering valuable metal from oxide ore

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620069B (en) * 2011-06-29 2016-04-13 杰富意钢铁株式会社 manganese recovery method
JP5229416B1 (en) * 2011-06-29 2013-07-03 Jfeスチール株式会社 Manganese recovery method
CN103620069A (en) * 2011-06-29 2014-03-05 杰富意钢铁株式会社 Manganese recovery method
WO2013002416A1 (en) * 2011-06-29 2013-01-03 Jfeスチール株式会社 Manganese recovery method
WO2013105291A1 (en) 2012-01-10 2013-07-18 Jx日鉱日石金属株式会社 High-purity manganese and method for producing same
US9725814B2 (en) 2012-01-10 2017-08-08 Jx Nippon Mining & Metals Corporation High purity manganese and method for producing same
KR20160018850A (en) 2012-01-10 2016-02-17 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-purity manganese and method for producing same
KR20150125721A (en) 2013-10-25 2015-11-09 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
KR20150126662A (en) 2013-10-25 2015-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
CN103757208A (en) * 2013-12-29 2014-04-30 四川师范大学 Method for leaching manganese carbonate ore
CN103757208B (en) * 2013-12-29 2015-11-25 四川师范大学 The leaching method of manganese carbonate ore
CN105349789A (en) * 2015-11-27 2016-02-24 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-sodium carbonate
CN105349790A (en) * 2015-11-27 2016-02-24 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-ammonium bicarbonate
CN105238932A (en) * 2015-11-27 2016-01-13 江苏理工学院 Method for separating and recovering cobalt and manganese in cobalt-manganese waste
CN107674975A (en) * 2015-11-27 2018-02-09 江苏理工学院 Method for separating and recovering cobalt and manganese in cobalt-manganese waste
CN107674976A (en) * 2015-11-27 2018-02-09 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-ammonium bicarbonate
CN107674976B (en) * 2015-11-27 2019-04-23 江苏理工学院 Method for separating and recovering cobalt and manganese in low-cobalt high-manganese waste by using ammonia-ammonium bicarbonate
CN107674975B (en) * 2015-11-27 2019-04-23 江苏理工学院 Method for separating and recovering cobalt and manganese in cobalt-manganese waste
CN113772734A (en) * 2021-11-04 2021-12-10 四川省盈达锂电新材料有限公司 Method for recovering manganese and iron resources from manganese slag
CN114455636A (en) * 2022-01-26 2022-05-10 贵州金瑞新材料有限责任公司 Method for reducing turbidity of qualified manganese sulfate liquid

Also Published As

Publication number Publication date
JP5495418B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5495418B2 (en) Method for recovering manganese
JP5749461B2 (en) Wastewater treatment method for wastewater containing aluminum, magnesium and manganese
US5932086A (en) Process for making manganese
JP4816897B2 (en) Electrolytic extraction method of metal manganese and high purity metal manganese
JP2009235525A (en) Method for leaching out gold
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP7016463B2 (en) How to collect tellurium
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP4215547B2 (en) Cobalt recovery method
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP4457864B2 (en) Method for recovering nickel and / or cobalt sulfide
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP4439804B2 (en) Cobalt recovery method
JP2010202457A (en) Method for removing chlorine in acidic liquid
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP2011132562A (en) METHOD FOR RECOVERING Co COMPOUND
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2019081920A (en) Method for leaching mixed sulfide containing nickel and cobalt
JP2009046736A (en) Chlorine leaching method of nickel sulfide
JP4240982B2 (en) Method for producing cobalt solution with low manganese concentration
JP2005104809A (en) Method for purifying nickel chloride aqueous solution
JP2000017347A (en) Production of high purity cobalt solution
JP2018177547A (en) Iron removal method of crude nickel sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5495418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees