WO2013002416A1 - Manganese recovery method - Google Patents

Manganese recovery method Download PDF

Info

Publication number
WO2013002416A1
WO2013002416A1 PCT/JP2012/067137 JP2012067137W WO2013002416A1 WO 2013002416 A1 WO2013002416 A1 WO 2013002416A1 JP 2012067137 W JP2012067137 W JP 2012067137W WO 2013002416 A1 WO2013002416 A1 WO 2013002416A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
liquid
iron
ions
leaching
Prior art date
Application number
PCT/JP2012/067137
Other languages
French (fr)
Japanese (ja)
Inventor
山口 東洋司
八尾 泰子
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280031548.1A priority Critical patent/CN103620069B/en
Publication of WO2013002416A1 publication Critical patent/WO2013002416A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a technology for recovering manganese, which is a valuable metal, from ironworks by-products containing manganese components, low-grade minerals, used batteries, and the like.
  • an acid or alkali treatment liquid is brought into contact with the mineral, and the valuable metals contained in the mineral are dissolved and leached into the treatment liquid.
  • a method of recovering by selectively neutralizing a metal is known.
  • a method of leaching and recovering valuable metals from target minerals using an acid such as sulfuric acid is employed.
  • a method of recovering valuable metals by leaching valuable metal ions from minerals into the processing liquid using microorganisms is also known. According to this method, the valuable metal can be leached from the mineral into the treatment liquid without using a large amount of sulfuric acid or the like, so that the valuable metal can be recovered from the mineral without causing the above-described problems.
  • bioleaching the method of leaching metal from minerals using microorganisms as described above is called a bioleaching method (bioleaching), and is characterized by lower energy consumption and lower risk to the environment.
  • bioleaching is considered to be capable of improving the metal leaching rate and reducing the cost, and has attracted attention as an effective means for leaching valuable metals from low-grade minerals.
  • an iron-reducing bacterium is allowed to act to reduce trivalent iron to divalent iron, and using the divalent iron, a metal contained in the group consisting of a metal oxide and a metal hydroxide ( Cobalt, nickel, manganese, etc.) are leached to produce a leachate and a residue, and the leachate and residue are separated to recover a desired metal.
  • a leaching treatment medium, an iron-reducing bacterium, and a metal oxide or metal hydroxide are placed in a reactor to perform leaching treatment.
  • a batch-type agitation type Using a reactor, while stirring the medium so that metal oxides and the like do not settle, adjust the maximum pH during the leaching process to 8.5 or less, preferably neutral (for example, pH 7.5 or less), Techniques have been proposed for leaching metals with the entire preferred pH range being preferred. According to this technology, it is said that valuable metals (cobalt, nickel) contained in the leachate can be recovered by a known method and used for a desired application.
  • Patent Document 1 does not specifically describe a method for recovering valuable metals contained in the leachate. Therefore, there is a concern that depending on the recovery method, the high-concentration iron-containing solution becomes disposable and uneconomical. That is, when manganese contained in a workpiece (metal oxide or the like) is leached according to the technique proposed in Patent Document 1, manganese ions and iron ions (obtained by oxidation of divalent iron during the leaching treatment). In addition, it is necessary to recover manganese from the leachate containing trivalent iron or divalent iron remaining without being oxidized.
  • the present invention has been made in view of the above problems, and after leaching manganese contained in an object containing manganese into the leachate, the leached manganese is concentrated and recovered, and the leachate can be used repeatedly. It is an object of the present invention to provide a method for recovering manganese from low-grade minerals and manganese-containing wastes and by-products at low cost.
  • the present inventors mix a treatment object containing manganese and iron-reducing bacteria in a treatment solution containing trivalent iron, act iron-reducing bacteria, and reduce trivalent iron to divalent iron.
  • Manganese ions are leached into the treatment liquid from the treatment object containing manganese by utilizing the action of valence iron being oxidized to trivalent iron, and the leachate from which manganese ions are leached is separated into solid and liquid.
  • the inventors studied diligently about means for precipitating and separating the target manganese while leaving the soluble iron remaining in the separated liquid. As a result, it was found that the precipitate can be separated by subjecting the separation liquid to a predetermined oxidation treatment and insolubilizing manganese ions contained in the separation liquid mainly as manganese oxide.
  • FIG. 1 is a state diagram (Eh-pH diagram) of oxidation-reduction potential (ORP) and pH of manganese and iron in an aqueous solution at 25 ° C.
  • ORP oxidation-reduction potential
  • FIG. 1 shows that in the Eh-pH diagram, the region where manganese precipitates and the region where iron precipitates are substantially the same except for the region surrounded by circles in FIG. 1, and the region where iron precipitates is wider. Yes. Therefore, when the state of redox potential (ORP) and pH is changed from the region where both manganese and iron are dissolved (ionized), iron is first converted into an oxide or hydroxide in most regions. Solidified and precipitated. However, only the low pH / high ORP region (the region surrounded by a circle in FIG. 1) has a region where manganese is mainly solidified and precipitated as an oxide.
  • the inventors of the present invention have described the pH and redox potential (ORP) of the above-mentioned separation liquid containing manganese ions and trivalent iron ions in the region where manganese is solidified and precipitated mainly as oxides in the Eh-pH diagram.
  • ORP pH and redox potential
  • the present inventors have reduced the pH of the separation liquid using acid and raised the ORP of the separation liquid by acting ozone, so that the manganese ions can be easily and inexpensively produced. It has been found that manganese can be mainly solidified as an oxide from the above-mentioned separation liquid containing trivalent iron ions.
  • the above separation liquid contains abundant trivalent iron ions or further divalent iron ions. Therefore, the iron ions contained in the separation liquid are not separated by precipitation, and the iron ions remain in the separation liquid, so that the separation liquid is reused as a treatment liquid used for leaching manganese ions from the object to be treated. It can be used.
  • the present inventors examined means for reducing the content of impurities (carbon, phosphorus, etc.) of manganese finally recovered.
  • the treatment liquid usually contains a plurality of kinds of components for promoting the metal leaching reaction by iron-reducing bacteria.
  • a treatment solution containing iron-reducing bacteria it contains components such as a trivalent iron ion, an electron donor, a pH adjuster, and a pH buffer.
  • the treatment liquid also contains carbon and phosphorus, which are essential elements for the growth of iron-reducing bacteria, which are microorganisms. If these components are deficient, iron-reducing bacteria cannot grow, and as a result, it is difficult to leach metals. Therefore, the treatment liquid generally contains components (C, P, etc.) that can become impurities depending on the intended use of the recovered metal.
  • the inventors of the present invention have found that there is a problem that a component that can be an impurity in the treatment liquid is mixed into the recovered material depending on the ratio of the existing component.
  • a component that can be an impurity in the treatment liquid is mixed into the recovered material depending on the ratio of the existing component.
  • the impurity concentration in the treatment liquid by limiting the impurity concentration in the treatment liquid, the amount of impurities transferred from the treatment liquid into the recovered manganese is reduced while promoting the leaching of manganese ions from the object to be treated.
  • the impurity concentration of recovered manganese can be reduced.
  • an iron (III) citrate medium-compliant solution was prepared as a treatment liquid containing trivalent iron.
  • Common components of this iron (III) citrate medium compliant solution are iron (III) citrate, sodium citrate, sodium formate, carbon, sodium dihydrogen phosphate, phosphorus, and peptone. Contains carbon and phosphorus as elements. All of these elements are essential components for the metal leaching reaction by iron-reducing bacteria, and the concentrations (or contents) of various components are as follows.
  • concentrations (or contents) of the various components described above are all values per 1 L of iron (III) citrate medium-compliant solution.
  • mM shows mmol / L.
  • the present inventors have determined that the carbon concentration and phosphorus concentration in the iron (III) citrate medium-based solution (treatment liquid containing trivalent iron) are the carbon concentration and phosphorus in the manganese finally recovered. Presumed to affect the concentration.
  • the treatment liquid having the concentrations (or contents) of the various components described above is used as a reference treatment liquid, and the carbon concentration or phosphorus concentration is changed in total as shown in (A) to (C) below with respect to this reference treatment liquid.
  • An iron (III) citrate medium-based solution was prepared as a treatment solution, and the effects of carbon concentration and phosphorus concentration on the manganese leaching rate were investigated.
  • concentration (or content) of components other than sodium dihydrogen phosphate was made the same with a reference
  • (B) A treatment liquid in which the concentration of iron (III) citrate trihydrate as a carbon component is reduced stepwise from 16.7 g / L (56 mM) of the standard treatment liquid to 1.5 g / L. (Concentration: 16.7 g / L, 7.5 g / L, 3.0 g / L, 1.5 g / L in total 4 types).
  • concentration (or content) of components other than iron (III) citrate trihydrate was the same as that of the standard treatment solution, with no addition of sodium dihydrogen phosphate.
  • (C) A treatment liquid in which the concentration of sodium citrate dihydrate, which is a carbon component, is gradually reduced from 10.3 g / L (35 mM) to 0 g / L of the standard treatment liquid. (Concentration: 10.3 g / L, 2.9 g / L, 1.03 g / L, 0 g / L in total 4 types).
  • the concentration (or content) of components other than sodium citrate dihydrate is 1.5 g / L of iron (III) citrate trihydrate, no sodium dihydrogen phosphate is added, The other components were the same as the standard treatment solution.
  • peptone containing a carbon component or phosphorus component and sodium formate containing a carbon component are added in small amounts, so that their respective concentrations (or contents) are the same as the standard treatment liquid. .
  • Table 1 shows the results of performing the leaching process for 24 hours using the processing liquid (A).
  • the leaching treatment time manganese at 24 hours between when the sodium dihydrogen phosphate (NaH 2 PO 4 ), which is a phosphorus component, is added as in the standard treatment solution and when it is not added There was no significant difference in the leaching rate.
  • NaH 2 PO 4 sodium dihydrogen phosphate
  • Table 2 shows the results of leaching treatment using the treatment liquid (B). As shown in Table 2, when the concentration of iron (III) citrate containing a carbon component was reduced, the initial manganese leaching rate was lowered. However, in the leaching treatment time: 144 hours, even when the concentration of the iron (III) citrate trihydrate containing the carbon component is reduced to 1.5 g / L, the manganese leaching rate equivalent to that in the case of the standard treatment liquid was gotten.
  • Table 3 shows the results of the leaching process using the above processing liquid (C). Reducing the concentration of sodium citrate containing carbon components significantly reduced the manganese leaching rate, and the leaching rate remained low even if the leaching time was extended. That is, from the viewpoint of manganese leaching rate, it is preferable to maintain the sodium citrate dihydrate concentration in the treatment liquid at the same concentration (10.3 g / L) as in the case of the standard treatment liquid without reducing it. It can be said.
  • Treatment liquid when the iron (III) citrate trihydrate concentration in the treatment liquid is 1.5 g / L (5 mM) and the sodium citrate dihydrate concentration is 10.3 g / L (35 mM)
  • the carbon concentration inside was 270 mM.
  • the present inventors repeated the same experiment as described above, and finally measured the impurity concentration (carbon concentration and phosphorus concentration) of manganese recovered.
  • the carbon concentration in the treatment solution is limited to 300 mM or less and the phosphorus concentration to 0.5 mM or less, the impurity concentration of manganese finally recovered is greatly reduced, and recovery applicable to steelmaking raw materials and the like. It was found that manganese can be obtained.
  • a treatment solution containing trivalent iron ions is mixed with a treatment object containing manganese and iron-reducing bacteria, and the iron-reducing bacteria reduce the trivalent iron ions to divalent iron ions.
  • a manganese recovery method comprising: an insolubilization step of oxidizing and insolubilizing manganese ions contained in a separation liquid; and a recovery step of separating and recovering a manganese component obtained in the insolubilization step.
  • [2] A method for recovering manganese according to [1], wherein the post-recovery separation liquid containing trivalent iron ions from which the manganese component has been recovered from the separation liquid is reused as a treatment liquid in the leaching step.
  • the insolubilization step is a step in which manganese ions are oxidized and insolubilized by applying ozone to the separated liquid after the solid-liquid separation step under acidic conditions.
  • a method for recovering manganese is a step in which manganese ions are oxidized and insolubilized by applying ozone to the separated liquid after the solid-liquid separation step under acidic conditions.
  • the workpiece is an ironworks by-product and / or low-grade ore, and / or used battery, and / or manganese-containing dust, and / or A method for recovering manganese, which is / or manganese-containing sludge and / or manganese-containing slurry.
  • manganese contained in manganese minerals can be concentrated and recovered at a high concentration rate under relatively mild conditions such as room temperature and atmospheric pressure.
  • relatively mild conditions such as room temperature and atmospheric pressure.
  • the manganese recovery method of the present invention can recover manganese from a large amount of material to be processed at low cost and easily, so that it is extremely useful as a method for recovering manganese from a steelworks by-product generated in large quantities at a steelworks. It is valid.
  • FIG. 1 is a state diagram (Eh-pH diagram) of redox potential (ORP) and pH of manganese and iron in an aqueous solution.
  • Fig.2 (a) is a flowchart explaining one form of the manganese recovery method of this invention.
  • FIG.2 (b) is a flowchart explaining the other form of the manganese recovery method of this invention.
  • FIG. 3 is a graph showing the manganese leaching rate of an example in which waste dry cell crushed waste was tested.
  • FIG. 4 is a view showing a composition in a solid substance when ozone diffusion is performed on the manganese leachate of the example under acidic conditions.
  • FIG. 5 is a diagram showing the manganese recovery rate when ozone diffusing was performed on the manganese leachate of the example under acidic conditions.
  • FIG. 6 is a graph showing changes in manganese recovery rate and filtrate color when the manganese leachate of the present invention is treated with ozone aeration under acidic conditions.
  • a treatment liquid containing trivalent iron ions is mixed with a treatment object containing manganese and iron-reducing bacteria, and the iron-reducing bacteria reduce the trivalent iron ions to divalent iron ions.
  • FIG. 2A is a flowchart showing an embodiment of the present invention.
  • Fig.2 (a) in this invention, first, the to-be-processed object 1 containing manganese is grind
  • the treatment object 1, the treatment liquid 4 containing trivalent iron ions, and iron-reducing bacteria are mixed to obtain a leaching slurry (leaching liquid) 5.
  • trivalent iron ions are reduced to divalent iron ions by iron-reducing bacteria, and the divalent iron ions are allowed to act on the manganese component in the object 1 to be processed.
  • the manganese component in 1 is dissolved.
  • the object to be treated 1 contains manganese.
  • manganese For example, ironworks by-products such as manganese-containing dust and / or manganese-containing sludge, low-grade ore, and used batteries can be used.
  • a manganese containing dust and / or manganese containing sludge and / or a manganese containing slurry other than the solid substance containing manganese can be illustrated.
  • the object 1 to be processed When a used battery is used as the object 1 to be processed, it is desirable to separate a metal such as iron used in the casing by crushing, sieving, or the like in advance to obtain a mixture of a positive electrode material and a negative electrode material.
  • a metal such as iron used in the casing by crushing, sieving, or the like
  • the manganese component contained in the object to be processed 1 it may be exemplified MnO 2, Mn 2 O 3, Mn 3 O 4 and the like.
  • the object to be processed 1 is mixed with the treatment liquid 4 and subjected to a leaching step 3 in which manganese ions are leached into the treatment liquid 4.
  • a leaching step 3 in which manganese ions are leached into the treatment liquid 4.
  • the specific surface area becomes small and the solid-liquid contact area (contact area between the object 1 and the process liquid 4) decreases. Leaching rate is reduced.
  • the leaching step 3 is performed using a batch-type reaction vessel, if the particle size of the workpiece 1 is large, the workpiece 1 is settled during the leaching treatment, and the leaching treatment cannot be sufficiently performed. Is also a concern.
  • the crushing step 2 when the workpiece 1 is solid, it is preferable to provide the crushing step 2 for the purpose of improving the reaction efficiency in the leaching step 3 by reducing the particle diameter.
  • the particle diameter of the workpiece 1 be 1 ⁇ m or more.
  • a crushing method a known crushing method such as a jaw crusher or a rolling mill can be used.
  • the crushing step 2 may be omitted.
  • the workpiece 1 obtained as described above is transferred to the leaching step 3.
  • the treatment liquid 4 and the workpiece 1 are mixed, and manganese ions are leached into the treatment liquid 4 from the workpiece 1 using an action in which divalent iron ions are oxidized to trivalent iron ions.
  • divalent iron is oxidized to trivalent iron and the workpiece 1 is reduced by the reaction (i) below, and manganese ions are leached into the treatment liquid 4.
  • Fe 2+ + Mn oxide or hydroxide eg MnO 2 , Mn 2 O 3 , Mn 3 O 4 ) ⁇ Fe 3+ + Mn 2+ (soluble) ... (i)
  • a treatment liquid to which divalent iron ions are added can also be used.
  • a treatment liquid containing trivalent iron ions is used, the treatment object and iron-reducing bacteria are mixed in the treatment liquid, and the trivalent iron ions are reduced to divalent iron ions.
  • manganese ions are leached into the treatment liquid 4 from the workpiece 1 using valent iron ions as a reducing agent.
  • An iron-reducing bacterium is a bacterium that grows by respiration of iron that receives and transfers electrons from an electron donor (such as an organic substance) and supplies it to trivalent iron ions that are electron acceptors, and is trivalent by the following reaction (ii). Has the effect of reducing iron to divalent iron.
  • the iron-reducing bacteria use the electrons (e ⁇ ) from the electron donor to convert trivalent iron ions (Fe 3+ ).
  • Direct reduction produces divalent iron ions (Fe 2+ ), resulting in a treatment liquid containing divalent iron and iron-reducing bacteria.
  • the divalent iron generated by the reaction (ii) contributes to the reaction (i), so that manganese ions can be leached into the treatment liquid 4 in the leaching step 3.
  • Examples of the trivalent iron and iron-reducing bacteria used in the present invention include the following types.
  • An electron donor is added to the treatment solution containing trivalent iron ions together with an electron acceptor (trivalent iron ions) necessary for iron respiration of iron-reducing bacteria.
  • iron-reducing bacteria used in the leaching step 3 of the present invention include, for example, Geobacter metalliducens Quarry et al. (ATCC 53774, DSM 7210), Desulfomonas palmitatis Coates et al. (ATCC 51701, DSM 12931), Desulfuromusakisii Liesack & Finster (DSM 7343), Pelobacter venetianus Schin & Stieb (DSM 2395), Shewanella algae . 1990 (NBRC 103173, IAM 14159, ATCC 51181), Ferrimonas balearica Rossello-Mora et al. (DSM 9799), Aeromonas hydrophila subsp.
  • Geobacter metalliducens Surrey et al. ATCC 53774, DSM 7210)
  • Desulfomonas palmitatis Coates et al. ATCC 51701, DSM 12931
  • Desulfuromusakisii Liesack & Finster D
  • iron-reducing archaea can also be used.
  • iron-reducing archaea examples include Archaeoglobus fulgidus Stetter (ATCC 49558, DSM 4304), Pyrococcus furiosus Finala & Setter (ATCC 49587, DSM 36, 38). Pyrodictium abyssi Pley and Stetter (ATCC 49828 , DSM 6158), Methanothermococcus thermolithotrophicus (Huber et al.) Whitman (DSM 2095, JCM 10549, ATCC 35097) , and the like can be given.
  • the strain number is described in parentheses, but the present invention is not limited to this.
  • the synonyms of the above bacterial species are equivalent to the above bacterial species, and the bacterial species to which the above strain belongs are also equivalent to the above bacterial species.
  • the bacterial species may be specified by a genus name (including acronym) and a species name.
  • strain storage institutions and facilities respectively represent the following.
  • ATCC American Type Culture Collection, Manassas, VA, USA
  • DSM Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Braunschweig, Germany
  • NBRC NITE Biological Resource Center, Chiba, Japan [National Biological Resource Center (NITE Biological Resource Center)]
  • JCM IAM: Japan Collection of Microorganisms, RIKEN, Saitama, Japan [RIKEN BioResource Center, Microbial Materials Development Office (JCM)]
  • the iron-reducing bacteria are preferably facultative anaerobic bacteria from the viewpoint of ease of handling outdoors.
  • those described as iron-reducing bacteria can be mentioned.
  • iron-reducing bacteria those that grow in a normal temperature range are preferable from the viewpoint of easy handling outdoors.
  • those described as iron-reducing bacteria excluding Gethorix fermentans and Thermotoga maritime
  • an iron-reducing bacterium Geobacter metallyreducens or Shewanella algae is preferable, and Shewanella algae is more preferable.
  • the number of iron-reducing bacteria is not particularly limited. However, from the viewpoint of a higher leaching rate-leach efficiency, during the leaching step, as an initial value, preferably contains 1.0 ⁇ 10 13 atoms / m 3 or more in the treatment solution, 1.0 ⁇ 10 13 ⁇ 1 0.0 ⁇ 10 15 pieces / m 3 is more preferable, and 5.0 ⁇ 10 13 to 2.0 ⁇ 10 14 pieces / m 3 is further more preferable.
  • the trivalent iron ion used in the leaching step 3 of the present invention is not particularly limited. However, the trivalent iron ion is preferably added to the treatment liquid as a water-soluble trivalent iron salt.
  • the water-soluble trivalent iron salt is preferably an inorganic acid salt or an organic acid salt.
  • iron chloride (III), iron nitrate (III), iron sulfate (III), etc. can be mentioned, for example.
  • organic acid salt include iron (III) citrate, iron (III) formate, and iron (III) acetate.
  • the concentration of trivalent iron ions is not particularly limited, but from the viewpoint of further increasing the leaching rate and leaching efficiency, it is preferable that the treatment liquid contains 10 mol / m 3 or more as an initial value during the leaching step. More preferably, m 3 is contained, and even more preferably 25 to 100 mol / m 3 is contained.
  • the electron donor can be appropriately selected according to the iron-reducing bacteria.
  • the iron-reducing bacterium is Geobacter metalreducens or Shewanella algae
  • an organic substance can be used as an electron donor.
  • organic substance examples include organic substances having 1 to 7 carbon atoms [carboxylate (fatty carboxylate (fatty acid salt): formate, acetate, etc., aromatic carboxylate: benzoate, etc., oxocarboxylic acid, etc. Salt: pyruvate, etc., other carboxylates: lactate, etc.), alcohol (ethanol, etc.), unsaturated aromatic (toluenephenol, etc.)] and the like.
  • the organic substance may contain, for example, nitrogen, sulfur and other elements in addition to carbon, hydrogen and oxygen.
  • the organic material is not limited to water-soluble or water-dispersible materials, and may be contained as organic fine particles that are neither water-soluble nor water-dispersible.
  • the concentration of the electron donor is not particularly limited. However, it is preferable to contain 100 mol / m 3 or more as an initial value in the leaching step.
  • ⁇ Acid, alkali, pH adjuster> One or more selected from the group consisting of acids, alkalis, and pH adjusters can be added to the treatment liquid 4 to adjust the pH of the treatment liquid 4 to a predetermined pH described later.
  • the acid is not particularly limited, and for example, inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as formic acid, acetic acid, lactic acid, citric acid, succinic acid, and malic acid can be used.
  • the alkali is not particularly limited, and for example, sodium hydroxide, potassium hydroxide, an aqueous solution thereof or the like can be used.
  • the said pH adjuster is also not specifically limited, For example, potassium carbonate, sodium hydrogencarbonate, etc. can be used.
  • the pH may change as the reaction proceeds. Therefore, the pH adjusting agent and / or pH buffering agent may be added to adjust the pH appropriately and suppress fluctuations.
  • the pH buffer added to the treatment liquid 4 is not particularly limited as long as it has a buffering ability in a neutral pH range.
  • the pH buffering agent to be added to the treatment solution 4 can also be used for the can also function as the electron donor.
  • the iron-reducing bacterium is Shewanella algae
  • lactic acid / sodium lactate and the like can function as a pH buffer and at the same time as an electron donor.
  • a pH buffer agent added to the said process liquid 4 what can form a complex with the manganese ion leached from the to-be-processed object 1 can be used.
  • citric acid / sodium citrate or the like can form a complex with Mn 2+ .
  • the said pH buffering agent should be used by arbitrary content in the range which does not impair the objective of this invention, and does not impair pH buffering effect individually or in combination of 2 or more types. Can do.
  • the optimum growth pH is in the neutral pH range.
  • the pH of the treatment liquid 4 may vary as the reaction proceeds. Therefore, the pH of the treatment liquid 4 is not particularly limited as long as it is around 7.0. However, when the pH of the treatment liquid 4 varies, it is controlled to 5.0 or more and 9.0 or less, preferably 6.0 or more and 8.0 or less, and more preferably 6.5 or more and 7.5 or less. Efficient leaching can be achieved.
  • recovered manganese it is required to reduce impurities in the manganese as much as possible.
  • high purity recovered manganese is required to prevent carbon and phosphorus from being mixed into the steel.
  • the treatment liquid 4 is a treatment liquid in which the carbon concentration and the phosphorus concentration are limited. That is, it is preferable that the composition of the treatment solution before adding the iron-reducing bacteria is such that the carbon concentration and phosphorus concentration are below certain values.
  • the carbon concentration before adding the iron-reducing bacteria in the treatment solution 4 is 300 mM or less and the phosphorus concentration is 0.5 mM or less. More preferably, the carbon concentration is 270 mM or less and the phosphorus concentration is 0.16 mM or less.
  • the carbon concentration and phosphorus concentration are extremely reduced, the growth of iron-reducing bacteria is inhibited and the manganese leaching rate is adversely affected. Therefore, it is preferable that the carbon concentration is 100 mM or more and the phosphorus concentration is 0.05 mM or more.
  • the workpiece 1 and the treatment liquid 4 are contacted and mixed in a state where oxygen is blocked. This is because when oxygen is present, there is a concern that the iron-reducing bacteria will not perform a reduction reaction from trivalent iron to divalent iron.
  • the temperature of the treatment liquid 4 is preferably maintained at 10 to 35 ° C.
  • the leaching time varies depending on the leaching conditions, but is usually 24 to 72 hours.
  • the trivalent iron ions in the treatment liquid 4 are reduced by the iron-reducing bacteria to become divalent iron ions.
  • the divalent iron ions act as a reducing agent to the object to be processed 1
  • divalent iron is 3 is oxidized to ferric in Rutotomoni treatment object in one manganese leach into the processing solution 4, and manganese ions
  • a leaching slurry (leaching solution) 5 containing trivalent iron ions or unreacted divalent iron ions is obtained.
  • the leaching slurry (leaching solution) 5 obtained in the leaching step 3 is sent to the solid-liquid separation step 6.
  • the leaching slurry (leaching liquid) 5 is subjected to solid-liquid separation.
  • a manganese component-containing leachate (separation liquid) 10 and a residue (solid matter) 7 which are supernatant components are obtained.
  • the solid-liquid separation means used in the solid-liquid separation step 6 is any means selected from gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation and the like.
  • a filter press when the solid substance concentration of the leaching slurry 5 is high, it is preferable to use a filter press.
  • the manganese component-containing leachate (separation liquid) 10 mainly contains manganese ions and iron ions (trivalent iron ions or further divalent iron ions). Further, the residue (solid matter) 7 mainly contains iron-reducing bacteria and solid components other than manganese of the object 1 to be processed. Next, the manganese component-containing leachate (separation liquid) 10 is transferred to the insolubilization step 11. On the other hand, since the residue (solid matter) 7 contains many iron-reducing bacteria, a part thereof is returned to the leaching step 3 as a return residue 9 and a part is recovered as an unreacted residue 8 (FIG. 2 (a)).
  • the manganese component-containing leachate (separation solution) 10 obtained in the solid-liquid separation step 6 is subjected to a predetermined insolubilization process, and the pH and oxidation-reduction potential (ORP) of the manganese component-containing leachate (separation solution) 10 are set.
  • Manganese is insolubilized (solidified) and precipitated as an oxide, but iron is not precipitated, that is, adjusted to pH and redox potential (ORP) in the region surrounded by circles in the Eh-pH diagram (Fig. 1). To do. Thereby, the manganese dissolved in the manganese component-containing leachate 10 is preferentially insolubilized and becomes a solid.
  • This insolubilization step 11 is preferably a step in which ozone is allowed to act on the manganese component-containing leachate (separation solution) 10 under acidic conditions.
  • ozone is diffused by the ozone generator 13.
  • the region where both Fe and Mn are solidified varies depending on the concentration of each component in the solution.
  • Fe is between the lines of 10 0 M and 10 ⁇ 2 M.
  • Mn may be considered as the boundary (line * 2 in FIG. 1) between the lines of 10 0 M and 10 ⁇ 2 M.
  • the pH and oxidation-reduction potential (ORP) of the region where manganese solidifies and precipitates as an oxide are approximately “pH: 0” as shown in FIG. 0.1 to less than 2.2 "and” Oxidation-reduction potential (ORP): about +0.9 V or more and +1.2 V or less ".
  • FIG. 1 shows a case where the water temperature is 25 ° C., but if the water temperature is different, temperature correction may be performed.
  • a correction method a known method (for example, correction of an equilibrium multiplier by the Van't Hoff equation) may be performed. Therefore, in the case where the manganese component-containing leachate (separation liquid) 10 obtained in the solid-liquid separation step 6 has the above Fe and Mn concentrations, acid 12 is added to this solution to lower the pH to less than 2.2, Next, ozone is diffused to raise the oxidation-reduction potential (ORP) to +0.9 V or more, whereby manganese becomes a solid as an oxide and can be precipitated.
  • ORP oxidation-reduction potential
  • the acid 12 may be a general acid, and sulfuric acid, nitric acid, hydrochloric acid, and other acids can be used.
  • ozone was diffused while observing the oxidation-reduction potential (ORP), and the oxidation-reduction potential (ORP) was a predetermined value (for example, the temperature of the manganese-containing leachate was 25 ° C., It is preferable to adjust so that the Fe and Mn concentrations in the leachate are +1 V or more when Fe: 0.05M and Mn: 0.1M, respectively.
  • ORP oxidation-reduction potential
  • the most efficient method may be selected by comparing costs and the like.
  • the manganese component-containing leachate (separated liquid) 10 during the insolubilization process becomes black due to the manganese oxide generated by the oxidation of manganese, and the progress of the manganese oxidation reaction progresses. It becomes difficult to distinguish visually.
  • the manganese oxidation reaction in the insolubilization process 11 is inadequate, manganese ion does not precipitate as a solid substance and causes a deterioration in manganese recovery rate.
  • the ORP in which manganese peroxide (the uppermost part in FIG. 1, the substance called MnO 4 ⁇ ) is mainly present is around +1.6 V even at pH 2. Usually, such an increase in ORP is observed. Not. However, it was found that when the manganese oxidation reaction becomes excessive, some manganese oxides become peroxides due to the action of ozone. It was also found that peroxide was formed after almost all manganese was solidified as an oxide.
  • the solution containing manganese peroxide ions is reddish purple. Therefore, the formation of manganese peroxide in the solution can be easily determined by observing the color of the solution.
  • the entire solution becomes black, which is the color of manganese oxide. The discoloration of the solution cannot be determined.
  • manganese oxide is separated from the manganese component-containing leachate (separation liquid) 10 during the insolubilization treatment, it is possible to observe the color change of the leachate, and thus determine the formation of manganese peroxide. It becomes possible.
  • the manganese component-containing leachate (separation liquid) 10 during the insolubilization treatment is taken out periodically or continuously, manganese oxide is separated from the taken-out liquid, and the solution itself It is preferable to determine the end point of the oxidation reaction of manganese ions by observing the color.
  • the manganese component-containing leachate (separation liquid) 10 during the insolubilization process is taken out and separated from the taken-out liquid by filtering or standing still to settle the manganese oxide,
  • the manganese recovery rate can be maximized.
  • more objective evaluation can be performed by measuring the supernatant with an absorptiometer.
  • the absorbance at wavelengths near 525-545 nm increases rapidly due to the generation of manganese peroxide ions. Thereby, the coloring of the supernatant and the reaction end point can be objectively determined.
  • the absorbance near 525-545 nm is measured in advance for the solution before the ozone oxidation reaction, and the coloration of the supernatant and the end point of the reaction are determined from the increase in absorbance when this absorbance is 1. Just decide.
  • a separation / observation tank 19 can be provided as shown in FIG.
  • a small amount of the manganese component-containing leachate (separation liquid) 10 during the insolubilization process is taken out from the reaction tank (not shown) in the insolubilization step 11 to the separation / observation tank 19 periodically or continuously.
  • the liquid is allowed to stand to precipitate and separate the manganese oxide, and the color of the supernatant (that is, the color of the solution itself) is observed.
  • the supernatant and the precipitated manganese oxide may be returned to the reaction tank of the insolubilization step 11 in order to increase the manganese recovery rate.
  • the operation of returning the supernatant and / or manganese oxide to the reaction vessel is not essential. Such an operation may be repeated until the end point of the oxidation reaction of manganese ions is confirmed (that is, until the supernatant turns light red).
  • the method for precipitating and separating manganese oxide by removing a small amount of the manganese component-containing leachate (separation solution) 10 during the insolubilization treatment and leaving it in the separation / observation tank 19 has been described.
  • the extracted liquid may be filtered, and the color of the filtrate may be observed to determine the manganese ion oxidation reaction end point.
  • the manganese oxide separated by filtration and / or filtration may be returned to the reaction tank of the insolubilization step 11 in order to increase the manganese recovery rate after observation.
  • the operation of returning the filtrate and / or manganese oxide to the reaction vessel is not essential.
  • the manganese component-containing leachate (separation solution) 10 being insolubilized is taken out and the color thereof is observed, it is not always necessary to completely separate the taken-out solution and the manganese oxide. That is, the separation state of both may be such that the color of the taken out solution itself can be observed.
  • manganese dissolved in the manganese component-containing leachate (separation liquid) 10 is preferentially insolubilized to become a solid, and most of the iron ions (trivalent iron ions or even divalent iron ions) are manganese components. It will be in the state melt
  • FIG. 14 the concentrated high concentration manganese oxide 15 is recovered by solid-liquid separation of the separation liquid 10 after the insolubilization step 11.
  • the solid-liquid separation means used for the solid-liquid separation can be any means selected from gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation, and the like.
  • the post-recovery separation liquid 10a from which the manganese oxide 15 has been recovered is rich in iron ions (trivalent iron ions or even divalent iron ions). Therefore, in the present invention, the post-recovery separation liquid 10a can be neutralized in the neutralization step 16 and reused as the treatment liquid 4 used in the leaching step 3.
  • the post-recovery separation liquid 10 a sent to the neutralization step 16 is neutralized by the alkali 18.
  • the alkali 18 used for neutralization include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, and sodium bicarbonate. However, it is not limited to these.
  • the post-recovery separation liquid 10a that has passed through the neutralization step 16 is then mixed with the treatment liquid 4 in the leaching step 3. Then, the trivalent iron ions in the separation liquid 10a after recovery are reduced to divalent iron ions by the iron reducing bacteria contained in the treatment liquid 4, and the divalent iron ions act as a reducing agent for the object 1 to be processed. Will do.
  • a neutralization step 16 is provided as a subsequent step of the recovery step 14, and the neutralized post-recovery separation liquid 10a is leached.
  • the processing liquid can be reused by a simple process of mixing with the processing liquid 4 in step 3.
  • medium components other than iron are consumed and reduced by microorganisms, so that a new treatment is performed as necessary. Liquid can be added.
  • the manganese contained in the object to be treated is reduced. It can be leached in time and at low cost.
  • the residue is separated from the leachate from which manganese has been leached, and the separated leachate is treated with ozone under acidic conditions, so that manganese is preferentially insolubilized and precipitated as manganese oxide to recover manganese.
  • the leachate remaining after separating the precipitate eg, as a supernatant
  • the treatment liquid 4 used in the leaching step 3 is a treatment liquid containing trivalent iron ions, and an object to be treated and iron-reducing bacteria are mixed therewith, first, the iron-reducing bacteria reduce the trivalent iron ions in the treatment liquid. Then, divalent iron is generated by the reaction (Fe 3+ + e ⁇ ⁇ Fe 2+ ) of (ii).
  • the reaction (i) Fe 2+ + (“Mn oxide, hydroxide, etc.” or “MnO 2 , Mn 2 O 3 , Mn 3 O 4 ”)
  • a leaching solution (leaching slurry) 5 containing manganese ions and trivalent iron ions is obtained.
  • the leachate (leaching slurry) 5 is solid-liquid separated, manganese is recovered from the separated liquid 10 after solid-liquid separation, and after the separation, the separated liquid 10a is neutralized and mixed with the treatment liquid 4 used in the leaching step 3.
  • iron-reducing bacteria in the treatment liquid 4 reduce trivalent iron ions in the manganese recovery / separation liquid 10a, and divalent iron ions are generated by the reaction (Fe 3+ + e ⁇ ⁇ Fe 2+ ).
  • manganese can be recovered and the leachate can be reused.
  • the treatment liquid 4 used in the leaching step 3 is a treatment liquid containing trivalent iron ions, and the treatment object containing manganese and iron-reducing bacteria are mixed with the treatment liquid 4 so that manganese ions are leached from the treatment object.
  • the leachate 10a after the manganese recovery step 14 can be neutralized in the neutralization step 16, and then mixed with the treatment liquid 4 in the leach step 3 without taking any special measures.
  • the treatment liquid and the object to be treated were mixed in a reaction vessel, and leaching treatment was performed under the following conditions.
  • FIG. 3 shows the result of calculating the ratio of leached manganese (leaching rate) to manganese in the workpiece based on the quantitative value.
  • the manganese concentration in the filtrate after the 24-hour leaching treatment was 0.1 mol / 1000 cm 3 , and according to the present invention, a high manganese leaching rate of about 80% was obtained as shown in FIG. 3 ((0.1 mol / 1000 cm 3 ) ⁇ (22 g / 1000 cm 3 ⁇ 32 mass% ⁇ Mn molecular weight 55 g / mol) ⁇ 80%).
  • other components are considered to be manganese dioxide, so oxygen is bound to manganese, and it is dried for a long time at low temperature to avoid changes in morphology, so water remains. It is done. It was also confirmed that the sulfur content derived from sulfuric acid added to make the leachate acidic was hardly contained in the solid matter.
  • the iron content in the precipitate is less than 10%, and it can be said that manganese and iron are well separated.
  • iron was mixed in the precipitate by 10% or more, exceeding the target value of less than 10% initially set by the present inventors.
  • manganese has moved to a solid matter of 80% or more with respect to the amount of manganese in the leachate.
  • only less than 1% of manganese on the filtrate side is detected with respect to the amount of manganese in the leachate.
  • the remaining manganese is almost a recovery loss. Actually, it is considered that almost 100% of the manganese in the leachate is solidified and transferred to the solid.
  • As a factor of recovery loss when manganese is oxidized with ozone and becomes a solid substance, it is considered that the reaction vessel is stuck in a thin film.
  • the leachate was sampled immediately before ozone diffusion and during ozone diffusion treatment.
  • the sampling during the ozone aeration treatment was performed several times with the passage of the ozone aeration time.
  • the sampled leachate was filtered through a 0.22 ⁇ m membrane filter to separate manganese oxide, and the color of the filtrate (solution part) was observed. Further, each manganese recovery rate was measured from the sampled leachate by the same method as in 2) above. The total amount of manganese (mass) contained in the leachate sampled immediately before ozone diffusion was set to 100%.
  • FIG. 6 shows changes in the color of the filtrate and the manganese recovery rate with the passage of ozone aeration time.
  • FIG. 6 shows changes in the color of the filtrate and the manganese recovery rate with the passage of ozone aeration time.
  • the manganese recovery rate rises rapidly in a short time as the ozone aeration time elapses, and a manganese recovery rate of 99% or more is achieved in the vicinity of the ozone aeration time: 150 minutes. It was.
  • Table 8 shows that the ozone aeration time is 150 minutes, that is, the ozone aeration time optimal for the high manganese recovery obtained in 3) above is the same as in 3) above under sulfuric acid acidity.
  • the experiment of aeration and solidification with manganese as an oxide was conducted four times, and the results (batch Nos. 1A to 4A) were shown.
  • the absorbance at a wavelength of 525.5 nm was measured, and the ratio with the absorbance of the solution at the start of the reaction was determined.
  • Table 9 shows the same conditions as the above 3) except that the time when the color of the filtrate changed from light yellow to light red was determined as the “manganese oxidation reaction end point” and the “ozone diffusion time” was determined.
  • the experiment was conducted four times in which ozone was diffused in the presence of sulfuric acid and solidified with manganese as an oxide, and the results (batch Nos. 1B to 4B) were shown. That is, in this experiment, the acidic ozone aeration process is completed when the color of the filtrate changes from light yellow to light red.
  • the same manganese recovery rate is not necessarily obtained in the same reaction time (ozone aeration time). It is not necessarily obtained.
  • the composition of the leachate may vary greatly depending on the activity of the microorganism, the number of bacteria, etc., so management by reaction time is difficult and realistic. I can't say that.
  • the amount of the solution and the concentration of iron-reducing bacteria are as follows for both of the treatment liquids A and B.
  • Amount of solution 500 cm 3
  • Initial iron-reducing bacteria concentration 5 ⁇ 10 13 cells / m 3 (5 ⁇ 10 7 cells / cm 3 )
  • “Mineral solutions” in Tables 4 and 10 are Wolfe's Mineral Solution having the ingredients shown in Table 5, and “Vitamin solutions” in Tables 4 and 10 are ingredients in Table 6.
  • Wolfe's Vitamin Solution with The carbon concentration and phosphorus concentration in the treatment liquids A and B before adding the iron-reducing bacteria are quantified by a total organic carbon meter and a high-frequency inductively coupled plasma emission spectrometry (ICP emission spectrometry). Concentration.
  • ICP emission spectrometry high-frequency inductively coupled plasma emission spectrometry
  • the treatment liquid and the object to be treated were mixed in a reaction vessel, and leaching treatment was performed under the following conditions.
  • the obtained manganese leaching solution was filtered with a 0.45 ⁇ m membrane filter.
  • concentration of manganese contained in the filtered sample (filtrate) was quantified by high frequency inductively coupled plasma emission analysis (ICP emission analysis). The quantitative results are shown in Table 11.
  • manganese was recovered by ozone aeration treatment using the obtained manganese leachate after filtration.
  • the ozone diffusion treatment conditions were the same as the above 2) except that the acid concentration was 1N, and a treatment for solidifying manganese as an oxide by ozone diffusion was performed. After the treatment, it was filtered through a 0.22 ⁇ m membrane filter, and the solid was dried at 50 ° C. for 3 days and then weighed. Next, the solid matter was dissolved in an acid, and manganese, carbon, and phosphorus were quantified by ICP emission analysis and a carbon sulfur analyzer, whereby the manganese concentration, carbon concentration, and phosphorus concentration of the solid matter were quantified. The quantitative results are shown in Table 11.
  • the carbon concentration and phosphorus concentration in the treatment liquids A and B before adding the iron-reducing bacteria are 600 mM and 5.2 mM in the treatment liquid A, whereas in the treatment liquid B, 270 mM and 0 16 mM.
  • the manganese concentration of the leaching liquid after the 24-hour leaching treatment was 42 mM, and a high manganese leaching rate of 75% or more was obtained.
  • the manganese leaching rate when manganese was leached using the treatment liquid B was the same as the case where manganese was leached using the treatment liquid A.
  • the content of manganese, carbon and phosphorus in the solid matter containing manganese recovered by the ozone aeration treatment when the treatment liquid A is used, manganese: 45 mass%, carbon: 0.14 mass%, Phosphorus: 0.8% by mass, but when treatment solution B is used, manganese: 45% by mass, carbon: 0.07% by mass, phosphorus: 0.03% by mass, based on the manganese content
  • the carbon and phosphorus content is greatly reduced.

Abstract

Provided is a method of economically recovering manganese from low-grade minerals and manganese-containing waste. Iron-reducing bacteria and a manganese-containing substance to be treated are mixed in a treatment solution containing trivalent iron ions, the trivalent iron ions are reduced to divalent iron ions by means of the iron-reducing bacteria, manganese ions are leached from the treated substance into the aforementioned treatment solution with the divalent iron ions as reducing agent, the obtained leachate is solid-liquid separated, the manganese ions contained in the separated liquid are insolubilized (solidified) mainly as oxides, and the obtained manganese oxides are precipitated, separated, and recovered.

Description

マンガン回収方法Manganese recovery method
 本発明は、マンガン成分を含有する製鉄所副生成物、低品位鉱物、使用済電池などから、有価金属であるマンガンを回収する技術に関するものである。 The present invention relates to a technology for recovering manganese, which is a valuable metal, from ironworks by-products containing manganese components, low-grade minerals, used batteries, and the like.
 低品位の原鉱もしくは精鉱、または製鉄所副生成物から特定の有価金属を回収することは、従来、コスト的な理由から困難であった。しかし、近年、金属資源の枯渇や取引価格の上昇等により、このようなものから有価金属を回収することが必要とされるようになってきた。例えば、有価金属の一つであるマンガンは、産業界の多岐に亘る分野で必須の金属とされているが、将来、その需要が埋蔵量を上回ることが懸念されている。 It has been difficult to recover specific valuable metals from low-grade ore or concentrate or steelworks by-products for cost reasons. However, in recent years, it has become necessary to recover valuable metals from such materials due to depletion of metal resources and an increase in transaction prices. For example, manganese, which is one of valuable metals, is regarded as an essential metal in various fields of industry, but there is concern that the demand will exceed the reserves in the future.
 特に、製鉄所では、製鋼原料としてマンガンを大量に消費することから、マンガン源の確保という問題は、製鉄分野において極めて深刻である。その一方で、製鉄所において大量に発生するダスト、スラッジ、スラグ等の製鉄所副生成物には、多くのマンガンが含まれている。したがって、製鉄所副生成物からマンガンを回収し、これを製鋼原料として再利用する技術を確立することにより、上記問題の大幅な解消が期待される。 In particular, since ironworks consume a large amount of manganese as a raw material for steelmaking, the problem of securing a manganese source is extremely serious in the steelmaking field. On the other hand, many manganese is contained in steelworks by-products such as dust, sludge, and slag generated in large quantities at steelworks. Therefore, it is expected that the above problems will be greatly resolved by establishing a technique for recovering manganese from steelworks by-products and reusing it as a steelmaking raw material.
 ここで、鉱物から有価金属を回収する方法としては、鉱物に酸またはアルカリの処理液を接触させ、鉱物に含まれる有価金属を溶解して処理液中に浸出させ、該処理液に浸出した有価金属を選択中和することによって回収する方法が知られている。また、低品位鉱物から有価金属を回収する場合、一般的には、コスト的見地から、硫酸等の酸を用いて対象鉱物から有価金属を浸出し、回収する方法が採用されている。 Here, as a method for recovering valuable metals from minerals, an acid or alkali treatment liquid is brought into contact with the mineral, and the valuable metals contained in the mineral are dissolved and leached into the treatment liquid. A method of recovering by selectively neutralizing a metal is known. Moreover, when recovering valuable metals from low-grade minerals, generally, from a cost standpoint, a method of leaching and recovering valuable metals from target minerals using an acid such as sulfuric acid is employed.
 しかしながら、処理液として硫酸等の酸を用いて対象鉱物から有価金属を回収する方法では、やはりコストが嵩み、場合によっては投入コストと回収される有価金属のコストがバランスしない事態も多く、適用事例が限られる。また、酸による回収では、一部の形態のマンガンが浸出しづらく、回収率が低下するという問題がある。 However, the method of recovering valuable metals from target minerals using an acid such as sulfuric acid as a treatment liquid is still expensive, and in some cases, the input cost and the cost of recovered valuable metals are often not balanced. Cases are limited. In addition, in the recovery with an acid, there is a problem that some forms of manganese are difficult to leach out and the recovery rate decreases.
 一方、微生物を用いて鉱物から有価金属イオンを処理液中に浸出させることにより、有価金属を回収する方法も知られている。この方法によると、大量の硫酸等を用いることなく鉱物から有価金属を処理液に浸出させることができるため、上記した問題を招来することなく鉱物から有価金属を回収することが可能となる。 On the other hand, a method of recovering valuable metals by leaching valuable metal ions from minerals into the processing liquid using microorganisms is also known. According to this method, the valuable metal can be leached from the mineral into the treatment liquid without using a large amount of sulfuric acid or the like, so that the valuable metal can be recovered from the mineral without causing the above-described problems.
 また、上記の如く微生物を用いて鉱物から金属を浸出する方法は、生物浸出法(バイオリーチング)といわれ、エネルギー消費がより少なく、環境に対するリスクがより低いことが特徴である。このように、バイオリーチングは、金属浸出率の向上と低コスト化も可能であると考えられ、低品位鉱物から有価金属を浸出する有効な手段として注目されている。 In addition, the method of leaching metal from minerals using microorganisms as described above is called a bioleaching method (bioleaching), and is characterized by lower energy consumption and lower risk to the environment. Thus, bioleaching is considered to be capable of improving the metal leaching rate and reducing the cost, and has attracted attention as an effective means for leaching valuable metals from low-grade minerals.
 例えば、特許文献1には、鉄還元細菌を作用させ、3価鉄を2価鉄に還元し、前記2価鉄を用いて、金属酸化物および金属水酸化物からなる群に含まれる金属(コバルト、ニッケル、マンガン等)を浸出させ、浸出液と残渣を生成し、前記浸出液と残渣とを分離し、所望の金属を回収する技術が提案されている。具体的には、浸出処理培地と、鉄還元細菌と、金属酸化物または金属水酸化物とを、反応器に入れて浸出処理を行う技術であり、より具体的には、バッチ式の撹拌型反応器を用い、金属酸化物などが沈降しないように培地を撹拌しながら、浸出処理中の最大pHが8.5以下、好ましくは中性(例えばpH7.5以下)になるように調整し、全体を好ましい特定のpH範囲として金属の浸出を行う技術が提案されている。当該技術によると、浸出液に含まれる有価金属(コバルト、ニッケル)を、公知の方法で回収し、所望の用途に用いることができるとされている。 For example, in Patent Document 1, an iron-reducing bacterium is allowed to act to reduce trivalent iron to divalent iron, and using the divalent iron, a metal contained in the group consisting of a metal oxide and a metal hydroxide ( Cobalt, nickel, manganese, etc.) are leached to produce a leachate and a residue, and the leachate and residue are separated to recover a desired metal. Specifically, a leaching treatment medium, an iron-reducing bacterium, and a metal oxide or metal hydroxide are placed in a reactor to perform leaching treatment. More specifically, a batch-type agitation type Using a reactor, while stirring the medium so that metal oxides and the like do not settle, adjust the maximum pH during the leaching process to 8.5 or less, preferably neutral (for example, pH 7.5 or less), Techniques have been proposed for leaching metals with the entire preferred pH range being preferred. According to this technology, it is said that valuable metals (cobalt, nickel) contained in the leachate can be recovered by a known method and used for a desired application.
特開2007−113116号公報JP 2007-113116 A
 しかしながら、特許文献1には、浸出液に含まれる有価金属を回収する方法に関する具体的な記載がない。そのため、回収方法によっては高濃度の鉄含有溶液が使い捨てになり、不経済となることが懸念される。
 すなわち、特許文献1で提案された技術に従って被処理物(金属酸化物等)に含まれるマンガンを浸出させた場合、マンガンイオンと鉄イオン(浸出処理時に2価鉄が酸化されることにより得られた3価鉄、或いは更に、酸化されずに残存した2価鉄)を含む浸出液から、マンガンを回収することが必要となる。
However, Patent Document 1 does not specifically describe a method for recovering valuable metals contained in the leachate. Therefore, there is a concern that depending on the recovery method, the high-concentration iron-containing solution becomes disposable and uneconomical.
That is, when manganese contained in a workpiece (metal oxide or the like) is leached according to the technique proposed in Patent Document 1, manganese ions and iron ions (obtained by oxidation of divalent iron during the leaching treatment). In addition, it is necessary to recover manganese from the leachate containing trivalent iron or divalent iron remaining without being oxidized.
 複数種の金属イオンを含有する浸出液から所望の金属を分離する公知の方法としては、浸出液に薬剤等を添加して、金属種を選択的に沈澱分離する方法がある。この方法を適用してマンガンイオンと鉄イオンを含む浸出液を処理しようとすると、多くの場合において、先ず、不溶性塩をつくり易い鉄イオンが沈澱分離されるため、マンガンイオンを浸出液中に残留させて鉄と分離した後、マンガンを浸出液中から分離する必要がある。このような方法では、マンガンの回収に2回の分離工程を要し、工程が煩雑となる問題を有する。また、浸出液から鉄イオンを沈澱分離してしまうと、鉄含有溶液(浸出液)を再利用することが困難となる。 As a known method for separating a desired metal from a leachate containing a plurality of types of metal ions, there is a method in which a metal species is selectively precipitated and separated by adding a chemical or the like to the leachate. When this method is applied to treat leachate containing manganese ions and iron ions, in many cases, iron ions that easily form insoluble salts are precipitated and separated, so that manganese ions remain in the leachate. After separation from iron, it is necessary to separate manganese from the leachate. In such a method, there is a problem that two separation steps are required for the recovery of manganese, and the steps become complicated. Moreover, if iron ions are precipitated and separated from the leachate, it becomes difficult to reuse the iron-containing solution (leachate).
 一方、浸出液から有価金属を回収するに際し、電解法や、イオン交換樹脂、キレート樹脂等を吸着材として用いる吸着法を適用することも考えられる。しかしながら、通常の電解法では、前段に、鉄などと錯体を形成する物質を添加して鉄を有機溶剤可溶とし、俗に分液という水/有機溶剤により水層から鉄を有機溶剤層に抽出分離し、水槽に目的のマンガンを残す分離工程が必要であり、多量の有機溶剤を使用する必要がある。また、処理工程も増加し、なおかつ多大な電力量を消費する。更に、吸着法で用いる吸着材は一般的に高価であるうえ、吸着分離後の脱離、回収工程も必要となる。そのため、製鉄所副生成物のような大量の被処理物からマンガンを回収しようとする場合、電解法や吸着法を適用すると回収費用が莫大となる。 On the other hand, when recovering valuable metals from the leachate, it is also conceivable to apply an electrolytic method or an adsorption method using an ion exchange resin, a chelate resin or the like as an adsorbent. However, in a normal electrolysis method, a substance that forms a complex with iron or the like is added in the previous stage to make iron soluble in an organic solvent. A separation process is required to extract and separate the target manganese in the water tank, and a large amount of organic solvent must be used. In addition, the number of processing steps is increased and a large amount of power is consumed. Furthermore, the adsorbent used in the adsorption method is generally expensive and requires desorption and recovery steps after adsorption separation. For this reason, when manganese is to be recovered from a large amount of material to be processed such as a steelworks by-product, the recovery cost becomes enormous if an electrolytic method or an adsorption method is applied.
 また、製鉄所で製鋼原料として使用されるマンガンには、銑鋼への不純物、特に炭素(C)やリン(P)の混入を防ぐために、高純度なマンガンが求められる。したがって、回収されたマンガンのCやPといった不純物の濃度によっては、製鋼原料として使用できなくなる。 In addition, high purity manganese is required for manganese used as a steelmaking raw material in steelworks in order to prevent impurities such as carbon (C) and phosphorus (P) from being mixed into the steel. Therefore, depending on the concentration of impurities such as C and P of the recovered manganese, it cannot be used as a steelmaking raw material.
 以上のように、回収されたマンガンの用途によっては、その不純物含有量を充分に低減することも重要となるが、従来技術では回収されるマンガンに含まれる不純物を低減することについて検討されていない。 As described above, depending on the use of the recovered manganese, it is also important to sufficiently reduce the impurity content, but the prior art has not studied reducing impurities contained in the recovered manganese. .
 本発明は、上記問題に鑑みなされたものであり、マンガンを含有する被処理物に含まれるマンガンを浸出液に浸出させた後、浸出したマンガンを濃縮して回収するとともに、浸出液を繰り返し使用可能とすることで、安価に低品位鉱物やマンガン含有廃棄物・副生成物からマンガンを回収する方法を提供することを目的とする。 The present invention has been made in view of the above problems, and after leaching manganese contained in an object containing manganese into the leachate, the leached manganese is concentrated and recovered, and the leachate can be used repeatedly. It is an object of the present invention to provide a method for recovering manganese from low-grade minerals and manganese-containing wastes and by-products at low cost.
 本発明者らは、3価鉄を含有する処理液にマンガンを含有する被処理物および鉄還元細菌を混合し、鉄還元細菌を作用させて3価鉄を2価鉄に還元し、該2価鉄が3価鉄に酸化される作用を利用してマンガンを含有する被処理物からマンガンイオンを処理液中に浸出させ、マンガンイオンが浸出した浸出液を固液分離し、固液分離後の分離液からマンガンを回収するに際し、分離液中に溶解性鉄を残存させたままで目的のマンガンを沈降分離する手段について鋭意検討した。その結果、分離液に所定の酸化処理を施し、分離液中に含まれているマンガンイオンを主にマンガン酸化物として不溶化させることにより、沈澱分離できることを知見した。 The present inventors mix a treatment object containing manganese and iron-reducing bacteria in a treatment solution containing trivalent iron, act iron-reducing bacteria, and reduce trivalent iron to divalent iron. Manganese ions are leached into the treatment liquid from the treatment object containing manganese by utilizing the action of valence iron being oxidized to trivalent iron, and the leachate from which manganese ions are leached is separated into solid and liquid. When recovering manganese from the separated liquid, the inventors studied diligently about means for precipitating and separating the target manganese while leaving the soluble iron remaining in the separated liquid. As a result, it was found that the precipitate can be separated by subjecting the separation liquid to a predetermined oxidation treatment and insolubilizing manganese ions contained in the separation liquid mainly as manganese oxide.
 図1は、25℃の水溶液中におけるマンガンと鉄の、酸化還元電位(ORP)とpHの状態図(Eh−pH図)である。図1に示すとおり、Eh−pH図においてマンガンが沈澱する領域と鉄が沈澱する領域は、図1中○で囲った領域以外ではほぼ一致しており鉄が沈殿する領域の方が広くなっている。そのためマンガン、鉄がいずれも溶解している(イオン化している)領域から、酸化還元電位(ORP)、pHの状態を変化させると、殆どの領域において鉄が先に酸化物あるいは水酸化物として固形物化、沈殿してしまう。しかしながら、唯一、低pH・高ORPの領域(図1中、○で囲った領域)に、主にマンガンが酸化物として固形物化、沈殿する領域が存在することに思い至った。 FIG. 1 is a state diagram (Eh-pH diagram) of oxidation-reduction potential (ORP) and pH of manganese and iron in an aqueous solution at 25 ° C. As shown in FIG. 1, in the Eh-pH diagram, the region where manganese precipitates and the region where iron precipitates are substantially the same except for the region surrounded by circles in FIG. 1, and the region where iron precipitates is wider. Yes. Therefore, when the state of redox potential (ORP) and pH is changed from the region where both manganese and iron are dissolved (ionized), iron is first converted into an oxide or hydroxide in most regions. Solidified and precipitated. However, only the low pH / high ORP region (the region surrounded by a circle in FIG. 1) has a region where manganese is mainly solidified and precipitated as an oxide.
 そこで、本発明者らは、マンガンイオンと3価鉄イオンを含有する上記分離液のpHと酸化還元電位(ORP)を、Eh−pH図において主にマンガンが酸化物として固形物化、沈澱する領域(図1中、○で囲った領域)のpHと酸化還元電位(ORP)に調整することにより、液中に鉄還元細菌の基質となる鉄イオンを溶解した状態のまま残し、主にマンガンを酸化物として不溶化し、沈殿することができることに想到した。 Therefore, the inventors of the present invention have described the pH and redox potential (ORP) of the above-mentioned separation liquid containing manganese ions and trivalent iron ions in the region where manganese is solidified and precipitated mainly as oxides in the Eh-pH diagram. By adjusting the pH and the oxidation-reduction potential (ORP) of the region (circled in FIG. 1), iron ions that are substrates of iron-reducing bacteria are left in the solution in a dissolved state. It was conceived that it can be insolubilized and precipitated as an oxide.
 本発明者らは、更に検討を進めた結果、酸を用いて上記分離液のpHを下げ、オゾンを作用させることにより上記分離液のORPを上昇させることで、安価かつ簡便に、マンガンイオンと3価鉄イオンを含有する上記分離液から主としてマンガンを優先的に酸化物として固形物化できることを知見した。 As a result of further investigations, the present inventors have reduced the pH of the separation liquid using acid and raised the ORP of the separation liquid by acting ozone, so that the manganese ions can be easily and inexpensively produced. It has been found that manganese can be mainly solidified as an oxide from the above-mentioned separation liquid containing trivalent iron ions.
 また、上記分離液には3価の鉄イオン或いは更に2価の鉄イオンが豊富に含まれている。そのため、上記分離液に含まれる鉄イオンを沈澱分離することなく、分離液中に鉄イオンを残存させることにより、上記分離液を、被処理物からマンガンイオンを浸出させるために用いる処理液として再利用することが可能となる。 In addition, the above separation liquid contains abundant trivalent iron ions or further divalent iron ions. Therefore, the iron ions contained in the separation liquid are not separated by precipitation, and the iron ions remain in the separation liquid, so that the separation liquid is reused as a treatment liquid used for leaching manganese ions from the object to be treated. It can be used.
 更に、特定の鉄還元細菌を用いて処理液中の3価鉄を2価鉄に還元することにより、被処理物に含まれる低品位のマンガンを高速・高効率に浸出できることを知見した。 Furthermore, it was discovered that low-grade manganese contained in the workpiece can be leached at high speed and efficiency by reducing trivalent iron in the treatment liquid to divalent iron using specific iron-reducing bacteria.
 また、本発明者らは、最終的に回収されるマンガンの不純物(炭素、リン等)含有量を低減する手段について検討した。
 細菌を含有する処理液を用いた生物浸出法(バイオリーチング)の場合、処理液は通常、鉄還元細菌による金属の浸出反応を促進するための複数種の成分を含有する。鉄還元細菌を含有する処理液の場合、3価鉄イオン、電子供与体、pH調整剤、pH緩衝剤等の成分を含有する。また当然のことながら、微生物である鉄還元細菌が生育するために必須の元素である炭素、リンも含有する。これらの成分が不足すると、鉄還元細菌は生育できず、結果として金属を浸出することが困難となる。そのため、処理液には回収金属の使用目的によっては不純物となりうる成分(C、P等)が含まれるのが一般的である。
In addition, the present inventors examined means for reducing the content of impurities (carbon, phosphorus, etc.) of manganese finally recovered.
In the case of a bioleaching method (bioleaching) using a treatment liquid containing bacteria, the treatment liquid usually contains a plurality of kinds of components for promoting the metal leaching reaction by iron-reducing bacteria. In the case of a treatment solution containing iron-reducing bacteria, it contains components such as a trivalent iron ion, an electron donor, a pH adjuster, and a pH buffer. Naturally, it also contains carbon and phosphorus, which are essential elements for the growth of iron-reducing bacteria, which are microorganisms. If these components are deficient, iron-reducing bacteria cannot grow, and as a result, it is difficult to leach metals. Therefore, the treatment liquid generally contains components (C, P, etc.) that can become impurities depending on the intended use of the recovered metal.
 本発明者らは、処理液中の不純物となりうる成分が、その存在割合に応じて回収物にも混入する問題があることを突き止めた。そして、更に検討を進めた結果、処理液中の不純物濃度を制限することにより、被処理物からのマンガンイオンの浸出は促進しながらも、処理液から回収マンガン中に移行する不純物量を低減することができ、延いては回収マンガンの不純物濃度が低減可能であることを知見した。 The inventors of the present invention have found that there is a problem that a component that can be an impurity in the treatment liquid is mixed into the recovered material depending on the ratio of the existing component. As a result of further investigation, by limiting the impurity concentration in the treatment liquid, the amount of impurities transferred from the treatment liquid into the recovered manganese is reduced while promoting the leaching of manganese ions from the object to be treated. As a result, it has been found that the impurity concentration of recovered manganese can be reduced.
 上記知見を得るに至った実験について述べる。
 まず、3価鉄を含有する処理液として、クエン酸鉄(III)培地準拠溶液を用意した。このクエン酸鉄(III)培地準拠溶液の一般的な成分であるクエン酸鉄(III)、クエン酸ナトリウム、ギ酸ナトリウムには炭素が、また、リン酸二水素ナトリウムにはリンが、更にペプトンには炭素およびリンが元素として含まれる。これらの元素はいずれも、鉄還元細菌による金属浸出反応には必須の成分であり、各種成分の濃度(または含有量)は次のとおりである。
The experiment that led to the above findings will be described.
First, an iron (III) citrate medium-compliant solution was prepared as a treatment liquid containing trivalent iron. Common components of this iron (III) citrate medium compliant solution are iron (III) citrate, sodium citrate, sodium formate, carbon, sodium dihydrogen phosphate, phosphorus, and peptone. Contains carbon and phosphorus as elements. All of these elements are essential components for the metal leaching reaction by iron-reducing bacteria, and the concentrations (or contents) of various components are as follows.
 クエン酸鉄(III)・3水和物:16.7g/L(56mM)
 クエン酸ナトリウム・2水和物(錯化剤):10.3g/L(35mM)
 リン酸二水素ナトリウム:0.6g/L
Iron (III) citrate trihydrate: 16.7 g / L (56 mM)
Sodium citrate dihydrate (complexing agent): 10.3 g / L (35 mM)
Sodium dihydrogen phosphate: 0.6 g / L
 ペプトン:0.5g
 KCl:0.1g
 NHCl:1.5g
 ウォルフェのミネラル溶液:10cm
 ウォルフェのビタミン溶液:10cm
 ギ酸ナトリウム(電子供与体):2.0g/L(30mM)
Peptone: 0.5g
KCl: 0.1g
NH 4 Cl: 1.5 g
Wolfe Mineral Solution: 10cm 3
Wolfe's vitamin solution: 10 cm 3
Sodium formate (electron donor): 2.0 g / L (30 mM)
 上記した各種成分の濃度(または含有量)の値は、いずれもクエン酸鉄(III)培地準拠溶液:1Lあたりの値である。なお、mMは、mmol/Lを示す。 The values of the concentrations (or contents) of the various components described above are all values per 1 L of iron (III) citrate medium-compliant solution. In addition, mM shows mmol / L.
 ここで、本発明者らは、クエン酸鉄(III)培地準拠溶液(3価鉄を含有する処理液)中の炭素濃度およびリン濃度が、最終的に回収されるマンガン中の炭素濃度およびリン濃度に影響を及ぼすものと推測した。上記した各種成分の濃度(または含有量)を有する処理液を基準処理液とし、この基準処理液に対して以下(A)~(C)のように炭素濃度またはリン濃度を変更した計3種のクエン酸鉄(III)培地準拠溶液を処理液として用意し、該培地中の炭素濃度ならびにリン濃度のマンガン浸出率に及ぼす影響を調査した。 Here, the present inventors have determined that the carbon concentration and phosphorus concentration in the iron (III) citrate medium-based solution (treatment liquid containing trivalent iron) are the carbon concentration and phosphorus in the manganese finally recovered. Presumed to affect the concentration. The treatment liquid having the concentrations (or contents) of the various components described above is used as a reference treatment liquid, and the carbon concentration or phosphorus concentration is changed in total as shown in (A) to (C) below with respect to this reference treatment liquid. An iron (III) citrate medium-based solution was prepared as a treatment solution, and the effects of carbon concentration and phosphorus concentration on the manganese leaching rate were investigated.
(A)リン成分であるリン酸二水素ナトリウムの濃度を、基準処理液の0.6g/Lから0g/Lまで段階的に低減した処理液(濃度:0.6g/L、0.3g/L、0.1g/L、0g/Lの計4種)。なお、リン酸二水素ナトリウム以外の成分の濃度(または含有量)は、基準処理液と同一とした。また、リン酸二水素ナトリウムの濃度を0g/Lとした場合における処理液のリン濃度を測定したところ、5mg/L(0.16mM)であった。これは、リン酸二水素ナトリウム以外の成分由来と考えられる。 (A) Treatment liquid (concentration: 0.6 g / L, 0.3 g / L) in which the concentration of sodium dihydrogen phosphate, which is a phosphorus component, is reduced stepwise from 0.6 g / L of the standard treatment liquid to 0 g / L. L, 0.1 g / L, 0 g / L in total 4 types). In addition, the density | concentration (or content) of components other than sodium dihydrogen phosphate was made the same with a reference | standard process liquid. Moreover, when the density | concentration of the processing liquid in case the density | concentration of sodium dihydrogen phosphate was 0 g / L was measured, it was 5 mg / L (0.16 mM). This is considered to be derived from components other than sodium dihydrogen phosphate.
(B)炭素成分であるクエン酸鉄(III)・3水和物の濃度を、基準処理液の16.7g/L(56mM)から1.5g/Lまで段階的に低減した処理液。(濃度:16.7g/L、7.5g/L、3.0g/L、1.5g/Lの計4種)。なお、クエン酸鉄(III)・3水和物以外の成分の濃度(または含有量)は、リン酸二水素ナトリウムを無添加とし、その他の成分を基準処理液と同一とした。 (B) A treatment liquid in which the concentration of iron (III) citrate trihydrate as a carbon component is reduced stepwise from 16.7 g / L (56 mM) of the standard treatment liquid to 1.5 g / L. (Concentration: 16.7 g / L, 7.5 g / L, 3.0 g / L, 1.5 g / L in total 4 types). The concentration (or content) of components other than iron (III) citrate trihydrate was the same as that of the standard treatment solution, with no addition of sodium dihydrogen phosphate.
(C)炭素成分であるクエン酸ナトリウム・2水和物の濃度を、基準処理液の10.3g/L(35mM)から0g/Lまで段階的に低減した処理液。(濃度:10.3g/L、2.9g/L、1.03g/L、0g/Lの計4種)。なお、クエン酸ナトリウム・2水和物以外の成分の濃度(または含有量)は、クエン酸鉄(III)・3水和物を1.5g/L、リン酸二水素ナトリウムを無添加とし、その他の成分を基準処理液と同一とした。 (C) A treatment liquid in which the concentration of sodium citrate dihydrate, which is a carbon component, is gradually reduced from 10.3 g / L (35 mM) to 0 g / L of the standard treatment liquid. (Concentration: 10.3 g / L, 2.9 g / L, 1.03 g / L, 0 g / L in total 4 types). In addition, the concentration (or content) of components other than sodium citrate dihydrate is 1.5 g / L of iron (III) citrate trihydrate, no sodium dihydrogen phosphate is added, The other components were the same as the standard treatment solution.
 上記(A)~(C)において、炭素成分またはリン成分を含むペプトンと、炭素成分を含むギ酸ナトリウムは、添加量が少ないため、それぞれの濃度(または含有量)を基準処理液と同一とした。 In the above (A) to (C), peptone containing a carbon component or phosphorus component and sodium formate containing a carbon component are added in small amounts, so that their respective concentrations (or contents) are the same as the standard treatment liquid. .
 バッチ式の撹拌容器に、上記(A)~(C)の各種クエン酸鉄(III)培地準拠溶液(3価鉄を含有する処理液):150cm、製鉄所の精錬工程で発生した金属含有ダスト(Mn:69質量%,Fe:3質量%):0.75g、および鉄還元細菌Shewanella algae(NBRC 103173株):1×10個/cmを入れ、混合液の温度を約30℃に維持し、窒素ガスのバブリングと撹拌を24時間から144時間実施する浸出処理を行った。その後、固液分離によって浸出液を採取し、浸出液中のMn濃度を測定してMn浸出率を算出した。これらの結果を、表1~3に示す。 In a batch type stirring vessel, various iron (III) citrate medium-compliant solutions (treatment liquids containing trivalent iron) of the above (A) to (C): 150 cm 3 , containing metal generated in the refining process of the ironworks Dust (Mn: 69% by mass, Fe: 3% by mass): 0.75 g, and iron-reducing bacterium Shewanella algae (NBRC 103173 strain): 1 × 10 7 pieces / cm 3 are added, and the temperature of the mixed solution is about 30 ° C. The leaching treatment was performed in which nitrogen gas was bubbled and stirred for 24 to 144 hours. Thereafter, the leachate was collected by solid-liquid separation, and the Mn leach rate was calculated by measuring the Mn concentration in the leachate. These results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1は、上記(A)の処理液を用いて浸出処理を24時間行った結果である。表1に示すように、リン成分であるリン酸二水素ナトリウム(NaHPO)を、基準処理液のように添加する場合と添加しない場合との間で、浸出処理時間:24時間におけるマンガン浸出率に大差が見られなかった。 Table 1 shows the results of performing the leaching process for 24 hours using the processing liquid (A). As shown in Table 1, the leaching treatment time: manganese at 24 hours between when the sodium dihydrogen phosphate (NaH 2 PO 4 ), which is a phosphorus component, is added as in the standard treatment solution and when it is not added There was no significant difference in the leaching rate.
 表2は、上記(B)の処理液を用いて浸出処理を行った結果である。表2に示すように、炭素成分を含むクエン酸鉄(III)の濃度を低減すると、初期のマンガン浸出率は低くなった。しかしながら、浸出処理時間:144時間では、炭素成分を含むクエン酸鉄(III)・3水和物の濃度を1.5g/Lに低減した場合でも、基準処理液の場合と同等のマンガン浸出率が得られた。 Table 2 shows the results of leaching treatment using the treatment liquid (B). As shown in Table 2, when the concentration of iron (III) citrate containing a carbon component was reduced, the initial manganese leaching rate was lowered. However, in the leaching treatment time: 144 hours, even when the concentration of the iron (III) citrate trihydrate containing the carbon component is reduced to 1.5 g / L, the manganese leaching rate equivalent to that in the case of the standard treatment liquid was gotten.
 表3は、上記(C)の処理液を用いて浸出処理を行った結果である。炭素成分を含むクエン酸ナトリウムの濃度を低減すると、マンガン浸出率が大幅に低下し、浸出処理時間を延ばしても浸出率は低いままであった。すなわち、マンガン浸出率の観点からは、処理液中のクエン酸ナトリウム・2水和物濃度を低減せずに基準処理液の場合と同等の濃度(10.3g/L)に維持することが好ましいと云える。
 処理液中のクエン酸鉄(III)・3水和物濃度を1.5g/L(5mM)、クエン酸ナトリウム・2水和物濃度を10.3g/L(35mM)とした場合の処理液中の炭素濃度は、270mMであった。
Table 3 shows the results of the leaching process using the above processing liquid (C). Reducing the concentration of sodium citrate containing carbon components significantly reduced the manganese leaching rate, and the leaching rate remained low even if the leaching time was extended. That is, from the viewpoint of manganese leaching rate, it is preferable to maintain the sodium citrate dihydrate concentration in the treatment liquid at the same concentration (10.3 g / L) as in the case of the standard treatment liquid without reducing it. It can be said.
Treatment liquid when the iron (III) citrate trihydrate concentration in the treatment liquid is 1.5 g / L (5 mM) and the sodium citrate dihydrate concentration is 10.3 g / L (35 mM) The carbon concentration inside was 270 mM.
 更に、本発明者らが上記と同様の実験を繰り返し行い、最終的に回収されるマンガンの不純物濃度(炭素濃度およびリン濃度)を測定した。その結果、処理液中の炭素濃度を300mM以下、リン濃度が0.5mM以下に制限すれば、最終的に回収されるマンガンの不純物濃度が大幅に低下し、製鋼原料などにも適用可能な回収マンガンが得られることを知見した。 Furthermore, the present inventors repeated the same experiment as described above, and finally measured the impurity concentration (carbon concentration and phosphorus concentration) of manganese recovered. As a result, if the carbon concentration in the treatment solution is limited to 300 mM or less and the phosphorus concentration to 0.5 mM or less, the impurity concentration of manganese finally recovered is greatly reduced, and recovery applicable to steelmaking raw materials and the like. It was found that manganese can be obtained.
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] 3価鉄イオンを含む処理液に、マンガンを含有する被処理物および鉄還元細菌を混合し、前記鉄還元細菌によって前記3価鉄イオンを2価鉄イオンに還元し、該2価鉄イオンを還元剤として前記被処理物からマンガンイオンを前記処理液に浸出させる浸出工程と、該浸出工程で得られた浸出液を固液分離する固液分離工程と、該固液分離工程後の分離液中に含まれるマンガンイオンを酸化して不溶化する不溶化工程と、該不溶化工程で得られたマンガン成分を沈澱分離して回収する回収工程とを有することを特徴とするマンガン回収方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] A treatment solution containing trivalent iron ions is mixed with a treatment object containing manganese and iron-reducing bacteria, and the iron-reducing bacteria reduce the trivalent iron ions to divalent iron ions. A leaching step of leaching manganese ions from the object to be treated into the treatment liquid using iron ions as a reducing agent; a solid-liquid separation step of solid-liquid separation of the leachate obtained in the leaching step; and a step after the solid-liquid separation step A manganese recovery method comprising: an insolubilization step of oxidizing and insolubilizing manganese ions contained in a separation liquid; and a recovery step of separating and recovering a manganese component obtained in the insolubilization step.
[2] 前記[1]において、前記分離液からマンガン成分を回収した3価鉄イオンを含む回収後分離液を、前記浸出工程の処理液として再利用することを特徴とするマンガン回収方法。 [2] A method for recovering manganese according to [1], wherein the post-recovery separation liquid containing trivalent iron ions from which the manganese component has been recovered from the separation liquid is reused as a treatment liquid in the leaching step.
[3] 前記[1]または[2]において、前記不溶化工程が、前記固液分離工程後の分離液に酸性条件下でオゾンを作用させることで、マンガンイオンを酸化して不溶化する工程であることを特徴とするマンガン回収方法。 [3] In the above [1] or [2], the insolubilization step is a step in which manganese ions are oxidized and insolubilized by applying ozone to the separated liquid after the solid-liquid separation step under acidic conditions. A method for recovering manganese.
[4] 前記[1]ないし[3]のいずれかにおいて、前記被処理物が、製鉄所副生成物、および/または低品位鉱石、および/または使用済み電池、および/またはマンガン含有ダスト、および/またはマンガン含有スラッジおよび/またはマンガン含有スラリーであることを特徴とするマンガン回収方法。 [4] In any one of the above [1] to [3], the workpiece is an ironworks by-product and / or low-grade ore, and / or used battery, and / or manganese-containing dust, and / or A method for recovering manganese, which is / or manganese-containing sludge and / or manganese-containing slurry.
[5] 前記[1]ないし[4]のいずれかにおいて、前記不溶化工程において、不溶化処理中の液を定期的または連続的に取り出し、取り出した液の溶液部分の色の変化を観察することで、マンガンイオンの酸化反応終点を見極めることを特徴とするマンガン回収方法。 [5] In any one of the above [1] to [4], in the insolubilization step, the liquid during the insolubilization treatment is taken out periodically or continuously, and the change in the color of the solution portion of the taken out liquid is observed. And a manganese recovery method characterized by determining an end point of oxidation reaction of manganese ions.
[6] 前記[1]ないし[5]のいずれかにおいて、前記浸出工程における処理液が、炭素濃度およびリン濃度を制限した処理液であることを特徴とするマンガン回収方法。 [6] The manganese recovery method according to any one of [1] to [5], wherein the treatment liquid in the leaching step is a treatment liquid in which a carbon concentration and a phosphorus concentration are limited.
[7] 前記[6]において、前記炭素濃度が300mM以下であり、前記リン濃度が0.5mM以下であることを特徴とするマンガン回収方法。 [7] The method for recovering manganese according to [6], wherein the carbon concentration is 300 mM or less and the phosphorus concentration is 0.5 mM or less.
 本発明のマンガン回収方法によれば、マンガン鉱物などに含まれるマンガン類を、室温・大気圧下という比較的穏やかな条件下で、高い濃縮率で、濃縮して回収することができるとともに、処理液を繰り返し使用可能とすることで、マンガン回収に関わる費用の低減が可能になり、産業上格段の効果を奏する。また、本発明のマンガン回収方法は、大量の被処理物から安価かつ簡便にマンガンを回収することができるため、特に製鉄所において大量に発生する製鉄所副生成物からマンガンを回収する方法として極めて有効である。 According to the manganese recovery method of the present invention, manganese contained in manganese minerals can be concentrated and recovered at a high concentration rate under relatively mild conditions such as room temperature and atmospheric pressure. By allowing the liquid to be used repeatedly, it becomes possible to reduce the cost related to manganese recovery, and there is a remarkable industrial effect. In addition, the manganese recovery method of the present invention can recover manganese from a large amount of material to be processed at low cost and easily, so that it is extremely useful as a method for recovering manganese from a steelworks by-product generated in large quantities at a steelworks. It is valid.
図1は、水溶液中におけるマンガンと鉄の、酸化還元電位(ORP)とpHの状態図(Eh−pH図)である。FIG. 1 is a state diagram (Eh-pH diagram) of redox potential (ORP) and pH of manganese and iron in an aqueous solution. 図2(a)は、本発明のマンガン回収方法の一形態を説明するフロー図である。図2(b)は、本発明のマンガン回収方法の他の形態を説明するフロー図である。Fig.2 (a) is a flowchart explaining one form of the manganese recovery method of this invention. FIG.2 (b) is a flowchart explaining the other form of the manganese recovery method of this invention. 図3は、廃乾電池破砕屑を供試した実施例のマンガン浸出率を示す図である。FIG. 3 is a graph showing the manganese leaching rate of an example in which waste dry cell crushed waste was tested. 図4は、実施例のマンガン浸出液に酸性条件下でオゾン散気を行った際の固形物中の組成を示す図である。FIG. 4 is a view showing a composition in a solid substance when ozone diffusion is performed on the manganese leachate of the example under acidic conditions. 図5は、実施例のマンガン浸出液に酸性条件下でオゾン散気を行った際のマンガン回収率を示す図である。FIG. 5 is a diagram showing the manganese recovery rate when ozone diffusing was performed on the manganese leachate of the example under acidic conditions. 図6は、本発明のマンガン浸出液を酸性条件下でオゾン散気処理した場合のマンガン回収率とろ液の色の変化を示す図である。FIG. 6 is a graph showing changes in manganese recovery rate and filtrate color when the manganese leachate of the present invention is treated with ozone aeration under acidic conditions.
 以下、本発明について詳細に説明する。
 本発明のマンガン回収方法は、3価鉄イオンを含む処理液に、マンガンを含有する被処理物および鉄還元細菌を混合し、前記鉄還元細菌によって前記3価鉄イオンを2価鉄イオンに還元し、該2価鉄イオンを還元剤として前記被処理物からマンガンイオンを前記処理液に浸出させる浸出工程と、該浸出工程で得られた浸出液を固液分離する固液分離工程と、該固液分離工程後の分離液中に含まれるマンガンイオンを酸化して不溶化する不溶化工程と、該不溶化工程で得られたマンガン成分を沈澱分離して回収する回収工程とを有することを特徴とする。また、前記分離液からマンガン成分を回収した3価鉄イオンを含む回収後分離液を、前記浸出工程で再利用してもよい。
Hereinafter, the present invention will be described in detail.
In the method for recovering manganese according to the present invention, a treatment liquid containing trivalent iron ions is mixed with a treatment object containing manganese and iron-reducing bacteria, and the iron-reducing bacteria reduce the trivalent iron ions to divalent iron ions. A leaching step of leaching manganese ions from the object to be treated into the treatment liquid using the divalent iron ions as a reducing agent; a solid-liquid separation step of separating the leachate obtained in the leaching step; It comprises an insolubilization step for oxidizing and insolubilizing manganese ions contained in the separation liquid after the liquid separation step, and a recovery step for precipitation separation and recovery of the manganese component obtained in the insolubilization step. Further, the post-recovery separation liquid containing trivalent iron ions from which the manganese component is recovered from the separation liquid may be reused in the leaching step.
 図2(a)は、本発明の実施の一形態を示すフロー図である。図2(a)に示すように、本発明では、先ず、マンガンを含有する被処理物1を、必要に応じて破砕工程2で粉砕する。次いで、浸出工程3において、被処理物1と3価鉄イオンを含む処理液4と鉄還元細菌を混合し、浸出スラリー(浸出液)5を得る。この浸出工程3では、鉄還元細菌によって3価の鉄イオンを2価の鉄イオンに還元するとともに、この2価の鉄イオンを被処理物1中のマンガン成分に作用させることにより、被処理物1中のマンガン成分を溶解させる。 FIG. 2A is a flowchart showing an embodiment of the present invention. As shown to Fig.2 (a), in this invention, first, the to-be-processed object 1 containing manganese is grind | pulverized by the crushing process 2 as needed. Next, in the leaching step 3, the treatment object 1, the treatment liquid 4 containing trivalent iron ions, and iron-reducing bacteria are mixed to obtain a leaching slurry (leaching liquid) 5. In the leaching step 3, trivalent iron ions are reduced to divalent iron ions by iron-reducing bacteria, and the divalent iron ions are allowed to act on the manganese component in the object 1 to be processed. The manganese component in 1 is dissolved.
 被処理物1としては、マンガンを含有するものであり、例えば、マンガン含有ダストおよび/またはマンガン含有スラッジなどの製鉄所副生成物、低品位鉱石、使用済み電池などを用いることができる。また、被処理物1の形状としては、マンガンを含有する固形物のほか、マンガン含有ダスト、および/またはマンガン含有スラッジおよび/またはマンガン含有スラリーなどを例示することができる。 The object to be treated 1 contains manganese. For example, ironworks by-products such as manganese-containing dust and / or manganese-containing sludge, low-grade ore, and used batteries can be used. Moreover, as a shape of the to-be-processed object 1, a manganese containing dust and / or manganese containing sludge and / or a manganese containing slurry other than the solid substance containing manganese can be illustrated.
 使用済み電池を被処理物1として使用する場合には、予め破砕、篩い分けなどにより、筐体に使用される鉄などのメタルを分離して正極材や負極材の混合物にしておくことが望ましい。
 なお、被処理物1に含まれるマンガン成分としては、MnO、Mn、Mn等を例示することができる。
When a used battery is used as the object 1 to be processed, it is desirable to separate a metal such as iron used in the casing by crushing, sieving, or the like in advance to obtain a mixture of a positive electrode material and a negative electrode material. .
As the manganese component contained in the object to be processed 1, it may be exemplified MnO 2, Mn 2 O 3, Mn 3 O 4 and the like.
 被処理物1は、処理液4と混合してマンガンイオンを処理液4に浸出させる浸出工程3に供される。しかし、浸出工程3へ移行する段階での被処理物1の粒子径が大きいと、比表面積が小さくなって固液接触面積(被処理物1と処理液4との接触面積)が減少し、浸出速度が低下する。また、浸出工程3をバッチ式の反応容器を用いて行う場合、被処理物1の粒子径が大きいと、浸出処理の際に被処理物1が沈降してしまい、十分に浸出処理ができないことも懸念される。 The object to be processed 1 is mixed with the treatment liquid 4 and subjected to a leaching step 3 in which manganese ions are leached into the treatment liquid 4. However, if the particle size of the object 1 to be processed at the stage of shifting to the leaching process 3 is large, the specific surface area becomes small and the solid-liquid contact area (contact area between the object 1 and the process liquid 4) decreases. Leaching rate is reduced. Further, when the leaching step 3 is performed using a batch-type reaction vessel, if the particle size of the workpiece 1 is large, the workpiece 1 is settled during the leaching treatment, and the leaching treatment cannot be sufficiently performed. Is also a concern.
 以上の理由により、本発明では、被処理物1が固体の場合は粒子径を小さくして浸出工程3における反応効率向上を目的として、破砕工程2を設けることが好ましい。粒子径が小さいほど、反応効率が向上し、浸出工程3における反応時間を短縮することができる。そのため、本発明では、浸出工程3へ移行する段階での被処理物1の粒子径を100mm以下とすることが好ましく、100μm以下とすることがより好ましい。但し、固液分離の容易さの観点からは、被処理物1の粒子径を1μm以上とすることが好ましい。
 破砕方法としては、ジョークラッシャ、転動ミルなど、公知の破砕方法を用いることができる。なお、被処理物1の粒子径が十分小さい場合は、破砕工程2を省略しても構わない。
For the reasons described above, in the present invention, when the workpiece 1 is solid, it is preferable to provide the crushing step 2 for the purpose of improving the reaction efficiency in the leaching step 3 by reducing the particle diameter. The smaller the particle size, the better the reaction efficiency and the reaction time in the leaching step 3 can be shortened. Therefore, in this invention, it is preferable that the particle diameter of the to-be-processed object 1 in the stage which transfers to the leaching process 3 shall be 100 mm or less, and it is more preferable to set it as 100 micrometers or less. However, from the viewpoint of ease of solid-liquid separation, it is preferable that the particle diameter of the workpiece 1 be 1 μm or more.
As a crushing method, a known crushing method such as a jaw crusher or a rolling mill can be used. In addition, when the particle diameter of the workpiece 1 is sufficiently small, the crushing step 2 may be omitted.
 以上のようにして得られた被処理物1は、浸出工程3に移行される。浸出工程3では、処理液4と被処理物1を混合し、2価鉄イオンが3価鉄イオンに酸化される作用を利用して被処理物1からマンガンイオンを処理液4中に浸出させる。すなわち、浸出工程3では以下(i)の反応により、2価鉄が3価鉄に酸化されるとともに被処理物1が還元されて、マンガンイオンが処理液4に浸出する。
Fe2++Mn酸化物もしくは水酸化物(たとえばMnO、Mn、Mn
                    →Fe3++Mn2+(可溶性)… (i)
The workpiece 1 obtained as described above is transferred to the leaching step 3. In the leaching step 3, the treatment liquid 4 and the workpiece 1 are mixed, and manganese ions are leached into the treatment liquid 4 from the workpiece 1 using an action in which divalent iron ions are oxidized to trivalent iron ions. . That is, in the leaching step 3, divalent iron is oxidized to trivalent iron and the workpiece 1 is reduced by the reaction (i) below, and manganese ions are leached into the treatment liquid 4.
Fe 2+ + Mn oxide or hydroxide (eg MnO 2 , Mn 2 O 3 , Mn 3 O 4 )
→ Fe 3+ + Mn 2+ (soluble) ... (i)
 ここで、処理液4としては、2価鉄イオンを添加した処理液を用いることもできる。しかし、本発明においては、3価鉄イオンを含む処理液を用い、該処理液に被処理物および鉄還元細菌を混合し、前記3価鉄イオンを2価鉄イオンに還元するとともに、該2価鉄イオンを還元剤として被処理物1からマンガンイオンを処理液4中に浸出させることが好ましい。
 鉄還元細菌は、電子供与体(有機物など)から電子を授受し、これを電子受容体である3価鉄イオンに供給する鉄呼吸により生育する細菌であり、以下(ii)の反応により3価鉄を2価鉄に還元する作用を有する。
 Fe3++e→Fe2+ … (ii)
Here, as the treatment liquid 4, a treatment liquid to which divalent iron ions are added can also be used. However, in the present invention, a treatment liquid containing trivalent iron ions is used, the treatment object and iron-reducing bacteria are mixed in the treatment liquid, and the trivalent iron ions are reduced to divalent iron ions. It is preferable that manganese ions are leached into the treatment liquid 4 from the workpiece 1 using valent iron ions as a reducing agent.
An iron-reducing bacterium is a bacterium that grows by respiration of iron that receives and transfers electrons from an electron donor (such as an organic substance) and supplies it to trivalent iron ions that are electron acceptors, and is trivalent by the following reaction (ii). Has the effect of reducing iron to divalent iron.
Fe 3+ + e → Fe 2+ (ii)
 そのため、3価鉄イオンを含む処理液に被処理物1と鉄還元細菌を混合すると、鉄還元細菌が、電子供与体からの電子(e)を用いて3価鉄イオン(Fe3+)を直接還元して2価鉄イオン(Fe2+)を生成し、結果として2価鉄と鉄還元細菌を含む処理液が得られる。上記(ii)の反応により生成された2価鉄が、前記(i)の反応に寄与することで、浸出工程3においてマンガンイオンを処理液4に浸出させることが可能となる。 Therefore, when the treatment object 1 and iron-reducing bacteria are mixed in a treatment solution containing trivalent iron ions, the iron-reducing bacteria use the electrons (e ) from the electron donor to convert trivalent iron ions (Fe 3+ ). Direct reduction produces divalent iron ions (Fe 2+ ), resulting in a treatment liquid containing divalent iron and iron-reducing bacteria. The divalent iron generated by the reaction (ii) contributes to the reaction (i), so that manganese ions can be leached into the treatment liquid 4 in the leaching step 3.
 本発明で用いる3価鉄および鉄還元細菌としては、以下に示す種類のものが例示される。また、3価鉄イオンを含む処理液には、鉄還元細菌の鉄呼吸に必要な電子受容体(上記3価鉄イオン)とともに電子供与体を添加する。更に、以下に示す酸、アルカリ、pH調整剤のいずれか1種以上、並びにpH緩衝剤を添加することにより、処理液のpHを後述する所定のpHに調整することが好ましい。また、当然のことながら、鉄還元細菌の生育に必須の元素などを共存させることが必要であることは言うまでもない。 Examples of the trivalent iron and iron-reducing bacteria used in the present invention include the following types. An electron donor is added to the treatment solution containing trivalent iron ions together with an electron acceptor (trivalent iron ions) necessary for iron respiration of iron-reducing bacteria. Furthermore, it is preferable to adjust the pH of the treatment liquid to a predetermined pH described later by adding at least one of the following acids, alkalis, and pH adjusting agents, and a pH buffering agent. It goes without saying that it is necessary to coexist elements essential for the growth of iron-reducing bacteria.
<鉄還元細菌>
 本発明の浸出工程3で用いる鉄還元細菌としては、例えば、Geobacter metallireducens Lovley et al.(ATCC 53774,DSM 7210)、Desulfomonas palmitatis Coates et al.(ATCC 51701,DSM 12931)、Desulfuromusakysingii Liesack & Finster(DSM 7343)、Pelobacter venetianus Schink & Stieb(DSM 2395)、Shewanella algae Shimidu et al.1990(NBRC 103173,IAM 14159,ATCC 51181)、Ferrimonas balearica Rossello−Mora et al.(DSM 9799)、Aeromonas hydrophila subsp.hydrophila(Chester)Stanier(DSM 30014)、Sulfurospirillum barnesii Stolz et al.(ATCC 700032,DSM 10660)、Wolinella succinogenes(Wolin et al.)Tanner et al.(DSM 1740,ATCC 29543)、Desulfovibrio desulfuricans subsp.desulfuricans(Beijerinck)Kluyver & van Niel(DSM 642,ATCC 29577)、Geothrix fermentans Coates et al.(ATCC 700665)、Deferribacter thermophilus Greene et al.(DSM 14813)、Thermotoga maritime Stetter & Huber(DSM 3109)等を挙げることができる。
<Iron-reducing bacteria>
Examples of the iron-reducing bacteria used in the leaching step 3 of the present invention include, for example, Geobacter metalliducens Lovely et al. (ATCC 53774, DSM 7210), Desulfomonas palmitatis Coates et al. (ATCC 51701, DSM 12931), Desulfuromusakisii Liesack & Finster (DSM 7343), Pelobacter venetianus Schin & Stieb (DSM 2395), Shewanella algae . 1990 (NBRC 103173, IAM 14159, ATCC 51181), Ferrimonas balearica Rossello-Mora et al. (DSM 9799), Aeromonas hydrophila subsp. hydrophila (Chester) Stanier (DSM 30014), Sulfurospirillum barnesii Stolz et al. (ATCC 700032, DSM 10660), Wolinella succinogenes (Wolin et al.) Tanner et al. (DSM 1740, ATCC 29543), Desulfovibrio desulfuricans subsp. desulfuricans (Beijerink) Kluyver & van Niel (DSM 642, ATCC 29777), Geotrix fermentans Coates et al. (ATCC 7000066), Deferibacter thermophilus Greene et al. (DSM 14813), Thermotoga maritime Stetter & Huber (DSM 3109).
 また、本発明では鉄還元古細菌を用いることも可能であり、鉄還元古細菌としては、例えば、Archaeoglobus fulgidus Stetter(ATCC 49558,DSM 4304)、Pyrococcus furiosus Fiala & Setter(ATCC 49587,DSM 3638)、Pyrodictium abyssi Pley and Stetter(ATCC 49828,DSM 6158)、Methanothermococcus thermolithotrophicus(Huber et al.)Whitman(DSM 2095,JCM 10549,ATCC 35097)等を挙げることができる。 In the present invention, iron-reducing archaea can also be used. Examples of iron-reducing archaea include Archaeoglobus fulgidus Stetter (ATCC 49558, DSM 4304), Pyrococcus furiosus Finala & Setter (ATCC 49587, DSM 36, 38). Pyrodictium abyssi Pley and Stetter (ATCC 49828 , DSM 6158), Methanothermococcus thermolithotrophicus (Huber et al.) Whitman (DSM 2095, JCM 10549, ATCC 35097) , and the like can be given.
 ここで、上記した鉄還元細菌、鉄還元古細菌について、各々の括弧内には菌株番号を記載しているが、これに限定されるものではない。
 また、上記菌種のシノニム等は上記菌種と同等のものであり、上記菌株が属する菌種も上記菌種と同等のものである。
 なお、本明細書においては、属名(アクロニムを含む。)および種小名によって菌種を特定する場合がある。
Here, for the iron-reducing bacteria and iron-reducing archaea described above, the strain number is described in parentheses, but the present invention is not limited to this.
Moreover, the synonyms of the above bacterial species are equivalent to the above bacterial species, and the bacterial species to which the above strain belongs are also equivalent to the above bacterial species.
In the present specification, the bacterial species may be specified by a genus name (including acronym) and a species name.
 上記において、菌株保存機関・施設の名称は、それぞれ、以下のものを表す。
 ATCC:American Type Culture Collection,Manassas,VA,USA
 DSM:Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH(DSMZ),Braunschweig,Germany
 NBRC:NITE Biological Resource Center,Chiba,Japan
[(独)製品評価技術基盤機構生物遺伝資源部門(NITEバイオロジカルリソースセンター)]
 JCM,IAM:Japan Collection of Microorganisms,RIKEN,Saitama,Japan
[(独)理化学研究所バイオリソースセンター微生物材料開発室(JCM)]
In the above, the names of strain storage institutions and facilities respectively represent the following.
ATCC: American Type Culture Collection, Manassas, VA, USA
DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Braunschweig, Germany
NBRC: NITE Biological Resource Center, Chiba, Japan
[National Biological Resource Center (NITE Biological Resource Center)]
JCM, IAM: Japan Collection of Microorganisms, RIKEN, Saitama, Japan
[RIKEN BioResource Center, Microbial Materials Development Office (JCM)]
 鉄還元細菌としては、屋外での取扱い易さの観点から、通性嫌気性細菌であることが好ましい。例えば、上記した菌種のうち、鉄還元細菌として記載されるものを挙げることができる。
 また、鉄還元細菌としては、屋外での取扱い易さの観点から、常温域で生育するものが好ましい。例えば、上記した菌種のうち、鉄還元細菌として記載されるもの(Geothrix fermentansおよびThermotoga maritimeを除く。)を挙げることができる。
 更に、鉄還元細菌としては、Geobacter metallireducensまたはShewanella algaeが好ましく、Shewanella algaeがより好ましい。
The iron-reducing bacteria are preferably facultative anaerobic bacteria from the viewpoint of ease of handling outdoors. For example, among the above bacterial species, those described as iron-reducing bacteria can be mentioned.
Moreover, as iron-reducing bacteria, those that grow in a normal temperature range are preferable from the viewpoint of easy handling outdoors. For example, among the above bacterial species, those described as iron-reducing bacteria (excluding Gethorix fermentans and Thermotoga maritime ) can be mentioned.
Furthermore, as an iron-reducing bacterium, Geobacter metallyreducens or Shewanella algae is preferable, and Shewanella algae is more preferable.
 鉄還元細菌の数は、特に限定されない。しかし、浸出速度・浸出効率をより高くする観点から、浸出工程時に、初期値として、処理液中に1.0×1013個/m以上含むことが好ましく、1.0×1013~1.0×1015個/m含むことがより好ましく、5.0×1013~2.0×1014個/m含むことがより一層好ましい。 The number of iron-reducing bacteria is not particularly limited. However, from the viewpoint of a higher leaching rate-leach efficiency, during the leaching step, as an initial value, preferably contains 1.0 × 10 13 atoms / m 3 or more in the treatment solution, 1.0 × 10 13 ~ 1 0.0 × 10 15 pieces / m 3 is more preferable, and 5.0 × 10 13 to 2.0 × 10 14 pieces / m 3 is further more preferable.
<3価鉄イオン>
 本発明の浸出工程3で用いる3価鉄イオンは、特に限定されない。しかし、上記3価鉄イオンは水溶性の3価鉄塩として処理液に添加することが好ましい。また、上記水溶性の3価鉄塩は、無機酸塩または有機酸塩であることが好ましい。
 上記無機酸塩としては、例えば、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(III)、等を挙げることができる。一方、上記有機酸塩としては、例えば、クエン酸鉄(III)、ギ酸鉄(III)、酢酸鉄(III)等を挙げることができる。
<Trivalent iron ion>
The trivalent iron ion used in the leaching step 3 of the present invention is not particularly limited. However, the trivalent iron ion is preferably added to the treatment liquid as a water-soluble trivalent iron salt. The water-soluble trivalent iron salt is preferably an inorganic acid salt or an organic acid salt.
As said inorganic acid salt, iron chloride (III), iron nitrate (III), iron sulfate (III), etc. can be mentioned, for example. On the other hand, examples of the organic acid salt include iron (III) citrate, iron (III) formate, and iron (III) acetate.
 3価鉄イオンの濃度は特に限定されないが、浸出速度・浸出効率をより高くする観点から、浸出工程時に、初期値として、処理液中に10mol/m以上含むことが好ましく、10~200mol/m含むことがより好ましく、25~100mol/m含むことが更により一層好ましい。 The concentration of trivalent iron ions is not particularly limited, but from the viewpoint of further increasing the leaching rate and leaching efficiency, it is preferable that the treatment liquid contains 10 mol / m 3 or more as an initial value during the leaching step. More preferably, m 3 is contained, and even more preferably 25 to 100 mol / m 3 is contained.
<電子供与体>
 電子供与体は、上記鉄還元細菌に対応して適宜選択することができる。例えば、鉄還元細菌がGeobacter metallireducensまたはShewanella algaeである場合には、電子供与体として有機物を使用することができる。
<Electron donor>
The electron donor can be appropriately selected according to the iron-reducing bacteria. For example, when the iron-reducing bacterium is Geobacter metalreducens or Shewanella algae , an organic substance can be used as an electron donor.
 上記有機物としては、例えば、炭素数1~7の有機物[カルボン酸塩(脂式カルボン酸塩(脂肪酸塩):蟻酸塩、酢酸塩等、芳香族カルボン酸塩:安息香酸塩等、オキソカルボン酸塩:ピルビン酸塩等、その他のカルボン酸塩:乳酸塩等)、アルコール(エタノール等)、不飽和芳香族(トルエンフェノール等)]等を挙げることができる。また、上記有機物としては、炭素、水素、酸素のほか、例えば、窒素、イオウ、その他の元素を含むものであってもよいことは云うまでもない。また、上記有機物としては、水溶性または水分散性のものに限定されず、水溶性でも水分散性でもない有機物の微粒子として含んでもよい。 Examples of the organic substance include organic substances having 1 to 7 carbon atoms [carboxylate (fatty carboxylate (fatty acid salt): formate, acetate, etc., aromatic carboxylate: benzoate, etc., oxocarboxylic acid, etc. Salt: pyruvate, etc., other carboxylates: lactate, etc.), alcohol (ethanol, etc.), unsaturated aromatic (toluenephenol, etc.)] and the like. Needless to say, the organic substance may contain, for example, nitrogen, sulfur and other elements in addition to carbon, hydrogen and oxygen. The organic material is not limited to water-soluble or water-dispersible materials, and may be contained as organic fine particles that are neither water-soluble nor water-dispersible.
 電子供与体の濃度は、特に限定されない。しかし、浸出工程時の初期値として100mol/m以上含有することが好ましい。 The concentration of the electron donor is not particularly limited. However, it is preferable to contain 100 mol / m 3 or more as an initial value in the leaching step.
<酸、アルカリ、pH調整剤>
 上記処理液4には、酸、アルカリ、pH調整剤からなる群から選ばれる一つ以上を添加して処理液4のpHを後述する所定のpHに調整することができる。
 上記酸は特に限定されず、例えば、塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸、乳酸、クエン酸、コハク酸、リンゴ酸等の有機酸を使用することができる。上記アルカリも特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、これらの水溶液等を使用することができる。また、上記pH調整剤も特に限定されず、例えば、炭酸カリウム、炭酸水素ナトリウム等を使用することができる。
<Acid, alkali, pH adjuster>
One or more selected from the group consisting of acids, alkalis, and pH adjusters can be added to the treatment liquid 4 to adjust the pH of the treatment liquid 4 to a predetermined pH described later.
The acid is not particularly limited, and for example, inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as formic acid, acetic acid, lactic acid, citric acid, succinic acid, and malic acid can be used. The alkali is not particularly limited, and for example, sodium hydroxide, potassium hydroxide, an aqueous solution thereof or the like can be used. Moreover, the said pH adjuster is also not specifically limited, For example, potassium carbonate, sodium hydrogencarbonate, etc. can be used.
<pH緩衝剤>
 浸出工程3では、反応の進行に従いpHが変化する可能性がある。そこで、上記pH調整剤および/またはpH緩衝剤を添加してpHを適宜調整、変動を抑えてもよい。
<PH buffering agent>
In the leaching step 3, the pH may change as the reaction proceeds. Therefore, the pH adjusting agent and / or pH buffering agent may be added to adjust the pH appropriately and suppress fluctuations.
 上記処理液4に添加するpH緩衝剤は、中性pH域で緩衝能を有するものであれば、特に限定されず、例えば、酢酸/酢酸ナトリウム、クエン酸/クエン酸ナトリウム、乳酸/乳酸ナトリウム、リン酸/リン酸ナトリウム、酒石酸/酒石酸ナトリウム、N−(2−アセトアミノ)−2−アミノエタンスルホン酸、N−(2−アセトアミノ)イミノ二酢酸、N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸、N,N−ビス(2−ヒドロキシエチル)グリシン、2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸、2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸ナトリウム、2−モルホリノエタンスルホン酸、2−ヒドロキシ−3−モルホリノプロパンスルホン酸、ピペラジン−1,4−ビス(2−エタンスルホン酸)、ピペラジン−1,4ビス(2−ヒドロキシ−3−プロパンスルホン酸)等を挙げることができる。 The pH buffer added to the treatment liquid 4 is not particularly limited as long as it has a buffering ability in a neutral pH range. For example, acetic acid / sodium acetate, citric acid / sodium citrate, lactic acid / sodium lactate, Phosphoric acid / sodium phosphate, tartaric acid / sodium tartrate, N- (2-acetamino) -2-aminoethanesulfonic acid, N- (2-acetamino) iminodiacetic acid, N, N-bis (2-hydroxyethyl)- 2-aminoethanesulfonic acid, N, N-bis (2-hydroxyethyl) glycine, 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid, 2- [4- (2-hydroxyethyl) ) -1-piperazinyl] ethanesulfonic acid sodium, 2-morpholinoethanesulfonic acid, 2-hydroxy-3-morpholinopropanesulfonic acid Piperazine-1,4-bis (2-ethanesulfonic acid), can be mentioned piperazine-1,4-bis (2-hydroxy-3-propanesulfonic acid) and the like.
 上記処理液4に添加するpH緩衝剤としては、上記電子供与体としても機能し得るのを使用することができる。例えば、鉄還元細菌がShewanella algaeである場合、乳酸/乳酸ナトリウム等は、pH緩衝剤として機能し得ると同時に電子供与体としても機能し得る。また、上記処理液4に添加するpH緩衝剤としては、被処理物1から浸出させたマンガンイオンと錯体を形成し得るものを使用することができる。例えば、クエン酸/クエン酸ナトリウム等は、Mn2+と錯体を形成し得る。 The pH buffering agent to be added to the treatment solution 4, can also be used for the can also function as the electron donor. For example, when the iron-reducing bacterium is Shewanella algae , lactic acid / sodium lactate and the like can function as a pH buffer and at the same time as an electron donor. Moreover, as a pH buffer agent added to the said process liquid 4, what can form a complex with the manganese ion leached from the to-be-processed object 1 can be used. For example, citric acid / sodium citrate or the like can form a complex with Mn 2+ .
 なお、上記pH緩衝剤は、本発明の目的を害せず、かつ、pH緩衝作用を損なわない範囲で、1種類を単独でまたは2種類以上を組み合わせて、任意の含有量で、使用することができる。 In addition, the said pH buffering agent should be used by arbitrary content in the range which does not impair the objective of this invention, and does not impair pH buffering effect individually or in combination of 2 or more types. Can do.
<pH>
 本発明で使用する鉄還元細菌は、菌種または菌株によって若干の相違はあるものの、生育至適pHが中性pH域にある。しかしながら、浸出工程3において、反応の進行に伴い処理液4のpHは変動する可能性がある。
 したがって、上記処理液4のpHは、7.0近辺であれば、特に限定されない。しかし、処理液4のpHが変動する場合には、5.0以上9.0以下、好ましくは6.0以上8.0以下、さらに好ましくは6.5以上7.5以下に制御することで、効率のよい浸出が達成できる。
<PH>
Although iron-reducing bacteria used in the present invention have some differences depending on the species or strain, the optimum growth pH is in the neutral pH range. However, in the leaching step 3, the pH of the treatment liquid 4 may vary as the reaction proceeds.
Therefore, the pH of the treatment liquid 4 is not particularly limited as long as it is around 7.0. However, when the pH of the treatment liquid 4 varies, it is controlled to 5.0 or more and 9.0 or less, preferably 6.0 or more and 8.0 or less, and more preferably 6.5 or more and 7.5 or less. Efficient leaching can be achieved.
 また、回収マンガンの用途によっては、該マンガン中の不純物を極力低減することが要求される。例えば、回収マンガンを製鋼原料として使用する場合には、銑鋼への炭素、リンの混入を防ぐために、高純度な回収マンガンが求められる。 Also, depending on the use of recovered manganese, it is required to reduce impurities in the manganese as much as possible. For example, when using recovered manganese as a steelmaking raw material, high purity recovered manganese is required to prevent carbon and phosphorus from being mixed into the steel.
 本発明のマンガン回収方法において、最終的に回収されるマンガン中の炭素濃度およびリン濃度を低減するうえでは、上記処理液4を、炭素濃度およびリン濃度を制限した処理液とすることが好ましい。つまり、鉄還元細菌を添加する前の処理液の組成において炭素濃度およびリン濃度がある値以下となるような組成にすることが好ましい。
 高純度なマンガン酸化物を得るためには、上記処理液4の鉄還元細菌を添加する前の炭素濃度を300mM以下、リン濃度を0.5mM以下とすることが好ましい。また、炭素濃度を270mM以下、リン濃度を0.16mM以下とすることがより好ましい。
In the manganese recovery method of the present invention, in order to reduce the carbon concentration and phosphorus concentration in the finally recovered manganese, it is preferable that the treatment liquid 4 is a treatment liquid in which the carbon concentration and the phosphorus concentration are limited. That is, it is preferable that the composition of the treatment solution before adding the iron-reducing bacteria is such that the carbon concentration and phosphorus concentration are below certain values.
In order to obtain high-purity manganese oxide, it is preferable that the carbon concentration before adding the iron-reducing bacteria in the treatment solution 4 is 300 mM or less and the phosphorus concentration is 0.5 mM or less. More preferably, the carbon concentration is 270 mM or less and the phosphorus concentration is 0.16 mM or less.
 但し、上記炭素濃度およびリン濃度を極端に低減すると、鉄還元細菌の生育が阻害され、マンガン浸出率に悪影響を及ぼす。したがって、上記炭素濃度を100mM以上、リン濃度を0.05mM以上とすることが好ましい。 However, if the carbon concentration and phosphorus concentration are extremely reduced, the growth of iron-reducing bacteria is inhibited and the manganese leaching rate is adversely affected. Therefore, it is preferable that the carbon concentration is 100 mM or more and the phosphorus concentration is 0.05 mM or more.
 以上のような処理液4を用いて浸出工程3を実施する場合には、酸素を遮断した状態で被処理物1と処理液4を接触・混合させる。酸素が存在すると、上記鉄還元細菌が3価鉄から2価鉄への還元反応を行なわなくなることが懸念されるためである。また、処理液4の温度は、10~35℃に保持することが好ましい。なお、浸出時間は、浸出条件により変動するが、通常24~72時間である。 When the leaching process 3 is performed using the treatment liquid 4 as described above, the workpiece 1 and the treatment liquid 4 are contacted and mixed in a state where oxygen is blocked. This is because when oxygen is present, there is a concern that the iron-reducing bacteria will not perform a reduction reaction from trivalent iron to divalent iron. The temperature of the treatment liquid 4 is preferably maintained at 10 to 35 ° C. The leaching time varies depending on the leaching conditions, but is usually 24 to 72 hours.
 以上のように、被処理物1と鉄還元細菌と3価鉄イオンを含む処理液4を混合すると、処理液4中の3価鉄イオンは鉄還元細菌によって還元されて2価鉄イオンとなる。この2価鉄イオンが被処理物1に対して還元剤として作用し、2価鉄が3価鉄に酸化されるとともに被処理物1中のマンガンが処理液4中に浸出し、マンガンイオンと3価鉄イオン、或いは更に未反応の2価鉄イオンを含む浸出スラリー(浸出液)5が得られる。浸出工程3で得られた浸出スラリー(浸出液)5は、固液分離工程6に送られる。 As described above, when the treatment object 1, the iron-reducing bacteria, and the treatment liquid 4 containing trivalent iron ions are mixed, the trivalent iron ions in the treatment liquid 4 are reduced by the iron-reducing bacteria to become divalent iron ions. . The divalent iron ions act as a reducing agent to the object to be processed 1, divalent iron is 3 is oxidized to ferric in Rutotomoni treatment object in one manganese leach into the processing solution 4, and manganese ions A leaching slurry (leaching solution) 5 containing trivalent iron ions or unreacted divalent iron ions is obtained. The leaching slurry (leaching solution) 5 obtained in the leaching step 3 is sent to the solid-liquid separation step 6.
 固液分離工程6では、上記浸出スラリー(浸出液)5を固液分離する。
 固液分離工程6で、上記浸出スラリー(浸出液)5を固液分離すると、上澄み成分であるマンガン成分含有浸出液(分離液)10と残渣(固形物)7が得られる。
 固液分離工程6に用いる固液分離手段は、重力沈降分離、ろ過、遠心分離、フィルタプレス、膜分離などから選ばれる任意の手段とする。また、浸出スラリー5の固形物濃度が高い場合は、フィルタプレスを用いることが好ましい。
In the solid-liquid separation step 6, the leaching slurry (leaching liquid) 5 is subjected to solid-liquid separation.
When the leaching slurry (leaching liquid) 5 is subjected to solid-liquid separation in the solid-liquid separation step 6, a manganese component-containing leachate (separation liquid) 10 and a residue (solid matter) 7 which are supernatant components are obtained.
The solid-liquid separation means used in the solid-liquid separation step 6 is any means selected from gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation and the like. Moreover, when the solid substance concentration of the leaching slurry 5 is high, it is preferable to use a filter press.
 マンガン成分含有浸出液(分離液)10には、主としてマンガンイオンと鉄イオン(3価鉄イオン、或いは更に2価鉄イオン)が含まれている。また、残渣(固形物)7には、主として鉄還元細菌と、被処理物1のマンガン以外の固形性成分が含まれている。
 次いで、マンガン成分含有浸出液(分離液)10は、不溶化工程11に移行される。一方、残渣(固形物)7には、多くの鉄還元細菌が含まれているため、一部を返送残渣9として浸出工程3に返送するとともに、一部を未反応残渣8として回収する(図2(a)参照)。
The manganese component-containing leachate (separation liquid) 10 mainly contains manganese ions and iron ions (trivalent iron ions or further divalent iron ions). Further, the residue (solid matter) 7 mainly contains iron-reducing bacteria and solid components other than manganese of the object 1 to be processed.
Next, the manganese component-containing leachate (separation liquid) 10 is transferred to the insolubilization step 11. On the other hand, since the residue (solid matter) 7 contains many iron-reducing bacteria, a part thereof is returned to the leaching step 3 as a return residue 9 and a part is recovered as an unreacted residue 8 (FIG. 2 (a)).
 不溶化工程11では、固液分離工程6で得られたマンガン成分含有浸出液(分離液)10に所定の不溶化処理を施し、マンガン成分含有浸出液(分離液)10のpHと酸化還元電位(ORP)を、マンガンは酸化物として不溶化(固形物化)・沈澱するが、鉄は沈殿しない領域、即ち、Eh−pH図(図1)において、○で囲った領域のpHと酸化還元電位(ORP)に調整する。これにより、マンガン成分含有浸出液10に溶解していたマンガンが優先的に不溶化して固体となる。この不溶化工程11は、マンガン成分含有浸出液(分離液)10に酸性条件下でオゾンを作用させる工程とすることが好ましく、例えば、マンガン成分含有浸出液(分離液)10に、酸12を添加したのち、オゾン発生装置13によりオゾンを散気することが好ましい。すなわち、酸12の添加によりマンガン成分含有浸出液(分離液)10のpHを調整するともに、オゾン散気によりマンガン成分含有浸出液(分離液)10の酸化還元電位(ORP)を調整することで、マンガン成分含有浸出液10のpHと酸化還元電位(ORP)を、マンガン酸化物として固形物化、沈澱するが、鉄は沈殿しない領域、即ち、Eh−pH図(図1)において、○で囲った領域のpHと酸化還元電位(ORP)に調整することが好ましい。 In the insolubilization step 11, the manganese component-containing leachate (separation solution) 10 obtained in the solid-liquid separation step 6 is subjected to a predetermined insolubilization process, and the pH and oxidation-reduction potential (ORP) of the manganese component-containing leachate (separation solution) 10 are set. Manganese is insolubilized (solidified) and precipitated as an oxide, but iron is not precipitated, that is, adjusted to pH and redox potential (ORP) in the region surrounded by circles in the Eh-pH diagram (Fig. 1). To do. Thereby, the manganese dissolved in the manganese component-containing leachate 10 is preferentially insolubilized and becomes a solid. This insolubilization step 11 is preferably a step in which ozone is allowed to act on the manganese component-containing leachate (separation solution) 10 under acidic conditions. For example, after adding the acid 12 to the manganese component-containing leachate (separation solution) 10, It is preferable that ozone is diffused by the ozone generator 13. That is, by adjusting the pH of the manganese component-containing leachate (separate) 10 by adding acid 12, and adjusting the oxidation-reduction potential (ORP) of the manganese component-containing leachate (separate) 10 by ozone aeration, region pH and redox potential of the ingredient-containing leachate 10 (ORP), manganese solids as oxides Monoka, although precipitation region iron does not precipitate, i.e., the Eh-pH diagram (Figure 1), enclosed in ○ The pH and the redox potential (ORP) are preferably adjusted.
 Eh−pH線図としては、例えば、
Pourbaix,M.Atlas of electrochemical equilibria in aqueous solutions.National Association of Corrosion Engineers.(1974)644p.に記載のものを用いることができる。
As an Eh-pH diagram, for example,
Pourbaix, M .; Atlas of electrochemical equilibria in aquatic solutions. National Association of Corrosion Engineers. (1974) 644 p. Can be used.
 図1から明らかであるように、Fe、Mn共に、固形物化する領域は溶液中の各成分の濃度により変動する。例えば、溶液中Fe濃度が0.05Mで、溶出したMnの溶液中Mn濃度が0.1Mであった場合には、図1において、Feは10Mと10−2Mの線の間の、10−2M寄りの境界(図1の線*1)を基準にし、Mnは10Mと10−2Mの線の中間を境界(図1、線*2)として考えればよい。
 この場合、図1において、マンガンが酸化物として固形物化・沈澱する領域(図1中、○で囲った領域)のpHと酸化還元電位(ORP)は、図1のとおり、おおよそ「pH:0.1以上2.2未満」、「酸化還元電位(ORP):約+0.9V以上+1.2V以下」であることが好ましいと判る。
As is apparent from FIG. 1, the region where both Fe and Mn are solidified varies depending on the concentration of each component in the solution. For example, when the Fe concentration in the solution is 0.05 M and the Mn concentration in the solution of the eluted Mn is 0.1 M, in FIG. 1, Fe is between the lines of 10 0 M and 10 −2 M. Based on the boundary near 10 −2 M (line * 1 in FIG. 1), Mn may be considered as the boundary (line * 2 in FIG. 1) between the lines of 10 0 M and 10 −2 M.
In this case, in FIG. 1, the pH and oxidation-reduction potential (ORP) of the region where manganese solidifies and precipitates as an oxide (the region surrounded by circles in FIG. 1) are approximately “pH: 0” as shown in FIG. 0.1 to less than 2.2 "and" Oxidation-reduction potential (ORP): about +0.9 V or more and +1.2 V or less ".
 また図1は水温25℃の時のものであるが、水温が異なる場合には、温度補正を行えばよい。補正の方法としては、公知の方法(例えば、Van’t Hoffの式による平衡乗数の補正など)で行えばよい。
 したがって、固液分離工程6で得られたマンガン成分含有浸出液(分離液)10が、上記FeおよびMn濃度の場合には、この溶液に酸12を添加してpHを2.2未満に下げ、次いでオゾンを散気して酸化還元電位(ORP)を+0.9V以上に上昇させることで、マンガンが酸化物として固形物化し、沈澱させることが可能になる。
Further, FIG. 1 shows a case where the water temperature is 25 ° C., but if the water temperature is different, temperature correction may be performed. As a correction method, a known method (for example, correction of an equilibrium multiplier by the Van't Hoff equation) may be performed.
Therefore, in the case where the manganese component-containing leachate (separation liquid) 10 obtained in the solid-liquid separation step 6 has the above Fe and Mn concentrations, acid 12 is added to this solution to lower the pH to less than 2.2, Next, ozone is diffused to raise the oxidation-reduction potential (ORP) to +0.9 V or more, whereby manganese becomes a solid as an oxide and can be precipitated.
 上記酸12は、一般的な酸でよく、硫酸、硝酸、塩酸、その他の酸を用いることができる。また、オゾンの散気量としては、酸化還元電位(ORP)を観察しながらオゾンを散気し、酸化還元電位(ORP)が所定値(例えば、マンガン含有浸出液の温度が25℃であり、該浸出液中のFe、Mn濃度がそれぞれFe:0.05M、Mn:0.1Mである場合、+1V以上)となるように調整することが好ましい。なお、オゾンの必要量は、装置形状や散気時の気泡径などによって変化するため、コスト等を比較し、最も効率のよい方法を選択すればよい。 The acid 12 may be a general acid, and sulfuric acid, nitric acid, hydrochloric acid, and other acids can be used. As the amount of ozone diffused, ozone was diffused while observing the oxidation-reduction potential (ORP), and the oxidation-reduction potential (ORP) was a predetermined value (for example, the temperature of the manganese-containing leachate was 25 ° C., It is preferable to adjust so that the Fe and Mn concentrations in the leachate are +1 V or more when Fe: 0.05M and Mn: 0.1M, respectively. In addition, since the required amount of ozone varies depending on the shape of the apparatus and the bubble diameter at the time of air diffusion, the most efficient method may be selected by comparing costs and the like.
 なお、上記不溶化工程11では、マンガンの酸化により生成するマンガン酸化物によって、不溶化処理中(すなわちオゾン散気処理中)のマンガン成分含有浸出液(分離液)10が黒色となり、マンガン酸化反応進行状態を目視により判別することが困難となる。不溶化工程11におけるマンガン酸化反応が不十分な場合には、マンガンイオンが固形物として沈殿せず、マンガン回収率の悪化を招く。 In the insolubilization step 11, the manganese component-containing leachate (separated liquid) 10 during the insolubilization process (that is, during the ozone aeration process) becomes black due to the manganese oxide generated by the oxidation of manganese, and the progress of the manganese oxidation reaction progresses. It becomes difficult to distinguish visually. When the manganese oxidation reaction in the insolubilization process 11 is inadequate, manganese ion does not precipitate as a solid substance and causes a deterioration in manganese recovery rate.
 一方、マンガン酸化反応が過剰になると、一度生成したマンガン酸化物が、過酸化物のイオンとなって再溶解してしまい、酸化不足の場合と同様に結果としてマンガン回収率が悪化する。その理由について本発明者らが検討した結果、マンガン酸化反応が過剰になると、固形物となったマンガンの酸化物が更に酸化され、過酸化マンガンのイオンとなって溶液中に再溶解してしまうためであることを見出した。 On the other hand, if the manganese oxidation reaction becomes excessive, the manganese oxide once generated becomes peroxide ions and redissolves, resulting in a deterioration in manganese recovery rate as in the case of insufficient oxidation. As a result of the study by the present inventors on the reason, when the manganese oxidation reaction is excessive, the solid oxide of manganese is further oxidized and becomes manganese peroxide ions and redissolved in the solution. Because of that.
 図1において、マンガンの過酸化物(図1中の最上部、MnO という物質)が主たる存在になるORPは、pH2でも+1.6V付近であり、通常、このようなORPの上昇は観察されない。しかし、マンガン酸化反応が過剰になると、一部のマンガン酸化物がオゾンの作用により過酸化物となることが分かった。また、過酸化物が生成するのは、マンガンがほぼ全て酸化物として固形物化した後であることも分かった。 In FIG. 1, the ORP in which manganese peroxide (the uppermost part in FIG. 1, the substance called MnO 4 ) is mainly present is around +1.6 V even at pH 2. Usually, such an increase in ORP is observed. Not. However, it was found that when the manganese oxidation reaction becomes excessive, some manganese oxides become peroxides due to the action of ozone. It was also found that peroxide was formed after almost all manganese was solidified as an oxide.
 これらの事実から、マンガン酸化反応の終点の見極めが必要になる。しかしマンガン酸化反応の終点を反応時間で管理しようとしても、バイオリーチングなどで得られたマンガン成分含有浸出液(分離液)10などの場合には、浸出液毎に溶液の組成が異なっていることもあり、必ずしも同じ反応時間で同じ回収率が得られるとは限らない。また、酸化還元電位(ORP)による制御を考えた場合にも同様の問題が生じ、明確な反応終点の確認は困難である。 From these facts, it is necessary to determine the end point of the manganese oxidation reaction. However, even if the end point of the manganese oxidation reaction is controlled by the reaction time, in the case of a manganese component-containing leachate (separation liquid) 10 obtained by bioleaching or the like, the composition of the solution may differ for each leachate. However, the same recovery rate is not always obtained in the same reaction time. In addition, when the control by the oxidation-reduction potential (ORP) is considered, the same problem occurs, and it is difficult to confirm a clear reaction end point.
 一方、過酸化マンガンイオンを含む溶液は赤紫色を呈する。したがって、溶液中におけるマンガンの過酸化物の生成は、溶液の色を観察することで容易に判別できる。ただし、前述のように、不溶化処理中において、マンガン成分含有浸出液(分離液)10のようなマンガン酸化物(固形物)微粒子の共存下では、溶液全体がマンガン酸化物の色である黒色になってしまい、溶液の変色を判別できない。しかし、不溶化処理中のマンガン成分含有浸出液(分離液)10からマンガン酸化物を分離すれば、浸出液の色の変化を観察することが可能となり、延いてはマンガンの過酸化物の生成を判別することが可能となる。 On the other hand, the solution containing manganese peroxide ions is reddish purple. Therefore, the formation of manganese peroxide in the solution can be easily determined by observing the color of the solution. However, as described above, during the insolubilization treatment, in the presence of manganese oxide (solid matter) fine particles such as the manganese component-containing leachate (separation liquid) 10, the entire solution becomes black, which is the color of manganese oxide. The discoloration of the solution cannot be determined. However, if manganese oxide is separated from the manganese component-containing leachate (separation liquid) 10 during the insolubilization treatment, it is possible to observe the color change of the leachate, and thus determine the formation of manganese peroxide. It becomes possible.
 したがって、実際の運用では、オゾンによる不溶化工程11において、不溶化処理中のマンガン成分含有浸出液(分離液)10を定期的または連続的に取り出し、取り出した液からマンガン酸化物を分離し、溶液自体の色を観察してマンガンイオンの酸化反応終点を見極めることが好ましい。具体的には、不溶化処理中のマンガン成分含有浸出液(分離液)10を取り出し、取り出した液から、固形物であるマンガン酸化物をろ過、もしくは、静置して沈降させるなどして分離し、ろ液もしくは上澄液の色を観察し、その色が淡赤色に変色した時点をマンガン酸化反応の終点とし、不溶化工程11を終了すれば、マンガン回収率を最大にすることが可能となる。
 また、コストや設置スペース等の関係において許されるのであれば、上澄液を吸光光度計にて測定を行うことにより、より客観的な評価が可能となる。過酸化マンガンイオンは525−545nm付近に最大吸収波長を持っているため、過酸化マンガンイオンの生成により525−545nm付近の波長での吸光度が急激に増大する。これにより上澄液の着色、反応終点を客観的に決定できる。
 実際の運用においては、オゾン酸化反応前の溶液について予め525−545nm付近の吸光度を測定しておき、この吸光度を1とした場合の吸光度の上昇倍率から、上澄液の着色および反応の終点を決定すればよい。
Therefore, in actual operation, in the insolubilization step 11 with ozone, the manganese component-containing leachate (separation liquid) 10 during the insolubilization treatment is taken out periodically or continuously, manganese oxide is separated from the taken-out liquid, and the solution itself It is preferable to determine the end point of the oxidation reaction of manganese ions by observing the color. Specifically, the manganese component-containing leachate (separation liquid) 10 during the insolubilization process is taken out and separated from the taken-out liquid by filtering or standing still to settle the manganese oxide, By observing the color of the filtrate or the supernatant and changing the color of the filtrate to light red as the end point of the manganese oxidation reaction and ending the insolubilization step 11, the manganese recovery rate can be maximized.
Further, if it is allowed in relation to cost, installation space, etc., more objective evaluation can be performed by measuring the supernatant with an absorptiometer. Since manganese peroxide ions have a maximum absorption wavelength near 525-545 nm, the absorbance at wavelengths near 525-545 nm increases rapidly due to the generation of manganese peroxide ions. Thereby, the coloring of the supernatant and the reaction end point can be objectively determined.
In actual operation, the absorbance near 525-545 nm is measured in advance for the solution before the ozone oxidation reaction, and the coloration of the supernatant and the end point of the reaction are determined from the increase in absorbance when this absorbance is 1. Just decide.
 上記のようにしてマンガンイオンの酸化反応終点を見極める場合には、不溶化工程11において、例えば図2(b)に示すように分離・観察槽19を設けることができる。このような場合、例えば不溶化工程11の反応槽(図示せず)から不溶化処理中のマンガン成分含有浸出液(分離液)10を少量、定期的または連続的に分離・観察槽19に取り出し、取り出した液を静置してマンガン酸化物を沈澱分離し、上澄液の色(すなわち溶液自体の色)を観察する。観察後は、マンガン回収率をあげるため、上澄液および沈澱分離したマンガン酸化物を不溶化工程11の反応槽に戻してもよい。ただし、上澄液および/またはマンガン酸化物を反応槽に戻す操作は必須ではない。このような作業を、マンガンイオンの酸化反応終点が確認されるまで(すなわち、上澄液が淡赤色に変化するまで)繰り返し実施すればよい。 In the case of determining the end point of the oxidation reaction of manganese ions as described above, in the insolubilization step 11, for example, a separation / observation tank 19 can be provided as shown in FIG. In such a case, for example, a small amount of the manganese component-containing leachate (separation liquid) 10 during the insolubilization process is taken out from the reaction tank (not shown) in the insolubilization step 11 to the separation / observation tank 19 periodically or continuously. The liquid is allowed to stand to precipitate and separate the manganese oxide, and the color of the supernatant (that is, the color of the solution itself) is observed. After the observation, the supernatant and the precipitated manganese oxide may be returned to the reaction tank of the insolubilization step 11 in order to increase the manganese recovery rate. However, the operation of returning the supernatant and / or manganese oxide to the reaction vessel is not essential. Such an operation may be repeated until the end point of the oxidation reaction of manganese ions is confirmed (that is, until the supernatant turns light red).
 なお、上記では、分離・観察槽19において、不溶化処理中のマンガン成分含有浸出液(分離液)10を少量取り出して静置することでマンガン酸化物を沈澱分離する方法について説明した。しかし、本発明では、上記した沈澱分離による方法に限らず、他の方法により不溶化処理中のマンガン成分含有浸出液(分離液)10とマンガン酸化物とを分離してもよい。例えば、分離・観察槽19において、取り出した液をろ過し、ろ液の色を観察してマンガンイオンの酸化反応終点を見極めるようにしてもよい。このような場合には、観察後、マンガン回収率をあげるため、ろ液および/またはろ過により分離したマンガン酸化物を不溶化工程11の反応槽に戻してもよい。ただし、ろ液および/またはマンガン酸化物を反応槽に戻す操作は必須ではない。 In the above description, the method for precipitating and separating manganese oxide by removing a small amount of the manganese component-containing leachate (separation solution) 10 during the insolubilization treatment and leaving it in the separation / observation tank 19 has been described. However, in this invention, you may isolate | separate the manganese component containing leaching liquid (separation liquid) 10 and manganese oxide in the insolubilization process not only by the method by the precipitation separation mentioned above but by other methods. For example, in the separation / observation tank 19, the extracted liquid may be filtered, and the color of the filtrate may be observed to determine the manganese ion oxidation reaction end point. In such a case, the manganese oxide separated by filtration and / or filtration may be returned to the reaction tank of the insolubilization step 11 in order to increase the manganese recovery rate after observation. However, the operation of returning the filtrate and / or manganese oxide to the reaction vessel is not essential.
 また、不溶化処理中のマンガン成分含有浸出液(分離液)10を取り出してその色を観察するに際しては、取り出した溶液とマンガン酸化物とを必ずしも完全に分離する必要はない。すなわち、両者の分離状態は、取り出した溶液自体の色が観察できる程度であってもよい。 Further, when the manganese component-containing leachate (separation solution) 10 being insolubilized is taken out and the color thereof is observed, it is not always necessary to completely separate the taken-out solution and the manganese oxide. That is, the separation state of both may be such that the color of the taken out solution itself can be observed.
 以上の工程により、マンガン成分含有浸出液(分離液)10に溶解していたマンガンが優先的に不溶化して固体となり、鉄イオン(3価鉄イオン、或いは更に2価鉄イオン)の殆どはマンガン成分含有浸出液(分離液)10に溶解した状態となる。続く回収工程14では、不溶化工程11後の分離液10を固液分離することで、濃縮された高濃度のマンガン酸化物15が回収される。なお、固液分離する際に用いる固液分離手段は、重力沈降分離、ろ過、遠心分離、フィルタプレス、膜分離などから選ばれる任意の手段とすることができる。 Through the above steps, manganese dissolved in the manganese component-containing leachate (separation liquid) 10 is preferentially insolubilized to become a solid, and most of the iron ions (trivalent iron ions or even divalent iron ions) are manganese components. It will be in the state melt | dissolved in the containing leachate (separation liquid) 10. FIG. In the subsequent recovery step 14, the concentrated high concentration manganese oxide 15 is recovered by solid-liquid separation of the separation liquid 10 after the insolubilization step 11. The solid-liquid separation means used for the solid-liquid separation can be any means selected from gravity sedimentation separation, filtration, centrifugation, filter press, membrane separation, and the like.
 一方、マンガン酸化物15が回収された回収後分離液10aには、鉄イオン(3価鉄イオン、或いは更に2価鉄イオン)が豊富に含まれている。そのため、本発明では、回収後分離液10aを中和工程16で中和し、これを浸出工程3で用いる処理液4として再利用することができる。
 中和工程16に送られた回収後分離液10aは、アルカリ18によって中和される。中和のために用いるアルカリ18は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられる。しかし、これらに限定されるものではない。また、中和工程16では、塩などの濃縮を防ぐ目的で、一部をブロー水17として系外に引き抜くことが好ましい。
On the other hand, the post-recovery separation liquid 10a from which the manganese oxide 15 has been recovered is rich in iron ions (trivalent iron ions or even divalent iron ions). Therefore, in the present invention, the post-recovery separation liquid 10a can be neutralized in the neutralization step 16 and reused as the treatment liquid 4 used in the leaching step 3.
The post-recovery separation liquid 10 a sent to the neutralization step 16 is neutralized by the alkali 18. Examples of the alkali 18 used for neutralization include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, and sodium bicarbonate. However, it is not limited to these. Moreover, in the neutralization process 16, it is preferable to draw a part out of the system as blow water 17 for the purpose of preventing the concentration of salts and the like.
 中和工程16を経た回収後分離液10aは、その後、浸出工程3の処理液4に混合される。すると、回収後分離液10a中の3価鉄イオンは、処理液4に含まれている鉄還元細菌により2価鉄イオンに還元され、該2価鉄イオンが被処理物1の還元剤として作用することになる。3価鉄イオンを含む処理液4に被処理物1と鉄還元細菌を混合する本発明によると、回収工程14の後工程として中和工程16を設け、中和した回収後分離液10aを浸出工程3の処理液4に混合する簡便な処理によって、処理液を再利用することができる。なお、中和工程16を経た回収後分離液10aを浸出工程3の処理液4に混合するに際しては、鉄分以外の培地成分が微生物によって消費され減少しているため、必要に応じて新規の処理液を追加することができる。 The post-recovery separation liquid 10a that has passed through the neutralization step 16 is then mixed with the treatment liquid 4 in the leaching step 3. Then, the trivalent iron ions in the separation liquid 10a after recovery are reduced to divalent iron ions by the iron reducing bacteria contained in the treatment liquid 4, and the divalent iron ions act as a reducing agent for the object 1 to be processed. Will do. According to the present invention in which the treatment object 4 and iron-reducing bacteria are mixed with the treatment liquid 4 containing trivalent iron ions, a neutralization step 16 is provided as a subsequent step of the recovery step 14, and the neutralized post-recovery separation liquid 10a is leached. The processing liquid can be reused by a simple process of mixing with the processing liquid 4 in step 3. In addition, when mixing the separation liquid 10a after recovery after the neutralization step 16 with the treatment liquid 4 of the leaching step 3, medium components other than iron are consumed and reduced by microorganisms, so that a new treatment is performed as necessary. Liquid can be added.
 以上のように、鉄還元細菌を作用させることで3価鉄を2価鉄に還元し、該2価鉄を用いてマンガンを含む被処理物を還元すると、被処理物に含まれるマンガンを短時間でしかも安価かつ簡便に浸出させることができる。また、マンガンが浸出した浸出液から残渣を分離し、分離後の浸出液を酸性条件下でオゾンを作用させることにより、主にマンガンを優先的に不溶化させてマンガン酸化物として沈殿分離してマンガンを回収するとともに、沈澱を分離した後の(例えば上澄みとして)残った浸出液を繰り返し使用することができる。 As described above, when iron-reducing bacteria are allowed to act to reduce trivalent iron to divalent iron and reduce the object to be treated containing manganese using the divalent iron, the manganese contained in the object to be treated is reduced. It can be leached in time and at low cost. In addition, the residue is separated from the leachate from which manganese has been leached, and the separated leachate is treated with ozone under acidic conditions, so that manganese is preferentially insolubilized and precipitated as manganese oxide to recover manganese. In addition, the leachate remaining after separating the precipitate (eg, as a supernatant) can be used repeatedly.
 すなわち、浸出工程3で用いる処理液4を、3価鉄イオンを含む処理液とし、これに被処理物および鉄還元細菌を混合すると、先ず鉄還元細菌が処理液中の3価鉄イオンを還元し、前記(ii)の反応(Fe3++e→Fe2+)により2価鉄が生成する。次いで、浸出工程3において、前記(i)の反応(Fe2++(「Mn酸化物、水酸化物など」または「たとえばMnO、Mn、Mn」)→Fe3++Mn2+)によりマンガンイオンと3価鉄イオンが生成し、マンガンイオンと3価鉄イオンを含有する浸出液(浸出スラリー)5が得られる。更に、浸出液(浸出スラリー)5を固液分離し、固液分離後の分離液10からマンガンを回収し、回収後分離液10aを中和し、これを浸出工程3で用いる処理液4に混合すると、処理液4中の鉄還元細菌がマンガン回収分離液10a中の3価鉄イオンを還元し、前記(ii)の反応(Fe3++e→Fe2+)により2価鉄イオンが生成する。上記(i)および(ii)の反応を繰り返すことにより、マンガンを回収するとともに浸出液を再利用することができる。 That is, when the treatment liquid 4 used in the leaching step 3 is a treatment liquid containing trivalent iron ions, and an object to be treated and iron-reducing bacteria are mixed therewith, first, the iron-reducing bacteria reduce the trivalent iron ions in the treatment liquid. Then, divalent iron is generated by the reaction (Fe 3+ + e → Fe 2+ ) of (ii). Next, in the leaching step 3, the reaction (i) (Fe 2+ + (“Mn oxide, hydroxide, etc.” or “MnO 2 , Mn 2 O 3 , Mn 3 O 4 ”)) → Fe 3+ + Mn 2+ ) Produces manganese ions and trivalent iron ions, and a leaching solution (leaching slurry) 5 containing manganese ions and trivalent iron ions is obtained. Further, the leachate (leaching slurry) 5 is solid-liquid separated, manganese is recovered from the separated liquid 10 after solid-liquid separation, and after the separation, the separated liquid 10a is neutralized and mixed with the treatment liquid 4 used in the leaching step 3. Then, iron-reducing bacteria in the treatment liquid 4 reduce trivalent iron ions in the manganese recovery / separation liquid 10a, and divalent iron ions are generated by the reaction (Fe 3+ + e → Fe 2+ ). By repeating the reactions (i) and (ii) above, manganese can be recovered and the leachate can be reused.
 このように、浸出工程3で用いる処理液4を、3価鉄イオンを含む処理液とし、これにマンガンを含有する被処理物と鉄還元細菌を混合して被処理物からマンガンイオンを浸出させる方法を採用すると、マンガンの回収工程14後の浸出液10aを、中和工程16で中和したのち、特別の処置を講ずることなく浸出工程3の処理液4に混合することができる。 As described above, the treatment liquid 4 used in the leaching step 3 is a treatment liquid containing trivalent iron ions, and the treatment object containing manganese and iron-reducing bacteria are mixed with the treatment liquid 4 so that manganese ions are leached from the treatment object. When the method is employed, the leachate 10a after the manganese recovery step 14 can be neutralized in the neutralization step 16, and then mixed with the treatment liquid 4 in the leach step 3 without taking any special measures.
 以下、実施例により本発明を説明するが、本発明はかかる実施例に限定されるものではない。
1)鉄還元細菌によるマンガンの浸出
 以下に示す鉄還元細菌、処理液、マンガンを含有する被処理物を用いて実施した。
<鉄還元細菌>
 Shewanella algae NBRC 103173株
 (NITEバイオロジカルリソースセンター)
<処理液>
 表4の配合成分を有する溶液に、上記鉄還元細菌を添加した処理液。
 溶液量と鉄還元細菌の濃度は以下のとおりである。
 溶液量:3000cm
 初期鉄還元細菌濃度:5×1013個/m(5×10個/cm
 なお、表4中の「ミネラル溶液」は表5の配合成分を有するウォルフェのミネラル・ソリューション(Wolfe’s Mineral Solution)とし、表4中の「ビタミン溶液」は表6の配合成分を有するウォルフェのビタミン・ソリューション(Wolfe’s Vitamin Solution)とした。
 なお、表4、5、6中のイオン交換水の「全量で1000cm」は、溶液全量で1000cmとなるように調整することを意味する。
<被処理物>
 アルカリ電池屑(マンガン含有量:32質量%)
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this Example.
1) Manganese leaching by iron-reducing bacteria This was carried out using the following iron-reducing bacteria, treatment liquid, and workpiece containing manganese.
<Iron-reducing bacteria>
Shewanella algae NBRC 103173 (NITE Biological Resource Center)
<Processing liquid>
The processing liquid which added the said iron reduction bacteria to the solution which has a mixing | blending component of Table 4.
The amount of solution and the concentration of iron-reducing bacteria are as follows.
Amount of solution: 3000 cm 3
Initial iron-reducing bacteria concentration: 5 × 10 13 cells / m 3 (5 × 10 7 cells / cm 3 )
“Mineral solution” in Table 4 is Wolfe's Mineral Solution having the ingredients in Table 5, and “Vitamin solution” in Table 4 is Wolfe's having ingredients in Table 6. Vitamin solution (Wolfe's Vitamin Solution).
In Tables 4, 5, and 6, “total amount of 1000 cm 3 ” of ion-exchanged water means that the total amount of the solution is adjusted to be 1000 cm 3 .
<Processed object>
Alkaline battery waste (manganese content: 32% by mass)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記処理液および被処理物を、反応容器内で混合し、以下の条件で浸出処理を行った。
 試料(g)−処理液(cm)混合比: 22g/1000cm
 処理液の温度:25℃
 処理液のpH:7
 処理時間:24hr
 雰囲気:嫌気的条件
The treatment liquid and the object to be treated were mixed in a reaction vessel, and leaching treatment was performed under the following conditions.
Sample (g) -treatment liquid (cm 3 ) mixing ratio: 22 g / 1000 cm 3
Treatment liquid temperature: 25 ° C
PH of treatment solution: 7
Processing time: 24 hr
Atmosphere: Anaerobic conditions
 上記浸出処理中、得られたマンガン浸出液をサンプリングし、直ちに0.45μmのメンブレンフィルターでろ過した。ろ過したサンプル(ろ液)のマンガン濃度を、ICP発光分析法により定量した。定量値を元に、被処理物中のマンガンに対する浸出したマンガンの割合(浸出率)を算出した結果を図3に示す。
 24時間の浸出処理後のろ液のマンガン濃度は、0.1mol/1000cmであり、本発明によると、図3のとおり、80%程度の高いマンガン浸出率が得られた
((0.1mol/1000cm)÷(22g/1000cm×32質量%÷Mn分子量55g/mol)≒80%)。
During the leaching process, the obtained manganese leachate was sampled and immediately filtered through a 0.45 μm membrane filter. The manganese concentration of the filtered sample (filtrate) was quantified by ICP emission spectrometry. FIG. 3 shows the result of calculating the ratio of leached manganese (leaching rate) to manganese in the workpiece based on the quantitative value.
The manganese concentration in the filtrate after the 24-hour leaching treatment was 0.1 mol / 1000 cm 3 , and according to the present invention, a high manganese leaching rate of about 80% was obtained as shown in FIG. 3 ((0.1 mol / 1000 cm 3 ) ÷ (22 g / 1000 cm 3 × 32 mass% ÷ Mn molecular weight 55 g / mol) ≈80%).
2)酸性オゾン散気処理によるマンガンの回収
 浸出液からのマンガン濃縮精製・回収を試験するために、1)で得られたろ過後のマンガン浸出液を用いて実験を行った。1)で得られた浸出液を反応槽に移し、下記条件にて硫酸酸性下、オゾン散気し、マンガンを酸化物として固形物化する実験を実施した。
 浸出液(ろ過後)の液量:500mL
 オゾン発生装置:EZ−OG−R4(エコデザイン社製)
 反応槽のスターラー回転数:800rpm
 オゾン発生装置電流:電流3.8A
 オゾン散気量:1L/min
 使用酸:硫酸
 酸濃度:0.1N~3Nまで変化
 オゾン散気時間:150分
2) Recovery of Manganese by Acid Ozone Diffusing Treatment In order to test the concentration and purification / recovery of manganese from the leachate, experiments were conducted using the filtered manganese leachate obtained in 1). The leachate obtained in 1) was transferred to a reaction vessel, and ozone was diffused under sulfuric acid acidity under the following conditions, and an experiment was conducted to solidify manganese as an oxide.
Liquid volume of leachate (after filtration): 500mL
Ozone generator: EZ-OG-R4 (Ecodesign)
Stirrer rotation speed of reaction tank: 800rpm
Ozone generator current: Current 3.8A
Ozone diffuseness: 1 L / min
Acid used: Sulfuric acid Concentration: Change from 0.1N to 3N Ozone diffusion time: 150 minutes
 実験後、0.22μmのメンブレンフィルターでろ過し、固形物を50℃で3日間乾燥させた後秤量した。
 ろ液、固形物ともにICP発光分析法でマンガン濃度および鉄濃度を定量した。また、固形物については、燃焼イオンクロマトグラフィー法にて硫黄濃度も定量した。結果を図4および図5に示す。
 また、各硫酸濃度における浸出液(オゾン散気処理前の浸出液)のpHについて測定した結果を、表7に示す。なお、硫酸濃度が高い場合にはpHの値がゼロ以下になった。本実施例においては通常のガラス電極式pHメーターにてpHを測定しているため測定結果が負の場合には正確な値ではないが、表中に測定値として記載した。
After the experiment, it was filtered through a 0.22 μm membrane filter, and the solid was dried at 50 ° C. for 3 days and then weighed.
Both the filtrate and the solid were quantified for manganese and iron concentrations by ICP emission spectrometry. Moreover, about the solid substance, the sulfur concentration was also quantified by the combustion ion chromatography method. The results are shown in FIG. 4 and FIG.
Table 7 shows the results of measurement of the pH of the leachate at each sulfuric acid concentration (leachate before ozone diffusion treatment). When the sulfuric acid concentration was high, the pH value became zero or less. In this example, since the pH was measured with a normal glass electrode type pH meter, it was not an accurate value when the measurement result was negative, but it was described as a measured value in the table.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図4に示すように、浸出液を酸性にするために添加した硫酸の濃度が高いほど、マンガンと共に沈殿する鉄の含有率が減少しており、マンガンと鉄との分離が向上していることが分かる。
 また、これ以外の成分は、マンガンは二酸化マンガンと考えられるため、マンガンに結合している酸素と、形態の変化を避けるために低温長時間乾燥をしているため、水分が残っていると考えられる。
 また、浸出液を酸性にするために添加した硫酸由来の硫黄分も、固形物中には殆ど含まれていないことも確認された。
As shown in FIG. 4, the higher the concentration of sulfuric acid added to make the leachate acidic, the lower the content of iron precipitated with manganese, and the better the separation of manganese and iron. I understand.
In addition, other components are considered to be manganese dioxide, so oxygen is bound to manganese, and it is dried for a long time at low temperature to avoid changes in morphology, so water remains. It is done.
It was also confirmed that the sulfur content derived from sulfuric acid added to make the leachate acidic was hardly contained in the solid matter.
 また、硫酸濃度が0.3N以上の領域では、沈殿物中の鉄の含有率が10%未満であり、マンガンと鉄が良好に分離できているといえる。硫酸濃度が0.1Nの条件では、鉄が10%以上沈殿物中に混入しており、本発明者らが当初設定した目標値10%未満を上回った。 In the region where the sulfuric acid concentration is 0.3 N or more, the iron content in the precipitate is less than 10%, and it can be said that manganese and iron are well separated. Under conditions where the sulfuric acid concentration was 0.1 N, iron was mixed in the precipitate by 10% or more, exceeding the target value of less than 10% initially set by the present inventors.
 更に、図5に示すように、マンガンは、浸出液中のマンガン量に対し80%以上固形物に移行している。一方、ろ液側のマンガンは浸出液中のマンガン量に対して1%未満しか検出されていない。残りのマンガンは殆ど回収ロスで、実際には、浸出液中のマンガン量に対してほぼ100%のマンガンが固形物化して固形物に移行しているものと考えられる。なお、回収ロスの要因としては、マンガンがオゾンにより酸化されて固形物になる際、反応容器に薄膜状にこびり付くこと等が考えられる。 Furthermore, as shown in FIG. 5, manganese has moved to a solid matter of 80% or more with respect to the amount of manganese in the leachate. On the other hand, only less than 1% of manganese on the filtrate side is detected with respect to the amount of manganese in the leachate. The remaining manganese is almost a recovery loss. Actually, it is considered that almost 100% of the manganese in the leachate is solidified and transferred to the solid. In addition, as a factor of recovery loss, when manganese is oxidized with ozone and becomes a solid substance, it is considered that the reaction vessel is stuck in a thin film.
 一方、鉄に着目すると、硫酸濃度が低いほど鉄の沈殿物への移行比率が上昇しており、マンガンと鉄との分離が不充分となる傾向になった。特に硫酸添濃度0.1Nの条件では、浸出液中の鉄の50%以上が沈殿物に移行してしまっており、鉄の分離が十分とは言えない結果であった。 On the other hand, paying attention to iron, the lower the sulfuric acid concentration, the higher the ratio of transfer of iron to precipitates, and the tendency for separation between manganese and iron became insufficient. In particular, under the condition of a sulfuric acid concentration of 0.1 N, 50% or more of the iron in the leachate was transferred to the precipitate, and it was a result that the separation of iron was not sufficient.
3)酸性オゾン散気処理におけるマンガン酸化反応終点の見極め(1)
 1)で得られた浸出液を反応槽に移し、浸出液のサンプリングをしながらオゾン散気する点、酸濃度を1Nとする点、およびオゾン散気時間を190分とする点を除き、上記2)と同じ条件にて硫酸酸性下、オゾン散気し、マンガンを酸化物として固形物化する実験を実施した。
3) Determine the end point of manganese oxidation reaction in acidic ozone aeration treatment (1)
Transfer the leachate obtained in 1) to the reaction vessel and perform 2) above except that the ozone is diffused while sampling the leachate, the acid concentration is 1N, and the ozone aeration time is 190 minutes. The experiment was conducted under the same conditions as in Example 1, with ozone diffused under sulfuric acid, and solidified manganese as an oxide.
 浸出液のサンプリングは、オゾン散気直前と、オゾン散気処理中に行った。なお、オゾン散気処理中のサンプリングは、オゾン散気時間経過とともに数回行なった。浸出液をサンプリングする際には浸出液が充分に攪拌され均一な状態になっていることを確認し、50cmずつサンプリングした。サンプリングした浸出液を0.22μmのメンブレンフィルターでろ過してマンガン酸化物を分離し、ろ液(溶液部分)の色を観察した。
 また、サンプリングした浸出液より、上記2)と同様の方法にて各々のマンガン回収率を測定した。オゾン散気直前にサンプリングした浸出液に含まれる全マンガン量(質量)を100%とした。
The leachate was sampled immediately before ozone diffusion and during ozone diffusion treatment. The sampling during the ozone aeration treatment was performed several times with the passage of the ozone aeration time. When sampling the leachate, it was confirmed that the leachate was sufficiently stirred and in a uniform state, and was sampled by 50 cm 3 each. The sampled leachate was filtered through a 0.22 μm membrane filter to separate manganese oxide, and the color of the filtrate (solution part) was observed.
Further, each manganese recovery rate was measured from the sampled leachate by the same method as in 2) above. The total amount of manganese (mass) contained in the leachate sampled immediately before ozone diffusion was set to 100%.
 オゾン散気直前にサンプリングした浸出液には沈殿(固形物)がなかった。また、固形物マンガンは、前述のように反応容器に薄膜状にこびり付き、定量性に誤差を生じるため、オゾン散気処理直前サンプルのろ液中マンガン濃度と、オゾン散気処理中サンプルのろ液側のマンガン濃度をもとにマンガン回収率(質量ベース)を算出した。なお、ろ液中のマンガン濃度は、ICP発光分析法で定量した。
 実験結果を図6に示す。
There was no precipitation (solid matter) in the leachate sampled immediately before ozone diffusion. In addition, solid manganese sticks to the reaction vessel in the form of a thin film as described above, causing an error in quantitativeness. Therefore, the manganese concentration in the filtrate of the sample immediately before the ozone aeration treatment and the filtrate of the sample in the ozone aeration treatment The manganese recovery rate (mass basis) was calculated based on the manganese concentration on the side. The manganese concentration in the filtrate was quantified by ICP emission spectrometry.
The experimental results are shown in FIG.
 図6は、オゾン散気時間の経過に伴うろ液の色、およびマンガン回収率の変化を表す。図6に示すように、オゾンを作用させてしばらくは、培地成分に起因すると思われる浸出液中有機物がオゾンを消費していると考えられ、マンガン酸化物生成は生じなかった。100分程度経過後、マンガン酸化物が生成し始め、それと共に浸出液は急激に黒色に変化した。しかしながらこの時点では、ろ過を行ってマンガン酸化物を除去すると、マンガン酸化物が除去されたろ液(溶液部分)の色は培地成分に起因すると思われる淡黄色になっていた。また、マンガン酸化物が生成し始めると、オゾン散気時間の経過と共にマンガン回収率は短時間で急速に上昇し、オゾン散気時間:150分の付近で99%以上のマンガン回収率が達成された。 FIG. 6 shows changes in the color of the filtrate and the manganese recovery rate with the passage of ozone aeration time. As shown in FIG. 6, for a while after ozone was applied, it was considered that organic matter in the leachate that was thought to be due to the medium components was consuming ozone, and no manganese oxide was produced. After about 100 minutes, manganese oxide began to form, and the leachate suddenly turned black. However, at this time, when the manganese oxide was removed by filtration, the color of the filtrate from which the manganese oxide was removed (solution portion) was a pale yellow color that was thought to be due to the medium components. In addition, when manganese oxide begins to form, the manganese recovery rate rises rapidly in a short time as the ozone aeration time elapses, and a manganese recovery rate of 99% or more is achieved in the vicinity of the ozone aeration time: 150 minutes. It was.
 しかしながら、オゾン散気時間:150分が経過した後、そのままオゾン散気を継続すると、マンガン回収率は低下した。このとき、ろ液の色は、マンガンの過酸化物の色である赤~赤紫色に変化した。これらの結果から、オゾン散気時間:150分経過後にマンガンの過酸化物が生成し、マンガン過酸化物がイオンになって反応液中に再溶解してしまうため、マンガン回収率が低下したと結論付けることができる。 However, when the ozone aeration time: 150 minutes passed and the ozone aeration was continued as it was, the manganese recovery rate decreased. At this time, the color of the filtrate changed from red to magenta, which is the color of manganese peroxide. From these results, ozone dispersion time: Manganese peroxide is generated after 150 minutes, and manganese peroxide becomes ions and redissolves in the reaction solution. You can conclude.
4)酸性オゾン散気処理におけるマンガン酸化反応終点の見極め(2)
 上記3)の実験結果が示すように、酸性オゾン散気処理においては、高マンガン回収率を得るうえで最適なオゾン散気時間が存在する。しかしながら、最適なオゾン散気時間は、反応溶液の組成、反応器形状、気泡径、攪拌速度等の影響を受け易い。そのため、鉄還元細菌の種類や、被処理物のマンガン含有量、他の酸性オゾン散気処理条件(オゾン散気量、酸濃度等)に基づき最適なオゾン散気時間を事前に決定することは極めて困難である。
4) Identifying the end point of manganese oxidation reaction in acidic ozone aeration treatment (2)
As shown in the experimental results of 3) above, in the acidic ozone aeration treatment, there is an optimum ozone aeration time for obtaining a high manganese recovery rate. However, the optimum ozone aeration time is easily affected by the composition of the reaction solution, the reactor shape, the bubble diameter, the stirring speed, and the like. Therefore, to determine the optimal ozone aeration time in advance based on the type of iron-reducing bacteria, the manganese content of the object to be treated, and other acidic ozone aeration treatment conditions (ozone aeration amount, acid concentration, etc.) It is extremely difficult.
 表8は、オゾン散気時間を150分、すなわち上記3)で得られた高マンガン回収率に最適なオゾン散気時間とする点を除き、上記3)と同じ条件にて硫酸酸性下、オゾン散気し、マンガンを酸化物として固形物化する実験を、4回実施し、それらの結果(バッチNo.1A~4A)を示したものである。
 またこのとき同時に、波長525.5nmにおける吸光度を測定し、反応開始時の溶液の吸光度との比を求めた。
Table 8 shows that the ozone aeration time is 150 minutes, that is, the ozone aeration time optimal for the high manganese recovery obtained in 3) above is the same as in 3) above under sulfuric acid acidity. The experiment of aeration and solidification with manganese as an oxide was conducted four times, and the results (batch Nos. 1A to 4A) were shown.
At the same time, the absorbance at a wavelength of 525.5 nm was measured, and the ratio with the absorbance of the solution at the start of the reaction was determined.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、オゾン散気時間およびその他の条件を同一にしても、マンガン回収率はばらついており、99%を超える回収率が得られたのは、ろ液の色が淡赤色を呈した「バッチNo.1A」の1度のみであった。「バッチNo.2A,3A」は、ろ液の色が淡黄色であることから、マンガンの酸化反応が不充分であったと推測される。一方、「バッチNo.4A」は、ろ液の色が赤紫色であることから、マンガンの酸化反応が進行し過ぎたものと推測される。このとき、波長525.5nmにおける吸光度を測定し、オゾン散気前(0分)の吸光度との比を取ると、過酸化マンガンイオンの生成により溶液が着色され、その生成量に応じて吸光度が増大していることが確認できる。「バッチNo.1A」の時は過酸化マンガンイオンの生成は微量であったため回収率は高く保たれたが、「バッチNo.4A」では過酸化マンガンイオンの生成が過剰になり、ロスが大きくなったと考えられた。以上のように、オゾン散気時間管理では、マンガン回収率を安定して最大にすることが困難である。 As shown in Table 8, even when the ozone aeration time and other conditions were the same, the manganese recovery rate varied, and the recovery rate exceeding 99% was obtained because the color of the filtrate was light red. It was only once of “Batch No. 1A” presented. “Batch No. 2A, 3A” is presumed that the oxidation reaction of manganese was insufficient because the color of the filtrate was light yellow. On the other hand, in the case of “Batch No. 4A”, the color of the filtrate is reddish purple, and it is assumed that the oxidation reaction of manganese has progressed too much. At this time, when the absorbance at a wavelength of 525.5 nm is measured and a ratio with the absorbance before ozone diffusion (0 minutes) is taken, the solution is colored due to the production of manganese peroxide ions, and the absorbance depends on the amount of production. It can be confirmed that it has increased. In the case of “Batch No. 1A”, the production rate of manganese peroxide ions was very small, so the recovery rate was kept high. However, in “Batch No. 4A”, the production of manganese peroxide ions was excessive and the loss was large. It was thought that it became. As described above, it is difficult to stably maximize the manganese recovery rate in the ozone aeration time management.
 一方、表9は、ろ液の色が淡黄色から淡赤色に変化した時点を「マンガン酸化反応終点」と判断して「オゾン散気時間」を決定した点を除き、上記3)と同じ条件にて硫酸酸性下、オゾン散気し、マンガンを酸化物として固形物化する実験を4回実施し、それらの結果(バッチNo.1B~4B)を示したものである。すなわち、本実験では、ろ液の色が淡黄色から淡赤色に変化した時点で酸性オゾン散気処理を終了している。 On the other hand, Table 9 shows the same conditions as the above 3) except that the time when the color of the filtrate changed from light yellow to light red was determined as the “manganese oxidation reaction end point” and the “ozone diffusion time” was determined. The experiment was conducted four times in which ozone was diffused in the presence of sulfuric acid and solidified with manganese as an oxide, and the results (batch Nos. 1B to 4B) were shown. That is, in this experiment, the acidic ozone aeration process is completed when the color of the filtrate changes from light yellow to light red.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、浸出液のろ液の色を観察し、マンガン酸化反応終点(オゾン散気時間)を決定することで、常に99%を超える回収率を得ることができた。またこのとき、吸光度の測定結果から、いずれの場合にも過酸化マンガンイオンの生成が低く抑えられており、過不足なく反応が行われることで、回収率が最大となっていることが確認された。 As shown in Table 9, it was possible to always obtain a recovery rate exceeding 99% by observing the color of the filtrate of the leachate and determining the end point of the manganese oxidation reaction (ozone aeration time). At this time, the absorbance measurement results confirmed that in all cases, the production of manganese peroxide ions was kept low and the reaction was carried out without excess or deficiency, so that the recovery rate was maximized. It was.
 先述のとおり、オゾンによるマンガン酸化反応は、反応溶液の組成、反応器形状、気泡径、攪拌速度などに影響を受けるため、必ずしも同一の反応時間(オゾン散気時間)で同一のマンガン回収率が得られる訳ではない。特に微生物を利用したマンガン浸出液を使用する場合などには、浸出液の組成が微生物の活性や、菌数などによって大きく変動することが考えられるため、反応時間による管理は、困難であり、現実的とは言えない。これに対し、例えば浸出液の組成が微生物の活性や、菌数などによって大きく変動する場合であっても、浸出液を少量抜き出してろ液、或いは上澄液の色を観察することにより、安定して高いマンガン回収率を得ることが可能となる。 As described above, since the manganese oxidation reaction by ozone is affected by the composition of the reaction solution, the reactor shape, the bubble diameter, the stirring speed, etc., the same manganese recovery rate is not necessarily obtained in the same reaction time (ozone aeration time). It is not necessarily obtained. In particular, when using a manganese leachate using microorganisms, the composition of the leachate may vary greatly depending on the activity of the microorganism, the number of bacteria, etc., so management by reaction time is difficult and realistic. I can't say that. On the other hand, for example, even when the composition of the leachate varies greatly depending on the activity of microorganisms, the number of bacteria, etc., by extracting a small amount of leachate and observing the color of the filtrate or supernatant, it is stably high. It becomes possible to obtain a manganese recovery rate.
 5)処理液成分の制限
 まず、以下に示す鉄還元細菌、処理液、マンガンを含有する被処理物を用いて、鉄還元細菌によるマンガンの浸出を行った。
<鉄還元細菌>
 Shewanella algae NBRC 103173株
 (NITEバイオロジカルリソースセンター)
<処理液>
 処理液A:表4の配合成分を有する溶液に、上記鉄還元細菌を添加した処理液。
 処理液B:表10の配合成分を有する溶液に、上記鉄還元細菌を添加した処理液。なお、表10中のイオン交換水の「全量で1000cm」は、溶液全量で1000cmとなるように調整することを意味する。
 溶液量と鉄還元細菌の濃度は処理液A、B共に以下のとおりである。
 溶液量:500cm
 初期鉄還元細菌濃度:5×1013個/m(5×10個/cm
 なお、表4、10中の「ミネラル溶液」は表5の配合成分を有するウォルフェのミネラル・ソリューション(Wolfe’s Mineral Solution)とし、表4、10中の「ビタミン溶液」は表6の配合成分を有するウォルフェのビタミン・ソリューション(Wolfe’s Vitamin Solution)とした。
 鉄還元細菌を添加する前の処理液A、Bにおける炭素濃度およびリン濃度を、全有機炭素計および高周波誘導結合プラズマ発光分析法(ICP発光分析法)により定量し、処理液中の各元素の濃度とした。定量結果を表11に示す。
<被処理物>
 製鉄所の精錬工程で発生した金属含有ダスト(Mn:69質量%,Fe:3質量%)
5) Limitation of treatment liquid components First, manganese was leached by iron-reducing bacteria using the following iron-reducing bacteria, treatment liquid, and the object to be treated containing manganese.
<Iron-reducing bacteria>
Shewanella algae NBRC 103173 (NITE Biological Resource Center)
<Processing liquid>
Treatment liquid A: A treatment liquid obtained by adding the iron-reducing bacteria to a solution having the blending components shown in Table 4.
Treatment liquid B: A treatment liquid obtained by adding the iron-reducing bacteria to a solution having the blending components shown in Table 10. In addition, “1000 cm 3 in the total amount” of ion-exchanged water in Table 10 means that the total amount of the solution is adjusted to be 1000 cm 3 .
The amount of the solution and the concentration of iron-reducing bacteria are as follows for both of the treatment liquids A and B.
Amount of solution: 500 cm 3
Initial iron-reducing bacteria concentration: 5 × 10 13 cells / m 3 (5 × 10 7 cells / cm 3 )
“Mineral solutions” in Tables 4 and 10 are Wolfe's Mineral Solution having the ingredients shown in Table 5, and “Vitamin solutions” in Tables 4 and 10 are ingredients in Table 6. Wolfe's Vitamin Solution with
The carbon concentration and phosphorus concentration in the treatment liquids A and B before adding the iron-reducing bacteria are quantified by a total organic carbon meter and a high-frequency inductively coupled plasma emission spectrometry (ICP emission spectrometry). Concentration. The quantitative results are shown in Table 11.
<Processed object>
Metal-containing dust generated in the refining process of steelworks (Mn: 69% by mass, Fe: 3% by mass)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記処理液および被処理物を、反応容器内で混合し、以下の条件で浸出処理を行った。
 試料(g)−処理液(cm)混合比:5g/1000cm
 処理液の温度:25℃
 処理液のpH:7
 処理時間:24hr
 雰囲気:嫌気的条件
The treatment liquid and the object to be treated were mixed in a reaction vessel, and leaching treatment was performed under the following conditions.
Sample (g) -treatment liquid (cm 3 ) mixing ratio: 5 g / 1000 cm 3
Treatment liquid temperature: 25 ° C
PH of treatment solution: 7
Processing time: 24 hr
Atmosphere: Anaerobic conditions
 上記浸出処理終了後、得られたマンガン浸出液を0.45μmのメンブレンフィルターでろ過した。ろ過したサンプル(ろ液)中に含まれるマンガンの濃度を、高周波誘導結合プラズマ発光分析法(ICP発光分析法)により定量した。定量結果を表11に示す。 After the above leaching treatment, the obtained manganese leaching solution was filtered with a 0.45 μm membrane filter. The concentration of manganese contained in the filtered sample (filtrate) was quantified by high frequency inductively coupled plasma emission analysis (ICP emission analysis). The quantitative results are shown in Table 11.
 次いで、得られたろ過後のマンガン浸出液を用い、オゾン散気処理によるマンガン回収を行った。なお、オゾン散気処理条件は、酸濃度を1Nとした点を除き上記2)と同じ条件とし、オゾン散気によりマンガンを酸化物として固形物化する処理を実施した。
 処理後、0.22μmのメンブレンフィルターでろ過し、固形物を50℃で3日間乾燥させた後秤量した。
 次いで、固形物を酸にて溶解して、ICP発光分析法および炭素硫黄分析計でマンガン、炭素およびリンの定量をすることで、固形物のマンガン濃度、炭素濃度およびリン濃度を定量した。定量結果を表11に示す。
Next, manganese was recovered by ozone aeration treatment using the obtained manganese leachate after filtration. The ozone diffusion treatment conditions were the same as the above 2) except that the acid concentration was 1N, and a treatment for solidifying manganese as an oxide by ozone diffusion was performed.
After the treatment, it was filtered through a 0.22 μm membrane filter, and the solid was dried at 50 ° C. for 3 days and then weighed.
Next, the solid matter was dissolved in an acid, and manganese, carbon, and phosphorus were quantified by ICP emission analysis and a carbon sulfur analyzer, whereby the manganese concentration, carbon concentration, and phosphorus concentration of the solid matter were quantified. The quantitative results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、鉄還元細菌を添加する前の処理液A、Bにおける炭素濃度およびリン濃度は、処理液Aでは600mM、5.2mMであるのに対し、処理液Bでは270mM、0.16mMであった。
 処理液Bを用いてマンガンを浸出させた場合、24時間浸出処理後の浸出液のマンガン濃度は42mMであり、75%以上の高いマンガン浸出率が得られた。また、表11に示すように処理液Bを用いてマンガンを浸出させた場合のマンガン浸出率は、処理液Aを用いてマンガンを浸出した場合と同等であった。
As shown in Table 11, the carbon concentration and phosphorus concentration in the treatment liquids A and B before adding the iron-reducing bacteria are 600 mM and 5.2 mM in the treatment liquid A, whereas in the treatment liquid B, 270 mM and 0 16 mM.
When manganese was leached using the treatment liquid B, the manganese concentration of the leaching liquid after the 24-hour leaching treatment was 42 mM, and a high manganese leaching rate of 75% or more was obtained. Further, as shown in Table 11, the manganese leaching rate when manganese was leached using the treatment liquid B was the same as the case where manganese was leached using the treatment liquid A.
 更に、オゾン散気処理により回収したマンガンを含む固形物中のマンガンと炭素とリンの含有量は、処理液Aを用いた場合には、マンガン:45質量%、炭素:0.14質量%、リン:0.8質量%であるのに対し、処理液Bを用いた場合には、マンガン:45質量%、炭素:0.07質量%、リン:0.03質量%となり、マンガン含有率に対する炭素およびリンの含有率が大幅に低下している。 Furthermore, the content of manganese, carbon and phosphorus in the solid matter containing manganese recovered by the ozone aeration treatment, when the treatment liquid A is used, manganese: 45 mass%, carbon: 0.14 mass%, Phosphorus: 0.8% by mass, but when treatment solution B is used, manganese: 45% by mass, carbon: 0.07% by mass, phosphorus: 0.03% by mass, based on the manganese content The carbon and phosphorus content is greatly reduced.
 1…被処理物
 2…破砕工程
 3…浸出工程
 4…処理液
 5…浸出スラリー(浸出液)
 6…固液分離工程
 7…残渣
 8…未反応残渣
 9…返送残渣
 10…マンガン成分含有浸出液(分離液)
 10a…回収後分離液
 11…不溶化工程
 12…酸
 13…オゾン発生装置
 14…回収工程
 15…マンガン酸化物
 16…中和工程
 17…ブロー水
 18…アルカリ
 19…分離・観察槽
DESCRIPTION OF SYMBOLS 1 ... To-be-processed object 2 ... Crushing process 3 ... Leaching process 4 ... Treatment liquid 5 ... Leaching slurry (leaching liquid)
6 ... Solid-liquid separation step 7 ... Residue 8 ... Unreacted residue 9 ... Return residue 10 ... Manganese component-containing leachate (separate)
10a ... Separation liquid after recovery 11 ... Insolubilization step 12 ... Acid 13 ... Ozone generator 14 ... Recovery step 15 ... Manganese oxide 16 ... Neutralization step 17 ... Blow water 18 ... Alkali 19 ... Separation / observation tank

Claims (7)

  1.  3価鉄イオンを含む処理液に、マンガンを含有する被処理物および鉄還元細菌を混合し、前記鉄還元細菌によって前記3価鉄イオンを2価鉄イオンに還元し、該2価鉄イオンを還元剤として前記被処理物からマンガンイオンを前記処理液に浸出させる浸出工程と、該浸出工程で得られた浸出液を固液分離する固液分離工程と、該固液分離工程後の分離液中に含まれるマンガンイオンを酸化して不溶化する不溶化工程と、該不溶化工程で得られたマンガン成分を沈澱分離して回収する回収工程とを有することを特徴とするマンガン回収方法。 A treatment solution containing trivalent iron ions is mixed with an object to be treated containing manganese and iron-reducing bacteria, and the iron-reducing bacteria reduce the trivalent iron ions to divalent iron ions. In the separation liquid after the solid-liquid separation step, a leaching step of leaching manganese ions from the material to be treated as a reducing agent into the treatment liquid, a solid-liquid separation step of separating the leachate obtained in the leaching step into a solid-liquid separation, and A method for recovering manganese, comprising: an insolubilization step for oxidizing and insolubilizing manganese ions contained in the solution; and a recovery step for separating and recovering the manganese component obtained in the insolubilization step.
  2.  前記分離液からマンガン成分を回収した3価鉄イオンを含む回収後分離液を、前記浸出工程の処理液として再利用することを特徴とする請求項1に記載のマンガン回収方法。 The method for recovering manganese according to claim 1, wherein a post-recovery separation liquid containing trivalent iron ions obtained by recovering a manganese component from the separation liquid is reused as a treatment liquid in the leaching step.
  3.  前記不溶化工程が、前記固液分離工程後の分離液に酸性条件下でオゾンを作用させることで、マンガンイオンを酸化して不溶化する工程であることを特徴とする請求項1または2に記載のマンガン回収方法。 The said insolubilization process is a process of oxidizing and insolubilizing manganese ion by making ozone act on the separated liquid after the said solid-liquid separation process on acidic conditions, The Claim 1 or 2 characterized by the above-mentioned. Manganese recovery method.
  4.  前記被処理物が、製鉄所副生成物、および/または低品位鉱石、および/または使用済み電池、および/またはマンガン含有ダスト、および/またはマンガン含有スラッジおよび/またはマンガン含有スラリーであることを特徴とする請求項1ないし3のいずれか1項に記載のマンガン回収方法。 The workpiece is a steelworks by-product and / or low-grade ore, and / or used battery, and / or manganese-containing dust, and / or manganese-containing sludge and / or manganese-containing slurry. The manganese recovery method according to any one of claims 1 to 3.
  5.  前記不溶化工程において、不溶化処理中の液を定期的または連続的に取り出し、取り出した液の溶液部分の色の変化を観察することで、マンガンイオンの酸化反応終点を見極めることを特徴とする請求項1ないし4のいずれか1項に記載のマンガン回収方法。 In the insolubilization step, the liquid during insolubilization treatment is taken out periodically or continuously, and the end point of the oxidation reaction of manganese ions is determined by observing a change in the color of the solution portion of the liquid taken out. 5. The manganese recovery method according to any one of 1 to 4.
  6.  前記浸出工程における処理液が、炭素濃度およびリン濃度を制限した処理液であることを特徴とする請求項1ないし5のいずれか1項に記載のマンガン回収方法。 The manganese recovery method according to any one of claims 1 to 5, wherein the treatment liquid in the leaching step is a treatment liquid in which a carbon concentration and a phosphorus concentration are limited.
  7.  前記炭素濃度が300mM以下であり、前記リン濃度が0.5mM以下であることを特徴とする請求項6に記載のマンガン回収方法。 The method for recovering manganese according to claim 6, wherein the carbon concentration is 300 mM or less and the phosphorus concentration is 0.5 mM or less.
PCT/JP2012/067137 2011-06-29 2012-06-28 Manganese recovery method WO2013002416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280031548.1A CN103620069B (en) 2011-06-29 2012-06-28 manganese recovery method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-143704 2011-06-29
JP2011143704 2011-06-29
JP2012-124450 2012-05-31
JP2012124450 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013002416A1 true WO2013002416A1 (en) 2013-01-03

Family

ID=47424300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067137 WO2013002416A1 (en) 2011-06-29 2012-06-28 Manganese recovery method

Country Status (3)

Country Link
JP (1) JP5229416B1 (en)
CN (1) CN103620069B (en)
WO (1) WO2013002416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357662A (en) * 2014-11-04 2015-02-18 中国环境科学研究院 Hazard-free treatment technology for electrolytic manganese residues

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121359B2 (en) * 2014-03-31 2017-04-26 Jx金属株式会社 Metal oxide leaching method
WO2015162902A1 (en) * 2014-04-21 2015-10-29 Jfeスチール株式会社 Method and equipment for recovering valuable components from waste dry batteries
CN104313335B (en) * 2014-09-23 2016-09-14 郑景宜 Ferroalloy manganese dirt ash wet separation Application way
CN104458607A (en) * 2014-11-24 2015-03-25 广东省生态环境与土壤研究所 Method for quickly detecting extracellular respiratory activity of microorganisms
JP6289411B2 (en) * 2015-03-31 2018-03-07 Jx金属株式会社 Method for removing iron from iron-containing solution and method for recovering valuable metals
CN107674975B (en) * 2015-11-27 2019-04-23 江苏理工学院 The separation and recovery method of cobalt and manganese in a kind of cobalt manganese waste material
CN107674976B (en) * 2015-11-27 2019-04-23 江苏理工学院 A method of with cobalt and manganese in ammonia-ammonium hydrogen carbonate separation and recovery high manganese waste material of low cobalt
CN105349789B (en) * 2015-11-27 2017-11-21 江苏理工学院 The method of cobalt and manganese in the high manganese waste material of low cobalt is separated and recovered with ammonia sodium carbonate
JP7036229B2 (en) 2019-10-18 2022-03-15 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
JP7004091B2 (en) 2019-10-18 2022-02-04 Jfeスチール株式会社 Manganese recovery method and recovery equipment from waste batteries
JP7107473B1 (en) 2021-03-04 2022-07-27 Jfeスチール株式会社 Method and equipment for recovering manganese from waste dry batteries
JP7276626B1 (en) 2021-08-26 2023-05-18 Jfeスチール株式会社 Method for removing manganese and method for producing iron oxide
KR20230089751A (en) * 2021-12-14 2023-06-21 창원대학교 산학협력단 Method for recovering valuable metals from cathodic active material of used lithium battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010207674A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd Method of removing manganese from wastewater
JP2010209384A (en) * 2009-03-09 2010-09-24 Dowa Metals & Mining Co Ltd Method for recovering manganese

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237192C (en) * 2002-11-26 2006-01-18 中南大学 Deep purification method of manganese sulfate solution
JP2011127156A (en) * 2009-12-16 2011-06-30 Jfe Engineering Corp Method of recovering metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010207674A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd Method of removing manganese from wastewater
JP2010209384A (en) * 2009-03-09 2010-09-24 Dowa Metals & Mining Co Ltd Method for recovering manganese

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357662A (en) * 2014-11-04 2015-02-18 中国环境科学研究院 Hazard-free treatment technology for electrolytic manganese residues

Also Published As

Publication number Publication date
CN103620069B (en) 2016-04-13
CN103620069A (en) 2014-03-05
JP2014005496A (en) 2014-01-16
JP5229416B1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2013002416A1 (en) Manganese recovery method
Peng et al. Selective leaching of vanadium from chromium residue intensified by electric field
JP5090697B2 (en) Metal recovery method
Mal et al. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor
Su et al. Cr (VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition
Ramos-Ruiz et al. Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor
Baral Bioleaching of rare earth elements from spent fluid catalytic cracking catalyst using Acidothiobacillus ferrooxidans
Chen et al. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge
Lan et al. Environmentally-friendly bioleaching of manganese from pyrolusite: Performance and mechanisms
Zhao et al. Comparison of bio-dissolution of spent Ni–Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate
JP5666835B2 (en) Metal recovery method
CN107162276A (en) A kind of method for removing chromium of ferric trichloride etching waste liquor
JP2011127156A (en) Method of recovering metal
Miao et al. Efficient removal of As, Cu and Cd and synthesis of photo-catalyst from Cu-smelting waste acid through sulfide precipitation by biogenic gaseous H2S produced by anaerobic membrane bioreactor
Figueroa et al. Recovery of gold and silver and removal of copper, zinc and lead ions in pregnant and barren cyanide solutions
AU2013255067B2 (en) Sulfide ore leaching process
CN109879491A (en) A kind of electrolysis processing Mn-bearing waste water recycling manganese method
JP5985926B2 (en) Metal recovery method and metal recovery device used therefor
CN104775040A (en) Comprehensive recycling process for acid leaching residues
CN115552047A (en) Oxidative bioleaching of base metals
RU2337156C1 (en) Method of vat bacterial leaching of sulphide containing products
Garg et al. Bioleaching of pyrrhotite tailings for Ni extraction-insights into an adaptive evolution study
Sinharoy et al. Biomineralization of indium to indium selenide by anaerobic granular sludge in the presence of selenium oxyanions for sustainable recovery
Yan et al. Sulfate reduction and heavy metal removal by a novel metal-resistant sulfate-reducing bacterium: mechanism and optimization
AU2017362828B2 (en) Method for removing manganese

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804887

Country of ref document: EP

Kind code of ref document: A1