JP4816897B2 - Electrolytic extraction method of metal manganese and high purity metal manganese - Google Patents
Electrolytic extraction method of metal manganese and high purity metal manganese Download PDFInfo
- Publication number
- JP4816897B2 JP4816897B2 JP2005313726A JP2005313726A JP4816897B2 JP 4816897 B2 JP4816897 B2 JP 4816897B2 JP 2005313726 A JP2005313726 A JP 2005313726A JP 2005313726 A JP2005313726 A JP 2005313726A JP 4816897 B2 JP4816897 B2 JP 4816897B2
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- metal
- solution
- hydrochloric acid
- undissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
本発明は、金属マンガンの電解採取方法と、この方法によって得た高純度金属マンガンに関する。より詳しくは、本発明は、不純物の少ない電解液を調製することによって高純度の金属マンガンを得ることができる電解採取方法と、その高純度金属マンガンに関する。 The present invention relates to a method for electrowinning metallic manganese and a high-purity metallic manganese obtained by this method. More specifically, the present invention relates to an electrolytic collection method capable of obtaining high-purity metallic manganese by preparing an electrolytic solution with few impurities, and the high-purity metallic manganese.
一般的なMnの電解採取(硫酸浴電解)における浄液法は、まず、硫酸マンガン溶液からなる電解液に、二酸化マンガン等の酸化剤を加えて2価鉄イオンを酸化して3価鉄イオンとし、さらに、アンモニア等のアルカリ物質を加え、3価鉄イオンを水酸化物沈殿として除去する。このとき同時にAs、Siも加水分解されて水酸化物沈殿となり、鉄と一緒に除去される。 In general Mn electrowinning (sulfuric acid bath electrolysis), first, a trivalent iron ion is obtained by oxidizing a divalent iron ion by adding an oxidizing agent such as manganese dioxide to an electrolytic solution made of a manganese sulfate solution. In addition, an alkaline substance such as ammonia is added to remove trivalent iron ions as a hydroxide precipitate. At the same time, As and Si are also hydrolyzed to form hydroxide precipitates, which are removed together with iron.
一方、Mnより貴な金属であるCo,Ni,Cu,Pbは上記方法では沈澱化せず、依然として電解液中に残るため、電解液に水硫化ソーダあるいは硫化アンモニウム等の硫化物沈殿剤を加えて硫化物沈殿として除去する。ところが、金属不純物を除去した液中には添加した硫化物沈殿剤に起因するコロイド的な硫黄や微粉、硫化物沈殿が存在しており、これを除去するため、さらに3価鉄を加えて鉄水酸化物と共沈させて除去しており、浄液プロセスが非常に長いと云う問題がある。 On the other hand, Co, Ni, Cu, and Pb, which are noble metals than Mn, are not precipitated by the above method and remain in the electrolytic solution. Therefore, a sulfide precipitant such as sodium hydrosulfide or ammonium sulfide is added to the electrolytic solution. And removed as a sulfide precipitate. However, in the liquid from which the metal impurities have been removed, colloidal sulfur, fine powder, and sulfide precipitates due to the added sulfide precipitant exist, and in order to remove this, iron is further added by adding trivalent iron. There is a problem that the liquid purification process is very long because it is coprecipitated with the hydroxide and removed.
また、塩化物浴を用いた電解採取について、Mn電解液の浄液方法としてイオン交換法を用いる方法が知られている(特許文献1)。しかし、イオン交換法は液中の不純物イオン濃度によってそのイオン交換量が影響され、低濃度の場合は単位樹脂量あたりイオン交換される不純物量は非常に僅かであり効率が悪い。また、イオン交換樹脂量によって通液量が制限されるため浄液に時間がかかる。さらに、イオン交換樹脂の再生が必要であり、メンテナンスに手間がかかるなどの問題がある。
本発明は従来の金属マンガンの電解採取における上記問題を解決したものであり、塩酸浴を用いた電解採取において、効率よく液中から不純物を除去して不純物の少ない電解液を調製し、高純度の金属マンガンを得ることができる電解採取方法と、その高純度金属マンガンを提供する。 The present invention solves the above-mentioned problems in the conventional electrowinning of metallic manganese, and in the electrowinning using a hydrochloric acid bath, it is possible to efficiently remove impurities from the liquid to prepare an electrolyte with less impurities, and to achieve high purity. An electrowinning method capable of obtaining a high-purity manganese metal is provided.
本発明は、以下の構成を有する金属マンガンの電解採取方法、および高純度金属マンガンに関する。
〔1〕金属マンガンを塩酸に溶解してマンガンの水酸化物沈澱が形成されるマンガン塩酸溶解液とし、該マンガン塩酸溶解液の未溶解物を濾過した後に、酸化剤を添加すると共に中和して生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法。
〔2〕上記[1]に記載する金属マンガンの電解採取方法において、マンガンの水酸化物沈澱が形成されるマンガン塩酸溶解液が金属マンガンを塩酸に溶解した液にさらに金属マンガンを追加して溶解させた溶解液であり、未溶解物が未溶解の金属マンガンおよびマンガンの水酸化物沈澱物であり、該未溶解物を濾過した後に、過酸化水素とアンモニア水を添加して弱酸性ないし中性の液性下で生成した沈殿物をさらに濾過し、この濾液に緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法。
〔3〕上記[1]または上記[2]の電解採取方法によって得た金属マンガンであり、Al、Cr、Zn、Cu、Fe、Pb、Co、Siの各不純物濃度が何れも1ppm未満であって、Mg、Caが何れも5ppm未満である高純度金属マンガン。
The present invention relates to a method for electrolytic collection of metallic manganese having the following configuration, and high-purity metallic manganese.
[1] Manganese hydrochloric acid solution in which manganese manganese is dissolved in hydrochloric acid to form a manganese hydroxide precipitate is formed. After the undissolved manganese hydrochloric acid solution is filtered, an oxidizing agent is added and neutralized. A method for electrolytically collecting metallic manganese, comprising using an electrolytic solution prepared by filtering a precipitate formed and adding a buffer.
[2] In the method for electrowinning metal manganese according to [1 ] above, a manganese hydrochloric acid solution in which manganese hydroxide precipitate is formed is dissolved by adding metal manganese to a solution obtained by dissolving metal manganese in hydrochloric acid. a solution obtained by, undissolved is a hydroxide precipitate of undissolved manganese metal and manganese, after filtering the undissolved, weakly acidic to medium by adding hydrogen peroxide and aqueous ammonia A method for electrolytically collecting metallic manganese, comprising using an electrolytic solution prepared by further filtering a precipitate generated under a neutral liquid and adding a buffer to the filtrate .
[3] Metallic manganese obtained by the electrolytic collection method of [1] or [2] above, and each of the impurity concentrations of Al, Cr, Zn, Cu, Fe, Pb, Co, and Si is less than 1 ppm. High-purity metallic manganese in which both Mg and Ca are less than 5 ppm.
本発明の電解採取方法は、金属マンガンを塩酸に溶解してマンガンの水酸化物沈澱が形成されるマンガン塩酸溶解液とし、このマンガン水酸化物沈澱に、As、Co、Ni、Cu、Znなどを取り込ませて共沈させるので、電解液に含まれる大部分の不純物が除去される。また、酸化剤を添加して電解液中のFe、Pb等を酸化し、弱酸性から中性下で沈澱を生成させ、マンガン水酸化物沈澱と共にこれらの沈殿物を濾過分離して除去するので、通常の金属Mn中に含まれる不純物であって、Mnよりも貴な金属であるAs、Cd、Co、Cr、Cu、Fe、Mo、Ni、Pb、Zn、Siなどは検出限界以下に低減される。
The electrolytic collection method of the present invention is a manganese hydrochloric acid solution in which manganese manganese is dissolved in hydrochloric acid to form a manganese hydroxide precipitate. In this manganese hydroxide precipitate, As, Co, Ni, Cu, Zn, etc. Is taken in and coprecipitated, so that most impurities contained in the electrolyte are removed. In addition, an oxidizing agent is added to oxidize Fe, Pb, etc. in the electrolyte, and precipitates are formed from weakly acidic to neutral, and these precipitates are removed by filtration separation along with manganese hydroxide precipitation. As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Zn, Si, etc., which are impurities contained in ordinary metal Mn and are noble than Mn, are reduced below the detection limit. Is done.
従って、本発明の電解採取方法によれば高純度の金属マンガンを得ることができ、具体的には、例えば、Al、Cr、Zn、Cu、Fe、Pb、Co、Siの各不純物濃度が何れも1ppm未満であり、Mg、Caが何れも5ppm未満である高純度金属マンガンを得ることができる。 Therefore, according to the electrowinning method of the present invention, high-purity manganese metal can be obtained. Specifically, for example, each impurity concentration of Al, Cr, Zn, Cu, Fe, Pb, Co, and Si is any Is less than 1 ppm, and high-purity metallic manganese in which both Mg and Ca are less than 5 ppm can be obtained.
以下に、本発明を実施例と共に具体的に説明する。
本発明の製造方法は、金属マンガンを塩酸に溶解してマンガンの水酸化物沈澱が形成されるマンガン塩酸溶解液とし、該マンガン塩酸溶解液の未溶解物を濾過した後に、酸化剤を添加すると共に中和して生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法である。図1に本発明の電解採取方法の概略工程を示す。
Hereinafter, the present invention will be specifically described together with examples.
In the production method of the present invention, manganese manganese is dissolved in hydrochloric acid to form a manganese hydrochloric acid solution in which manganese hydroxide precipitates are formed . After the undissolved material of the manganese hydrochloric acid solution is filtered , an oxidizing agent is added. In addition, a method for electrolytically collecting metal manganese is characterized by using an electrolytic solution prepared by filtering a precipitate produced by neutralization together with adding a buffering agent. FIG. 1 shows a schematic process of the electrolytic collection method of the present invention.
本発明の上記電解採取方法は、好ましくは、金属マンガンの塩酸溶解液にさらに金属マンガンを追加し、未溶解物を濾過した溶解液に過酸化水素とアンモニア水を添加し、弱酸性ないし中性の液性下で生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いる金属マンガンの電解採取方法である。 In the electrowinning method of the present invention, preferably, metal manganese is further added to a hydrochloric acid solution of metal manganese, hydrogen peroxide and aqueous ammonia are added to the solution obtained by filtering undissolved matter, and the mixture is weakly acidic or neutral. This is a method for electrolytic collection of metallic manganese using an electrolytic solution prepared by filtering a precipitate produced under the liquid condition of and adding a buffering agent.
金属マンガンを塩酸に溶解してマンガンの水酸化物沈澱が形成されるマンガン塩酸溶解液の調製は、例えば、金属マンガンを塩酸に溶解し、さらに金属マンガンを追加してマンガンを溶解させて、酸化還元電位(対AgCl)−1.2V〜−0.5V、好ましくは−1.1V前後の塩酸溶解液を調製するとよい。この塩酸溶解液にはマンガンが水酸化物沈澱を形成し、この沈殿物には未溶解の金属マンガンが含まれている。また、金属マンガンに含まれているAs、Co、Ni、Cu、Znなどの不純物は液中に溶出し、マンガン水酸化物沈澱に取り込まれて共沈する。これらの未溶解物を濾過分離して不純物の少ない塩酸性マンガン溶解液を得ることができる〔第一段沈澱化工程〕。
Preparation of manganese hydrochloric acid solution in which metal manganese is dissolved in hydrochloric acid to form manganese hydroxide precipitate is prepared by , for example, dissolving metal manganese in hydrochloric acid and adding metal manganese to dissolve manganese to oxidize. A hydrochloric acid solution having a reduction potential (vs. AgCl) of -1.2 V to -0.5 V, preferably around -1.1 V may be prepared. Manganese forms a hydroxide precipitate in this hydrochloric acid solution, and this precipitate contains undissolved metallic manganese. Impurities such as As, Co, Ni, Cu, and Zn contained in the metal manganese are eluted in the liquid and taken into the manganese hydroxide precipitate to co-precipitate. These undissolved substances can be separated by filtration to obtain a hydrochloric acid manganese solution with few impurities [first stage precipitation step].
さらに、上記塩酸性マンガン溶解液に、過酸化水素などの酸化剤を添加して液中に残留するFe、Pbなどを酸化し、さらにアンモニア水などを添加して中和し、液性を弱酸性ないし中性に調整してFe、Pbなどの水酸化物沈澱を生成させる。液中に残留するMnは水酸化物沈澱となる。酸化剤の添加時期は液性の調整前でもよく、調整後でもよい。液性は弱酸性ないし中性、具体的には、例えば、pH5.0〜7.0、好ましくはpH6.0〜6.5前後に調整すればよい。これらの沈殿物を濾過分離することによって、さらに不純物の少ない塩酸性マンガン溶解液を得ることができる〔第二段沈澱化工程〕。 Furthermore, an oxidizing agent such as hydrogen peroxide is added to the hydrochloric acid manganese solution to oxidize Fe, Pb, etc. remaining in the solution, and further neutralized by adding ammonia water to weaken the liquidity. Adjust to acidity or neutrality to produce hydroxide precipitates such as Fe and Pb. Mn remaining in the liquid becomes a hydroxide precipitate. The timing for adding the oxidizing agent may be before the liquidity adjustment or after the adjustment. The liquidity may be adjusted to be weakly acidic to neutral, specifically, for example, pH 5.0 to 7.0, preferably pH 6.0 to 6.5. By filtering and separating these precipitates, a hydrochloric acid manganese solution with fewer impurities can be obtained [second stage precipitation step].
上記沈殿物を濾過して分離し、濾液に緩衝剤を添加してマンガン電解液を調製する。緩衝剤としては塩化アンモニウムなどが用いられる。この塩酸性電解液を用い、電解採取によって高純度の金属マンガンを得ることができる。電解採取は通常の条件下で行えばよい。 The precipitate is filtered and separated, and a buffer is added to the filtrate to prepare a manganese electrolyte. As the buffering agent, ammonium chloride or the like is used. Using this hydrochloric acid electrolytic solution, high-purity metallic manganese can be obtained by electrowinning. Electrolytic collection may be performed under normal conditions.
金属マンガン30gを塩酸100ml、水400mlに溶解した。この一次溶解液に、さらに金属マンガン5gを添加して過剰溶解液とし、酸化還元電位を−1.1Vとした後、未溶解の金属マンガンおよび液中の未溶解物を濾過化した。この液に過酸化水素1.5mlを添加して液中の鉄、鉛を酸化した後に、さらにアンモニア水を添加し溶解液のpHを6.5に調整し、生成した沈殿物を濾過して除去した。
この濾液(pH調整液)に緩衝剤として塩化アンモニウム50gを添加した後、電解槽に装入し、カソードにステンレス板を用い、アノードにグラファイトを用い、カソード電流密度400A/m2にて電解を行い、金属マンガン35gを得た。なお、電解途中でアンモニア水を添加して電解液のpHを6.2に保持した。
原料の金属マンガン、各工程の溶解液、電解金属マンガンの不純物含有量を表1にまとめて示した。表1に示すように、本方法によって、品位5N以上の高純度金属マンガンを得た。
30 g of metal manganese was dissolved in 100 ml of hydrochloric acid and 400 ml of water. Further, 5 g of metal manganese was added to this primary solution to form an excessive solution, and the oxidation-reduction potential was set to -1.1 V, and then undissolved metal manganese and undissolved material in the solution were filtered. After 1.5 ml of hydrogen peroxide was added to this solution to oxidize iron and lead in the solution, ammonia water was further added to adjust the pH of the solution to 6.5, and the resulting precipitate was filtered. Removed.
After adding 50 g of ammonium chloride as a buffering agent to this filtrate (pH adjusting solution), it was charged in an electrolytic cell, electrolyzed at a cathode current density of 400 A / m 2 using a stainless steel plate for the cathode, graphite for the anode. This gave 35 g of metal manganese. In addition, aqueous ammonia was added during the electrolysis to maintain the pH of the electrolyte at 6.2.
Table 1 summarizes the impurity content of the raw material manganese metal, the solution in each step, and electrolytic metal manganese. As shown in Table 1, high purity metal manganese having a grade of 5N or higher was obtained by this method.
金属マンガン40gを試薬特級塩酸100mlと、水420mlに、室温下で溶解した。溶解液中に共存する未溶解の金属マンガンと生成したマンガン酸化物沈殿を濾過・分離し、500mlのマンガン塩化物水溶液を得た。溶解液のpHは6.8、酸化還元電位は−1.12Vであった。このマンガン塩化物水溶液(Mn酸化物濾過液)に、緩衝剤として塩化アンモニウム40gを添加した後、電解槽に装入し、カソードにステンレス板を用い、アノードにグラファイトを用い、カソード電流密度200A/m2にて電解を行い、金属マンガン20gを得た。なお、電解途中でアンモニア水を添加し電解液のpHを6.2に保持した。各工程の分析値を表2に示した。 40 g of metal manganese was dissolved in 100 ml of reagent grade hydrochloric acid and 420 ml of water at room temperature. Undissolved metal manganese coexisting in the solution and the produced manganese oxide precipitate were filtered and separated to obtain 500 ml of manganese chloride aqueous solution. The pH of the solution was 6.8, and the redox potential was −1.12V. After adding 40 g of ammonium chloride as a buffering agent to this manganese chloride aqueous solution (Mn oxide filtrate), it was charged into an electrolytic cell, a stainless plate was used for the cathode, graphite was used for the anode, and a cathode current density of 200 A / Electrolysis was performed at m 2 to obtain 20 g of metal manganese. In addition, aqueous ammonia was added during the electrolysis to maintain the pH of the electrolyte at 6.2. The analytical values for each step are shown in Table 2.
マンガン電解後液を用い、金属マンガンを溶解した以外は実施例2と同様に電解採取を行った。溶解液および得られた金属マンガンの分析結果を結果を表3に示した。 Electrolysis was conducted in the same manner as in Example 2 except that the manganese post-electrolysis solution was used and metal manganese was dissolved. The results of analysis of the dissolved solution and the obtained metal manganese are shown in Table 3.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313726A JP4816897B2 (en) | 2005-10-28 | 2005-10-28 | Electrolytic extraction method of metal manganese and high purity metal manganese |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313726A JP4816897B2 (en) | 2005-10-28 | 2005-10-28 | Electrolytic extraction method of metal manganese and high purity metal manganese |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007119854A JP2007119854A (en) | 2007-05-17 |
JP4816897B2 true JP4816897B2 (en) | 2011-11-16 |
Family
ID=38143999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005313726A Expired - Fee Related JP4816897B2 (en) | 2005-10-28 | 2005-10-28 | Electrolytic extraction method of metal manganese and high purity metal manganese |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4816897B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040030A (en) * | 2012-01-10 | 2014-09-10 | 吉坤日矿日石金属株式会社 | High-purity manganese and method for producing same |
CN106319561A (en) * | 2015-07-02 | 2017-01-11 | 阿克陶科邦锰业制造有限公司 | Additive with impossibility of anode mud generation in anode zone and application thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5944666B2 (en) * | 2012-01-12 | 2016-07-05 | Jx金属株式会社 | Manufacturing method of high purity manganese |
CN103382561A (en) * | 2012-05-04 | 2013-11-06 | 黄平县国鑫矿业有限责任公司 | Wet electrolytic extraction method for manganese |
KR101539749B1 (en) * | 2013-06-11 | 2015-07-28 | 주식회사 포스코 | Method for producing manganese precursors for lithium ion batteries, and manganese precursors for lithium ion batteries produced by the method |
CN103422118B (en) * | 2013-07-18 | 2016-07-06 | 成都易态科技有限公司 | The electrolytic manganese metal that the method for method for producing electrolytic manganese metal by two-ore and two-control region produce |
US20160032427A1 (en) | 2013-10-25 | 2016-02-04 | Jx Nippon Mining & Metals Corporation | Method for manufacturing high purity manganese and high purity manganese |
US20160002749A1 (en) | 2013-10-25 | 2016-01-07 | Jx Nippon Mining & Metals Corporation | Method for manufacturing high purity manganese and high purity manganese |
CN106319562B (en) * | 2015-07-02 | 2018-11-13 | 阿克陶科邦锰业制造有限公司 | Electrolytic manganese buffer solution and its application process |
CN104947154B (en) * | 2015-07-08 | 2017-09-12 | 长沙矿冶研究院有限责任公司 | A kind of method that demagging is carried out to electrolytic manganese anolyte |
CN105154917B (en) * | 2015-10-09 | 2017-10-10 | 靖西县大锰新材料有限公司 | A kind of production method of electrolytic manganese metal |
JP2016180184A (en) * | 2016-04-27 | 2016-10-13 | Jx金属株式会社 | High purity manganese |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52114512A (en) * | 1976-03-24 | 1977-09-26 | Sakae Tajima | High pure metallic manganese |
JPS5625939A (en) * | 1979-08-07 | 1981-03-12 | Nippon Steel Corp | Manufacture of metallic manganese |
JP3825984B2 (en) * | 2001-03-26 | 2006-09-27 | 株式会社 大阪アサヒメタル工場 | Manufacturing method of high purity manganese |
-
2005
- 2005-10-28 JP JP2005313726A patent/JP4816897B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040030A (en) * | 2012-01-10 | 2014-09-10 | 吉坤日矿日石金属株式会社 | High-purity manganese and method for producing same |
CN106319561A (en) * | 2015-07-02 | 2017-01-11 | 阿克陶科邦锰业制造有限公司 | Additive with impossibility of anode mud generation in anode zone and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2007119854A (en) | 2007-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4816897B2 (en) | Electrolytic extraction method of metal manganese and high purity metal manganese | |
US6514311B1 (en) | Clean process of recovering metals from waste lithium ion batteries | |
JP5495418B2 (en) | Method for recovering manganese | |
JP2017036478A (en) | Method for removing iron and aluminum from lithium ion battery scarp and method for recovering valuable metals | |
JP5760954B2 (en) | Method for recovering copper from sulfide minerals containing copper and iron | |
JP3602329B2 (en) | Method for recovering indium from indium-containing material | |
JP5250683B2 (en) | Recovery method of valuable metals from Pb-free waste solder | |
JP4999058B2 (en) | Method for recovering indium from indium-containing material | |
JP4734603B2 (en) | Indium recovery method | |
JP2022182229A (en) | Metal recovery method from lithium ion battery | |
JP2738192B2 (en) | Recovery method of crude indium for electrolysis | |
JP2013155432A (en) | Recovery method of bismuth | |
JP4079018B2 (en) | Method for purifying cobalt aqueous solution | |
JP5568977B2 (en) | Method for recovering manganese from batteries | |
CN101775491A (en) | Electro-oxidation leaching method of molybdenite | |
JP6007601B2 (en) | Method for producing manganese oxide | |
JP4801372B2 (en) | Method for removing manganese from cobalt sulfate solution | |
JP2008013388A (en) | Method for purifying nickel chloride aqueous solution | |
JP2008274382A (en) | Method for separating lead from aqueous cobalt chloride solution | |
JP2002241856A (en) | Method for recovering valuable metal from used nickel- hydrogen secondary battery | |
JPS585250B2 (en) | Method for producing a concentrated nickel solution from a nickel-cobalt solution | |
JP2009209421A (en) | Method for producing high purity silver | |
JP4439804B2 (en) | Cobalt recovery method | |
US4175014A (en) | Cathodic dissolution of cobaltic hydroxide | |
JP2005104809A (en) | Method for purifying nickel chloride aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110816 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4816897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |