JP2002241856A - Method for recovering valuable metal from used nickel- hydrogen secondary battery - Google Patents

Method for recovering valuable metal from used nickel- hydrogen secondary battery

Info

Publication number
JP2002241856A
JP2002241856A JP2001044415A JP2001044415A JP2002241856A JP 2002241856 A JP2002241856 A JP 2002241856A JP 2001044415 A JP2001044415 A JP 2001044415A JP 2001044415 A JP2001044415 A JP 2001044415A JP 2002241856 A JP2002241856 A JP 2002241856A
Authority
JP
Japan
Prior art keywords
nickel
solution
manganese
valuable metals
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001044415A
Other languages
Japanese (ja)
Other versions
JP4506002B2 (en
Inventor
Atsushi Fukui
篤 福井
Masaki Imamura
正樹 今村
Takashi Kudo
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001044415A priority Critical patent/JP4506002B2/en
Publication of JP2002241856A publication Critical patent/JP2002241856A/en
Application granted granted Critical
Publication of JP4506002B2 publication Critical patent/JP4506002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a solution containing high-purity valu able metal can be obtained by easily removing manganese from a solution prepared by dissolving electrode active material with sulfuric acid in the case of recovering valuable metal, such as nickel and cobalt, from a used nickel- hydrogen secondary battery. SOLUTION: The electrode active material is dissolved with the sulfuric acid, and the resultant solution is held at <=pH 3 and also ORP is regulated in a range of 1,000 to 1,200 mV to precipitate and remove manganese. For the purpose of pH regulation for the solution, trivalent nickel and/or cobalt hydroxide is added as an oxidizing agent. As to another method, manganese can also be precipitated and removed by holding the above solution at 50-90 deg.C reaction temperature and pH 1 to 5.5 and adding ammonium persulfate or sodium persulfate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素二次
電池のリサイクルに関するものであり、使用済みの廃棄
されたニッケル水素二次電池に含まれるニッケル等の有
価金属を回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the recycling of nickel-metal hydride secondary batteries, and to a method of recovering valuable metals such as nickel contained in used and discarded nickel-metal hydride secondary batteries.

【0002】[0002]

【従来の技術】ニッケル水素二次電池では、電極活物質
を支持体に保持した正極と負極をポリプロピレン等のセ
パレーターで分離し、電解液とともに鋼製又はポリプロ
ピレン製の容器に収納してある。支持体としては多孔質
ニッケル又は鉄にニッケルめっきしたパンチング板が使
用され、正極の活物質には水酸化ニッケル及び負極の活
物質には水素吸蔵合金が使用されている。
2. Description of the Related Art In a nickel-metal hydride secondary battery, a positive electrode and a negative electrode each having an electrode active material held on a support are separated by a separator such as polypropylene and stored in a steel or polypropylene container together with an electrolytic solution. A punched plate obtained by plating nickel on porous nickel or iron is used as a support, nickel hydroxide is used as a positive electrode active material, and a hydrogen storage alloy is used as a negative electrode active material.

【0003】このニッケル水素二次電池は、近年ニッケ
ル−カドミウム電池に代わる二次電池として電気自動車
のバッテリーや携帯電話等に使用され、需要が急増して
いる。ニッケル水素二次電池は、ニッケル−カドミウム
電池よりも特性が優れ、有害なカドミウムを使用してい
ないため、廃棄した場合でも深刻な公害を発生させるに
は至らないが、電極活物質に含まれるニッケルや水素吸
蔵合金は貴重な資源であるため、これらの有価金属をリ
サイクルすることが極めて重要である。
The nickel-hydrogen secondary battery has recently been used as a secondary battery instead of a nickel-cadmium battery for batteries of electric vehicles, mobile phones, and the like, and the demand has been rapidly increasing. Nickel-metal hydride rechargeable batteries have better characteristics than nickel-cadmium batteries and do not use harmful cadmium.Thus, even if they are disposed, they do not cause serious pollution. And hydrogen storage alloys are valuable resources, and it is extremely important to recycle these valuable metals.

【0004】しかしながら、使用済みのニッケル水素二
次電池から有価金属を回収するとしても、電化製品の小
型化に伴って電池もコンパクト化が進んでいるため、有
価金属を高純度に回収することは容易ではない。また、
自動車用のバッテリーに使用されるニッケル水素二次電
池は、車の衝突等でも壊れにくい構造となっているた
め、容易には分解できない。このような現状から、使用
済みのニッケル水素二次電池から、有価金属を簡単且つ
高純度に回収する方法の開発が望まれている。
[0004] However, even if valuable metals are recovered from used nickel-metal hydride secondary batteries, it is difficult to recover valuable metals with high purity because batteries are becoming more compact with the miniaturization of electric appliances. It's not easy. Also,
Nickel-metal hydride secondary batteries used in automobile batteries cannot be easily disassembled because they have a structure that is hard to be broken by a car collision or the like. Under such circumstances, development of a method for recovering valuable metals easily and with high purity from used nickel-metal hydride secondary batteries has been desired.

【0005】一般的に電池はその安全性から容易には分
解できないため、またコストを抑えるうえからも、使用
済み電池から有価金属を回収する場合には、電池全体を
破砕し、破砕物を物理的に分別することがプロセスの初
工程となる。例えば、鉄とその他の物質は磁選により、
プラスチック類は比重分離などにより分離するほか、篩
分けなど種々の物理分離によって、容器や支持体の主成
分である鉄やプラスチック類と電極活物質とが分離され
る。
[0005] In general, batteries cannot be easily disassembled due to their safety, and in order to reduce costs, when recovering valuable metals from used batteries, the entire battery is crushed and the crushed material is physically separated. Separation is the first step in the process. For example, iron and other substances are separated by magnetic separation.
In addition to the plastics being separated by specific gravity separation or the like, the electrode active material is separated from iron or plastics, which are the main components of the container or the support, by various physical separations such as sieving.

【0006】分離された電極活物質は正極及び負極の活
物質の混合物となるが、正極材と負極材を物理的に完全
分離することは困難である。このため、従来から、分離
した電極活物質を塩酸や硝酸等の鉱酸に一旦溶解し、そ
の溶解液からニッケルやコバルトなどの有価金属を化学
的処理により回収する方法が取られている。
The separated electrode active material becomes a mixture of the active materials of the positive electrode and the negative electrode, but it is difficult to physically completely separate the positive electrode material and the negative electrode material. For this reason, conventionally, a method of once dissolving the separated electrode active material in a mineral acid such as hydrochloric acid or nitric acid and recovering valuable metals such as nickel and cobalt from the solution by chemical treatment has been adopted.

【0007】例えば、電極活物質を塩酸で溶解した場合
には、ニッケル、コバルト、希土類元素等の塩化物溶液
が得られる。しかしながら、電池用のリサイクルを考え
た場合、回収された有価金属は再び電池材料として利用
できることが望ましく、そのためには腐食性を有する塩
素が残留することは嫌われ、好ましくないとされてい
る。
For example, when the electrode active material is dissolved with hydrochloric acid, a chloride solution of nickel, cobalt, a rare earth element or the like is obtained. However, in consideration of recycling for batteries, it is desirable that the recovered valuable metals can be reused as battery materials. For this reason, it is hated that corrosive chlorine remains, which is not preferable.

【0008】一方、硫酸で溶解した場合には電極活物質
は全量溶解されるため、溶解液は正極と負極の活物質の
混合溶液となり、種々の元素が混合して溶解している。
従って、ニッケルなどの有価金属を再び電池材料として
利用するためには、溶解液から希土類元素やマンガンを
選択的に除去して、高純度の有価金属を含む溶液を回収
する必要がある。
On the other hand, when dissolved with sulfuric acid, the entire amount of the electrode active material is dissolved, so that the solution becomes a mixed solution of the active materials of the positive electrode and the negative electrode, and various elements are mixed and dissolved.
Therefore, in order to reuse a valuable metal such as nickel as a battery material, it is necessary to selectively remove rare earth elements and manganese from the solution to recover a solution containing a high-purity valuable metal.

【0009】[0009]

【発明が解決しようとする課題】上記したように、使用
済みニッケル水素二次電池から分離した電極活物質を硫
酸で溶解し、その溶解液からニッケルなどの有価金属を
高純度に回収するためには、溶解液中のマンガンや希土
類元素を分離除去する必要がある。しかしながら、希土
類元素は溶媒抽出やイオン交換により選択除去が可能で
あるが、マンガンの選択的除去は極めて困難である。
As described above, an electrode active material separated from a used nickel-metal hydride secondary battery is dissolved with sulfuric acid, and a valuable metal such as nickel is recovered from the solution with high purity. It is necessary to separate and remove manganese and rare earth elements in the solution. However, rare earth elements can be selectively removed by solvent extraction or ion exchange, but selective removal of manganese is extremely difficult.

【0010】例えば、マンガンをキレート樹脂に吸着さ
せることも可能であるが、溶解液中のマンガン濃度は数
g/lと高いため、半分程度の濃度には低下できるもの
の、完全に除去することは不可能である。また、オゾン
や電気分解による酸化もマンガンの除去法として知られ
ているが、ニッケルやコバルトを共沈させることなく、
マンガンのみを沈殿除去することは困難である。
For example, it is possible to adsorb manganese to the chelating resin, but the concentration of manganese in the solution is as high as several g / l, so that it can be reduced to about half, but it cannot be completely removed. Impossible. Oxidation by ozone or electrolysis is also known as a method for removing manganese, but without coprecipitating nickel or cobalt,
It is difficult to precipitate and remove only manganese.

【0011】本発明は、このような従来の事情に鑑み、
使用済みのニッケル水素二次電池からニッケルやコバル
ト等の有価金属を回収する方法であって、分離した電極
活物質を硫酸で溶解した溶解液からマンガンを簡単に除
去し、高純度の有価金属を含む溶液を得る方法を提供す
ることを目的とする。
The present invention has been made in view of such a conventional situation,
This is a method of recovering valuable metals such as nickel and cobalt from used nickel-metal hydride secondary batteries.Easily removes manganese from a solution obtained by dissolving the separated electrode active material with sulfuric acid to recover high-purity valuable metals. It is an object to provide a method for obtaining a solution containing the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する使用済みニッケル水素二次電池か
らの有価金属回収方法は、使用済みニッケル水素二次電
池から分離した電極活物質を硫酸で溶解し、得られた溶
解液をpH3以下に保持し且つ銀−塩化銀電極に対して
酸化還元電位を1000〜1200mVの範囲に調整す
ることにより、マンガンを沈殿除去して有価金属を含む
溶液を得ることを特徴とする。
In order to achieve the above object, the present invention provides a method for recovering valuable metals from a used nickel-metal hydride secondary battery. By dissolving with sulfuric acid, maintaining the resulting solution at pH 3 or less and adjusting the oxidation-reduction potential to a range of 1000 to 1200 mV with respect to a silver-silver chloride electrode, thereby precipitating and removing manganese and containing a valuable metal. It is characterized by obtaining a solution.

【0013】上記本発明による使用済みニッケル水素二
次電池からの有価金属回収方法においては、前記溶解液
の酸化還元電位を調整するため、酸化剤として3価のニ
ッケル及び/又はコバルトの水酸化物を添加することを
特徴とする。3価のニッケル及び/又はコバルトの水酸
化物の添加量を、溶解液中のマンガンに対してニッケル
とコバルトの合計量で1.2〜1.4当量とすることが好
ましい。
In the method for recovering valuable metals from a used nickel-metal hydride secondary battery according to the present invention, in order to adjust the oxidation-reduction potential of the solution, a hydroxide of trivalent nickel and / or cobalt is used as an oxidizing agent. Is added. The addition amount of the trivalent nickel and / or cobalt hydroxide is preferably 1.2 to 1.4 equivalents in terms of the total amount of nickel and cobalt with respect to manganese in the solution.

【0014】また、別法として、本発明が提供する使用
済みニッケル水素二次電池からの第2の有価金属回収方
法は、使用済みニッケル水素二次電池から分離した電極
活物質を硫酸で溶解し、得られた溶解液を反応温度50
〜90℃、pH1〜5.5に保持し、過硫酸アンモニウ
ム又は過硫酸ナトリウムを溶解液中のマンガンに対して
1〜10当量添加することにより、マンガンを沈殿除去
して有価金属を含む溶液を得ることを特徴とする。
[0014] Alternatively, a second method for recovering valuable metals from a used nickel-metal hydride secondary battery provided by the present invention comprises dissolving the electrode active material separated from the used nickel-metal hydride secondary battery with sulfuric acid. The obtained solution is reacted at a reaction temperature of 50.
The solution containing valuable metals is obtained by precipitating and removing manganese by adding ammonium persulfate or sodium persulfate in an amount of 1 to 10 equivalents to manganese in the solution while maintaining the temperature at ~ 90 ° C and the pH at 1 to 5.5. It is characterized by the following.

【0015】[0015]

【発明の実施の形態】まず、本発明方法の実施に際して
は、その前工程として、使用済みニッケル水素二次電池
から電極活物質を分離回収する。電極活物質の分離回収
法については、特に限定されるものではないが、本発明
者らが既に提案した特願2000−377009に記載
の方法が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in carrying out the method of the present invention, as a preceding step, an electrode active material is separated and recovered from a used nickel hydrogen secondary battery. The method for separating and recovering the electrode active material is not particularly limited, but the method described in Japanese Patent Application No. 2000-37709 already proposed by the present inventors is preferable.

【0016】具体的には、まず使用済みニッケル水素二
次電池を破砕して、その破砕物を水中で攪拌してスラリ
ー状とする。この時セパレーター等のプラスチック類は
浮遊しやすいため、これを利用してプラスチック類を分
離できる。次に、水中に分散させた破砕物を篩い分け
し、正極及び負極の支持体、容器及びプラスチック類を
篩上に分離し、電極活物質を篩下として回収する。
Specifically, first, a used nickel-metal hydride secondary battery is crushed, and the crushed material is stirred in water to form a slurry. At this time, plastics such as a separator easily float, and the plastics can be separated by using the plastics. Next, the crushed material dispersed in water is sieved, the support for the positive electrode and the negative electrode, the container, and the plastics are separated on a sieve, and the electrode active material is collected under the sieve.

【0017】本発明においては、上記のごとく篩下とし
て分離された電極活物質を硫酸で溶解し、電極活物質が
全て溶解された溶解液を得る。この溶解液には、正極活
物質に含まれるニッケル、コバルト、亜鉛、並びに負極
活物質に含まれるニッケル、コバルト、マンガン、希土
類元素が溶解されている。
In the present invention, the electrode active material separated under the sieve as described above is dissolved with sulfuric acid to obtain a solution in which the entire electrode active material is dissolved. In this solution, nickel, cobalt, zinc contained in the positive electrode active material, and nickel, cobalt, manganese, and rare earth elements contained in the negative electrode active material are dissolved.

【0018】まず、本発明の第1の方法によれば、この
溶解液をpH3以下、好ましくはpH1〜2に保持しな
がら、酸化剤を添加して酸化還元電位(ORP)を銀−
塩化銀電極で1000〜1200mV、好ましくは11
00〜1200mVの範囲に調整する。この第1の方法
により、溶解液からマンガンを選択的に沈殿させること
ができ、マンガン濃度が電池材料用の水酸化ニッケル製
造始液に必要なスペック以下の溶液とすることが可能で
ある。
First, according to the first method of the present invention, an oxidizing agent is added to keep the redox potential (ORP) of silver-dissolved solution at a level not higher than pH 3, preferably pH 1 to 2, while maintaining the solution at pH 3 or lower.
1000-1200 mV at a silver chloride electrode, preferably 11
It is adjusted to the range of 00 to 1200 mV. According to the first method, manganese can be selectively precipitated from the solution, and the manganese concentration can be reduced to a solution that is equal to or less than the specification required for the starting solution for producing nickel hydroxide for battery materials.

【0019】使用する酸化剤としては、オゾンのような
強力なものはニッケルやコバルトをも酸化させてしま
い、共沈が起こりやすいため好ましくない。従って、こ
の第1の方法で用いる酸化剤は、3価のニッケルの水酸
化物、3価のコバルトの水酸化物が特に好ましい。この
3価のニッケルやコバルトの水酸化物は、予め別工程に
おいて、ニッケル溶液やコバルト溶液に次亜塩素酸ナト
リウムや塩素ガス等の酸化剤を添加して製造する。得ら
れた3価のニッケル及びコバルトの水酸化物は、溶解液
に添加する前に水洗することが好ましく、これによりマ
ンガン除去後の溶液への塩素の残留を抑制することがで
きる。
As an oxidizing agent to be used, a strong oxidizing agent such as ozone oxidizes nickel and cobalt, and co-precipitation is likely to occur. Accordingly, the oxidizing agent used in the first method is particularly preferably a hydroxide of trivalent nickel and a hydroxide of trivalent cobalt. This trivalent nickel or cobalt hydroxide is produced in a separate step by adding an oxidizing agent such as sodium hypochlorite or chlorine gas to a nickel solution or a cobalt solution. The obtained trivalent nickel and cobalt hydroxides are preferably washed with water before being added to the solution, so that chlorine remaining in the solution after the removal of manganese can be suppressed.

【0020】上記第1の方法において、酸化剤として3
価のニッケル及び/又はコバルトの水酸化物を用いる場
合、その添加量は溶解液中のマンガンに対して合計で1
当量以上とすることが好ましい。特に、水酸化物の添加
量をマンガンに対してニッケルとコバルトの合計量で
1.2当量以上とすることにより、マンガンを液濃度で
0.001g/l以下までほぼ完全に除去することがで
きる。
In the above-mentioned first method, 3 as an oxidizing agent is used.
When using nickel and / or cobalt hydroxides with a valency of 1, the total amount is 1 to manganese in the solution.
It is preferable that the amount is equal to or more than the equivalent. In particular, by setting the amount of hydroxide to be at least 1.2 equivalents in total of nickel and cobalt with respect to manganese, manganese can be almost completely removed to a liquid concentration of 0.001 g / l or less. .

【0021】第1の方法により、3価のニッケル及び/
又はコバルトの水酸化物がマンガンを酸化して除去する
際の反応を下記の化学式に示す。この時、溶解液中に含
まれる鉄イオンも3価になるため、次工程である希土類
元素及び鉄の除去の際に溶解液にエアーを吹き込むなど
の操作を省略することができ、後工程での希土類元素及
び鉄の除去が容易となる。
According to the first method, trivalent nickel and / or
Alternatively, a reaction when a hydroxide of cobalt oxidizes and removes manganese is represented by the following chemical formula. At this time, since iron ions contained in the solution also become trivalent, it is possible to omit operations such as blowing air into the solution at the time of removing the rare earth element and iron in the next step, and in a subsequent step. , The removal of rare earth elements and iron becomes easier.

【0022】[0022]

【化1】 Mn2++2Co(OH) → MnO+2Co2+ Mn2++2Ni(OH) → MnO+2Ni2+ [Formula 1] Mn 2+ + 2Co (OH) 3 → MnO 2 + 2Co 2+ Mn 2+ + 2Ni (OH) 3 → MnO 2 + 2Ni 2+

【0023】次に、本発明の第2の方法においては、電
極活物質が全て溶解された溶解液を、反応温度50〜9
0℃、pH1〜5.5に保持し、過硫酸アンモニウム又
は過硫酸ナトリウムを酸化剤として添加する。過硫酸ア
ンモニウム又は過硫酸ナトリウムの添加量は、溶解液中
のマンガンに対して1〜10当量とする。この第2の方
法により、溶解液中のマンガンを沈殿除去することがで
きる。
Next, in the second method of the present invention, a solution in which all of the electrode active material is dissolved is reacted with a reaction temperature of 50-9.
Maintain at 0 ° C. and pH 1-5.5 and add ammonium or sodium persulfate as oxidizing agent. The addition amount of ammonium persulfate or sodium persulfate is 1 to 10 equivalents to manganese in the solution. By this second method, manganese in the solution can be removed by precipitation.

【0024】この第2の方法では、溶解液の反応温度が
高いほど効率的にマンガンを沈殿除去できるが、90℃
を越える高温ではコバルトの沈殿率も約30%程度にま
で増加するため、70〜90℃の反応温度が好ましい。
また、溶解液のpHが高いほどマンガンの沈殿率は上昇
するが、同時にニッケル及びコバルトの沈殿率も増える
ため、pHは3〜4程度とすることが好ましい。
In the second method, the higher the reaction temperature of the solution, the more efficiently manganese can be precipitated and removed.
At a high temperature exceeding the above, the precipitation rate of cobalt also increases to about 30%, so that a reaction temperature of 70 to 90 ° C is preferable.
The precipitation rate of manganese increases as the pH of the solution increases, but the precipitation rates of nickel and cobalt also increase at the same time. Therefore, the pH is preferably about 3 to 4.

【0025】特に、反応温度90℃、pH4付近の反応
条件が最も好ましく、過硫酸アンモニウム又は過硫酸ナ
トリウムの添加量を溶解液中のマンガンの2当量とした
とき、マンガンの沈殿率が100%となり、マンガン濃
度が0.001g/l以下の溶液が得られる。
Particularly, the reaction conditions at a reaction temperature of 90 ° C. and a pH of about 4 are most preferable. When the amount of ammonium persulfate or sodium persulfate is 2 equivalents of manganese in the solution, the precipitation rate of manganese is 100%, A solution having a manganese concentration of 0.001 g / l or less is obtained.

【0026】尚、本発明方法によりマンガンの沈殿を濾
過して除去した後の溶液は、高純度のニッケルやコバル
ト等の有価金属を含み、後工程の化学的処理によりこれ
ら有価金属を回収することができる。また、電極活物質
の溶解液に含まれる希土類元素は、前もって又は本発明
方法による処理後に、溶媒抽出やイオン交換により選択
除去することが可能である。
The solution after removing the precipitate of manganese by filtration according to the method of the present invention contains valuable metals such as high-purity nickel and cobalt, and it is necessary to recover these valuable metals by a chemical treatment in a subsequent step. Can be. In addition, the rare earth element contained in the solution of the electrode active material can be selectively removed by solvent extraction or ion exchange before or after the treatment according to the method of the present invention.

【0027】[0027]

【実施例】実施例1 ニッケル水素二次電池から回収した電極活物質を硫酸で
溶解し、その溶解液100mlに酸化剤として3価のニ
ッケルとコバルトの水酸化物を添加して、反応温度60
℃で2時間攪拌することによりマンガンを沈殿させた。
尚、酸化剤として使用した3価のニッケルとコバルトの
水酸化物の組成は、Niが28重量%、Coが18重量
%、及び水分35重量%であった。
【Example】Example 1  The electrode active material recovered from nickel-metal hydride secondary batteries is
Dissolve and add 100 ml of the solution as a trivalent
After adding nickel and cobalt hydroxide, the reaction temperature was increased to 60.
Manganese was precipitated by stirring at 2 ° C. for 2 hours.
The trivalent nickel and cobalt used as the oxidizing agent
The composition of the hydroxide was 28% by weight of Ni and 18% by weight of Co.
% And moisture 35% by weight.

【0028】この時、酸化剤の添加量(水酸化物中のニ
ッケルとコバルトの溶解液中のマンガンに対する合計添
加量)、溶解液のpH、及び銀−塩化銀電極に対する酸
化還元電位(OPR)を、それぞれ下記表1に示すよう
に変化させた。生成したマンガンの沈殿を除去した後、
得られた濾液中のNi、Co、Mn、Clの濃度を測定
し、その結果を表1に併せて示した。
At this time, the amount of the oxidizing agent (total amount of nickel and cobalt in the hydroxide relative to the manganese in the solution), the pH of the solution, and the oxidation-reduction potential (OPR) with respect to the silver-silver chloride electrode Was changed as shown in Table 1 below. After removing the generated manganese precipitate,
The concentrations of Ni, Co, Mn, and Cl in the obtained filtrate were measured, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から分るように、マンガンをほぼ完全
に除去できる酸化剤(3価のニッケルとコバルトの水酸
化物)の添加量は1.2当量以上であり、この条件を満
たす試料3、6〜8ではpH1〜2でマンガンを濾液濃
度で0.001g/l以下にすることができた。しか
し、酸化剤の添加量を1.0当量又はそれ以下まで低下
させた試料1、2、4及び5では、マンガンを完全には
除去できなかった。また、酸化剤の添加量を1.6当量
まで増やした試料8では、マンガンを完全に除去できる
が、マンガン及び鉄を還元するために必要な量しか溶解
しないため、残渣中のニッケル及びコバルトが増加し、
残渣へのロスが増加した。
As can be seen from Table 1, the amount of the oxidizing agent (trivalent nickel and cobalt hydroxide) that can remove manganese almost completely is not less than 1.2 equivalents. , 6-8, manganese could be reduced to 0.001 g / l or less at a filtrate concentration of pH 1-2. However, in Samples 1, 2, 4, and 5 in which the amount of the oxidizing agent added was reduced to 1.0 equivalent or less, manganese could not be completely removed. In sample 8 in which the amount of the oxidizing agent added was increased to 1.6 equivalents, manganese could be completely removed, but only the amount required to reduce manganese and iron was dissolved, so that nickel and cobalt in the residue were not dissolved. Increase
Losses to the residue increased.

【0031】ORPに関しては、試料3、6〜8から、
1100〜1200mVでマンガンが完全に沈殿するこ
とが分る。また、このORPの領域では鉄イオンも3価
になっているため、後工程の希土類元素と鉄の除去に際
して酸化が不要となる。
Regarding the ORP, from samples 3, 6 to 8,
It turns out that manganese completely precipitates at 1100 to 1200 mV. Further, since iron ions are also trivalent in the ORP region, oxidation is not required when removing rare earth elements and iron in a later step.

【0032】一方、マンガン除去後の濾液中の塩素濃度
は、酸化剤として添加する水酸化物の洗浄により、洗浄
しない場合と比べて混入する塩素を4分の1から10分
の1以下にできることが分る。尚、水酸化物を水洗しな
い場合には、濾液中に残る塩素濃度は1.2当量の水酸
化物添加で0.5g/lとなった。また、水酸化物の過
剰な添加は塩素濃度を上昇させる原因となる。
On the other hand, the chlorine concentration in the filtrate after the removal of manganese can be reduced to one-fourth to one-tenth by cleaning the hydroxide added as an oxidizing agent, as compared with the case without cleaning. I understand. When the hydroxide was not washed with water, the concentration of chlorine remaining in the filtrate was 0.5 g / l by adding 1.2 equivalents of the hydroxide. Excessive addition of hydroxide causes an increase in chlorine concentration.

【0033】従って、塩素の混入を抑え、後工程の希土
類元素の除去を考慮すると、酸化剤である水酸化物を水
洗して使用し、酸化還元電位1100〜1200mV以
上及びpH1〜2で行うのが最適条件であることが分
る。
Therefore, in consideration of suppressing the incorporation of chlorine and removing the rare earth element in a later step, the hydroxide, which is an oxidizing agent, is washed with water and used at a redox potential of 1100 to 1200 mV or more and a pH of 1 to 2. Is the optimal condition.

【0034】実施例2 電極活物質を硫酸で溶解した溶解液として、下記表2に
示す3種類の溶解液を作製した。溶解液Aは希土類元素
を除去した状態を想定したもので、ニッケル、コバル
ト、マンガンのみを含んでいる。また、溶解液Bと溶解
液Cは、希土類元素として異なる濃度のランタンとネオ
ジウムを含んでいる。
[0034]Example 2  Table 2 below shows a solution obtained by dissolving the electrode active material with sulfuric acid.
The three types of dissolution solutions shown were prepared. Dissolution A is a rare earth element
Is assumed to have been removed.
G contains only manganese. In addition, the solution B
Liquid C contains different concentrations of lanthanum and neonate as rare earth elements.
Contains Jium.

【0035】[0035]

【表2】 [Table 2]

【0036】上記表2の各溶解液を使用して、下記表3
に示すように、反応温度及びpHを調整しながら、酸化
剤として過硫酸アンモニウムを添加してマンガンを沈殿
させた。この時、過硫酸アンモニウムの添加量を溶解液
中のマンガンに対して表3のごとく変化させたが、反応
時間は全ての試料で1時間とした。また、下記表4に
は、マンガン除去後の濾液濃度とマンガンの沈殿率を示
した。
Using each of the solutions shown in Table 2 above, the following Table 3
As shown in Table 2, while adjusting the reaction temperature and pH, manganese was precipitated by adding ammonium persulfate as an oxidizing agent. At this time, the amount of ammonium persulfate was changed with respect to manganese in the solution as shown in Table 3, but the reaction time was 1 hour for all samples. Table 4 below shows the concentration of the filtrate after the removal of manganese and the precipitation rate of manganese.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】上記の結果から分るように、反応温度とp
Hはマンガンやニッケルの沈殿率に大きな影響を及ぼす
が、酸化剤である過硫酸アンモニウムの添加量は1〜1
0当量の範囲内であれば良い。例えば、反応温度が50
℃の場合、pH4の試料15と18では過硫酸アンモニ
ウムの添加量が多いほどマンガン沈殿率も大きいが、最
大でも13.3%であり、またpH5の試料9、14、
16の中では添加量1.5当量の試料14がマンガン沈
殿率21.2%で最大となっている。
As can be seen from the above results, the reaction temperature and p
H has a great effect on the precipitation rate of manganese and nickel, but the amount of ammonium persulfate added as an oxidizing agent is 1 to 1
What is necessary is just to be in the range of 0 equivalent. For example, if the reaction temperature is 50
In the case of ° C., in Samples 15 and 18 at pH 4, the greater the amount of ammonium persulfate added, the higher the manganese precipitation rate, but the maximum is 13.3%.
Among the samples 16, the sample 14 with an added amount of 1.5 equivalents had the highest manganese precipitation rate of 21.2%.

【0040】pHの変化に関しては、反応温度が50℃
で、酸化剤である過硫酸アンモニウムの添加量が1.5
当量である試料11〜14を比較すると、pHが増える
に従ってマンガンの沈殿率も増加することが分る。しか
し、pHが5.5を越えると、例えばpH5.87である
試料10のようにニッケルの沈殿率も10%以上となる
ため好ましくなく、pH6.81の試料17ではマンガ
ンをほぼ100%沈殿できるものの、ニッケルとコバル
トも殆どが沈殿する。
Regarding the change in pH, the reaction temperature was 50 ° C.
And the addition amount of ammonium persulfate as an oxidizing agent is 1.5
Comparing the equivalent amounts of Samples 11 to 14, it can be seen that the manganese precipitation rate increases as the pH increases. However, when the pH exceeds 5.5, the precipitation rate of nickel becomes 10% or more, for example, as in Sample 10, which has a pH of 5.87, which is not preferable. In Sample 17, which has a pH of 6.81, almost 100% of manganese can be precipitated. However, most of nickel and cobalt also precipitate.

【0041】一方、反応温度を上昇させるとマンガンの
沈殿率が顕著に増加することが、試料19と20の比較
から分る。特に、過硫酸アンモニウムの添加量が2当
量、pH4の試料20においては、マンガンの沈殿率は
100%となり、この時ニッケルの沈殿率は約0.4%
と極めて小さいが、コバルトは約30%が沈殿した。
On the other hand, it can be seen from a comparison between Samples 19 and 20 that the manganese precipitation rate increases significantly when the reaction temperature is increased. In particular, in Sample 20 in which the addition amount of ammonium persulfate was 2 equivalents and the pH was 4, the precipitation rate of manganese was 100%, and at this time, the precipitation rate of nickel was about 0.4%.
However, about 30% of the cobalt was precipitated.

【0042】以上の結果から、酸化剤として過硫酸アン
モニウム又は過硫酸ナトリウムを用いる第2の方法で
は、過硫酸アンモニウム又は過硫酸ナトリウムの添加量
を1.5〜2当量とし、反応温度90℃及びpH4程度
であれば、ニッケルとマンガンを効率良く分離できるこ
とが分る。
From the above results, in the second method using ammonium persulfate or sodium persulfate as the oxidizing agent, the amount of ammonium persulfate or sodium persulfate was set to 1.5 to 2 equivalents, the reaction temperature was 90 ° C. and the pH was about 4. Then, it can be seen that nickel and manganese can be efficiently separated.

【0043】[0043]

【発明の効果】本発明によれば、ニッケル水素二次電池
から分離した電極活物質を硫酸で溶解した溶解液からマ
ンガンを簡単に且つ効率良く除去して、腐食性を有する
塩素を残留させることなく、ニッケルやコバルトなどの
有価金属を高純度の溶液として回収することができ、資
源として貴重なニッケルやコバルトなどの有価金属をリ
サイクルすることが可能となる。
According to the present invention, manganese can be easily and efficiently removed from a solution obtained by dissolving an electrode active material separated from a nickel-metal hydride secondary battery with sulfuric acid to leave corrosive chlorine. In addition, valuable metals such as nickel and cobalt can be recovered as high-purity solutions, and valuable metals such as nickel and cobalt, which are valuable resources, can be recycled.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 敬司 愛媛県新居浜市磯浦町17−5 住友金属鉱 山株式会社新居浜研究所内 Fターム(参考) 4G048 AA10 AB08 AC06 AE02 4K001 AA07 AA19 AA39 BA22 CA01 CA02 DB03 DB23 JA05 5H031 AA02 BB09 EE03 HH01 HH03 HH06 RR02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keiji Kudo 17-5 Isoura-cho, Niihama-shi, Ehime F-term in Niihama Research Laboratory, Sumitomo Metal Mining Co., Ltd. 4G048 AA10 AB08 AC06 AE02 4K001 AA07 AA19 AA39 BA22 CA01 CA02 DB03 DB23 JA05 5H031 AA02 BB09 EE03 HH01 HH03 HH06 RR02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 使用済みニッケル水素二次電池から分離
した電極活物質を硫酸で溶解し、得られた溶解液をpH
3以下に保持し且つ銀−塩化銀電極に対して酸化還元電
位を1000〜1200mVの範囲に調整することによ
り、マンガンを沈殿除去して有価金属を含む溶液を得る
ことを特徴とする使用済みニッケル水素二次電池からの
有価金属回収方法。
An electrode active material separated from a used nickel metal hydride secondary battery is dissolved with sulfuric acid, and the obtained solution is adjusted to pH.
Spent nickel is obtained by precipitating and removing manganese to obtain a solution containing valuable metals by maintaining the oxidation-reduction potential in the range of 1000 to 1200 mV with respect to the silver-silver chloride electrode while maintaining the nickel content at 3 or less. A method for recovering valuable metals from hydrogen secondary batteries.
【請求項2】 前記溶解液の酸化還元電位を調整するた
め、酸化剤として3価のニッケル及び/又はコバルトの
水酸化物を添加することを特徴とする、請求項1に記載
の使用済みニッケル水素二次電池からの有価金属回収方
法。
2. The used nickel according to claim 1, wherein a trivalent nickel and / or cobalt hydroxide is added as an oxidizing agent in order to adjust the oxidation-reduction potential of the solution. A method for recovering valuable metals from hydrogen secondary batteries.
【請求項3】 前記3価のニッケル及び/又はコバルト
の水酸化物の合計添加量を、溶解液中のマンガンに対し
てニッケルとコバルトの合計量で1.2〜1.4当量とす
ることを特徴とする、請求項1又は2に記載の使用済み
ニッケル水素二次電池からの有価金属回収方法。
3. The total addition amount of the trivalent nickel and / or cobalt hydroxide is 1.2 to 1.4 equivalents in terms of the total amount of nickel and cobalt with respect to manganese in the solution. The method for recovering valuable metals from used nickel-metal hydride secondary batteries according to claim 1, wherein the method comprises:
【請求項4】 使用済みニッケル水素二次電池から分離
した電極活物質を硫酸で溶解し、得られた溶解液を反応
温度50〜90℃、pH1〜5.5に保持し、過硫酸ア
ンモニウム又は過硫酸ナトリウムを溶解液中のマンガン
に対して1〜10当量添加することにより、マンガンを
沈殿除去して有価金属を含む溶液を得ることを特徴とす
る使用済みニッケル水素二次電池からの有価金属回収方
法。
4. An electrode active material separated from a used nickel-metal hydride secondary battery is dissolved with sulfuric acid, and the obtained solution is maintained at a reaction temperature of 50 to 90 ° C. and a pH of 1 to 5.5, and is treated with ammonium persulfate or peroxide. Recycling of valuable metals from used nickel-metal hydride secondary batteries by adding 1 to 10 equivalents of sodium sulfate to manganese in the solution to precipitate and remove manganese to obtain a solution containing valuable metals Method.
JP2001044415A 2001-02-21 2001-02-21 Method for recovering valuable metals from used nickel metal hydride secondary batteries Expired - Lifetime JP4506002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044415A JP4506002B2 (en) 2001-02-21 2001-02-21 Method for recovering valuable metals from used nickel metal hydride secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044415A JP4506002B2 (en) 2001-02-21 2001-02-21 Method for recovering valuable metals from used nickel metal hydride secondary batteries

Publications (2)

Publication Number Publication Date
JP2002241856A true JP2002241856A (en) 2002-08-28
JP4506002B2 JP4506002B2 (en) 2010-07-21

Family

ID=18906408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044415A Expired - Lifetime JP4506002B2 (en) 2001-02-21 2001-02-21 Method for recovering valuable metals from used nickel metal hydride secondary batteries

Country Status (1)

Country Link
JP (1) JP4506002B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052528B2 (en) 2003-12-09 2006-05-30 Seido Chemical Industry Company, Ltd. Method for removal of Mn from cobalt sulfate solutions
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
KR101174731B1 (en) 2010-05-12 2012-08-16 성일하이텍(주) Method and apparatus for precipitation of manganese
WO2013049886A1 (en) * 2011-10-04 2013-04-11 Fine Gold Recovery Pty Ltd Improvements in recovery of metals from ores
JP2013139616A (en) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd Recovery method of rare earth element
JP2016033232A (en) * 2014-07-30 2016-03-10 住友金属鉱山株式会社 Method for recovering valuable metals from waste nickel-hydrogen battery
JP2016180125A (en) * 2015-03-23 2016-10-13 住友金属鉱山株式会社 Recovery method of valuable metal from waste nickel hydrogen battery and recovery device of valuable metal from waste nickel hydrogen battery
CN106048222A (en) * 2016-07-26 2016-10-26 中国科学院兰州化学物理研究所 Separation and purification method for manganese ions in high-nickel solution
JP2017008385A (en) * 2015-06-24 2017-01-12 住友金属鉱山株式会社 Recovery method of raw material for manufacturing nca from waste nickel hydrogen battery and recovery device thereof
CN111092273A (en) * 2019-09-14 2020-05-01 湖南金源新材料股份有限公司 Novel method for comprehensively recovering cobalt, nickel, manganese and lithium elements from ternary battery waste
JP6996723B1 (en) 2021-05-28 2022-01-17 株式会社エンビプロ・ホールディングス Metal recovery method from lithium-ion batteries
CN113957255A (en) * 2021-09-30 2022-01-21 广东邦普循环科技有限公司 Method for separating and recycling valuable metals in waste ternary lithium battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420496A (en) * 2015-11-19 2016-03-23 湖南力泓新材料科技股份有限公司 Method for removing cobalt and manganese impurities in zinc sulfate solution by adopting one-step method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140838A (en) * 1981-02-10 1982-08-31 Sumitomo Metal Mining Co Ltd Removing method for manganese from acidic solution containing nickel and cobalt
JPH10510879A (en) * 1994-12-20 1998-10-20 ヴアルタ バツテリー アクチェンゲゼルシヤフト Method for recovering metals from used nickel-metal hydride storage batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140838A (en) * 1981-02-10 1982-08-31 Sumitomo Metal Mining Co Ltd Removing method for manganese from acidic solution containing nickel and cobalt
JPH10510879A (en) * 1994-12-20 1998-10-20 ヴアルタ バツテリー アクチェンゲゼルシヤフト Method for recovering metals from used nickel-metal hydride storage batteries

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052528B2 (en) 2003-12-09 2006-05-30 Seido Chemical Industry Company, Ltd. Method for removal of Mn from cobalt sulfate solutions
KR101174731B1 (en) 2010-05-12 2012-08-16 성일하이텍(주) Method and apparatus for precipitation of manganese
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
JP2012025992A (en) * 2010-07-21 2012-02-09 Sumitomo Metal Mining Co Ltd Method for separating nickel and cobalt from active material contained in spent nickel-hydrogen battery
US8888892B2 (en) 2010-07-21 2014-11-18 Sumitomo Metal Mining Co., Ltd. Method for separating nickel and cobalt from active material contained in spent nickel-metal hydride battery
AU2012321049B2 (en) * 2011-10-04 2017-08-31 Novel Mining Limited Improvements in recovery of metals from ores
WO2013049886A1 (en) * 2011-10-04 2013-04-11 Fine Gold Recovery Pty Ltd Improvements in recovery of metals from ores
JP2013139616A (en) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd Recovery method of rare earth element
JP2016033232A (en) * 2014-07-30 2016-03-10 住友金属鉱山株式会社 Method for recovering valuable metals from waste nickel-hydrogen battery
JP2016180125A (en) * 2015-03-23 2016-10-13 住友金属鉱山株式会社 Recovery method of valuable metal from waste nickel hydrogen battery and recovery device of valuable metal from waste nickel hydrogen battery
JP2017008385A (en) * 2015-06-24 2017-01-12 住友金属鉱山株式会社 Recovery method of raw material for manufacturing nca from waste nickel hydrogen battery and recovery device thereof
CN106048222A (en) * 2016-07-26 2016-10-26 中国科学院兰州化学物理研究所 Separation and purification method for manganese ions in high-nickel solution
CN111092273A (en) * 2019-09-14 2020-05-01 湖南金源新材料股份有限公司 Novel method for comprehensively recovering cobalt, nickel, manganese and lithium elements from ternary battery waste
CN111092273B (en) * 2019-09-14 2022-11-18 湖南金源新材料股份有限公司 Novel method for comprehensively recovering cobalt, nickel, manganese and lithium elements from ternary battery waste
JP6996723B1 (en) 2021-05-28 2022-01-17 株式会社エンビプロ・ホールディングス Metal recovery method from lithium-ion batteries
JP2022182229A (en) * 2021-05-28 2022-12-08 株式会社エンビプロ・ホールディングス Metal recovery method from lithium ion battery
CN113957255A (en) * 2021-09-30 2022-01-21 广东邦普循环科技有限公司 Method for separating and recycling valuable metals in waste ternary lithium battery
CN113957255B (en) * 2021-09-30 2022-11-15 广东邦普循环科技有限公司 Method for separating and recycling valuable metals in waste ternary lithium battery

Also Published As

Publication number Publication date
JP4506002B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
CN112441572B (en) Method for recovering waste lithium iron phosphate anode material
CA3072317C (en) Method for separating copper from nickel and cobalt
EP3702481A1 (en) Method for separating copper from nickel and cobalt
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
EP2444507B1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
EP3834247B1 (en) A process for recovering metals from recycled rechargeable batteries
KR20210080379A (en) The process of extracting metals from lithium-ion batteries
JP5495418B2 (en) Method for recovering manganese
EP3950977A1 (en) A process for recovering cobalt ion, nickel ion and manganese ion from metal-containing residues
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP5262627B2 (en) Method for recovering nickel concentrate from used nickel metal hydride batteries
KR20170061206A (en) Collection method of precursor material using disposed lithum-ion battery
JP2007119854A (en) Electrowinning method for metal manganese and high purity metal manganese
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
EP4270595A1 (en) Method for removing elemental copper from ternary battery waste and use thereof
JP5568977B2 (en) Method for recovering manganese from batteries
JP6960070B1 (en) How to recover valuable metals
JP4215547B2 (en) Cobalt recovery method
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
CN103221557B (en) Method for producing nickel-ontaining acidic solution
JP2006316293A (en) Method for removing manganese from cobalt sulfate solution
JP2004010929A (en) Method for recovering cobalt from scrap
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP2002226923A (en) Method for recovering valuable metal from nickel- hydrogen secondary battery scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

EXPY Cancellation because of completion of term