JP2010201504A - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
JP2010201504A
JP2010201504A JP2009205444A JP2009205444A JP2010201504A JP 2010201504 A JP2010201504 A JP 2010201504A JP 2009205444 A JP2009205444 A JP 2009205444A JP 2009205444 A JP2009205444 A JP 2009205444A JP 2010201504 A JP2010201504 A JP 2010201504A
Authority
JP
Japan
Prior art keywords
immersion nozzle
molten steel
refractory
cao
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205444A
Other languages
English (en)
Other versions
JP5316327B2 (ja
Inventor
Yuichi Tsukaguchi
友一 塚口
Kenji Taguchi
謙治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009205444A priority Critical patent/JP5316327B2/ja
Publication of JP2010201504A publication Critical patent/JP2010201504A/ja
Application granted granted Critical
Publication of JP5316327B2 publication Critical patent/JP5316327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

【課題】浸漬ノズルの内壁面にアルミナが付着するのを効果的に抑制し、浸漬ノズルの閉塞を防止することができる鋼の連続鋳造方法を提供する。
【解決手段】質量%で、CaOを0.5〜7%、SiO2を30%以下で含有するアルミナ−グラファイト質の耐火物で構成される浸漬ノズル6を用い、この浸漬ノズル6内に下記(i)の条件を満たす流速V(m/s)で溶鋼2を通過させて鋳型14に供給し、連続鋳造を行う。
0.2≦V×[CaO]≦7.0 ・・・(i)
但し、上記(i)で、[CaO]は浸漬ノズルを構成する耐火物のCaO含有率(%)を示す。
【選択図】図1

Description

本発明は、鋼を連続鋳造する際に、アルミナ等の高融点脱酸生成物が浸漬ノズルの内壁に付着するのを低減し、浸漬ノズルの閉塞の防止を図った鋼の連続鋳造方法に関する。
鋼の連続鋳造において、溶鋼は取鍋から中間容器のタンディッシュを介し鋳型内に注入される。このとき、タンディッシュの底部には浸漬ノズルが設けられ、この浸漬ノズルの下部が鋳型内の溶鋼中に浸漬されていることから、溶鋼は浸漬ノズルを通じ大気から遮断された状態で注入される。
浸漬ノズルとしては、アルミナとグラファイトを主成分とし、その他にシリカ等を含むアルミナ−グラファイト質のものが広く用いられている。連続鋳造の際、浸漬ノズルの内壁には、溶鋼中の脱酸元素であるアルミニウムの酸化物(アルミナ)が付着し、これが堆積するのに伴い浸漬ノズルが閉塞する、いわゆるノズル詰まりが発生しやすい。このノズル詰まりを防止するため、従来から数多くの対策がなされている。
例えば、浸漬ノズルを構成する耐火物の材質に関する対策として、特許文献1、2には、ライム(CaO)を多く含むジルコニア−ライム質の耐火物を用いた浸漬ノズルが開示されている。また、特許文献3、4には、マグネシア−ライム質の耐火物を用いた浸漬ノズルが開示されている。これらの特許文献1〜4に開示された浸漬ノズルは、いずれも、ノズルの内壁に付着したアルミナをライムとの反応によって低融点化し、これによりアルミナの付着抑制を図ったものである。
これらの浸漬ノズルは自溶性ノズルと称され、アルミナの付着抑制には高い効果を発揮する。しかし、溶鋼中のアルミナ濃度が高い場合や、浸漬ノズル内で溶鋼流速が速い場合は、耐火物の溶損が著しく、これに起因して鋳型内に多くの介在物が流出してしまう。このため、要求される品質レベルが高い鋼種には、特許文献1〜4に開示の浸漬ノズルを適用するのは難しい。
また、特許文献5には、浸漬ノズルの内壁面を平滑に保ち、かつ溶鋼との濡れ性に優れたチタニア(TiO2)を内壁面にコーティングすることによって、アルミナの付着抑制を図った浸漬ノズルが開示されている。同文献に開示された浸漬ノズルは、アルミナの付着抑制に一定の効果を発揮するが、ノズル内壁面に施したコーティング層の耐久性に問題があり、安定してその効果を発揮することができない。
特許第2542585号 特開平4−158962号公報 特開2005−270987号公報 特開2006−68799号公報 特開2005−205474号公報
本発明は上記の問題に鑑みてなされたものであり、浸漬ノズルの内壁面にアルミナが付着するのを効果的に抑制するとともに、その効果を安定して維持し、浸漬ノズルの閉塞を防止することができる鋼の連続鋳造方法を提供することを目的とする。
本発明者らは、上記目的を達成するため、浸漬ノズルの内壁面へのアルミナの付着を低減できる連続鋳造方法について、種々の視点から検討を重ね、その結果、下記の(a)〜(c)の知見を得た。
(a)従来、アルミナを主成分とする耐火物で構成される浸漬ノズルにおいて、その耐火物にライム(CaO)を含有させることは、耐火性が損なわれるという理由から、禁忌事項であった。しかし、耐火物に含有させるライム量を制限することにより、浸漬ノズルの内壁を構成し溶鋼と接する耐火物面に、限定的に半溶融状態のガラス層を形成することができ、耐火物そのものの耐火性も十分に確保できることを見出した。
連続鋳造の際に、浸漬ノズルの内壁面、すなわち耐火物面に半溶融状態のガラス層が形成されている場合、ガラス層が形成されていない場合に比べて、耐火物面と溶鋼との濡れ性が良好になり、溶鋼中のアルミナが耐火物面に付着するのを軽減することができる。通常、溶鋼中のアルミナは溶鋼と濡れ性が悪いため、溶鋼との濡れ性が同様に悪い耐火物面に排斥されるが、溶鋼と耐火物との濡れ性が良好な場合は、その排斥作用が抑制されるため、アルミナが耐火物面に付着しにくくなることによる。
これに加え、耐火物面に半溶融状態のガラス層が形成されていると、耐火物面が平滑化されることから、アルミナの付着を軽減する効果が増大する。
(b)浸漬ノズルとこの内部を通過する溶鋼との間に通電回路を構成し、浸漬ノズルの内壁において、瞬時の電位をある期間にわたって平均した時間平均電位が負となるように電圧を印加し、適正な電流密度で通電を行うことにより、ノズルの内壁を構成する耐火物の溶損が防止され、耐火物面のガラス層を安定して維持することができる。
(c)上記(b)の電圧印加の際に、周期的に極性が正と負に切り替わるパルス状の電圧を印加し、その電圧波形におけるパルスの周期、および正負の期間や電位の大きさを適正化することにより、耐火物面のガラス層と溶鋼との濡れ性をさらに高め、アルミナの付着をより効果的に防止することができる。
本発明は、上記(a)〜(c)の知見に基づいて完成されたものであり、その要旨は、下記の(1)、(2)および(3)に示す鋼の連続鋳造方法にある。
(1)タンディッシュ内の溶鋼を浸漬ノズルを通じて鋳型に供給し連続鋳造する鋼の連続鋳造方法であって、浸漬ノズルの少なくとも内壁を、アルミナおよびグラファイトを主成分とし、質量%で、CaOを0.5〜7%、およびSiO2を30%以下で含有する耐火物で構成し、この浸漬ノズル内に下記(i)の条件を満たす流速V(m/s)で溶鋼を通過させることを特徴とする鋼の連続鋳造方法(以下、「第1発明」ともいう)。
0.2≦V×[CaO]≦7.0 ・・・(i)
但し、上記(i)で、[CaO]は浸漬ノズルを構成する耐火物のCaO含有率(%)を示す。
(2)前記浸漬ノズルに一方の電極を接続するとともに、前記タンディッシュ内の溶鋼に他方の電極を浸漬して、前記浸漬ノズルとこの内部を通過する溶鋼との間に通電回路を構成し、前記電極間に、前記浸漬ノズルにおける時間平均電位が負となる電圧を印加し、前記浸漬ノズルにおける平均電流密度の絶対値が0.5〜20mA(ミリアンペア)/cm2となる通電を行うことを特徴とする前記(1)に記載の鋼の連続鋳造方法(以下、「第2発明」ともいう)。
(3)前記電極間に、3〜200ms(ミリセカンド)を一周期としこの周期内で極性が正と負に切り替わるパルス状の電圧を印加し、一周期のうちで、前記浸漬ノズルが負極となる期間を正極となる期間よりも長くするか、または/および前記浸漬ノズルが負極となる期間での電位の絶対値を正極となる期間での電位の絶対値よりも大きくすることにより、前記浸漬ノズルにおける時間平均電位が負となる電圧に制御し、前記浸漬ノズルが負極となる期間での電流密度の絶対値が10〜200mA/cm2となる通電を行うことを特徴とする前記(2)に記載の鋼の連続鋳造方法(以下、「第3発明」ともいう)。
本発明において、「浸漬ノズルにおける時間平均電位」とは、浸漬ノズルにおける電位の瞬時値を対象期間について時間平均した値を意味する。以下、「時間平均電位」を単に「平均電位」ともいう。
また、「浸漬ノズルにおける平均電流密度」とは、電圧を印加したときに浸漬ノズルと溶鋼との間に流れる平均電流値を、溶鋼と接するノズル壁面の総面積で除して得られる電流密度を意味する。ここでいう「平均電流値」は、浸漬ノズルと溶鋼との間に流れる電流の瞬時値を対象期間について時間平均して求められる電流値である。
本発明の鋼の連続鋳造方法によれば、浸漬ノズルの内壁面へのアルミナ付着を効果的に抑制し、さらにその効果を安定に維持して、浸漬ノズルの閉塞を防止することができる。これにより、連続鋳造の安定操業が可能になる。
本発明の連続鋳造方法を実施するために用いる装置構成の一例を模式的に示す図である。 本発明の連続鋳造方法で採用するパルス状電圧の波形の一例を模式的に示す図である。
上述の通り、本発明は、CaOを0.5〜7質量%含有し、SiO2含有率が30質量%以下であるアルミナ−グラファイト質の浸漬ノズルを用いて、タンディッシュ内の溶鋼を所定の流速で浸漬ノズル内を通過させて鋳型内へ供給し、連続鋳造を行う鋼の連続鋳造方法(第1発明)である。
この連続鋳造方法において、浸漬ノズルとこの内部を通過する溶鋼との間に通電回路を構成し、浸漬ノズルにおける平均電位が負となるように電圧を印加し、ノズルにおける平均電流密度の絶対値が所定範囲となる通電を行う実施形態(第2発明)を採用することができる。さらに、印加電圧としてパルス状の電圧を用い、浸漬ノズルが負極となる期間での電流密度の絶対値が所定範囲となる通電を行う実施形態(第3発明)を採用することができる。
以下に、図面を参照して、本発明を前記の通り規定した理由を説明する。なお、以下の説明において、特に断らない限り、浸漬ノズルを構成する耐火物、および溶鋼の成分組成を表す「%」は「質量%」を意味する。
図1は、本発明の連続鋳造方法を実施するために用いる装置構成の一例を模式的に示す図である。同図に示すように、取鍋1からの溶鋼2を収容するタンディッシュ4は、底部に上ノズル3が設けられ、この上ノズル3の下部に、流量制御機構としてスライディングゲート5と、円筒状の浸漬ノズル6が順に連なって設けられている。
さらに、浸漬ノズル6と溶鋼2との間に通電回路を構成するため、浸漬ノズル6に一方の電極7が接続され、その電極7の対極となる他方の電極(以下、「対極」ともいう)8がタンディッシュ4内の溶鋼2に浸漬され、それぞれ配線9a、9bにより電源装置10と接続されている。電極7および対極8は、いずれも導電性を有するアルミナ−グラファイト質の耐火物からなる。また、電極7が接続された浸漬ノズル6は、絶縁用耐火物11によってタンディッシュ4と電気的に絶縁され、溶鋼2に浸漬する対極8は、これを支持する絶縁用耐火物12によりタンディッシュ4から絶縁されている。絶縁用耐火物11、12は、いずれもカーボンを含まないアルミナ質の耐火物である。
本発明の連続鋳造方法では、図1に例示した構成を具備する連続鋳造装置を用いて鋳造を行う。すなわち、取鍋1からタンディッシュ4に供給された溶鋼2は、上ノズル3、スライディングゲート5、および浸漬ノズル6を通じた後、浸漬ノズル6のノズル吐出孔13から鋳型14内に注入される。このとき、浸漬ノズル6の内部を通過する溶鋼は、スライディングゲート5の開閉度合いにより、その流量が調整される。本発明では、電源装置10の駆動により、電極7と対極8とを介し、浸漬ノズル6と溶鋼2との間に、浸漬ノズル6の平均電位が負となる所定の電圧を印加することができる。
鋳型14に供給された溶鋼2は、湯面に散布されたモールドパウダー17により大気と遮断されながら、鋳型14からの抜熱作用により鋳型14との接触部から凝固殻15を形成し、下方に引き抜かれて鋳片16となる。
1.第1発明
第1発明は、浸漬ノズルの少なくとも内壁を、アルミナおよびグラファイトを主成分とし、CaOを0.5〜7%、およびSiO2を30%以下で含有する耐火物で構成し、この浸漬ノズル内に下記(i)の条件を満たす流速V(m/s)で溶鋼を通過させる鋼の連続鋳造方法である。
0.2≦V×[CaO]≦7.0 ・・・(i)
但し、上記(i)で、[CaO]は浸漬ノズルを構成する耐火物のCaO含有率(%)を示す。
第1発明において、浸漬ノズルは、アルミナ含有率が30%以上で、グラファイト含有率が10%以上であるアルミナ−グラファイト質の耐火物を基本構成とし、これに、CaO(ライム)およびSiO2(シリカ)を前記の通り所定量含有させたものである。
浸漬ノズルを構成する耐火物にCaOを0.5〜7%含有させるのは、CaOの含有率が0.5%未満では、浸漬ノズルの内壁面となる耐火物面にガラス層が形成されにくく、7%を超えると、耐火物の溶損が著しくなるからである。CaO含有率のより望ましい範囲は、1.0%以上5%未満である。CaOの原料には、吸湿の問題がある単体のCaOよりも化合物を用いることが望ましい。具体的にはライムシリケート(CaO−SiO2)系原料またはライム安定化ジルコニアが好適である。ライムアルミネート(CaO−Al23)系原料は、Al23濃度の上昇に伴って融点が大きく上昇するので、浸漬ノズルの内壁面へのガラス層形成が安定しない点で不利であるが、CaOの原料となり得る。
浸漬ノズルを構成する耐火物にSiO2を30%以下で含有させるのは、低級酸化物であるSiO2の含有率が30%を超えると、連続鋳造の際に、SiO2が耐火物中のグラファイトや溶鋼中のアルミニウムなどによって還元され酸素供給源となるため、アルミナの生成と付着を助長し、悪影響を生じるからである。また、SiO2の含有率が高すぎると耐火物の耐火度が低下するため、この点からも、SiO2を30%を超えて含有させるのは好ましくない。
SiO2の含有率は0%でもよい。但し、耐火物の耐熱衝撃性を確保する観点から、SiO2を0.5%以上含有させることがより望ましい。耐火物の耐熱衝撃性を確保しつつ、アルミナ生成の助長や耐火度の低下を抑制するため、SiO2含有率の望ましい上限値は15%であり、より望ましくは5%である。
浸漬ノズルを構成する耐火物には、主成分として、カーボン含有率に換算して10〜40%のグラファイトが含まれることが望ましい。カーボン含有率が10%未満であると熱衝撃に弱く、40%を超えると耐火物の強度や耐食性が低下するとともに、耐火物面におけるガラス層の形成が阻害されるからである。カーボン含有率のさらに好ましい範囲は15〜35%である。
また、浸漬ノズルを構成する耐火物に含まれるアルミナ、カーボン、ライムおよびシリカ以外の他の成分(不純物を含む)の合計は、本発明の効果を十分に発揮させる観点から、15%未満とするのが望ましい。ここでいう他の成分とは、ジルコニア(ZrO2)、酸化ナトリウム(Na2O)、チタニア(TiO2)、B23等が該当し、微妙な物性の調整や原料配合上で含まれる成分である。
前記図1に示す浸漬ノズルでは、ノズル全体を、上述のように成分組成を規定したアルミナ−グラファイト質の耐火物で構成しているが、この耐火物を浸漬ノズルの内壁のみに配置してもよい。その場合、耐久性等を考慮して、厚さを3〜10mm程度とするのが望ましい。
第1発明においては、上述のように成分組成を規定した浸漬ノズルを使用することに加え、タンディッシュ内の溶鋼を上記(i)の条件を満たす流速で浸漬ノズル内を通過させて鋳型内へ供給する。すなわち、浸漬ノズル内を通過する溶鋼流速V(m/s)と、浸漬ノズルを構成する耐火物のCaO含有率(%)との積(V×[CaO])が0.2〜7.0の範囲内となるように、溶鋼流速Vを調整することが必要である。V×[CaO]が0.2未満であると、浸漬ノズルの内壁面にアルミナ介在物が付着しやすく、V×[CaO]が7.0を超えると、ノズル内壁の溶損が著しくなりやすいからである。ここで、浸漬ノズル内の溶鋼流速Vは、タンディッシュから鋳型に注入される単位時間あたりの溶鋼流量を浸漬ノズルの横断面積で除して求められる。V×[CaO]のより好ましい範囲は、0.3〜6.0である。
第1発明の連続鋳造方法によれば、連続鋳造の際に、浸漬ノズルの内壁を構成する耐火物面に半溶融状態のガラス層が形成され、これに伴い、耐火物面と溶鋼との濡れ性が良好になり、しかも耐火物面が平滑化されるため、溶鋼中のアルミナが耐火物面に付着するのを軽減することができる。
厳密には、耐火物面におけるガラス層の形成は、浸漬ノズル内を通過する溶鋼の温度、すなわち耐火物面の温度の影響を受ける。しかし、通常の鋼の連続鋳造においては、溶鋼温度が1500℃〜1580℃程度の範囲内に安定しており、耐火物面におけるガラス層の形成に及ぼす影響はほとんどない。
2.第2発明
第2発明は、第1発明を実施するに際し、前記図1に示すように、タンディッシュ4から鋳型14へ溶鋼2を供給する浸漬ノズル6に電極7を接続し、タンディッシュ4内の溶鋼2に対極8を浸漬して、浸漬ノズル6とこの内部を通過する溶鋼2との間に通電回路を構成し、電極7と対極8との間に、浸漬ノズル6における平均電位が負となる電圧を印加し、浸漬ノズル6における平均電流密度の絶対値が0.5〜20mA/cm2となる通電を行う連続鋳造方法である。
第2発明において、浸漬ノズルの平均電位が負となる電圧を印加するのは、浸漬ノズルの内壁を構成する耐火物の溶損を抑制しつつ、耐火物面にガラス層を安定して保持するためである。浸漬ノズルの電位が正となったときの反応によってノズル耐火物の溶損が進行するため、その逆の負の電位に浸漬ノズルを保つことが、耐火物の溶損抑制とガラス層の安定保持に有効だからである。
そして、耐火物の溶損抑制作用は、浸漬ノズルにおける平均電流密度の絶対値が0.5mA/cm2未満では十分に発揮されない。また、その平均電流密度の絶対値が20mA/cm2を超えると、酸素イオンの移動に起因してアルミナ付着量の増大が顕在化するので望ましくない。浸漬ノズルにおける平均電流密度の絶対値のより望ましい範囲は、0.8〜17mA/cm2である。
第2発明によれば、浸漬ノズルの内壁を構成する耐火物面のガラス層を安定して維持することができる。
3.第3発明
第3発明は、第2発明における印加電圧として、3〜200msを一周期としこの周期内で正と負に切り替わるパルス状の電圧を用いる連続鋳造方法である。このパルス状の電圧は、一周期のうちで、浸漬ノズルが負極となる期間を正極となる期間よりも長くするか、または/および浸漬ノズルが負極となる期間での電位の絶対値を正極となる期間での電位の絶対値よりも大きくすることにより、浸漬ノズルにおける平均電位が負となるように制御された電圧である。第3発明では、前記図1に示すように、電極7と対極8との間に、パルス状の電圧を印加し、浸漬ノズル6における平均電流密度の絶対値が0.5〜20mA/cm2となり、且つ、浸漬ノズル6が負極となる期間での電流密度の絶対値が10〜200mA/cm2となる通電を行う。
第2発明で説明した通り、浸漬ノズルにおける平均電流密度の絶対値の適正範囲は、0.5〜20mA/cm2である。一方、本発明によって得られる耐火物面と溶鋼との良好な濡れ性は、電流密度の実効値が大きいほど改善される。そこで、平均電流密度を適正範囲に保ったまま、電流密度の実効値を高めることが、アルミナの付着を効果的に抑制し、本発明の効果をより一層高めるために望ましい。そのため、印加電圧にパルス状の電圧を採用する第3発明が有効である。
第3発明では、電極間に印加するパルス状の電圧として、一周期のうちで、浸漬ノズルが負極となる期間を、正極となる期間よりも長くするか、もしくは、浸漬ノズルが負極となる期間での電位の絶対値を、正極となる期間での電位の絶対値よりも大きくするか、またはこれら両方を行うことによって、浸漬ノズルにおける平均電位が負となる電圧を採用し、これにより、浸漬ノズルにおける平均電流密度の絶対値を0.5〜20mA/cm2の範囲内に制御することができる。しかも、そのパルス状の電圧を採用することにより、電流密度の実効値、すなわち浸漬ノズルが正極または負極となる期間での電流密度の絶対値を大きくすることができる。
図2は、本発明の連続鋳造方法で採用するパルス状電圧の波形の一例を模式的に示す図である。同図に示すパルス状の電圧では、一周期のうちで、浸漬ノズルが負極となる期間(TC)が、正極となる期間(TA)よりも長く、浸漬ノズルが負極となる期間の電位(−V1)と、正極となる期間の電位(V1)との絶対値が等しい場合を例示している。
図2に示すパルス状電圧の場合、浸漬ノズルにおける平均電位(VAVE)は、−V1×{(TC−TA)/(TC+TA)}で算出される。同様に、浸漬ノズルにおける平均電流(IAVE)は、浸漬ノズルが負極となる期間の電流を(−I1)とし、正極となる期間の電流を(I1)としたとき、−I1×{(TC−TA)/(TC+TA)}で算出される。さらに、浸漬ノズルにおける平均電流密度(AAVE)は、平均電流(IAVE)を、溶鋼と接するノズル壁面の総面積で除して求められる。そして、電流密度の実効値、すなわち浸漬ノズルが負極となる期間での電流密度は、AAVE×{(TC+TA)/(TC−TA)}で求められる。
図2に示すパルス状電圧では、浸漬ノズルが負極となる期間の電位(−V1)と、正極となる期間の電位(V1)の絶対値が等しい場合を示しているが、浸漬ノズルが負極となる期間での電位の絶対値を、正極となる期間での電位の絶対値よりも大きくして、浸漬ノズルにおける平均電位が負となるパルス状電圧にすることもできる。この場合、一周期のうちで、浸漬ノズルの内壁が負極となる期間(TC)と、正極となる期間(TA)とを同じにすればよいが、前者の期間(TC)を後者の期間(TA)より長くしてもよい。
第3発明において、パルス状電圧の一周期を3〜200msの範囲とするのは、3ms未満では安定して電流を流すことが困難であり、200msを超えると、酸素イオンの移動に起因してアルミナ付着量の増大が顕在化するからである。このパルス状電圧の一周期のより望ましい範囲は、5〜100msである。
また、浸漬ノズルが負極となる期間での電流密度の絶対値を10〜200mA/cm2とするのは、10mA/cm2未満では耐火物面と溶鋼との濡れ性を十分に高めることができず、200mA/cm2を超える大電流密度では、安定した通電が困難だからである。この電流密度の絶対値のより望ましい範囲は、13〜150mA/cm2である。
第3発明によれば、浸漬ノズルの内壁を構成する耐火物面と溶鋼との良好な濡れ性をさらに高めて、アルミナの付着をより効果的に抑制することができる。
本発明の連続鋳造法の効果を確認するため、以下に示す試験を実施して、その結果を評価した。
前記図1に示す連続鋳造装置を用い、成分組成が質量%で、C:0.1%、Si:0.4%、Mn:0.8%、P:0.02%、S:0.01〜0.03%、sol.Al:0.03%の普通鋼の溶鋼を採用し、連続鋳造を行った。試験時のタンディッシュ内の溶鋼温度は、1520〜1560℃の範囲内であった。
表1に、鋳造試験で使用した浸漬ノズルを構成する耐火物の成分組成、浸漬ノズル内の溶鋼平均流速V、およびその他の試験条件、ならびに浸漬ノズルの内壁面への介在物(アルミナ)付着速度指数をまとめて示す。表1および後述する表2に示す「介在物付着速度指数」は、鋳造後の浸漬ノズルの内壁面における介在物付着厚さを測定し、その平均値を求め、この平均介在物付着厚さを鋳造時間で除して求めた介在物付着速度を、通常のアルミナ−グラファイト質の耐火物からなる浸漬ノズルを使用した試験番号Dの場合を10(基準)として指数化したものである。浸漬ノズルの内壁が溶損した場合は、同指数の符号はマイナスとなる。なお、表1における耐火物のCaO原料には、全てCaO−SiO2系原料を用いた。
Figure 2010201504
表1において、試験番号A〜Cは、第1発明で規定する条件をすべて満たす本発明例である。試験番号A〜Cでは、浸漬ノズルを構成する耐火物のCaOの含有率が適正であるため、耐火物面に半溶融状態のガラス層が形成され、平滑で溶鋼との濡れ性が良好になる。また、SiO2の含有率が低いため、溶鋼への酸素供給源が生じ難く、しかも、浸漬ノズル内の溶鋼流速VとCaO含有率との積(V×[CaO])も規定範囲内にあるため、耐火物面のガラス層が維持されやすい。これらのことから、鋳造後の介在物付着速度指数は、本発明例の試験番号A〜Cのいずれにおいても6となり、溶鋼中のアルミナが浸漬ノズルの内壁面に付着するのが大きく抑制された。
試験番号Dは、CaO含有率が第1発明で規定する範囲に満たない通常のアルミナ−グラファイト質の浸漬ノズルを使用した比較例であり、耐火物面にガラス層が形成されないため、ノズル内壁面にアルミナが多量に付着した。
試験番号Eは、CaO含有率が第1発明で規定する範囲を超える浸漬ノズルを使用した比較例である。この試験番号Eでは、CaOの含有率が過剰に高いため、耐火物の溶損が過大になり、いわゆる自溶性ノズルの特性を示し、介在物付着速度指数はマイナスとなった。しかも、浸漬ノズルの高温となった部分に軟化が認められた。
試験番号Fは、浸漬ノズルを構成する耐火物の成分組成が第1発明の規定範囲を満たすが、溶鋼流速VとCaO含有率との積(V×[CaO])が第1発明の規定範囲から外れた比較例である。この試験番号Fでは、浸漬ノズル内の溶鋼流速に対してCaO含有率が低すぎるため、言い換えると、CaO含有率が低いわりに溶鋼流速も低いため、耐火物面においてガラス層が安定して維持されず、ノズル内壁面にアルミナが付着した。
試験番号Gは比較例であり、試験番号Fの場合と同様に、浸漬ノズル内の溶鋼流速に対してCaO含有率が低すぎることに加えて、SiO2の含有率が高すぎるため、ノズル内壁面へのアルミナの付着が比較例Fの場合よりもさらに増大した。これは、浸漬ノズルを構成する耐火物に含まれるSiO2が、鋳造時に溶鋼中のAlや耐火物中のカーボン(グラファイト)によって還元され、溶鋼への酸素供給源となって溶鋼中のAlを酸化し、アルミナを生成したことによる。
次に、本発明例の試験番号Aの条件に加え、前記図1に示す電源装置10を使用して電極7と対極8に電圧を印加し、浸漬ノズルと溶鋼との間に電位差を与える通電を行いながら連続鋳造を実施した。
表2に、通電条件、および浸漬ノズルの内壁面への介在物付着速度指数をまとめて示す。表2において、電位または電流密度の符号がマイナスの時は、浸漬ノズルが負極となっていることを示し、同符号がプラスの時は浸漬ノズルが正極となっていることを示す。
Figure 2010201504
表2に示す試験番号H〜Oは、いずれも第1発明で規定する条件を満たす本発明例である。このうち、試験番号HおよびIは、さらに第2発明で規定する条件を満たし、試験番号JおよびKは、それに加えて第3発明で規定する条件も満たしている。
試験番号HおよびIでは、浸漬ノズルが負極となるように直流電圧を印加した。介在物付着速度指数はいずれも5であり、他の条件は同じで通電を行わなかった上記試験番号A(介在物付着速度指数が6)に比べて、溶鋼中のアルミナが浸漬ノズル内壁面への付着するのがより抑制された。また、耐火物の溶損も軽減された。
試験番号JおよびKでは、前記図2に示す波形の交流パルス電圧を印加した。試験番号J、Kのいずれにおいても、浸漬ノズルが負極となる期間が、正極となる期間よりも長いため、平均電流は浸漬ノズルが負極となる方向に流れ、電流密度の実効値、すなわち浸漬ノズルが負極となる期間での電流密度の絶対値が、第3発明で規定する条件(10〜200mA/cm2)を満たしている。このため、試験番号J、Kのいずれも介在物付着速度指数が3であり、ノズル内壁面へのアルミナ付着の抑制効果はさらに増大した。また、耐火物の溶損は、試験番号HおよびIと同様に軽減された。
試験番号Lは、第1発明の条件を満たすが、第2発明で規定する条件(浸漬ノズルの平均電流密度の絶対値が0.5〜20mA/cm2)から外れる条件で通電した場合である。この場合、平均電流密度の絶対値が大き過ぎることに伴い、酸素イオンの移動に起因してアルミナの付着が増え、試験番号H、Iに比べると、アルミナの付着抑制効果が低く、無通電の場合(試験番号A)に対する優位性が認められなかった。
試験番号Mは、第1発明および第2発明の条件を満たすが、第3発明で規定する条件(印加するパルス状電圧の周期が3〜200ms)から外れる交流パルスを印加した場合である。この場合、パルス状電圧の周期が長過ぎることに伴い、酸素イオンの移動に起因すると考えられるアルミナの付着が増え、試験番号J、Kに比べると、介在物付着速度指数が高かった。
試験番号Nは、第1発明および第2発明の条件を満たすが、第3発明で規定する条件(浸漬ノズルが負極となる期間での電流密度の絶対値が10〜200mA/cm2)を満たさない場合である。この場合、浸漬ノズルが負極となる期間での電流密度の絶対値が小さいため、浸漬ノズルの耐火物面と溶鋼との濡れ性の向上が不十分であり、試験番号J、Kに比べると、介在物付着速度指数が高かった。
試験番号Oは、第1発明の条件を満たすが、第2発明で規定する条件(浸漬ノズルの平均電位が負)から外れる条件で通電した場合である。この場合、浸漬ノズルの平均電位が正であるので、浸漬ノズル耐火物の溶損が増し、いわゆる自溶性ノズルのように突発的な介在物欠陥が発生するおそれがある。また、通電によるアルミナの付着抑制効果は認められなかった。
本発明の鋼の連続鋳造方法によれば、浸漬ノズルを構成する耐火物の成分組成、および当該ノズル内の溶鋼流速を適正化し、さらに浸漬ノズルと溶鋼の間に、浸漬ノズルにおける平均電位が負となる電圧(例えば、直流電圧やパルス状電圧)を印加して鋳造を行うため、ノズル内壁面へのアルミナの付着を効果的に抑制し、同時に浸漬ノズルの溶損を抑制し、さらにその効果を安定して維持することができる。
したがって、本発明の連続鋳造方法は、浸漬ノズルの内壁面へのアルミナの付着を大きく軽減し、浸漬ノズルの閉塞と溶損を同時に防止して安定した操業を実施できる鋳造方法として極めて有用な技術である。
1:取鍋、 2:溶鋼、 3:上ノズル、 4:タンディッシュ、
5:スライディングゲート、 6:浸漬ノズル、 7:一方の電極、
8:他方の電極(対極)、 9a、9b:配線、 10:電源装置、
11、12:絶縁用耐火物、 13:ノズル吐出孔、 14:鋳型、
15:凝固殻、 16:鋳片、 17:モールドパウダー

Claims (3)

  1. タンディッシュ内の溶鋼を浸漬ノズルを通じて鋳型に供給し連続鋳造する鋼の連続鋳造方法であって、
    浸漬ノズルの少なくとも内壁を、アルミナおよびグラファイトを主成分とし、質量%で、CaOを0.5〜7%、およびSiO2を30%以下で含有する耐火物で構成し、
    この浸漬ノズル内に下記(i)の条件を満たす流速V(m/s)で溶鋼を通過させることを特徴とする鋼の連続鋳造方法。
    0.2≦V×[CaO]≦7.0 ・・・(i)
    但し、上記(i)で、[CaO]は浸漬ノズルを構成する耐火物のCaO含有率(%)を示す。
  2. 前記浸漬ノズルに一方の電極を接続するとともに、前記タンディッシュ内の溶鋼に他方の電極を浸漬して、前記浸漬ノズルとこの内部を通過する溶鋼との間に通電回路を構成し、
    前記電極間に、前記浸漬ノズルにおける時間平均電位が負となる電圧を印加し、前記浸漬ノズルにおける平均電流密度の絶対値が0.5〜20mA(ミリアンペア)/cm2となる通電を行うことを特徴とする請求項1に記載の鋼の連続鋳造方法。
  3. 前記電極間に、3〜200ms(ミリセカンド)を一周期としこの周期内で極性が正と負に切り替わるパルス状の電圧を印加し、
    一周期のうちで、前記浸漬ノズルが負極となる期間を正極となる期間よりも長くするか、または/および前記浸漬ノズルが負極となる期間での電位の絶対値を正極となる期間での電位の絶対値よりも大きくすることにより、前記浸漬ノズルにおける時間平均電位が負となる電圧に制御し、
    前記浸漬ノズルが負極となる期間での電流密度の絶対値が10〜200mA/cm2となる通電を行うことを特徴とする請求項2に記載の鋼の連続鋳造方法。
JP2009205444A 2009-02-09 2009-09-07 鋼の連続鋳造方法 Active JP5316327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205444A JP5316327B2 (ja) 2009-02-09 2009-09-07 鋼の連続鋳造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009027683 2009-02-09
JP2009027683 2009-02-09
JP2009205444A JP5316327B2 (ja) 2009-02-09 2009-09-07 鋼の連続鋳造方法

Publications (2)

Publication Number Publication Date
JP2010201504A true JP2010201504A (ja) 2010-09-16
JP5316327B2 JP5316327B2 (ja) 2013-10-16

Family

ID=42963521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205444A Active JP5316327B2 (ja) 2009-02-09 2009-09-07 鋼の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP5316327B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055911A (ja) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd 連続鋳造鋳片の製造方法
JP2012143767A (ja) * 2011-01-07 2012-08-02 Sumitomo Metal Ind Ltd ジルコニウム含有鋼の連続鋳造方法
JP2012210647A (ja) * 2011-03-31 2012-11-01 Sumitomo Metal Ind Ltd 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
WO2013190594A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
JP2014008530A (ja) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal 浸漬ノズルを用いた連続鋳造方法
JP2014018821A (ja) * 2012-07-17 2014-02-03 Nippon Steel & Sumitomo Metal 浸漬ノズルを用いた連続鋳造方法
EP3050644A4 (en) * 2013-09-27 2017-04-26 Nisshin Steel Co., Ltd. Continuous casting method
CN112658241A (zh) * 2020-12-10 2021-04-16 东北大学 一种通过施加界面电场防止稀土钢水口脱碳及反应行为的方法
JP2021112762A (ja) * 2020-01-17 2021-08-05 日本製鉄株式会社 鋼の連続鋳造方法
CN117696877A (zh) * 2024-02-06 2024-03-15 内蒙古科技大学 表面具有低润湿性非晶保护膜的水口及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319916A (ja) * 1992-05-21 1993-12-03 Kurosaki Refract Co Ltd 連続鋳造用ノズルの製造方法
JP2001179406A (ja) * 1999-12-27 2001-07-03 Nippon Steel Corp 連続鋳造用ノズルおよび連続鋳造方法
JP2003126945A (ja) * 2000-12-25 2003-05-08 Sumitomo Metal Ind Ltd 連続鋳造用の溶鋼供給装置およびこれを用いた連続鋳造方法
JP2003200242A (ja) * 2001-12-27 2003-07-15 Sumitomo Metal Ind Ltd 連続鋳造用浸漬ノズルおよび溶鋼の連続鋳造方法
JP2005205474A (ja) * 2004-01-26 2005-08-04 Sumitomo Metal Ind Ltd 鋼の連続鋳造用浸漬ノズルおよび連続鋳造方法
WO2008090649A1 (ja) * 2007-01-25 2008-07-31 Sumitomo Metal Industries, Ltd. 鋼の連続鋳造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319916A (ja) * 1992-05-21 1993-12-03 Kurosaki Refract Co Ltd 連続鋳造用ノズルの製造方法
JP2001179406A (ja) * 1999-12-27 2001-07-03 Nippon Steel Corp 連続鋳造用ノズルおよび連続鋳造方法
JP2003126945A (ja) * 2000-12-25 2003-05-08 Sumitomo Metal Ind Ltd 連続鋳造用の溶鋼供給装置およびこれを用いた連続鋳造方法
JP2003200242A (ja) * 2001-12-27 2003-07-15 Sumitomo Metal Ind Ltd 連続鋳造用浸漬ノズルおよび溶鋼の連続鋳造方法
JP2005205474A (ja) * 2004-01-26 2005-08-04 Sumitomo Metal Ind Ltd 鋼の連続鋳造用浸漬ノズルおよび連続鋳造方法
WO2008090649A1 (ja) * 2007-01-25 2008-07-31 Sumitomo Metal Industries, Ltd. 鋼の連続鋳造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055911A (ja) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd 連続鋳造鋳片の製造方法
JP2012143767A (ja) * 2011-01-07 2012-08-02 Sumitomo Metal Ind Ltd ジルコニウム含有鋼の連続鋳造方法
JP2012210647A (ja) * 2011-03-31 2012-11-01 Sumitomo Metal Ind Ltd 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
WO2013190594A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
JP2014008530A (ja) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal 浸漬ノズルを用いた連続鋳造方法
JP2014018821A (ja) * 2012-07-17 2014-02-03 Nippon Steel & Sumitomo Metal 浸漬ノズルを用いた連続鋳造方法
EP3050644A4 (en) * 2013-09-27 2017-04-26 Nisshin Steel Co., Ltd. Continuous casting method
US9713839B2 (en) 2013-09-27 2017-07-25 Nisshin Steel Co., Ltd. Continuous casting method
JP2021112762A (ja) * 2020-01-17 2021-08-05 日本製鉄株式会社 鋼の連続鋳造方法
JP7393638B2 (ja) 2020-01-17 2023-12-07 日本製鉄株式会社 鋼の連続鋳造方法
CN112658241A (zh) * 2020-12-10 2021-04-16 东北大学 一种通过施加界面电场防止稀土钢水口脱碳及反应行为的方法
CN112658241B (zh) * 2020-12-10 2022-11-08 东北大学 一种通过施加界面电场防止稀土钢水口脱碳及反应行为的方法
CN117696877A (zh) * 2024-02-06 2024-03-15 内蒙古科技大学 表面具有低润湿性非晶保护膜的水口及其制备方法和应用
CN117696877B (zh) * 2024-02-06 2024-04-23 内蒙古科技大学 表面具有低润湿性非晶保护膜的水口及其制备方法和应用

Also Published As

Publication number Publication date
JP5316327B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316327B2 (ja) 鋼の連続鋳造方法
JP5768919B2 (ja) Alキルド鋼の連続鋳造方法
JP5088400B2 (ja) 鋼の連続鋳造方法
JP5316328B2 (ja) 鋼の連続鋳造方法
JP5370171B2 (ja) 鋼の連続鋳造方法
JP4207785B2 (ja) 鋼の連続鋳造方法
JP3747848B2 (ja) 連続鋳造方法
EP1348503B1 (en) Continuous casting method using a molten steel feeder
JP5803851B2 (ja) 希土類金属含有鋼の連続鋳造方法
JP5869748B2 (ja) Alキルド鋼の連続鋳造方法
JP5768773B2 (ja) 浸漬ノズルを用いた連続鋳造方法
JP2024014995A (ja) 鋼の連続鋳造方法
JP2012210647A (ja) 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
JP5757275B2 (ja) 浸漬ノズルを用いた連続鋳造方法
JP2001170761A (ja) 冶金容器のストッパー及び上ノズル
JP6167778B2 (ja) 鋼の連続鋳造方法
WO2013190594A1 (ja) 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
JP2003200242A (ja) 連続鋳造用浸漬ノズルおよび溶鋼の連続鋳造方法
JP2017192982A (ja) ノズル
JP5336058B2 (ja) モールドフラックスを用いた鋼の連続鋳造方法
JP3633514B2 (ja) 連続鋳造用浸漬ノズルおよび金属の連続鋳造方法
JP7393638B2 (ja) 鋼の連続鋳造方法
JP2002210546A (ja) 連続鋳造品の製造方法
JP4315847B2 (ja) 難付着性の良好な連続鋳造用浸漬ノズル
JP2003002742A (ja) 電気伝導性に優れる耐火物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R151 Written notification of patent or utility model registration

Ref document number: 5316327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350