以下に添付図面を参照して、本発明に係るパイプ曲げ加工装置及び方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではない。
図1は、本発明の実施例1に係るパイプ曲げ加工装置を表す概略構成図、図2は、実施例1のパイプ曲げ加工装置の作動状態を表す概略図、図3は、実施例1のパイプ曲げ加工装置による曲げ加工方法の原理を表す概略図、図4は、実施例1のパイプ曲げ加工装置による曲げ加工方法の手順を表すフローチャート、図5は、実施例1のパイプ曲げ加工装置及び方法によるねじり角度に対する扁平率を表すグラフ、図6は、実施例1のパイプ曲げ加工装置及び方法によるねじり角度に対する減肉率を表すグラフである。
実施例1のパイプ曲げ加工装置において、図1に示すように、第1架台11には、油圧シリンダ12が設置されており、この油圧シリンダ12の出力ロッド13には、パイプPの基端部を押圧可能な支持基板14が連結されている。第2架台15には、上述した油圧シリンダ12の前方側に位置して、取付ブラケット16を介して回動アーム17が支持軸18により回動自在に支持されている。この回動アーム17は、中央部にパイプPの先端部を保持する第1保持機構(第1拘束手段)19が装着されている。また、第2架台15には、パイプPの外周を支持する一対のガイド部材20a,20bからなる金型20が設けられており、このガイド部材20a,20bはそれぞれ対向する面に半円状をなすガイド面が形成されている。
本実施例では、この回動アーム17がパイプPの先端部を保持してパイプPを所定の曲げ方向にガイドする本発明のガイド手段として機能し、油圧シリンダ12がパイプPを軸方向に移動する本発明のパイプ移動手段として機能する。また、この油圧シリンダ12及び回動アーム17が、パイプPの端部を保持して外部から曲げ応力を付与する本発明のパイプ曲げ手段として機能する。
第1架台11と第2架台15との間に位置する第3架台21には、従動歯車22が図示しない軸受により回転自在に支持されており、第3架台21に設置された駆動装置23の駆動歯車24がこの従動歯車22に噛み合っている。そして、従動歯車22は、中央部にパイプPの外周部を保持する第2保持機構(第2拘束手段)25が装着されている。本実施例では、この従動歯車22と駆動装置23と駆動歯車24が、パイプPに外部からねじり応力を付与する本発明のパイプねじり手段として機能する。
本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものである。そのため、上述したように、回動アーム17は第1保持機構19を有し、従動歯車22は第2保持機構25を有しており、回動アーム17の第1保持機構19は、常時、パイプPを保持しているが、従動歯車22の第2保持機構25は、パイプPのねじり加工時に、パイプPを拘束してねじり応力を付与するものの、パイプPの曲げ加工時には、パイプPの拘束を解除するようにしている。
即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、パイプPに対してねじりと曲げを交互に付与することで、パイプPにおける肉厚の変化を吸収するようにしている。
また、本実施例にて、パイプPのねじり角度(量)は、曲げ加工部での減肉率がほぼ0になるように設定、つまり、計算処理される。具体的には、このパイプPのねじり角度は、パイプ径とパイプ曲げ半径とパイプ曲げ角度に基づいて設定される。
ここで、実施例1のパイプ曲げ加工装置及び方法によるねじり角度に対する扁平率、並びにねじり角度に対する減肉率について説明する。図5に示すように、ねじり角度が0度であるときには、パイプの扁平率が大きいが、本実施例のように、ねじり角度を所定角度まで確保すると、パイプの扁平率が低下していくことがわかる。また、図6に示すように、ねじりを加えずに曲げ加工を行う場合、即ち、ねじり角度が0度であるときには、パイプの減肉率が小さいが、本実施例のように、パイプにねじりを加えていくと、パイプの減肉率が上昇し、あるねじり角度にて減肉率が0になることがわかる。
なお、ここで、扁平率と減肉率は、下記数式により求められたものである。
扁平率=(曲げ加工後のパイプの長径−曲げ加工後のパイプの短径)/曲げ加工前のパイプ径
減肉率=(曲げ加工後のパイプの外側肉厚−曲げ加工前のパイプの肉厚)/曲げ加工前のパイプの肉厚
更に、ここで、減肉率がほぼ0というのは、−1%<減肉率<1%の状態を指す。減肉率がこの程度の値であれば、実質的に他の部分と区別する必要がなくなる。
なお、ねじり角に設定にかかるパイプ径は、パイプの内径、外径のいずれか一方又は両方を用いる。通常、パイプは規格品を用いるので、内径もしくは外径のいずれか一方が定まればもう一方も決定される。パイプが通常の規格品でない等の場合には内径、外径の両方を用いることで、より精度良く減肉率が0となるねじり角を決定することができる。
図3に示すように、パイプPに曲げ加工を施すとき、パイプPのねじり角度を、外径D・パイプ曲げ半径r・パイプ曲げ角度θに基づいて、減肉率がほぼ0となるように設定すると、加工開始時に内側に位置していた部分が、パイプPのねじり加工に伴って外側に移動し、反対に加工開始時に外側に位置していた部分は、パイプPのねじり加工に伴って内側に移動するため、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。L1,L2は、加工前のパイプ軸に平行なパイプ表面の線が、加工後にどのように移動・変形するかを示す一例である。
ここで、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法について、図4のフローチャートを用いて具体的に説明する。
本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法において、図1及び図4に示すように、ステップS11にて、断面が真円形状をなす直線状をなすパイプPをパイプ曲げ加工装置に装着する。即ち、パイプPを回動アーム17、金型20、従動歯車22内に挿通し、基端部を支持基板14に当接する一方、先端部を回動アーム17の第1保持機構19により保持する。このとき、従動歯車22の第2保持機構25は、パイプPの保持が解除されている。
そして、まず、ステップS12にて、油圧シリンダ12を伸長作動し、支持基板14によりパイプPを押圧して所定量前進(微小送り)することで、このパイプPの先端部を回動アーム17と共に回動し、パイプPの先端部に曲げ応力を付与する。次に、ステップS13にて、従動歯車22の第2保持機構25によりパイプPの中間部を保持し、続いて、ステップS14にて、駆動装置23を作動して駆動歯車24を回転し、この回転力を従動歯車に伝達することで、この従動歯車24を微小角度回転し、このパイプPに対してねじり応力を付与する。
そして、ステップS15にて、従動歯車22の第2保持機構25によるパイプPの保持を解除し、続いて、ステップS16にて、再び、油圧シリンダ12を伸長作動し、支持基板16によりパイプPを押圧して微小送りすることで、このパイプPの先端部を回動アーム17と共に回動し、パイプPの先端部に曲げ応力を付与する。このとき、パイプPは、金型20に支持されながら軸方向に移動して曲げ加工が施されるため、曲げ加工方向以外への変形が抑制される。ステップS17では、パイプPが予め設定された所定の曲げ角度まで曲げられたかどうかを判断し、所定の曲げ角度まで曲げられていなければ、ステップS13に戻り、パイプPが所定の曲げ角度まで曲げられるまで、ステップS13からステップS17の処理を繰り返す。
このとき、パイプPの加工中に、このパイプPに対してねじり応力と曲げ応力が交互に付与されることで、パイプPは回転しながら曲げられる。つまり、パイプPは、加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
その後、ステップS17にて、図2に示すように、パイプPが所定の曲げ角度まで曲げられたと判断したら、ステップS18にて、曲げ加工が施されてベンド部が形成されたパイプPをパイプ曲げ加工装置から取外す。
このように実施例1のパイプ曲げ加工装置及び方法にあっては、油圧シリンダ12によりパイプPの基端部を押圧可能とする一方、回動アーム17の第1保持機構19によりパイプPの先端部を保持して曲げ方向にガイド可能とすると共に、パイプPを保持してねじり応力を付与する従動歯車22を駆動回転可能に支持し、油圧シリンダ12と従動歯車22を作動することで、パイプPにねじり応力を付与する処理と曲げ応力を付与する処理とを交互に繰り返し行い、パイプねじり量を曲げ加工部の減肉率がほぼ0になるように設定してパイプPに曲げ加工を施すようにしている。
従って、パイプPに対して、ねじり応力と曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。その結果、従来の加工装置及び方法で加工するよりも、応力集中によるクリープ損傷を起こり難くすることができ、精度良くパイプの減肉や扁平を抑制することができる。
また、回動アーム19に第1保持機構19を設けると共に、従動歯車22に第2保持機構25を設け、第1保持機構19は、常時、パイプPを保持し、第2保持機構25は、従動歯車22の回転によるパイプPのねじり作動時にはパイプPを保持し、油圧シリンダ12によりパイプPを移動して回動アーム12によるパイプPの曲げ作動時にはパイプPの保持を解除するようにしている。従って、パイプPのねじり作動時には第2保持機構25がパイプPを保持するため、パイプPに対して所定のねじり量を確実に付与することができる一方、パイプPの曲げ作動時には第2保持機構25がパイプPを保持しないため、パイプPが適正に移動することができ、第2保持機構25の損傷を防止することができると共に、構造の簡素化に寄与することができる。
そして、本実施例では、外径DのパイプPをパイプ曲げ半径rでパイプ曲げ角度θだけ曲げ加工を施すとき、パイプPのねじり角度(量)が、パイプPのねじり方向における長さL1,L2がパイプPの中性軸Oの長さに近似するように、パイプ外径Dとパイプ曲げ半径rとパイプ曲げ角度θに基づいて設定している。従って、パイプPにねじり応力を付与するとき、そのねじり角度を所定値に設定することで、パイプPのねじり方向における長さがパイプPの中性軸Oの長さに近似することとなり、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象を抑制することができる。
図7は、本発明の実施例2に係るパイプ曲げ加工装置を表す概略構成図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
実施例2のパイプ曲げ加工装置において、図7に示すように、第1架台11には、油圧シリンダ12が設置され、この油圧シリンダ12の出力ロッド13にパイプPの基端部を押圧可能な支持基板14が連結されている。第2架台15に取付ブラケット16を介して回動アーム17が支持軸18により回動自在に支持されおり、この回動アーム17には、第1保持機構19が装着されている。また、第2架台15には、パイプPの外周を支持する一対のガイド部材20a,20bからなる金型20が設けられている。また、第3架台21には、従動歯車22が回転自在に支持され駆動装置23の駆動歯車24がこの従動歯車22に噛み合っており、この従動歯車22には、第2保持機構25が装着されている。
そして、本実施例では、回動アーム17と金型20との間に位置して、パイプPの曲げ支点付近を加熱する加熱手段としての高周波誘導加熱機構31が設けられている。この高周波誘導加熱機構31は、パイプPの周囲に位置する加熱コイル32と、この加熱コイル32に接続された変成器33とを有しており、加熱コイル32によりパイプPの曲げ支点付近を力学的溶融温度近傍まで加熱することができる。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものであり、このとき、高周波誘導加熱機構31によりパイプPを力学的溶融温度近傍まで加熱するようにしている。従って、パイプPは、材料の内部応力が低下することで、曲げやねじりを行うための加工力を低減することができる。
即ち、パイプPの加工中に、このパイプPに対して駆動装置12によるねじり応力と油圧シリンダ14による曲げ応力が交互に付与されることで、パイプPは回転しながら回動アーム19により曲げられる。このとき、高周波誘導加熱機構31によりパイプPの曲げ支点付近が加熱されて内部応力が低下するため、油圧シリンダ12及び従動歯車22(駆動装置23)の駆動力(加工力)が低減する。そして、パイプPは、曲げ加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
このように実施例2のパイプ曲げ加工装置及び方法にあっては、油圧シリンダ12によりパイプPの基端部を押圧可能とする一方、回動アーム17の第1保持機構19によりパイプPの先端部を保持して曲げ方向にガイド可能とすると共に、パイプPを保持してねじり応力を付与する従動歯車22を駆動回転可能に支持し、また、パイプP回動の曲げ支点付近を加熱する高周波誘導加熱機構31を設けている。
従って、高周波誘導加熱機構31によりパイプPの曲げ支点付近を加熱した状態で、このパイプPに対して、駆動装置23によるねじり応力と油圧シリンダ12による曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。
また、パイプPに曲げ加工を施すとき、このパイプPの曲げ支点付近を高周波誘導加熱機構31により力学的溶融温度近傍まで加熱するため、このパイプPの内部応力が低下することで、加工力を小さくすることができると共に反力が低下するため、低い加工力で高精度な曲げ加工を行うことができる。そして、パイプPの曲げ支点付近以外は加熱されずに常温に近いため、各保持機構19,25による保持部分が変形することはなく、パイプPを適正に保持することで、高精度な加工が可能となる。
なお、この実施例2では、パイプPを加熱する加熱手段として、高周波誘導加熱機構31を適用したが、これに限定されるものではなく、電気ヒータやガスヒータなどを適用してもよい。
図8は、本発明の実施例3に係るパイプ曲げ加工装置を表す概略構成図である。
実施例3のパイプ曲げ加工装置において、図8に示すように、下部架台41には、水平な基盤42が設置される一方、上部架台43には、油圧シリンダ44が装着されており、この油圧シリンダ44の下方に延出する出力ロッド45の先端部には、弧状の押し型46が連結されている。また、基盤42上には、パイプPを支持する一対のガイド管47a,47bが設けられており、各ガイド管47a,47bの下部に転動ローラ48a,48bが装着されている。そして、ガイド管47a,47bを介してパイプPを周方向に回動してねじり応力を付与する図示しない駆動装置が設けられている。なお、本実施例では、油圧シリンダ44及び押し型46により本発明のパイプ曲げ手段が構成されている。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものである。即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、パイプPに対してねじりと曲げを交互に付与することで、パイプPにおける肉厚の変化を吸収するようにしている。
従って、断面が真円形状をなす直線のパイプPを各ガイド管47a,47bに挿通して基盤42上に支持する。そして、まず、油圧シリンダ44を作動して押し型46を所定量下降することで、このパイプPの中間部に曲げ応力を付与する。次に、パイプPの周方向の回動を拘束した状態で、駆動装置を作動してパイプPを所定量回動することで、このパイプPに対してねじり応力を付与する。そして、パイプPの拘束を解除した状態で、再び、油圧シリンダ44を作動して押し型46を所定量下降することで、このパイプPの中間部に曲げ応力を付与する。この油圧シリンダ44によるパイプPの曲げ加工と、駆動装置によるパイプPのねじり加工を繰り返し行うことで、パイプPを所定の曲げ角度まで曲げる。
このパイプPの加工中には、パイプPに対してねじり応力と曲げ応力が交互に付与されることで、パイプPは回転しながら曲げられる。つまり、パイプPは、加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
このように実施例3のパイプ曲げ加工装置及び方法にあっては、下部架台41に水平な基盤42を設置する一方、上部架台43に油圧シリンダ44を装着し、その下方に延出する出力ロッド45の先端部に、弧状の押し型46を連結し、基盤42上にパイプPを支持する一対のガイド管47a,47bを設け、このガイド管47a,47bを介してパイプPを周方向に回動してねじり応力を付与する駆動装置を設け、パイプPにねじり応力を付与する処理と曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すようにしている。
従って、駆動装置及びプレス加工を用いてパイプPに対してねじり応力と曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。
このとき、油圧シリンダ44により押し型46をパイプPの外周部に押圧して曲げ加工を行うことで、パイプPに対して容易に曲げ加工を施すことができる。
図9は、本発明の実施例4に係るパイプ曲げ加工装置を表す概略構成図である。
実施例4のパイプ曲げ加工装置において、図9に示すように、下部架台51には、水平な弧状の固定型52が設置される一方、左右の側部架台53a,53bには、パイプねじり手段としての駆動装置54a,54bが設置されており、この駆動装置54a,54bの出力軸55a,55bの先端部には、油圧シリンダ56a,56bが装着されている。そして、この油圧シリンダ56a,56bの出力ロッド57a,57bの先端部に、パイプPの端部を支持する支持基板58a,58bが連結されている。なお、本実施例では、油圧シリンダ56a,56b及び固定型52により本発明のパイプ曲げ手段が構成されている。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものである。即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、パイプPに対してねじりと曲げを交互に付与することで、パイプPにおける肉厚の変化を吸収するようにしている。
従って、断面が真円形状をなす直線のパイプPの端部を各支持基板58a,58bに支持する。そして、まず、油圧シリンダ56a,56bを作動してパイプPの各端部に引張り力を付与し、このパイプPの中間部を固定型52に押圧することで、このパイプPに曲げ応力を付与する。このとき、駆動装置54a,54b及び油圧シリンダ56a,56bを下方に移動させることが望ましい。次に、駆動装置54a,54bを作動してパイプPを所定量回動することで、このパイプPに対してねじり応力を付与する。そして、再び、油圧シリンダ56a,56bを作動してパイプPを固定型52に押圧することで、このパイプPの中間部に曲げ応力を付与する。この油圧シリンダ56a,56bによるパイプPの曲げ加工と、駆動装置54a,54bによるパイプPのねじり加工を繰り返し行うことで、パイプPを所定の曲げ角度まで曲げる。
このパイプPの加工中には、パイプPに対してねじり応力と曲げ応力が交互に付与されることで、パイプPは回転しながら曲げられる。つまり、パイプPは、加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
このように実施例4のパイプ曲げ加工装置及び方法にあっては、下部架台41に弧状の固定型52を設置する一方、側方に駆動装置54a,54b及び油圧シリンダ56a,56bを配置し、油圧シリンダ56a,56bによりパイプPに引張り力を付与することで曲げ加工可能とすると共に、動装置54a,54bにより回動力を付与することでねじり加工可能とし、パイプPにねじり応力を付与する処理と曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すようにしている。
従って、回動力と引張り力を用いてパイプPに対してねじり応力と曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。
このとき、油圧シリンダ56a,56bによりパイプPに引張り力を付与すことで、このパイプPの外周部を固定型52に押圧して曲げ加工を行うことで、パイプPに対して容易に曲げ加工を施すことができる。
図10は、本発明の実施例5に係るパイプ曲げ加工装置を表す概略構成図である。
実施例5のパイプ曲げ加工装置において、図10に示すように、固定型61は、弧状のガイド部61aを有している。また、この固定型61の側部には、拘束部材62が設けられており、この拘束部材62によりパイプPの端部を固定型61に拘束することができる。また、固定型61のガイド部61aに対向して押圧部材63が弧状のガイドレール64に沿って移動自在に支持されている。そして、拘束部材62に支持されたパイプPを周方向に回動してねじり応力を付与する図示しない駆動装置が設けられている。なお、本実施例では、固定型61及び押圧部材63により本発明のパイプ曲げ手段が構成されている。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものである。即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、パイプPに対してねじりと曲げを交互に付与することで、パイプPにおける肉厚の変化を吸収するようにしている。
従って、断面が真円形状をなす直線のパイプPの端部を拘束部材62により固定型61に拘束して支持する。そして、まず、図示しない油圧シリンダを作動して押圧部材63を所定量ガイドレール64に沿って移動することで、このパイプPに曲げ応力を付与する。次に、駆動装置を作動してパイプPを所定量回動することで、このパイプPに対してねじり応力を付与する。そして、再び、押圧部材63を所定量移動することで、このパイプPに曲げ応力を付与する。この押圧部材63によるパイプPの曲げ加工と、駆動装置によるパイプPのねじり加工を繰り返し行うことで、パイプPを所定の曲げ角度まで曲げる。
このパイプPの加工中には、パイプPに対してねじり応力と曲げ応力が交互に付与されることで、パイプPは回転しながら曲げられる。つまり、パイプPは、加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
このように実施例5のパイプ曲げ加工装置及び方法にあっては、固定型61に弧状のガイド部61aを設けると共に、この固定型61にパイプPの端部を拘束する拘束部材62を設ける一方、固定型61のガイド部61aに対向して押圧部材63を弧状のガイドレール64に沿って移動自在に支持し、拘束部材62に支持されたパイプPを周方向に回動してねじり応力を付与する駆動装置を設け、パイプPにねじり応力を付与する処理と曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すようにしている。
従って、駆動装置及び押圧部材63を用いてパイプPに対してねじり応力と曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。
このとき、押圧部材63を固定型61のガイド部61aに沿って移動することで、パイプPの外周部に押圧して曲げ加工を行うため、パイプPに対して容易に曲げ加工を施すことができる。
図11は、本発明の実施例6に係るパイプ曲げ加工装置を表す概略構成図である。
実施例6のパイプ曲げ加工装置において、図11に示すように、パイプねじり手段としての駆動装置71の出力軸72には、油圧シリンダ73が連結され、この油圧シリンダ73の出力ロッド74には、パイプPの基端部を支持する支持基板75が連結されている。また、支持基板75には、パイプP内に挿入されるマンドレル76が設けられている。油圧シリンダ73の前方には、円盤形状の第1ガイド部材77が回転自在に支持されており、この第1ガイド部材77の外周部には直線状の第1ガイド部77aと弧状の第2ガイド部77bが形成されている。そして、この第1ガイド部材77の第1ガイド部77aに対向して第2ガイド部材78が設けられ、図示しない油圧シリンダによりこの第2ガイド部材78を第1ガイド部材77に接近移動することで、パイプPの端部を各ガイド部材77,78により拘束することができる。また、支持基板75と第1ガイド部材77との間には、パイプPの移動をガイドする直線ガイド79が設けられている。なお、本実施例では、油圧シリンダ73及び各ガイド部材77,78により本発明のパイプ曲げ手段が構成されている。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPにねじり応力を付与する処理と、このパイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すものである。即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、パイプPに対してねじりと曲げを交互に付与することで、パイプPにおける肉厚の変化を吸収するようにしている。
従って、断面が真円形状をなす直線のパイプPの基端部を支持基板75に支持すると共に、パイプPの先端部を各ガイド部材77,79により拘束して支持する。そして、まず、油圧シリンダ73を作動して支持基板75を介してパイプPを所定量前進することで、このパイプPの先端部を各ガイド部材77,78と共に回動し、パイプPの先端部に曲げ応力を付与する。次に、駆動装置71を作動して油圧シリンダ73及び支持基板75を介してパイプPを所定量回動することで、このパイプPに対してねじり応力を付与する。続いて、再び、油圧シリンダ73を作動して支持基板75を介してパイプPを所定量前進することで、このパイプPの先端部を各ガイド部材77,78と共に回動し、パイプPの先端部に曲げ応力を付与する。この油圧シリンダ73によるパイプPの曲げ加工と、駆動装置71によるパイプPのねじり加工を繰り返し行うことで、パイプPを所定の曲げ角度まで曲げる。
このパイプPの加工中には、パイプPに対してねじり応力と曲げ応力が交互に付与されることで、パイプPは回転しながら曲げられる。つまり、パイプPは、加工開始時に内側に位置していた部分がパイプPのねじり加工に伴って外側に移動するため、パイプPの曲げ内側で圧縮される材料が外側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。
このように実施例6のパイプ曲げ加工装置及び方法にあっては、駆動装置71の出力軸72に油圧シリンダ73を連結し、この油圧シリンダ73の出力ロッド74にパイプPの基端部を支持する支持基板75が連結する一方、油圧シリンダ73の前方に円盤形状をなす第1ガイド部材77を回転自在に支持すると共に、パイプPの先端部を拘束する第2ガイド部材78を設け、パイプPにねじり応力を付与する処理と曲げ応力を付与する処理とを交互に繰り返し行うことで、パイプPに曲げ加工を施すようにしている。
従って、駆動装置71及び油圧シリンダ73押圧部材63を用いてパイプPに対してねじり応力と曲げ応力が交互に繰り返し付与されることで、パイプPが回動しながら曲げ加工が施されることとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。
このとき、第2ガイド部材78によりパイプPの端部を第1ガイド部材77に拘束し、この第1ガイド部材77を回動することで、パイプPが第2ガイド部77bに沿って曲げられて曲げ加工が行われることとなり、パイプPに対して容易に、且つ、高精度に曲げ加工を施すことができる。
なお、上述した実施例1〜6では、パイプPにねじり応力を付与する処理と、パイプPに曲げ応力を付与する処理とを交互に繰り返し行うことで、パイPに曲げ加工を施すようにしたが、本発明はこの方法に限定されるものではない。即ち、パイプPにねじり応力を付与する処理と、パイプPに曲げ応力を付与する処理とを同時に行うことで、パイプPに曲げ加工を施すようにしてもよい。例えば、実施例1にて、従動歯車22と駆動装置23と駆動歯車24とからなる本発明のパイプねじり手段をパイプPの移動方向に沿って移動自在に支持することで、パイプPを移動して曲げ応力を付与しながらねじり応力を付与することができる。
また、上述した実施例1〜6では、本発明のパイプねじり手段として、パイプPの中間部に歯車機構を設けてパイプPにねじり回転力を付与したり、パイプ曲げ手段としての油圧シリンダと直列に駆動装置を設けたりしたが、これらに限定されるものではなく、各種の機構に応じて適宜最適なものを選択すればよい。
図12は、本発明の実施例7に係るパイプ曲げ加工装置を表す概略構成図、図13は、図12のXIII−XIII断面図である。
実施例7のパイプ曲げ加工装置において、図12及び図13に示すように、パイプ移動手段としての油圧シリンダ81の出力ロッド82には、パイプPの基端部を支持する支持基盤83が連結されている。この場合、支持基盤83は、パイプ捻り手段により回転可能となっている。油圧シリンダ81の前方には、円盤形状の第1ガイド部材(内側ガイド部材)84が回転自在に支持されており、この第1ガイド部材84の外周部には直線状の第1ガイド部84aと弧状の第2ガイド部84bが形成されている。そして、この第1ガイド部材84の第1ガイド部84aに対向して第2ガイド部材(外側ガイド部材)85が設けられ、図示しない油圧シリンダによりこの第2ガイド部材85を第1ガイド部材84に接近移動することで、パイプPの端部を各ガイド部材84,85により拘束することができる。また、支持基板83と第1ガイド部材84との間には、パイプPの移動をガイドする直線ガイド86が設けられている。なお、本実施例では、各ガイド部材84,85により本発明のガイド手段が構成されている。
また、第1ガイド部材84及び第2ガイド部材85は、パイプPの形状に合わせて半円形状をなす内側ガイド面87及び外側ガイド面88が形成されている。そして、この外側ガイド面88には、図13に二点鎖線で表す真円形状に対して外方に突出する凹部89が形成されている。
そして、本実施例のパイプ曲げ加工装置を用いたパイプ曲げ加工方法は、パイプPに曲げ応力を付与する処理を行うとき、パイプP先端部を第1ガイド部材84と凹部89を有する第2ガイド部材85で保持しながらパイプPに曲げ加工を施すものである。即ち、断面が真円形状をなすパイプPに対して曲げ加工を施すと、パイプPの曲げ内側では圧縮により肉厚が厚くなり、曲げ外側では引張により肉厚が薄くなる。また、このとき、パイプPが扁平形状となる。そこで、本実施例では、一対のガイド部材84,85のうち、パイプPの外側を支持する第2ガイド部材85に凹部89を設けることで、パイプPの曲げ内側で圧縮された材料がこの凹部89側に流動することで、パイプPにおける肉厚の変化を吸収するようにしている。
従って、断面が真円形状をなす直線のパイプPの基端部を支持基盤83に支持すると共に、パイプPの先端部を各ガイド部材84,85により拘束して支持する。そして、まず、油圧シリンダ81を作動して支持基盤83を介してパイプPを所定量前進することで、このパイプPの先端部を各ガイド部材84,85と共に回動し、パイプPの先端部に曲げ応力を付与する。このとき、パイプPに曲げ応力が付与されることで、パイプPの曲げ内側で圧縮により肉厚が厚くなろうとするが、パイプPの外側を支持する第2ガイド部材85に凹部89があるため、パイプPの曲げ内側で圧縮された材料がこの凹部89側に流動することとなり、パイプPの曲げ内側での材料の圧縮による増肉現象や曲げ外側での材料の引張りによる減肉現象を抑制することができると共に、パイプPの扁平化を抑制することができる。なお、この場合、パイプPにねじり応力を付与する処理と、曲げ応力を付与する処理とを交互に繰り返し、曲げ加工部の減肉率がほぼ0となるようパイプPに曲げ加工を施す。
このように実施例7のパイプ曲げ加工装置及び方法にあっては、油圧シリンダ81の出力ロッド82にパイプPの基端部を支持する支持基板83が連結する一方、油圧シリンダ81の前方に円盤形状をなす第1ガイド部材84を回転自在に支持すると共に、パイプPの先端部を拘束する第2ガイド部材85を設け、各ガイド部材84、85の対向面に半円形状をなす内側ガイド面87及び外側ガイド面88を形成し、外側ガイド面88に真円形状に対して外方に突出する凹部89を形成している。
従って、油圧シリンダ81によりパイプPを前進し、その先端部を各ガイド部材84,85と共に回動することで、パイプPの先端部に曲げ応力を付与し、パイプPに曲げ加工が施されることとなり、このとき、パイプPの曲げ内側で圧縮された材料が凹部89側に流動することとなり、加工開始時に内側に位置していた部分がねじり加工に伴って外側に移動するため、パイプPの曲げ内側での増肉現象や曲げ外側での減肉現象が抑制されると共に、管の扁平化が抑制されることとなり、簡単な構成で所望の形状のベンド管を容易に製造することができると共に、製造コストを低減することができる。