JP2010185371A - Catalyst deterioration diagnostic device - Google Patents

Catalyst deterioration diagnostic device Download PDF

Info

Publication number
JP2010185371A
JP2010185371A JP2009030198A JP2009030198A JP2010185371A JP 2010185371 A JP2010185371 A JP 2010185371A JP 2009030198 A JP2009030198 A JP 2009030198A JP 2009030198 A JP2009030198 A JP 2009030198A JP 2010185371 A JP2010185371 A JP 2010185371A
Authority
JP
Japan
Prior art keywords
catalyst
post
fuel ratio
air
differential value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030198A
Other languages
Japanese (ja)
Inventor
Yasuyuki Takama
康之 高間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009030198A priority Critical patent/JP2010185371A/en
Publication of JP2010185371A publication Critical patent/JP2010185371A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve measuring accuracy of oxygen storage capacity by excluding deterioration influence of a sensor behind catalyst. <P>SOLUTION: Active air-fuel ratio control for switching an air-fuel ratio on the upstream side of a catalyst between rich/lean is executed in response to overturn of output Vr of the sensor behind catalyst which detects an air-fuel ratio on the downstream side of the catalyst. The oxygen storage capacity of the catalyst is measured in every overturn period of the output Vr of the sensor behind catalyst. The oxygen storage capacity is measured during periods t11 to t12 in which the output Vr of the sensor behind catalyst is normal in the overturn periods. The overturn periods of the output of the sensor behind catalyst are excluded from the measurement periods to exclude the deterioration influence of the sensor behind catalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、触媒の劣化を診断するための装置に係り、特に、内燃機関の排気通路に配置された触媒の劣化を診断するための装置に関する。   The present invention relates to an apparatus for diagnosing deterioration of a catalyst, and more particularly to an apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine.

例えば車両用の内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(O2ストレージ能)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒流入排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸着保持された酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまっても、三元触媒による酸素の吸蔵・放出作用により、かかる空燃比ずれを吸収することができる。 For example, in an internal combustion engine for a vehicle, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). This is because when the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, when it becomes lean, Excess oxygen present in the gas is adsorbed and held, and when the air-fuel ratio of the catalyst inflow exhaust gas becomes smaller than the stoichiometric, that is, when it becomes rich, the adsorbed and held oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of stoichiometry. However, when a three-way catalyst having oxygen storage capacity is used, the actual air-fuel ratio slightly deviates from stoichiometry depending on operating conditions. However, the air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.

ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係がある。よって、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。一般的には、触媒上流側の空燃比をリッチ及びリーンに交互に切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴って触媒の酸素吸蔵容量を計測し、触媒の劣化を診断する方法(所謂Cmax法)が採用される(例えば特許文献1参照)。   By the way, when the catalyst deteriorates, the purification efficiency of the catalyst decreases. On the other hand, there is a correlation between the degree of deterioration of the catalyst and the degree of reduction of the oxygen storage capacity because they are reactions through noble metals. Therefore, it is possible to detect that the catalyst has deteriorated by detecting that the oxygen storage capacity has decreased. In general, active air-fuel ratio control that switches the air-fuel ratio upstream of the catalyst alternately between rich and lean is performed, and the oxygen storage capacity of the catalyst is measured along with the execution of this active air-fuel ratio control to diagnose catalyst deterioration. (A so-called Cmax method) is employed (see, for example, Patent Document 1).

特開平5−133264号公報JP-A-5-133264

前記Cmax法においては、触媒の下流側に排気ガスの空燃比を検出する触媒後センサが設けられ、この触媒後センサの出力が反転するのに応答して、触媒上流側の空燃比がリッチ及びリーンに交互に切り替えられる。そして、触媒後センサ出力の反転周期毎に酸素吸蔵容量が計測され、この計測値に基づき触媒の劣化が判定される。   In the Cmax method, a post-catalyst sensor for detecting the air-fuel ratio of the exhaust gas is provided on the downstream side of the catalyst. In response to the output of the post-catalyst sensor being inverted, the air-fuel ratio on the upstream side of the catalyst is rich and Alternately switched to lean. Then, the oxygen storage capacity is measured every inversion period of the post-catalyst sensor output, and the deterioration of the catalyst is determined based on this measured value.

ところで、触媒が劣化していくと、通常これと同様に触媒後センサも劣化していく。触媒後センサが劣化するとその応答性が悪化し、特に出力反転時の出力変化が遅くなり、触媒の劣化度を正確に検出できないことがある。つまり、真の触媒劣化度に、触媒後センサ劣化相当分の触媒劣化度が加わって検出されてしまい、真の触媒劣化度を正確に検出できないことがある。   By the way, as the catalyst deteriorates, the post-catalyst sensor usually deteriorates as well. When the post-catalyst sensor deteriorates, its responsiveness deteriorates. In particular, the output change at the time of output reversal becomes slow, and the deterioration degree of the catalyst may not be detected accurately. That is, the true catalyst deterioration degree is detected by adding the catalyst deterioration degree corresponding to the post-catalyst sensor deterioration, and the true catalyst deterioration degree may not be detected accurately.

そこで本発明は、触媒後センサの劣化による影響を排除して酸素吸蔵容量の計測精度を向上し得る触媒劣化診断装置を提供することを目的の一つとするものである。   Accordingly, an object of the present invention is to provide a catalyst deterioration diagnosis device that can improve the measurement accuracy of the oxygen storage capacity by eliminating the influence of deterioration of the post-catalyst sensor.

本発明の一形態によれば、
内燃機関の排気通路に配置された触媒の劣化を診断する装置であって、
前記触媒の下流側の排気ガスの空燃比を検出する触媒後センサと、
前記触媒後センサの出力が反転するのに応答して、触媒上流側の空燃比をリッチ及びリーンに交互に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
前記触媒後センサ出力の反転周期毎に前記触媒の酸素吸蔵容量を計測し、且つ、当該反転周期内において前記触媒後センサ出力が定常となっている期間に前記酸素吸蔵容量を計測する計測手段と、
を備えたことを特徴とする触媒劣化診断装置が提供される。
According to one aspect of the invention,
An apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine,
A post-catalyst sensor for detecting an air-fuel ratio of exhaust gas downstream of the catalyst;
Active air-fuel ratio control means for executing active air-fuel ratio control for alternately switching the air-fuel ratio upstream of the catalyst between rich and lean in response to the output of the post-catalyst sensor being inverted;
Measuring means for measuring the oxygen storage capacity of the catalyst for each inversion period of the post-catalyst sensor output, and measuring the oxygen storage capacity during a period in which the post-catalyst sensor output is steady within the inversion period; ,
There is provided a catalyst deterioration diagnosis device characterized by comprising:

これによれば、触媒後センサ出力が反転する期間を計測期間から除くことができ、触媒後センサの応答性悪化の影響を排除することができる。よって触媒後センサの劣化による影響を排除し、酸素吸蔵容量の計測精度を向上することができる。   According to this, the period during which the post-catalyst sensor output is inverted can be excluded from the measurement period, and the influence of the deterioration of the response of the post-catalyst sensor can be eliminated. Therefore, the influence of deterioration of the post-catalyst sensor can be eliminated, and the measurement accuracy of the oxygen storage capacity can be improved.

好ましくは、前記計測手段は、前記触媒後センサ出力の微分値に基づき、前記触媒後センサ出力が定常となっているか否かを判定する。この場合好ましくは、前記計測手段は、前記微分値が所定時間、ゼロを含む所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する。   Preferably, the measurement unit determines whether or not the post-catalyst sensor output is steady based on a differential value of the post-catalyst sensor output. In this case, preferably, the measurement unit determines that the post-catalyst sensor output is steady when the differential value is within a predetermined range including zero for a predetermined time.

触媒後センサ出力が定常となると、その微分値はゼロ近傍の値となる。よって微分値を用いることで触媒後センサ出力が定常となっているか否かを好適に判定することができる。   When the post-catalyst sensor output becomes steady, the differential value becomes a value near zero. Therefore, it is possible to suitably determine whether or not the post-catalyst sensor output is steady by using the differential value.

代替的に、前記計測手段は、前記触媒後センサ出力の微分値を更に微分してなる2階微分値に基づき、前記触媒後センサ出力が定常となっているか否かを判定する。この場合好ましくは、前記計測手段は、前記2階微分値が所定時間、ゼロを含む所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する。   Alternatively, the measurement unit determines whether or not the post-catalyst sensor output is steady based on a second-order differential value obtained by further differentiating the differential value of the post-catalyst sensor output. In this case, preferably, the measurement means determines that the post-catalyst sensor output is steady when the second-order differential value is within a predetermined range including zero for a predetermined time.

触媒後センサ出力が定常となると、その2階微分値もゼロ近傍の値となる。よって2階微分値を用いることでも触媒後センサ出力が定常となっているか否かを好適に判定することができる。特に、この2階微分値を用いると、触媒後センサ出力がほぼ安定しているが一定ではなく、ゆっくりと徐変している場合でも定常を判定することができる。   When the post-catalyst sensor output becomes steady, the second-order differential value also becomes a value near zero. Therefore, it can be suitably determined whether the post-catalyst sensor output is steady by using the second-order differential value. In particular, when the second-order differential value is used, the post-catalyst sensor output is almost stable, but is not constant, and it is possible to determine the steady state even when slowly changing gradually.

代替的に、前記計測手段は、前記触媒後センサ出力の微分値と、当該微分値を更に微分してなる2階微分値とに基づき、前記触媒後センサ出力が定常となっているか否かを判定する。この場合好ましくは、前記計測手段は、前記微分値が第1の所定時間、ゼロを含む第1の所定範囲内であり、且つ、前記2階微分値が第2の所定時間、ゼロを含む第2の所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する。   Alternatively, the measuring means determines whether the post-catalyst sensor output is steady based on the differential value of the post-catalyst sensor output and a second-order differential value obtained by further differentiating the differential value. judge. In this case, preferably, the measuring means has a first predetermined time in which the differential value is within a first predetermined range including zero, and the second order differential value is in a second predetermined time including zero. 2 is within a predetermined range, it is determined that the post-catalyst sensor output is steady.

本発明によれば、触媒後センサの劣化による影響を排除して酸素吸蔵容量の計測精度を向上することができるという、優れた効果が発揮される。   According to the present invention, an excellent effect that the influence of deterioration of the post-catalyst sensor can be eliminated and the measurement accuracy of the oxygen storage capacity can be improved is exhibited.

本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. アクティブ空燃比制御の内容を説明するためのタイムチャートである。It is a time chart for demonstrating the content of active air fuel ratio control. 図3と同様のタイムチャートであり、酸素吸蔵容量の計測方法を説明するための図である。FIG. 4 is a time chart similar to FIG. 3 for illustrating a method for measuring the oxygen storage capacity. 触媒前センサ及び触媒後センサの出力特性を示すグラフである。It is a graph which shows the output characteristic of a pre-catalyst sensor and a post-catalyst sensor. 本実施形態の酸素吸蔵容量計測方法を説明するためのタイムチャートである。It is a time chart for demonstrating the oxygen storage capacity measuring method of this embodiment. 通常のCmax法における酸素吸蔵容量計測値の推移を示す図である。It is a figure which shows transition of the oxygen storage capacity measurement value in a normal Cmax method. 本実施形態における酸素吸蔵容量計測値の推移を示す図である。It is a figure which shows transition of the oxygen storage capacity measured value in this embodiment. 定常判定の第1の態様を説明するためのタイムチャートである。It is a time chart for demonstrating the 1st aspect of stationary determination. 酸素吸蔵容量計測処理のルーチンを示すフローチャートである。It is a flowchart which shows the routine of oxygen storage capacity measurement processing. 定常判定の第2の態様を説明するためのタイムチャートである。It is a time chart for demonstrating the 2nd aspect of stationary determination. 定常判定の第3の態様を説明するためのタイムチャートである。It is a time chart for demonstrating the 3rd aspect of stationary determination.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2における燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。   FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the drawing, the internal combustion engine 1 generates power by burning a fuel / air mixture in a combustion chamber 3 in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Vi、および排気ポートを開閉する排気弁Veが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   The cylinder head of the internal combustion engine 1 is provided with an intake valve Vi that opens and closes an intake port and an exhaust valve Ve that opens and closes an exhaust port for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量(内燃機関に流入する空気量)を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. In the intake pipe 13, an air flow meter 5 for detecting the intake air amount (the amount of air flowing into the internal combustion engine) and an electronically controlled throttle valve 10 are incorporated in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されている。これら排気ポート、枝管及び排気管6により排気通路が形成される。排気管6には、その上流側と下流側に、酸素吸蔵能を有する三元触媒からなる触媒即ち上流触媒11及び下流触媒19が直列に設けられている。上流触媒11の上流側及び下流側ないし直前及び直後の位置には、排気ガスの空燃比を検出するための空燃比センサ即ち触媒前センサ17及び触媒後センサ18が設けられている。触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後センサ18は所謂O2センサからなり、理論空燃比を境に出力値が急変する特性(Z特性)を持つ。これら触媒前センサ17及び触媒後センサ18の出力特性を図5に示す。 On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder. These exhaust ports, branch pipes and exhaust pipe 6 form an exhaust passage. The exhaust pipe 6 is provided with a catalyst composed of a three-way catalyst having oxygen storage capacity, that is, an upstream catalyst 11 and a downstream catalyst 19 in series on the upstream side and the downstream side. An air-fuel ratio sensor, that is, a pre-catalyst sensor 17 and a post-catalyst sensor 18 for detecting the air-fuel ratio of the exhaust gas are provided on the upstream side and downstream side of the upstream catalyst 11 or at positions immediately before and immediately after. The pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the post-catalyst sensor 18 is a so-called O 2 sensor and has a characteristic (Z characteristic) in which the output value changes suddenly with the theoretical air-fuel ratio as a boundary. The output characteristics of the pre-catalyst sensor 17 and the post-catalyst sensor 18 are shown in FIG.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst sensor 17, and the post-catalyst sensor 18, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1 and an accelerator that detects the accelerator opening, as shown in the figure. The opening sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

ECU20は、通常、触媒前センサ17により検出された空燃比即ち触媒前空燃比A/Ffが目標空燃比A/Ftに一致するように、燃焼室3に供給される混合気の空燃比をフィードバック制御する。一方、触媒11,19は、これに流入する排気ガスの空燃比が理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx ,HCおよびCOを同時に高効率で浄化する。よってECU20は、内燃機関の通常運転時、理論空燃比に等しい目標空燃比A/Ftを設定し、触媒前センサ17により検出された触媒前空燃比A/Ffが理論空燃比に一致するようにインジェクタ12から噴射される燃料噴射量をフィードバック制御する。これにより触媒11に流入する排気ガスの空燃比は理論空燃比近傍に保たれ、触媒11において最大の浄化性能が発揮されるようになる。   The ECU 20 normally feeds back the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 3 so that the air-fuel ratio detected by the pre-catalyst sensor 17, that is, the pre-catalyst air-fuel ratio A / Ff matches the target air-fuel ratio A / Ft. Control. On the other hand, the catalysts 11 and 19 simultaneously purify NOx, HC and CO simultaneously with high efficiency when the air-fuel ratio of the exhaust gas flowing into the catalyst 11 and 19 is the stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.6). Therefore, the ECU 20 sets the target air-fuel ratio A / Ft equal to the stoichiometric air-fuel ratio during normal operation of the internal combustion engine so that the pre-catalyst air-fuel ratio A / Ff detected by the pre-catalyst sensor 17 matches the stoichiometric air-fuel ratio. Feedback control is performed on the amount of fuel injected from the injector 12. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst 11 is kept in the vicinity of the theoretical air-fuel ratio, and the maximum purification performance is exhibited in the catalyst 11.

ここで、劣化診断の対象となる上流触媒11についてより詳細に説明する。なお下流触媒19も上流触媒11と同様に構成されている。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸収放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeO2やジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHCおよびCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元浄化される。 Here, the upstream catalyst 11 to be subjected to deterioration diagnosis will be described in more detail. The downstream catalyst 19 is configured in the same manner as the upstream catalyst 11. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and the coating material 31 is held in a state in which a large number of particulate catalyst components 32 are dispersedly arranged. The catalyst 11 is exposed inside. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays the role of a promoter that promotes the reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. For example, if the atmosphere gas of the catalyst component 32 and the coating material 31 is richer than the stoichiometric air-fuel ratio, the oxygen stored in the oxygen storage component present around the catalyst component 32 is released, and as a result, the released oxygen As a result, unburned components such as HC and CO are oxidized and purified. On the contrary, when the atmosphere gas of the catalyst component 32 and the coating material 31 is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmosphere gas, and as a result, NOx is reduced and purified. The

このような酸素吸放出作用により、通常の空燃比制御の際に触媒前空燃比A/Ffが理論空燃比に対し多少ばらついたとしても、NOx、HCおよびCOといった三つの排気ガス成分を同時浄化することができる。よって通常の空燃比制御において、触媒前空燃比A/Ffを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。   By such an oxygen absorption / release action, three exhaust gas components such as NOx, HC and CO are simultaneously purified even if the pre-catalyst air-fuel ratio A / Ff slightly varies from the theoretical air-fuel ratio during normal air-fuel ratio control. can do. Therefore, in normal air-fuel ratio control, it is also possible to purify exhaust gas by causing the pre-catalyst air-fuel ratio A / Ff to oscillate minutely around the theoretical air-fuel ratio and repeat the oxygen absorption and release.

ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。   By the way, in the catalyst 11 in the new state, as described above, a large number of fine particulate catalyst components 32 are uniformly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). In this case, the contact probability between the exhaust gas and the catalyst component 32 is lowered, and the purification rate is lowered. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.

このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、特にエミッションへの影響が大きい上流触媒11の酸素吸蔵能を検出することにより、上流触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵容量(OSC;O2 Storage Capacity、単位はg)の大きさによって表される。 Thus, the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11 are in a correlation. Therefore, in the present embodiment, the deterioration degree of the upstream catalyst 11 is detected by detecting the oxygen storage capacity of the upstream catalyst 11 that has a particularly large influence on the emission. Here, the oxygen storage capacity of the catalyst 11 is represented by the size of the oxygen storage capacity (OSC; O 2 Storage Capacity, the unit is g), which is the maximum amount of oxygen that the current catalyst 11 can store.

本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、触媒11の上流側の空燃比、即ち燃焼室3内の混合気の空燃比ひいては触媒11に供給される排気ガスの空燃比は、所定の中心空燃比A/Fcを境にリッチ及びリーンにアクティブに(強制的に)且つ交互に切り替えられる。なおリッチ側に切り替えられているときの空燃比をリッチ空燃比A/Fr、リーン側に切り替えられているときの空燃比をリーン空燃比A/Flと称す。   The catalyst deterioration diagnosis of the present embodiment is basically based on the Cmax method described above. When the deterioration diagnosis of the catalyst 11 is performed, the active air-fuel ratio control is executed by the ECU 20. In the active air-fuel ratio control, the air-fuel ratio upstream of the catalyst 11, that is, the air-fuel ratio of the air-fuel mixture in the combustion chamber 3 and thus the air-fuel ratio of the exhaust gas supplied to the catalyst 11 borders a predetermined center air-fuel ratio A / Fc. Active (forced) and alternating between rich and lean. The air-fuel ratio when switched to the rich side is referred to as rich air-fuel ratio A / Fr, and the air-fuel ratio when switched to the lean side is referred to as lean air-fuel ratio A / Fl.

触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaに基づいて、予め設定されたマップを利用し、触媒11の温度Tcを推定する。なお、吸入空気量Ga以外のパラメータ、例えばエンジン回転速度Ne(rpm)などを触媒温度推定に用いるパラメータに含めてもよい。   The deterioration diagnosis of the catalyst 11 is executed during steady operation of the internal combustion engine 1 and when the catalyst 11 is in the active temperature range. Measurement of the temperature of the catalyst 11 (catalyst bed temperature) may be detected directly using a temperature sensor, but in the present embodiment, it is estimated from the operating state of the internal combustion engine. For example, the ECU 20 estimates the temperature Tc of the catalyst 11 using a preset map based on the intake air amount Ga detected by the air flow meter 5. It should be noted that parameters other than the intake air amount Ga, for example, the engine rotational speed Ne (rpm) may be included in the parameters used for the catalyst temperature estimation.

以下、図3及び図4を用いて、通常のCmax法による上流触媒11の酸素吸蔵容量の計測方法を説明する。図3(A),(B)にはそれぞれ、アクティブ空燃比制御を実行したときの、触媒前センサ17及び触媒後センサ18の出力挙動を実線で示す。また、図3(A)には、ECU20内部で発生される目標空燃比A/Ftを破線で示す。図3(A)に示される触媒前センサ17の出力値は触媒前空燃比A/Ffに換算した値である。また図3(B)に示される触媒後センサ18の出力値はその出力値自体、即ち出力電圧Vrの値である。   Hereinafter, a method for measuring the oxygen storage capacity of the upstream catalyst 11 by the normal Cmax method will be described with reference to FIGS. 3 and 4. In FIGS. 3A and 3B, the output behavior of the pre-catalyst sensor 17 and the post-catalyst sensor 18 when the active air-fuel ratio control is executed is indicated by a solid line. In FIG. 3A, the target air-fuel ratio A / Ft generated inside the ECU 20 is indicated by a broken line. The output value of the pre-catalyst sensor 17 shown in FIG. 3A is a value converted to the pre-catalyst air-fuel ratio A / Ff. The output value of the post-catalyst sensor 18 shown in FIG. 3B is the output value itself, that is, the value of the output voltage Vr.

図3(A)に示されるように、目標空燃比A/Ftは、中心空燃比としての理論空燃比A/Fsを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比A/Fr)と、そこからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比A/Fl)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比A/Ftの切り替えに追従して、実際値としての触媒前空燃比A/Ffも、目標空燃比A/Ftに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比A/Ftと触媒前空燃比A/Ffとは時間遅れがあること以外等価であることが理解されよう。   As shown in FIG. 3A, the target air-fuel ratio A / Ft is centered on the theoretical air-fuel ratio A / Fs as the center air-fuel ratio, and then has a predetermined amplitude (rich amplitude Ar, Ar> 0) on the rich side. ) Separated by an air-fuel ratio (rich air-fuel ratio A / Fr) and an air-fuel ratio (lean air-fuel ratio A / Fl) separated from the air-fuel ratio by a predetermined amplitude (lean amplitude Al, Al> 0) on the lean side. And alternately. Following the switching of the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ff as an actual value is also switched with a slight time delay with respect to the target air-fuel ratio A / Ft. From this, it will be understood that the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ff are equivalent except that there is a time delay.

図示例においてリッチ振幅Arとリーン振幅Alとは等しい。例えばリッチ空燃比A/Fr=14.1、リーン空燃比A/Fl=15.1、リッチ振幅Ar=リーン振幅Al=0.5とされる。通常の空燃比制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、即ちリッチ振幅Arとリーン振幅Alとの値は大きい。   In the illustrated example, the rich amplitude Ar and the lean amplitude Al are equal. For example, rich air-fuel ratio A / Fr = 14.1, lean air-fuel ratio A / Fl = 15.1, rich amplitude Ar = lean amplitude Al = 0.5. Compared with the normal air-fuel ratio control, the active air-fuel ratio control has a larger amplitude of the air-fuel ratio, that is, the values of the rich amplitude Ar and the lean amplitude Al are larger.

目標空燃比A/Ftは、触媒後センサ18の出力が反転するのに応答して切り替えられる。図5に示したように、触媒後センサ18の出力電圧Vrは理論空燃比A/Fsを境に急変する。そして当該出力電圧Vrの反転時期、即ち当該出力電圧Vrがリーンからリッチに或いはリッチからリーンに反転した時期を定めるため、当該出力電圧Vrに関する二つの反転しきい値VR,VLが予め定められている。ここでVRをリッチ判定値、VLをリーン判定値という。VR>VLであり、例えばVR=0.59(V)、VL=0.21(V)とされる。出力電圧Vrがリーン側即ち減少方向に変化してリーン判定値VLに達した時、出力電圧Vrはリーン側に反転したとみなされ、触媒後センサ18によって検出された触媒後空燃比A/Frは少なくとも理論空燃比よりリーンであると判断される。他方、出力電圧Vrがリッチ側即ち増大方向に変化してリッチ判定値VRに達した時、出力電圧Vrはリッチ側に反転したとみなされ、触媒後空燃比A/Frは少なくとも理論空燃比よりリッチであると判断される。リッチ判定値VRとリーン判定値VLとにそれぞれ対応する空燃比の間の狭い領域Y(これを遷移領域という)に理論空燃比が含まれている。なお出力電圧Vrからは触媒後空燃比A/Frが理論空燃比よりもリッチかリーンかを検出できるのみで、触媒後空燃比A/Frの絶対値まで検出するのは困難である。   The target air-fuel ratio A / Ft is switched in response to the output of the post-catalyst sensor 18 being inverted. As shown in FIG. 5, the output voltage Vr of the post-catalyst sensor 18 changes suddenly with the theoretical air-fuel ratio A / Fs as a boundary. In order to determine the inversion timing of the output voltage Vr, that is, the timing at which the output voltage Vr is inverted from lean to rich or from rich to lean, two inversion thresholds VR and VL relating to the output voltage Vr are determined in advance. Yes. Here, VR is referred to as a rich determination value, and VL is referred to as a lean determination value. VR> VL, for example, VR = 0.59 (V) and VL = 0.21 (V). When the output voltage Vr changes to the lean side, that is, decreases and reaches the lean determination value VL, the output voltage Vr is considered to have been reversed to the lean side, and the post-catalyst air-fuel ratio A / Fr detected by the post-catalyst sensor 18 Is at least leaner than the stoichiometric air-fuel ratio. On the other hand, when the output voltage Vr changes to the rich side, that is, increases and reaches the rich determination value VR, it is considered that the output voltage Vr is reversed to the rich side, and the post-catalyst air-fuel ratio A / Fr is at least greater than the stoichiometric air-fuel ratio. Judged to be rich. The stoichiometric air-fuel ratio is included in a narrow region Y between the air-fuel ratios corresponding to the rich determination value VR and the lean determination value VL (this is referred to as a transition region). The output voltage Vr can only detect whether the post-catalyst air-fuel ratio A / Fr is richer or leaner than the stoichiometric air-fuel ratio, and it is difficult to detect the absolute value of the post-catalyst air-fuel ratio A / Fr.

図3(A),(B)に示されるように、触媒後センサ18の出力電圧Vrがリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比A/Ftはリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられる。その後、触媒後センサ18の出力電圧Vrがリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比A/Ftはリッチ空燃比A/Frからリーン空燃比A/Flに切り替えられる。このように、触媒後センサ18の出力がリーン又はリッチに反転するのと同時に空燃比がリッチ又はリーンにアクティブに切替制御される。   As shown in FIGS. 3A and 3B, when the output voltage Vr of the post-catalyst sensor 18 changes from the rich side value to the lean side and becomes equal to the lean determination value VL (time t1), the target The air-fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr. Thereafter, when the output voltage Vr of the post-catalyst sensor 18 changes from the lean side value to the rich side and becomes equal to the rich determination value VR (time t2), the target air-fuel ratio A / Ft is changed from the rich air-fuel ratio A / Fr. The lean air-fuel ratio A / Fl is switched. In this way, the air-fuel ratio is actively controlled to be rich or lean at the same time that the output of the post-catalyst sensor 18 is reversed to lean or rich.

このアクティブ空燃比制御を実行しつつ、通常のCmax法では、次のようにして触媒11の酸素吸蔵容量OSCが計測され、触媒11の劣化が判定される。   While performing this active air-fuel ratio control, in the normal Cmax method, the oxygen storage capacity OSC of the catalyst 11 is measured as follows, and deterioration of the catalyst 11 is determined.

図3を参照して、時刻t1より前では目標空燃比A/Ftがリーン空燃比A/Flとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続けているが、一杯に酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frがリーン側に変化し、触媒後センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられる。   Referring to FIG. 3, the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl before time t1, and the lean gas flows into the catalyst 11. At this time, the catalyst 11 continues to absorb oxygen, but when it fully absorbs oxygen, it can no longer absorb oxygen, and the lean gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Fr changes to the lean side, and when the output voltage of the post-catalyst sensor 18 reaches the lean determination value VL (t1), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / Fr. Can be switched to.

そして今度は触媒11にリッチガスが流入される。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比A/Fsの排気ガスが流出し、触媒後空燃比A/Frがリッチにならないことから、触媒後センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは全ての吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frがリッチ側に変化し、触媒後センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。   This time, rich gas flows into the catalyst 11. At this time, the oxygen stored in the catalyst 11 continues to be released from the catalyst 11. Therefore, the exhaust gas of the theoretical air-fuel ratio A / Fs flows out to the downstream side of the catalyst 11 and the post-catalyst air-fuel ratio A / Fr does not become rich, so the output of the post-catalyst sensor 18 is not reversed. When oxygen is continuously released from the catalyst 11, all of the stored oxygen is eventually released from the catalyst 11, and at that time, no more oxygen can be released, and the rich gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Fr changes to the rich side, and when the output voltage of the post-catalyst sensor 18 reaches the rich determination value VR (t2), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / Fl. Can be switched to.

触媒11の有する酸素吸蔵容量が大きいほど、酸素を吸収或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は触媒後センサ出力Vrの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほどその反転周期は短くなる。   The larger the oxygen storage capacity of the catalyst 11, the longer the time during which oxygen can be absorbed or released. That is, when the catalyst has not deteriorated, the inversion period of the post-catalyst sensor output Vr (for example, the time from t1 to t2) becomes longer, and the inversion period becomes shorter as the deterioration of the catalyst proceeds.

そこで、このことを利用して酸素吸蔵容量OSCが次のように計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/Ffが理論空燃比A/Fsに達した時点t11から、次に触媒後センサ出力Vrが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが時刻t11から時刻t2まで積算される。こうしてこのリッチ制御中の1反転周期t1〜t2において、最終積算値としての酸素吸蔵容量OSC(この場合、図4にOSC1で示される放出酸素量)が計測される。   Therefore, using this, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ff as an actual value is slightly delayed with the rich air-fuel ratio A / Ff. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ff reaches the stoichiometric air-fuel ratio A / Fs to the time t2 when the post-catalyst sensor output Vr next reverses, the oxygen at every predetermined minute time is obtained by the following equation (1). The storage capacity dOSC is calculated, and the oxygen storage capacity dOSC for each minute time is integrated from time t11 to time t2. Thus, in one reversal period t1 to t2 during the rich control, the oxygen storage capacity OSC (in this case, the amount of released oxygen indicated by OSC1 in FIG. 4) is measured as the final integrated value.

Figure 2010185371
Figure 2010185371

ここで、Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。   Here, Q is a fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, an air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. K is a constant representing the proportion of oxygen contained in air (about 0.23).

目標空燃比A/Ftがリーンとなっているリーン制御中でも同様に酸素吸蔵容量(この場合、図4にOSC2で示される吸蔵酸素量)が計測される。そして目標空燃比A/Ftがリッチ・リーンと交互に切り替えられ、リッチ制御とリーン制御が交互に行われる度に、酸素吸蔵容量が計測される。こうして複数の酸素吸蔵容量計測値が得られたならば、その平均値OSCavが算出される。   Similarly, the oxygen storage capacity (in this case, the stored oxygen amount indicated by OSC2 in FIG. 4) is measured even during the lean control in which the target air-fuel ratio A / Ft is lean. The target air-fuel ratio A / Ft is alternately switched between rich and lean, and the oxygen storage capacity is measured every time rich control and lean control are alternately performed. If a plurality of oxygen storage capacity measurement values are obtained in this way, the average value OSCav is calculated.

なお、リーン制御中における酸素吸蔵容量の計測については、図4に示すように、時刻t2で目標空燃比A/Ftがリーン空燃比A/Flに切り替えられた後、触媒前空燃比A/Ffが理論空燃比A/Fsに達した時点t21から、次に目標空燃比A/Ftがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。そして最終的な積算値が、当該リーン制御中の反転周期において計測された酸素吸蔵容量の値となる。酸素放出時と酸素吸蔵時とで酸素吸蔵容量の計測値はほぼ等しい値となるのが理想的である。   As shown in FIG. 4, the measurement of the oxygen storage capacity during lean control is performed after the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio A / Fl at time t2, and then the pre-catalyst air-fuel ratio A / Ff. From time t21 when the air / fuel ratio reaches the stoichiometric air / fuel ratio A / Fs to time t3 when the target air / fuel ratio A / Ft reverses to the rich side next time, the oxygen storage capacity dOSC for each minute time is calculated by the previous equation (1), The oxygen storage capacity dOSC for each minute time is integrated. The final integrated value is the value of the oxygen storage capacity measured in the inversion period during the lean control. Ideally, the measured value of the oxygen storage capacity is approximately the same when releasing oxygen and storing oxygen.

次に、酸素吸蔵容量計測値の平均値OSCavに基づき触媒の劣化判定がなされる。即ち、平均値OSCavが所定の劣化判定値OSCsと比較され、平均値OSCavが劣化判定値OSCsより大きければ触媒は正常、平均値OSCavが劣化判定値OSCs以下ならば触媒は劣化と判定される。なお、触媒が劣化と判定された場合、その事実をユーザに知らせるため、チェックランプ等の警告装置を起動させるのが好ましい。   Next, the deterioration of the catalyst is determined based on the average value OSCav of the oxygen storage capacity measurement values. That is, the average value OSCav is compared with the predetermined deterioration determination value OSCs. If the average value OSCav is larger than the deterioration determination value OSCs, the catalyst is determined to be normal, and if the average value OSCav is equal to or less than the deterioration determination value OSCs, the catalyst is determined to be deteriorated. When it is determined that the catalyst is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact.

さて、前述したように、新品状態から触媒11が劣化していくと、これと同様に触媒後センサ18も通常劣化していく。触媒後センサ18が劣化するとその応答性が悪化し、特に出力反転時の出力変化が遅くなり、触媒の劣化度を正確に検出できないことがある。   As described above, when the catalyst 11 deteriorates from a new state, the post-catalyst sensor 18 also normally deteriorates in the same manner. When the post-catalyst sensor 18 deteriorates, its responsiveness deteriorates. In particular, the output change at the time of output reversal becomes slow, and the degree of deterioration of the catalyst may not be detected accurately.

すなわち、応答性が悪化した触媒後センサ18の場合、リッチ制御またはリーン制御の終了直前における反転時の出力変化速度が遅くなり、その分、微小時間毎の酸素吸蔵容量dOSCの積算時間が長くなる。よって、応答性が悪化していないセンサの場合よりも大きな酸素吸蔵容量の値が計測されてしまう。つまり真の触媒劣化度に、触媒後センサ劣化相当分の触媒劣化度が加わって検出されてしまう。これが計測精度の低下をもたらし、ひいては劣化した触媒を誤って正常と判定する誤診断をも引き起こす可能性がある。   In other words, in the case of the post-catalyst sensor 18 whose responsiveness has deteriorated, the output change speed at the time of inversion immediately before the end of the rich control or lean control becomes slow, and accordingly, the cumulative time of the oxygen storage capacity dOSC for every minute time becomes long. . Therefore, a larger oxygen storage capacity value is measured than in the case of a sensor whose responsiveness has not deteriorated. That is, the true catalyst deterioration degree is detected by adding the catalyst deterioration degree corresponding to the post-catalyst sensor deterioration. This leads to a decrease in measurement accuracy, which may cause a misdiagnosis to erroneously determine that the deteriorated catalyst is normal.

なお、出力反転時の出力変化速度が遅くなる理由として、触媒後センサ18の劣化による出力低下も一つの原因と考えられる。また、触媒11が劣化すると特にリッチ制御(酸素放出)の終了時直前に触媒の反応速度が供給ガス量に対して追いつかない所謂吹き抜けが生じる傾向があり、このことも一つの原因と考えられる。   In addition, it is thought that the output fall by deterioration of the post-catalyst sensor 18 is also one cause for the slowing of the output change speed at the time of output reversal. Further, when the catalyst 11 deteriorates, there is a tendency that a so-called blow-through occurs in which the reaction rate of the catalyst cannot catch up with the supply gas amount immediately before the end of the rich control (oxygen release), which is also considered as one cause.

そこで本実施形態では、かかる問題に対処すべく、前述の通常のCmax法の特に計測部分に改良を施し、触媒後センサ出力の反転周期内において触媒後センサ出力が定常となっている期間に酸素吸蔵容量を計測することとしている。以下、これについて説明する。   Therefore, in this embodiment, in order to cope with such a problem, the above-described normal Cmax method is improved particularly in the measurement part, and the oxygen sensor is output during a period when the post-catalyst sensor output is steady within the inversion period of the post-catalyst sensor output. The storage capacity is to be measured. This will be described below.

図6に示すように、触媒後センサ出力Vrが反転するタイミングt1,t2,t3,t4毎に目標空燃比A/Ftが切り替えられる。ここで1反転周期とは、触媒後センサ出力Vrが1回反転してから次に反転するまでの期間、例えばt1からt2までの期間をいう。1反転周期内において、酸素吸蔵容量OSCの計測すなわち微小時間毎の酸素吸蔵容量dOSCの積算は、白抜き矢印で示すような、触媒後センサ出力Vrが定常となっている(或いは安定している)期間t11〜t12,t21〜t22,t31〜t32に実行される。なお(C)には吸蔵酸素量の積算値を参考までに示す。   As shown in FIG. 6, the target air-fuel ratio A / Ft is switched at every timing t1, t2, t3, t4 at which the post-catalyst sensor output Vr is reversed. Here, the one reversal cycle refers to a period from when the post-catalyst sensor output Vr is reversed once to the next reversal, for example, a period from t1 to t2. Within one reversal period, the measurement of the oxygen storage capacity OSC, that is, the integration of the oxygen storage capacity dOSC at every minute time, shows that the post-catalyst sensor output Vr is steady (or stable) as indicated by the white arrow. ) It is executed during the periods t11 to t12, t21 to t22, t31 to t32. In addition, (C) shows the integrated value of the stored oxygen amount for reference.

この手法によると、触媒後センサ出力Vrが反転する期間(例えばt12〜t2)、および反転直後の出力変動期間(例えばt2〜t21)を、酸素吸蔵容量計測期間から除くことができ、触媒後センサ18の応答性悪化および出力低下の影響を排除することができる。これにより、触媒後センサ18の劣化による影響を排除し、酸素吸蔵容量の計測精度を向上することができる。また誤診断をも未然に防止することができる。   According to this method, the post-catalyst sensor output Vr reverse period (for example, t12 to t2) and the output fluctuation period immediately after the reverse (for example, t2 to t21) can be excluded from the oxygen storage capacity measurement period. The effects of 18 responsiveness deterioration and output reduction can be eliminated. Thereby, the influence by deterioration of the post-catalyst sensor 18 can be eliminated, and the measurement accuracy of the oxygen storage capacity can be improved. In addition, misdiagnosis can be prevented.

この手法によれば、通常のCmax法よりも計測期間が短くなり、小さな酸素吸蔵容量OSCの値が計測される。しかし、それでも触媒の正常時と劣化時とで酸素吸蔵容量の計測値に相対差が出るため、特に問題はない。むしろ、触媒後センサ18の劣化影響が排除される結果、正常時と劣化時とで酸素吸蔵容量計測値の相対差が大きくなり、診断精度は向上する可能性がある。   According to this method, the measurement period is shorter than in the normal Cmax method, and a small value of the oxygen storage capacity OSC is measured. However, there is no particular problem because there is a relative difference in the measured value of the oxygen storage capacity between when the catalyst is normal and when it is deteriorated. Rather, as a result of eliminating the deterioration effect of the post-catalyst sensor 18, the relative difference in the oxygen storage capacity measurement value between the normal time and the deterioration time becomes large, and the diagnostic accuracy may be improved.

図7および図8には、通常のCmax法および本実施形態における酸素吸蔵容量計測値の推移を示す。(A)には新品触媒の場合を示し、(B)には、新品触媒よりも劣化しているがなお正常とみなせるような正常劣化触媒の場合を示し、(C)には、正常劣化触媒よりもさらに劣化していて劣化と判定しなければならない異常劣化触媒の場合を示す。図中の領域Aは、計測値のうち、触媒の持つ正味の酸素吸蔵容量に相当する分を示し、領域Bは、計測値のうち、触媒後センサ18の劣化影響分を示す。   7 and 8 show the transition of the measured value of the oxygen storage capacity in the normal Cmax method and this embodiment. (A) shows the case of a new catalyst, (B) shows the case of a normal deterioration catalyst that is deteriorated but still considered normal, and (C) shows a normal deterioration catalyst. This shows a case of an abnormally deteriorated catalyst that is further deteriorated and must be determined as deteriorated. Region A in the figure shows the amount corresponding to the net oxygen storage capacity of the catalyst among the measured values, and region B shows the deterioration influence of the post-catalyst sensor 18 among the measured values.

図7に示すように、通常のCmax法の場合だと、触媒後センサ18の劣化影響分が計測値に含まれ、このセンサ劣化影響分は最初は小さいが、触媒およびセンサが劣化するに従って次第に大きくなり、計測値のうち徐々に大きな割合を占めていくようになる。言い換えれば、触媒およびセンサが劣化するに従ってセンサ劣化影響分による計測値の誤差が次第に大きくなっていく。一方、触媒劣化診断では、(B)の正常劣化触媒と(C)の異常劣化触媒とを精度良く区別することが必要である。   As shown in FIG. 7, in the case of the normal Cmax method, the degradation effect of the post-catalyst sensor 18 is included in the measured value. This sensor degradation impact is initially small, but gradually increases as the catalyst and sensor degrade. It becomes larger and gradually occupies a larger proportion of the measured values. In other words, as the catalyst and sensor deteriorate, the measurement value error due to the sensor deterioration influence gradually increases. On the other hand, in the catalyst deterioration diagnosis, it is necessary to accurately distinguish between the normal deterioration catalyst (B) and the abnormal deterioration catalyst (C).

他方、図8に示すように、本実施形態の場合だと、触媒後センサ18の劣化影響分が計測値に含まれないので、常に正味の酸素吸蔵容量が計測されることになる。この場合、(B)の正常劣化触媒と(C)の異常劣化触媒との計測値の相対的な差C2は、図7に示した通常のCmax法の場合の相対的な差C1より大きくなり、むしろ、正常劣化触媒と異常劣化触媒との区別が容易となる可能性がある。これが、診断精度が向上する可能性があるとする一つの理由である。   On the other hand, as shown in FIG. 8, in the case of the present embodiment, since the degradation influence of the post-catalyst sensor 18 is not included in the measured value, the net oxygen storage capacity is always measured. In this case, the relative difference C2 between the measured values of the normal deterioration catalyst (B) and the abnormal deterioration catalyst (C) is larger than the relative difference C1 in the case of the normal Cmax method shown in FIG. Rather, there is a possibility that the normal deterioration catalyst and the abnormal deterioration catalyst can be easily distinguished. This is one reason that diagnostic accuracy may be improved.

なお、通常のCmax法よりも酸素吸蔵容量計測値が小さくなるため、劣化判定のためのしきい値である劣化判定値OSCsも通常のCmax法より小さくする必要がある。その値自体は、実験等を通じて好適な値に適合される。   In addition, since the oxygen storage capacity measurement value is smaller than that of the normal Cmax method, the deterioration determination value OSCs that is a threshold value for deterioration determination needs to be smaller than that of the normal Cmax method. The value itself is adapted to a suitable value through experiments and the like.

ところで、触媒後センサ出力Vrが定常となっている期間に酸素吸蔵容量を計測するためには、触媒後センサ出力Vrが定常となっているか否かを判定する必要がある。そこで本実施形態では以下の第1〜第3の態様のいずれかに基づき、かかる定常判定を実行している。   By the way, in order to measure the oxygen storage capacity during the period when the post-catalyst sensor output Vr is steady, it is necessary to determine whether or not the post-catalyst sensor output Vr is steady. Therefore, in the present embodiment, the steady determination is performed based on any of the following first to third aspects.

定常判定の第1の態様は、触媒後センサ出力Vrの微分値Vr’を用いるものである。これは図9に示すように、触媒後センサ出力Vrが定常となるとその微分値Vr’がゼロ近傍の値になるという特性に着目したものである。   The first mode of steady state determination uses a differential value Vr ′ of the post-catalyst sensor output Vr. As shown in FIG. 9, this focuses on the characteristic that when the post-catalyst sensor output Vr becomes steady, its differential value Vr 'becomes a value near zero.

図示するように、ECU20は、触媒後センサ出力Vrの微分値Vr’を常時計算しており、ある時点(今回)における触媒後センサ出力Vrnから1演算周期前(前回)の触媒後センサ出力Vrn-1を減じてその差をある時点(今回)における微分値Vr’nとする。 As shown, ECU 20 is always calculating the differential value Vr post-catalyst sensor output Vr ', the post-catalyst sensor output at a certain time (time) 1 calculation cycle before the post-catalyst sensor output Vr n in (previous) Vr n-1 is subtracted and the difference is set as a differential value Vr ′ n at a certain point in time (current time).

そしてECU20は、微分値Vr’が所定時間Δt、ゼロを含む所定範囲内であるとき、具体的には−α≦Vr’≦+α(但しαは微小な正の所定値)の範囲にあるとき、触媒後センサ出力Vrが定常となっていると判定する。   When the differential value Vr ′ is within a predetermined range including a predetermined time Δt and zero, specifically, when the differential value Vr ′ is within a range of −α ≦ Vr ′ ≦ + α (where α is a small positive predetermined value). Then, it is determined that the post-catalyst sensor output Vr is steady.

図9に示すように、この判定方法に基づく定常期間は図中のt11〜t12,t21〜t22,t31〜t32の期間であり、これら各定常期間で酸素吸蔵容量の計測が実行される。具体的には、例えばt11〜t12の定常期間について、ECU20は、微分値Vr’が所定時間Δt、−α≦Vr’≦+αの範囲にあると判断した時点で、その−α≦Vr’≦+αの範囲に最初に入った時点t11を定常期間の始期と定め、当該時点t11に遡って(つまり所定時間Δtだけ遡って)計測ないし積算を開始する。この際、ECU20は、バッファに予め記憶しておいた触媒前空燃比A/Ff等のデータを使用する。所定時間Δtの経過を待つ理由は、触媒後センサ出力Vrの反転直後は触媒後センサ出力Vrが変動しており、その微分値Vr’がPで示すように一時的或いは瞬間的に−α≦Vr’≦+αの範囲に入ることがあり、このときを定常期間と判定してしまうのを避けるためである。こうして計測ないし積算は、定常期間の終期、すなわち微分値Vr’がその後最初に−α≦Vr’≦+αの範囲から外れる時点t12まで実行される。   As shown in FIG. 9, the steady periods based on this determination method are the periods t11 to t12, t21 to t22, and t31 to t32 in the figure, and the oxygen storage capacity is measured in each of these steady periods. Specifically, for example, in the steady period from t11 to t12, when the ECU 20 determines that the differential value Vr ′ is within the range of the predetermined time Δt and −α ≦ Vr ′ ≦ + α, −α ≦ Vr ′ ≦ Time t11 that first enters the range of + α is determined as the start of the stationary period, and measurement or integration is started retroactively to time t11 (ie, by a predetermined time Δt). At this time, the ECU 20 uses data such as the pre-catalyst air-fuel ratio A / Ff stored in advance in the buffer. The reason for waiting for the elapse of the predetermined time Δt is that the post-catalyst sensor output Vr fluctuates immediately after the reverse of the post-catalyst sensor output Vr, and the differential value Vr ′ is indicated by P, temporarily or instantaneously −α ≦ This is in order to avoid determining that this time is a steady period in the range of Vr ′ ≦ + α. Thus, the measurement or integration is executed until the end of the steady period, that is, until the time point t12 when the differential value Vr ′ first falls outside the range of −α ≦ Vr ′ ≦ + α.

図10に、この第1の態様に係る酸素吸蔵容量計測処理のルーチンを示す。図示するルーチンはECU20により所定の演算周期(例えば16msec)毎に繰り返し実行される。   FIG. 10 shows a routine of the oxygen storage capacity measurement process according to the first aspect. The illustrated routine is repeatedly executed by the ECU 20 every predetermined calculation cycle (for example, 16 msec).

まずステップS101では、診断ないし計測の実行に適した所定の前提条件が成立しているか否かが判断される。例えば、エアフローメータ5により検出された吸入空気量Gaと、クランク角センサ14の出力に基づき計算された機関回転速度Neとの変動幅が所定範囲内にあるなど、エンジンが定常運転状態にあり、且つ、上流触媒11及び各センサ17,18が活性状態にあれば、前提条件成立となる。なお前提条件についてはここで述べた例に限られない。   First, in step S101, it is determined whether a predetermined precondition suitable for execution of diagnosis or measurement is satisfied. For example, the engine is in a steady operation state such that the fluctuation range of the intake air amount Ga detected by the air flow meter 5 and the engine rotational speed Ne calculated based on the output of the crank angle sensor 14 is within a predetermined range. If the upstream catalyst 11 and the sensors 17 and 18 are in the active state, the precondition is satisfied. Note that the precondition is not limited to the example described here.

前提条件が成立していない場合には、ステップS108に進んで、通常の空燃比制御が実行される。すなわち、目標空燃比A/Ftが例えばストイキに設定され、空燃比がストイキにフィードバック制御される。   If the precondition is not satisfied, the process proceeds to step S108, and normal air-fuel ratio control is executed. That is, the target air-fuel ratio A / Ft is set to stoichiometric, for example, and the air-fuel ratio is feedback-controlled to stoichiometric.

他方、前提条件が成立した場合にはステップS102に進み、アクティブ空燃比制御が実行される。   On the other hand, if the precondition is satisfied, the process proceeds to step S102, and active air-fuel ratio control is executed.

次いでステップS103において、触媒後センサ出力Vrがリッチまたはリーンに反転したか否かが判断される。反転した場合にはステップS104に進んで目標空燃比A/Ftがリーンまたはリッチに切り替えられ、空燃比がリーンまたはリッチに制御される。そしてその後ステップS105に進む。   Next, in step S103, it is determined whether or not the post-catalyst sensor output Vr is reversed to rich or lean. If reversed, the routine proceeds to step S104 where the target air-fuel ratio A / Ft is switched to lean or rich, and the air-fuel ratio is controlled to lean or rich. Then, the process proceeds to step S105.

他方、反転していない場合にはステップS104がスキップされ、直接ステップS105に進む。   On the other hand, if not reversed, step S104 is skipped and the process proceeds directly to step S105.

ステップS105においては、前述の手法により、触媒後センサ出力Vrが定常となっているか否かが判断される。すなわち、微分値Vr’が所定時間Δt、−α≦Vr’≦+αの範囲にあると判断した場合には、触媒後センサ出力Vrが定常となっていると判断され、そうでなければ触媒後センサ出力Vrが定常となっていないと判断される。   In step S105, it is determined whether or not the post-catalyst sensor output Vr is steady by the above-described method. That is, when it is determined that the differential value Vr ′ is within the range of the predetermined time Δt and −α ≦ Vr ′ ≦ + α, it is determined that the post-catalyst sensor output Vr is steady. It is determined that the sensor output Vr is not steady.

定常となっていると判断された場合には、ステップS106に進んで、酸素吸蔵容量OSCの計測ないし積算が実行される。この計測ないし積算は、前述したように、微分値Vr’が最初に−α≦Vr’≦+αの範囲に入った時点に遡って開始される。他方、定常となっていないと判断された場合には、ステップS107に進んで、酸素吸蔵容量OSCの計測値ないし積算値が初期化され、すなわちゼロとされる。以上でルーチンが終了する。   If it is determined that it is steady, the process proceeds to step S106, and measurement or integration of the oxygen storage capacity OSC is executed. As described above, this measurement or integration is started retroactively when the differential value Vr ′ first enters the range of −α ≦ Vr ′ ≦ + α. On the other hand, if it is determined that it is not steady, the routine proceeds to step S107, where the measured value or integrated value of the oxygen storage capacity OSC is initialized, that is, made zero. This is the end of the routine.

これにより、リッチ制御時とリーン制御時とで複数の酸素吸蔵容量OSCが計測される。この後ECU20は、通常のCmax法同様、これら複数の酸素吸蔵容量計測値の平均値OSCavを算出し、当該平均値OSCavを所定の劣化判定値OSCsと比較する。平均値OSCavが劣化判定値OSCsより大きければ触媒を正常と判定し、平均値OSCavが劣化判定値OSCs以下ならば触媒を劣化と判定する。   Thereby, a plurality of oxygen storage capacities OSC are measured during the rich control and the lean control. Thereafter, the ECU 20 calculates an average value OSCav of the plurality of oxygen storage capacity measurement values as in the normal Cmax method, and compares the average value OSCav with a predetermined deterioration determination value OSCs. If the average value OSCav is greater than the deterioration determination value OSCs, the catalyst is determined to be normal, and if the average value OSCav is less than or equal to the deterioration determination value OSCs, the catalyst is determined to be deteriorated.

なお、この平均値OSCavに基づく方法以外も可能である。例えば、リッチ制御時とリーン制御時とでそれぞれ放出酸素量と吸蔵酸素量とを個別に計測すると共に、これらを計測毎に更新し、最終的な更新値の平均値を求め、この平均値を所定の劣化判定値と比較する方法が可能である。   Note that methods other than the method based on the average value OSCav are also possible. For example, the amount of released oxygen and the amount of stored oxygen are separately measured during rich control and lean control, and these are updated for each measurement to obtain the average value of the final update values. A method of comparing with a predetermined deterioration determination value is possible.

次に、定常判定の第2の態様を説明する。この第2の態様は、触媒後センサ出力Vrの微分値Vr’をさらに微分してなる2階微分値Vr”を用いる。これは図11に示すように、触媒後センサ出力Vrが定常となるとその2階微分値Vr”もゼロ近傍の値になるという特性に着目したものである。   Next, a second mode of steady determination will be described. This second mode uses a second-order differential value Vr ″ obtained by further differentiating the differential value Vr ′ of the post-catalyst sensor output Vr. As shown in FIG. 11, this is when the post-catalyst sensor output Vr becomes steady. The second-order differential value Vr ″ is focused on the characteristic that it becomes a value near zero.

図示するように、ECU20は、触媒後センサ出力Vrの微分値Vr’と、2階微分値Vr”とを常時計算しており、ある時点(今回)における微分値Vr’nから1演算周期前(前回)の微分値Vr’n-1を減じてその差をある時点(今回)における2階微分値Vr”nとする。 As shown, ECU 20 is the differential value Vr post-catalyst sensor output Vr 'and, second-order differential value Vr "and is constantly calculating the differential value Vr at a certain point in time (time)' 1 calculation cycle before the n The (previous) differential value Vr ′ n−1 is subtracted and the difference is defined as a second-order differential value Vr ″ n at a certain point in time (current time).

そしてECU20は、2回微分値Vr”が所定時間Δt、ゼロを含む所定範囲内であるとき、具体的には−γ≦Vr”≦+γ(但しγは微小な正の所定値)の範囲にあるとき、触媒後センサ出力Vrが定常となっていると判定する。   When the second derivative value Vr ″ is within a predetermined range including a predetermined time Δt and zero, the ECU 20 specifically falls within the range of −γ ≦ Vr ″ ≦ + γ (where γ is a minute positive predetermined value). When there is, it is determined that the post-catalyst sensor output Vr is steady.

図11に示すように、この判定方法に基づく定常期間は図中のt11〜t12,t21〜t22,t31〜t32の期間であり、これら各定常期間で酸素吸蔵容量の計測が実行される。例えばt11〜t12の定常期間について、ECU20は、2階微分値Vr”が所定時間Δt、−γ≦Vr”≦+γの範囲にあると判断した時点で、その−γ≦Vr”≦+γの範囲に最初に入った時点t11を定常期間の始期と定め、当該時点t11に遡って(つまり所定時間Δtだけ遡って)計測ないし積算を開始する。この際、ECU20は、バッファに予め記憶しておいた触媒前空燃比A/Ff等のデータを使用する。所定時間Δtの経過を待つ理由は、前記同様、触媒後センサ出力Vrの反転直後に2階微分値Vr”が一時的或いは瞬間的に−γ≦Vr”≦+γの範囲に入ったときを定常期間と判定してしまうのを避けるためである。こうして計測ないし積算は、2階微分値Vr”がその後最初に−γ≦Vr”≦+γの範囲を外れる時点t12、すなわち定常期間の終期まで実行される。   As shown in FIG. 11, the steady periods based on this determination method are the periods t11 to t12, t21 to t22, and t31 to t32 in the figure, and the oxygen storage capacity is measured in each of these steady periods. For example, for the steady period from t11 to t12, when the ECU 20 determines that the second-order differential value Vr ″ is within a predetermined time Δt and −γ ≦ Vr ″ ≦ + γ, the range of −γ ≦ Vr ″ ≦ + γ. The time point t11 that first enters the period is set as the beginning of the stationary period, and measurement or integration is started retroactively to the time point t11 (that is, retroactively by the predetermined time Δt). The reason for waiting for the elapse of the predetermined time Δt is that the second-order differential value Vr ″ is temporarily or instantaneously immediately after inversion of the post-catalyst sensor output Vr, as described above. This is to avoid determining that the stationary period is in the range of −γ ≦ Vr ″ ≦ + γ. In this way, the second-order differential value Vr ″ is the first to be −γ ≦ Vr ″ ≦ Time t1 out of the range of + γ 2, ie, until the end of the stationary period.

この2階微分値Vr”に基づく方法でも、触媒後センサ出力Vrが定常か否かを好適に判定することができる。   Even with the method based on the second-order differential value Vr ″, it can be suitably determined whether or not the post-catalyst sensor output Vr is steady.

また、この2階微分値Vr”に基づく方法によれば、触媒後センサ出力Vrがほぼ安定しているが一定ではなく、ゆっくりと徐変している場合でも定常を判定することが可能である。この点は後述の第3の態様の項で述べる。   Further, according to the method based on the second-order differential value Vr ″, it is possible to determine the steady state even when the post-catalyst sensor output Vr is almost stable but is not constant and slowly changes gradually. This point will be described in the third aspect below.

この第2の態様でも、図10に示したルーチンにより酸素吸蔵容量計測処理を行うことが可能である。この場合、ステップS105の定常判定の際に、第1の態様で述べた微分値Vr’等に代わって2階微分値Vr”等が用いられる。   Also in the second mode, it is possible to perform the oxygen storage capacity measurement process by the routine shown in FIG. In this case, the second-order differential value Vr ″ or the like is used in place of the differential value Vr ′ or the like described in the first mode at the time of steady determination in step S105.

次に、定常判定の第3の態様を説明する。この第3の態様は、触媒後センサ出力Vrの微分値Vr’と2階微分値Vr”との両方を用いるものである。   Next, a third aspect of steady determination will be described. In the third mode, both the differential value Vr ′ and the second-order differential value Vr ″ of the post-catalyst sensor output Vr are used.

すなわち、図12に示すように、ECU20は、触媒後センサ出力Vrの微分値Vr’と、2階微分値Vr”とを常時計算している。そしてECU20は、微分値Vr’が第1の所定時間Δt1、ゼロを含む第1の所定範囲内であり、且つ、2階微分値Vr”が第2の所定時間Δt2、ゼロを含む第2の所定範囲内であるとき、触媒後センサ出力Vrが定常となっていると判定する。ここで第1の所定範囲は−β≦Vr’≦+β(但しβは微小な正の所定値)で規定され、第2の所定範囲は−γ≦Vr”≦+γで規定される。   That is, as shown in FIG. 12, the ECU 20 constantly calculates the differential value Vr ′ of the post-catalyst sensor output Vr and the second-order differential value Vr ″. The ECU 20 has the differential value Vr ′ of the first value. When the predetermined time Δt1 is within the first predetermined range including zero and the second-order differential value Vr ″ is within the second predetermined range including the second predetermined time Δt2 and zero, the post-catalyst sensor output Vr Is determined to be steady. Here, the first predetermined range is defined by −β ≦ Vr ′ ≦ + β (where β is a minute positive predetermined value), and the second predetermined range is defined by −γ ≦ Vr ″ ≦ + γ.

特に、第1の所定範囲を定める所定値βは、第1の態様の所定値αよりも大きくされ、その範囲は拡大されている。また所定値βは、2階微分値Vr”の第2の所定範囲を定める所定値γよりも大きくされるのが好ましく、すなわち第1の所定範囲は第2の所定範囲より大きいのが好ましい。   In particular, the predetermined value β that defines the first predetermined range is larger than the predetermined value α of the first aspect, and the range is expanded. The predetermined value β is preferably larger than a predetermined value γ that defines a second predetermined range of the second-order differential value Vr ″, that is, the first predetermined range is preferably larger than the second predetermined range.

図12に示すように、この判定方法に基づく定常期間は図中のt101〜t102(またはt12),t201〜t202,t301〜t302の期間であり、これら各定常期間で酸素吸蔵容量の計測が実行される。例えばt101〜t102の定常期間に関し、t101の前のt11で微分値Vr’は既に第1の所定範囲内にあるが、この時点ではまだ2階微分値Vr”が第2の所定範囲内にないので、定常期間とはされない。2階微分値Vr”が第2の所定範囲に入った時点t101ではじめて定常期間(特にその始期)とされ、この時点t101から計算ないし積算が開始される。なお、この場合もECU20は、後者の2階微分値Vr”が第2の所定時間Δt2、−γ≦Vr”≦+γの範囲にあると判断した時点で、t101に遡って計測ないし積算を開始する。勿論、微分値Vr’が2階微分値Vr”よりも後に所定範囲内に入った場合は順番が逆転する。   As shown in FIG. 12, the steady periods based on this determination method are the periods t101 to t102 (or t12), t201 to t202, and t301 to t302 in the figure, and the oxygen storage capacity is measured in each of these steady periods. Is done. For example, regarding the steady period from t101 to t102, the differential value Vr ′ is already within the first predetermined range at t11 before t101, but the second-order differential value Vr ″ is not yet within the second predetermined range at this time. Therefore, the steady period (particularly the start period) is set at the time t101 when the second-order differential value Vr ″ enters the second predetermined range, and calculation or integration is started from this time t101. In this case as well, the ECU 20 starts measuring or integrating retroactively to t101 when it is determined that the latter second-order differential value Vr ″ is in the range of the second predetermined time Δt2, −γ ≦ Vr ″ ≦ + γ. To do. Of course, when the differential value Vr ′ enters the predetermined range after the second-order differential value Vr ″, the order is reversed.

この計測ないし積算は、微分値Vr’と2階微分値Vr”の少なくともいずれか一方が所定範囲を外れる時点t102まで実行される。図示例では、両者がt12或いはt102で同時に所定範囲を外れており、この時点で定常期間が終了し、計算ないし積算が終了される。   This measurement or integration is executed until time t102 when at least one of the differential value Vr ′ and the second-order differential value Vr ″ is out of the predetermined range. In the illustrated example, both are out of the predetermined range at t12 or t102 at the same time. At this point, the steady period ends, and the calculation or integration ends.

この第3の態様でも、図10に示したルーチンにより酸素吸蔵容量計測処理を行うことが可能である。この場合、ステップS105の定常判定の際に、第1の態様で述べた微分値Vr’等に代わって微分値Vr’および2階微分値Vr”等が用いられる。   Also in the third aspect, the oxygen storage capacity measurement process can be performed by the routine shown in FIG. In this case, the differential value Vr ′, the second-order differential value Vr ″, and the like are used in place of the differential value Vr ′ and the like described in the first mode at the time of steady determination in step S105.

この微分値Vr’および2階微分値Vr”の両方に基づく方法でも、触媒後センサ出力Vrが定常か否かを好適に判定することができる。   Even with a method based on both the differential value Vr ′ and the second-order differential value Vr ″, it can be suitably determined whether or not the post-catalyst sensor output Vr is steady.

また前述したように、2階微分値Vr”を用いると、触媒後センサ出力Vrがほぼ安定しているが一定ではなく、ゆっくりと徐変している場合でも定常を判定することができる。   As described above, when the second-order differential value Vr ″ is used, it is possible to determine the steady state even when the post-catalyst sensor output Vr is almost stable but not constant and slowly changes.

すなわち、吸入空気量が大きい場合等には、排ガス流量が多くなり、触媒の反応速度が若干追いつかず軽度の吹き抜け状態となることがある。この場合、図12(A)にQで示すように、触媒後センサ出力Vrが反転後、ゆっくりと微小な変化を続ける。すると微分値Vr’が、図12(B)にRで示すように、第1の態様で述べたような所定範囲−α≦Vr’≦+αに入らず、微分値Vr’のみに基づくやり方では計測不可能となることが起こり得る。   That is, when the amount of intake air is large, the exhaust gas flow rate increases, and the reaction rate of the catalyst may not catch up slightly, resulting in a slight blow-through state. In this case, as indicated by Q in FIG. 12 (A), after the post-catalyst sensor output Vr is reversed, the minute change is continued slowly. Then, as indicated by R in FIG. 12B, the differential value Vr ′ does not fall within the predetermined range −α ≦ Vr ′ ≦ + α as described in the first aspect, and in a method based only on the differential value Vr ′. It can happen that measurement is impossible.

しかし、2階微分値Vr”を用いると、触媒後センサ出力Vrが徐変していても微分値Vr’が定常であれば、2階微分値Vr”が所定範囲−γ≦Vr”≦+γに入るようになり、計測が可能となる。これにより計測の機会を安定して確保し、診断頻度の向上も図ることができる。   However, when the second-order differential value Vr ″ is used, even if the post-catalyst sensor output Vr gradually changes, if the differential value Vr ′ is steady, the second-order differential value Vr ″ is within a predetermined range −γ ≦ Vr ″ ≦ + γ. In this way, it is possible to stably measure and to improve the diagnosis frequency.

また、かかる徐変のケースだと、図12(B)にRで示すように、微分値Vr’が第1の態様の所定範囲−α≦Vr’≦+αから外れた範囲で定常状態となることがある。よってこの第3の態様では、この場合も計測を可能とするため、第1の態様よりも広い所定範囲−β≦Vr’≦+βを設定している。   Further, in such a gradual change case, as indicated by R in FIG. 12B, the differential value Vr ′ is in a steady state in a range outside the predetermined range −α ≦ Vr ′ ≦ + α of the first mode. Sometimes. Therefore, in this third mode, in order to enable measurement in this case as well, a predetermined range −β ≦ Vr ′ ≦ + β wider than that in the first mode is set.

そして、微分値Vr’と2階微分値Vr”の両方を用いる本態様では、定常判定の精度を向上できる可能性がある。すなわち、触媒後センサ18の応答性が悪化していると、センサ出力反転時にセンサ出力が定常となっていないのに、2階微分値Vr”が第2の所定範囲に入る機会が増えることが考えられる。この場合に2階微分値Vr”のみだと定常と誤判定してしまう虞があるが、微分値Vr’を組み合わせることでかかる誤判定を抑制できる可能性がある。   In this aspect using both the differential value Vr ′ and the second-order differential value Vr ″, there is a possibility that the accuracy of steady determination can be improved. That is, if the responsiveness of the post-catalyst sensor 18 is deteriorated, the sensor Although the sensor output is not steady at the time of output reversal, it is conceivable that the second-order differential value Vr ″ may have more opportunities to enter the second predetermined range. In this case, if there is only the second-order differential value Vr ″, it may be erroneously determined to be steady, but there is a possibility that such erroneous determination can be suppressed by combining the differential value Vr ′.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば、内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、直噴式等であってもよい。また、前記実施形態では触媒後センサ出力の微分値および2階微分値の少なくとも一方に基づき定常判定を行ったが、これ以外の方法も可能である。例えば、触媒後センサ出力自体に基づいて定常判定してもよく、触媒後センサ出力が所定時間、所定範囲内にあるときに定常と判定してもよい。   Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and form of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a direct injection type or the like. In the above embodiment, the steady determination is made based on at least one of the differential value and the second-order differential value of the post-catalyst sensor output, but other methods are possible. For example, the steady determination may be made based on the post-catalyst sensor output itself, or may be determined to be steady when the post-catalyst sensor output is within a predetermined range for a predetermined time.

微分値または2階微分値の所定範囲は、前記実施形態ではゼロを中心に対称に設定したが(例えばゼロを中心に±αの範囲)、非対称に設定することも可能である。   The predetermined range of the differential value or the second-order differential value is set symmetrically around zero in the above-described embodiment (for example, a range of ± α around zero), but can also be set asymmetrically.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

1 内燃機関
5 エアフローメータ
6 排気管
11 上流触媒
12 インジェクタ
17 触媒前センサ
18 触媒後センサ
19 下流触媒
20 電子制御ユニット(ECU)
OSC 酸素吸蔵容量
Vr 触媒後センサ出力
Vr’ 微分値
Vr” 2階微分値
Δt 所定時間
Δt1 第1の所定時間
Δt2 第2の所定時間
α 所定値
β 所定値
γ 所定値
1 Internal combustion engine 5 Air flow meter 6 Exhaust pipe 11 Upstream catalyst 12 Injector 17 Pre-catalyst sensor 18 Post-catalyst sensor 19 Downstream catalyst 20 Electronic control unit (ECU)
OSC Oxygen storage capacity Vr Post-catalyst sensor output Vr ′ differential value Vr ”second order differential value Δt predetermined time Δt1 first predetermined time Δt2 second predetermined time α predetermined value β predetermined value γ predetermined value

Claims (7)

内燃機関の排気通路に配置された触媒の劣化を診断する装置であって、
前記触媒の下流側の排気ガスの空燃比を検出する触媒後センサと、
前記触媒後センサの出力が反転するのに応答して、触媒上流側の空燃比をリッチ及びリーンに交互に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
前記触媒後センサ出力の反転周期毎に前記触媒の酸素吸蔵容量を計測し、且つ、当該反転周期内において前記触媒後センサ出力が定常となっている期間に前記酸素吸蔵容量を計測する計測手段と、
を備えたことを特徴とする触媒劣化診断装置。
An apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine,
A post-catalyst sensor for detecting an air-fuel ratio of exhaust gas downstream of the catalyst;
Active air-fuel ratio control means for executing active air-fuel ratio control for alternately switching the air-fuel ratio upstream of the catalyst between rich and lean in response to the output of the post-catalyst sensor being inverted;
Measuring means for measuring the oxygen storage capacity of the catalyst for each inversion period of the post-catalyst sensor output, and measuring the oxygen storage capacity during a period in which the post-catalyst sensor output is steady within the inversion period; ,
A catalyst deterioration diagnosis device comprising:
前記計測手段は、前記触媒後センサ出力の微分値に基づき、前記触媒後センサ出力が定常となっているか否かを判定する
ことを特徴とする請求項1に記載の触媒劣化診断装置。
The catalyst deterioration diagnosis apparatus according to claim 1, wherein the measurement unit determines whether or not the post-catalyst sensor output is steady based on a differential value of the post-catalyst sensor output.
前記計測手段は、前記微分値が所定時間、ゼロを含む所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する
ことを特徴とする請求項2に記載の触媒劣化診断装置。
The catalyst deterioration diagnosis according to claim 2, wherein the measurement means determines that the post-catalyst sensor output is steady when the differential value is within a predetermined range including zero for a predetermined time. apparatus.
前記計測手段は、前記触媒後センサ出力の微分値を更に微分してなる2階微分値に基づき、前記触媒後センサ出力が定常となっているか否かを判定する
ことを特徴とする請求項1に記載の触媒劣化診断装置。
2. The measuring means determines whether or not the post-catalyst sensor output is steady based on a second-order differential value obtained by further differentiating the differential value of the post-catalyst sensor output. The catalyst deterioration diagnostic apparatus according to 1.
前記計測手段は、前記2階微分値が所定時間、ゼロを含む所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する
ことを特徴とする請求項4に記載の触媒劣化診断装置。
The catalyst according to claim 4, wherein the measurement unit determines that the post-catalyst sensor output is steady when the second-order differential value is within a predetermined range including zero for a predetermined time. Deterioration diagnostic device.
前記計測手段は、前記触媒後センサ出力の微分値と、当該微分値を更に微分してなる2階微分値とに基づき、前記触媒後センサ出力が定常となっているか否かを判定する
ことを特徴とする請求項1に記載の触媒劣化診断装置。
The measuring means determines whether the post-catalyst sensor output is steady based on a differential value of the post-catalyst sensor output and a second-order differential value obtained by further differentiating the differential value. The catalyst deterioration diagnosis apparatus according to claim 1, wherein
前記計測手段は、前記微分値が第1の所定時間、ゼロを含む第1の所定範囲内であり、且つ、前記2階微分値が第2の所定時間、ゼロを含む第2の所定範囲内であるとき、前記触媒後センサ出力が定常となっていると判定する
ことを特徴とする請求項6に記載の触媒劣化診断装置。
The measurement means has the differential value within a first predetermined range including zero for a first predetermined time, and the second differential value within a second predetermined range including zero for a second predetermined time. When it is, it determines with the said post-catalyst sensor output being steady. The catalyst deterioration diagnostic apparatus of Claim 6 characterized by the above-mentioned.
JP2009030198A 2009-02-12 2009-02-12 Catalyst deterioration diagnostic device Pending JP2010185371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030198A JP2010185371A (en) 2009-02-12 2009-02-12 Catalyst deterioration diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030198A JP2010185371A (en) 2009-02-12 2009-02-12 Catalyst deterioration diagnostic device

Publications (1)

Publication Number Publication Date
JP2010185371A true JP2010185371A (en) 2010-08-26

Family

ID=42766173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030198A Pending JP2010185371A (en) 2009-02-12 2009-02-12 Catalyst deterioration diagnostic device

Country Status (1)

Country Link
JP (1) JP2010185371A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023541A1 (en) 2010-08-20 2012-02-23 楽天株式会社 Information provision device, information provision method, programme, and information recording medium
WO2012098641A1 (en) * 2011-01-18 2012-07-26 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
WO2013157048A1 (en) * 2012-04-20 2013-10-24 トヨタ自動車株式会社 Catalyst anomaly diagnosis device
JP2015086861A (en) * 2013-09-26 2015-05-07 トヨタ自動車株式会社 Abnormality diagnostic device of internal combustion engine
US9194316B2 (en) 2011-09-21 2015-11-24 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance determining apparatus for internal combustion engine
US9273593B2 (en) 2010-12-24 2016-03-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017048699A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Internal combustion engine
WO2022091523A1 (en) * 2020-10-29 2022-05-05 日立Astemo株式会社 Control device for internal combustion engine and catalyst deterioration diagnosis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017078A (en) * 2004-07-05 2006-01-19 Toyota Industries Corp Deterioration determining device of catalyst in internal combustion engine
JP2008255859A (en) * 2007-04-03 2008-10-23 Toyota Motor Corp Exhaust system sensor output stable condition judging device
JP2008267327A (en) * 2007-04-24 2008-11-06 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2008291751A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Catalyst deterioration detecting device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017078A (en) * 2004-07-05 2006-01-19 Toyota Industries Corp Deterioration determining device of catalyst in internal combustion engine
JP2008255859A (en) * 2007-04-03 2008-10-23 Toyota Motor Corp Exhaust system sensor output stable condition judging device
JP2008267327A (en) * 2007-04-24 2008-11-06 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2008291751A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Catalyst deterioration detecting device of internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023541A1 (en) 2010-08-20 2012-02-23 楽天株式会社 Information provision device, information provision method, programme, and information recording medium
US9273593B2 (en) 2010-12-24 2016-03-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN103270282B (en) * 2011-01-18 2016-01-06 丰田自动车株式会社 The air-fuel ratio control device of internal-combustion engine
WO2012098641A1 (en) * 2011-01-18 2012-07-26 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
CN103270282A (en) * 2011-01-18 2013-08-28 丰田自动车株式会社 Air-fuel ratio control device for internal combustion engine
JP5464391B2 (en) * 2011-01-18 2014-04-09 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
US9261032B2 (en) 2011-01-18 2016-02-16 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for an internal combustion engine
US9194316B2 (en) 2011-09-21 2015-11-24 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance determining apparatus for internal combustion engine
WO2013157048A1 (en) * 2012-04-20 2013-10-24 トヨタ自動車株式会社 Catalyst anomaly diagnosis device
JP2015086861A (en) * 2013-09-26 2015-05-07 トヨタ自動車株式会社 Abnormality diagnostic device of internal combustion engine
JP2017048699A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Internal combustion engine
US10066534B2 (en) 2015-08-31 2018-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2022091523A1 (en) * 2020-10-29 2022-05-05 日立Astemo株式会社 Control device for internal combustion engine and catalyst deterioration diagnosis method
JP7454068B2 (en) 2020-10-29 2024-03-21 日立Astemo株式会社 Internal combustion engine control device and catalyst deterioration diagnosis method

Similar Documents

Publication Publication Date Title
JP5293885B2 (en) Catalyst abnormality diagnosis device
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP2008215261A (en) Deterioration diagnosis device and deterioration diagnosis method for catalyst
JP2010185371A (en) Catalyst deterioration diagnostic device
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2010159701A (en) Catalyst deterioration diagnostic device
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2009127597A (en) Catalyst degradation diagnostic device
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP2012219803A (en) Fuel property determining device and catalyst abnormality diagnostic device
JP2010255490A (en) Catalyst abnormality diagnostic device
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2010168923A (en) Catalyst degradation diagnostic device
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121228