JP2009138604A - Catalyst deterioration diagnosis device for internal combustion engine - Google Patents

Catalyst deterioration diagnosis device for internal combustion engine Download PDF

Info

Publication number
JP2009138604A
JP2009138604A JP2007314921A JP2007314921A JP2009138604A JP 2009138604 A JP2009138604 A JP 2009138604A JP 2007314921 A JP2007314921 A JP 2007314921A JP 2007314921 A JP2007314921 A JP 2007314921A JP 2009138604 A JP2009138604 A JP 2009138604A
Authority
JP
Japan
Prior art keywords
catalyst
storage capacity
oxygen storage
fuel ratio
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314921A
Other languages
Japanese (ja)
Inventor
Toru Kidokoro
徹 木所
Koichi Kimura
光壱 木村
Koichi Kitaura
浩一 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007314921A priority Critical patent/JP2009138604A/en
Priority to US12/314,053 priority patent/US20090145109A1/en
Publication of JP2009138604A publication Critical patent/JP2009138604A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • F01N2900/102Travelling distance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve diagnosis accuracy and reliability by detecting sulfur poisoning in at least one catalyst in a catalyst deterioration diagnosis device for an internal combustion engine with an upstream catalyst and a downstream catalyst arranged in an exhaust passage. <P>SOLUTION: The last oxygen occlusion volume and the before last oxygen occlusion volume of the upstream catalyst 11 and the downstream catalyst 19 are measured, and the present oxygen occlusion volume of the downstream catalyst 19 is measured. The sulfur poisoning of the upstream catalyst and the downstream catalyst is detected on the basis of a varied amount from the before last oxygen occlusion volume to the last oxygen occlusion volume of the upstream catalyst, a varied amount from the before last oxygen occlusion volume to the last oxygen occlusion volume of the downstream catalyst, and a varied amount from the oxygen occlusion volume to the present oxygen occlusion volume of the downstream catalyst. Existence of sulfur poisoning is accurately detected by using a fact that sulfur poisoning of both catalysts is mutually different. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気通路に配置された触媒の劣化を診断する装置に関する。   The present invention relates to an apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine.

例えば車両用の内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(O2ストレージ能)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒流入排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸着保持された酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまっても、三元触媒による酸素の吸蔵・放出作用により、そのような空燃比ずれを吸収することができる。 For example, in an internal combustion engine for a vehicle, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). This is because when the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, the exhaust gas becomes lean. Excess oxygen present in the gas is adsorbed and held, and when the air-fuel ratio of the catalyst inflow exhaust gas becomes smaller than the stoichiometric, that is, becomes rich, the adsorbed and held oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric. However, such an air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.

ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係がある。よって、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。一般的には、触媒に流入する排気ガスの空燃比を強制的にリッチ及びリーンに切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴って触媒の酸素吸蔵容量を計測し、触媒の劣化を診断する方法(所謂Cmax法)が採用される。   By the way, when the catalyst deteriorates, the purification efficiency of the catalyst decreases. On the other hand, there is a correlation between the degree of deterioration of the catalyst and the degree of reduction of the oxygen storage capacity because they are reactions through noble metals. Therefore, it is possible to detect that the catalyst has deteriorated by detecting that the oxygen storage capacity has decreased. In general, active air-fuel ratio control for forcibly switching the air-fuel ratio of the exhaust gas flowing into the catalyst to rich and lean is performed, and the oxygen storage capacity of the catalyst is measured as the active air-fuel ratio control is executed. A method (so-called Cmax method) for diagnosing deterioration of the ink is employed.

一方、使用地域等によっては燃料中に硫黄(S)が比較的高濃度で含まれていることがある。このような燃料が給油された場合、排気ガス中の硫黄成分の影響により触媒の性能が低下する被毒(S被毒)が発生する。S被毒が発生すると、触媒の酸素吸放出作用が妨げられて触媒の酸素吸蔵容量が低下する。しかしながら、硫黄濃度の低い燃料が再度給油されたりすると被毒状態はやがて解消される。S被毒による触媒の性能低下は一時的で且つ回復可能なものである。よって触媒の劣化診断においては、かかるS被毒による一時的劣化を、本来診断すべき回復不能な恒久的劣化(熱劣化)であると誤って診断しないようにする必要がある。とりわけ、正常と劣化との境目(クライテリア)付近にありながらなお正常である触媒について、誤って劣化と誤診断してしまわないようにする必要がある。   On the other hand, sulfur (S) may be contained in the fuel at a relatively high concentration depending on the region of use. When such fuel is refueled, poisoning (S poisoning) in which the performance of the catalyst is degraded due to the influence of the sulfur component in the exhaust gas occurs. When S poisoning occurs, the oxygen storage / release action of the catalyst is hindered, and the oxygen storage capacity of the catalyst decreases. However, if fuel with a low sulfur concentration is refueled, the poisoning state will eventually be resolved. The catalyst performance degradation due to S poisoning is temporary and recoverable. Therefore, in the deterioration diagnosis of the catalyst, it is necessary not to mistakenly diagnose that the temporary deterioration due to the S poisoning is an irrecoverable permanent deterioration (thermal deterioration) that should be diagnosed. In particular, it is necessary to prevent a catalyst that is still normal while being in the vicinity of the boundary between normality and deterioration (criteria) from being erroneously diagnosed as deterioration.

この対策として、触媒がS被毒したときに空燃比を過渡的に補正して硫黄を脱離させる処理を行い(例えば特許文献1参照)、その上で劣化診断を行うことが考えられる。なお、このような硫黄の強制脱離は触媒をより一層劣化させてしまうという点で課題が残されている。   As a countermeasure, it is conceivable to perform a process of desorbing sulfur by transiently correcting the air-fuel ratio when the catalyst is poisoned with sulfur (see, for example, Patent Document 1), and then performing a deterioration diagnosis. Such a forced desorption of sulfur still has a problem in that it further deteriorates the catalyst.

特開平8−158857号公報JP-A-8-158857

一方、本発明者らの鋭意研究の結果によれば、内燃機関の排気通路に上流触媒及び下流触媒を配設した場合、上流触媒と下流触媒とで硫黄被毒の仕方が異なることが判明した。従ってこのことを利用して少なくとも一方の触媒のS被毒を検出できれば、前述のような誤診断を未然に防止でき、診断精度及び信頼性の向上に有利である。   On the other hand, according to the result of earnest research by the present inventors, it has been found that when the upstream catalyst and the downstream catalyst are disposed in the exhaust passage of the internal combustion engine, the way of sulfur poisoning differs between the upstream catalyst and the downstream catalyst. . Therefore, if S poisoning of at least one catalyst can be detected by utilizing this fact, the above-described erroneous diagnosis can be prevented in advance, which is advantageous in improving diagnostic accuracy and reliability.

そこで、本発明はこのような事情に鑑みてなされたもので、その目的は、内燃機関の排気通路に上流触媒及び下流触媒を配設した場合にあって、少なくとも一方の触媒の硫黄被毒を検出し、診断精度及び信頼性を向上することができる内燃機関の触媒劣化診断装置を提供することにある。   Therefore, the present invention has been made in view of such circumstances, and its object is to provide sulfur poisoning of at least one catalyst when an upstream catalyst and a downstream catalyst are disposed in an exhaust passage of an internal combustion engine. An object of the present invention is to provide a catalyst deterioration diagnosis device for an internal combustion engine that can detect and improve diagnosis accuracy and reliability.

本発明の一形態によれば、
内燃機関の排気通路に上流触媒及び下流触媒を配設した内燃機関にあって、前記上流触媒及び下流触媒の劣化を診断する装置であって、
前記上流触媒及び下流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前記上流触媒及び下流触媒の前々回の酸素吸蔵容量と前回の酸素吸蔵容量が計測され、且つ、前記下流触媒の今回の酸素吸蔵容量が計測されたとき、前記上流触媒の前々回から前回までの酸素吸蔵容量変化量、前記下流触媒の前々回から前回までの酸素吸蔵容量変化量、及び前記下流触媒の前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒及び下流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置が提供される。
According to one aspect of the invention,
In an internal combustion engine in which an upstream catalyst and a downstream catalyst are arranged in an exhaust passage of the internal combustion engine, the apparatus diagnoses deterioration of the upstream catalyst and the downstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst and the downstream catalyst;
When the oxygen storage capacity and the previous oxygen storage capacity of the upstream catalyst and the downstream catalyst are measured by the measuring means, and the current oxygen storage capacity of the downstream catalyst is measured, the previous time from the previous time of the upstream catalyst is measured. Of the upstream catalyst and the downstream catalyst based on the change amount of the oxygen storage capacity from the previous time to the previous time of the downstream catalyst and the change amount of the oxygen storage capacity from the previous time to the current time of the downstream catalyst. An apparatus for diagnosing catalyst deterioration in an internal combustion engine is provided, comprising: a sulfur poisoning detection unit that detects poison.

本発明者らの鋭意研究の結果によると、触媒の酸素吸蔵容量が燃料中の硫黄成分により低下するのは次の二つの現象に起因することが判明した。第1の現象は、触媒に担持されている触媒成分即ち貴金属に排ガス中のSOxが反応し、貴金属の反応速度が低下し、このために触媒の酸素吸蔵容量が低下する現象である。また第2の現象は、触媒の吸蔵成分に排ガス中のSOxが吸着し、このために触媒の酸素吸蔵容量が低下する現象である。上流触媒の場合、下流触媒に比べて触媒温度が高いので、第2の現象即ち吸蔵成分への硫黄分吸着は起き難く、酸素吸蔵容量低下は第1の現象即ち貴金属の反応速度低下によるものが支配的である。このときの酸素吸蔵容量低下は燃料が低硫黄燃料から高硫黄燃料に交換された直後(即ち、高硫黄燃料が給油された直後)から発生する。他方、下流触媒の場合だと、第1の現象と共に第2の現象も起きて酸素吸蔵容量が低下し、その低下は燃料交換後徐々に進行する。このように両触媒の硫黄被毒の仕方には相違が見られる。   According to the results of earnest studies by the present inventors, it has been found that the oxygen storage capacity of the catalyst is reduced by the sulfur component in the fuel due to the following two phenomena. The first phenomenon is a phenomenon in which SOx in the exhaust gas reacts with a catalyst component, that is, a noble metal supported on the catalyst, a reaction rate of the noble metal is lowered, and thus an oxygen storage capacity of the catalyst is lowered. The second phenomenon is a phenomenon in which SOx in the exhaust gas is adsorbed on the occlusion component of the catalyst, and the oxygen occlusion capacity of the catalyst is thereby lowered. In the case of the upstream catalyst, since the catalyst temperature is higher than that of the downstream catalyst, the second phenomenon, that is, the adsorption of sulfur to the storage component does not easily occur, and the decrease in the oxygen storage capacity is caused by the first phenomenon, that is, the reaction rate of the noble metal decreases. Dominant. At this time, the decrease in the oxygen storage capacity occurs immediately after the fuel is replaced from the low sulfur fuel to the high sulfur fuel (that is, immediately after the high sulfur fuel is supplied). On the other hand, in the case of the downstream catalyst, the second phenomenon occurs along with the first phenomenon, and the oxygen storage capacity decreases, and the decrease gradually proceeds after the fuel exchange. Thus, a difference is seen in the way of sulfur poisoning of both catalysts.

この違いを考慮して、本発明では上流触媒及び下流触媒の硫黄被毒を好適に検出することができる。例えば、上流触媒の前々回から前回までの酸素吸蔵容量変化量、及び下流触媒の前々回から前回までの酸素吸蔵容量変化量が所定値より大きいとき、両触媒の硫黄被毒の可能性があることが暫定的に推定される。そして次に下流触媒の前回から今回までの酸素吸蔵容量変化量が所定値より大きいとき、両触媒が硫黄被毒していることが最終的に検出される。上流触媒では第2の現象が起こり難いので、前々回から前回までの間で酸素吸蔵容量が一旦低下してしまえば、その後即ち今回、それほど変化がないのに対し、下流触媒では第2の現象も起こるので、酸素吸蔵容量が一旦低下した後もさらに低下する。この違いを利用して触媒の硫黄被毒を正確に検出し、診断精度及び信頼性を向上することができる。   Considering this difference, the present invention can suitably detect sulfur poisoning of the upstream catalyst and the downstream catalyst. For example, when the oxygen storage capacity change amount from the previous time to the previous time of the upstream catalyst and the oxygen storage capacity change amount from the previous time to the previous time of the downstream catalyst are larger than a predetermined value, there is a possibility of sulfur poisoning of both catalysts. Provisionally estimated. Then, when the oxygen storage capacity change amount from the previous time to the current time of the downstream catalyst is larger than a predetermined value, it is finally detected that both catalysts are sulfur poisoned. The second catalyst is unlikely to occur in the upstream catalyst. Therefore, once the oxygen storage capacity is reduced from the previous time to the previous time, the second phenomenon is not changed in the downstream catalyst. Since this occurs, the oxygen storage capacity further decreases even after it has decreased. By utilizing this difference, it is possible to accurately detect sulfur poisoning of the catalyst and improve diagnostic accuracy and reliability.

好ましくは、前記計測手段により計測された酸素吸蔵容量に基づき前記上流触媒及び下流触媒の劣化を判定する判定手段と、前記硫黄被毒検出手段により前記上流触媒及び下流触媒の硫黄被毒が検出されたとき、前記判定手段による判定を禁止する判定禁止手段とが備えられる。これにより、硫黄被毒により低下した酸素吸蔵容量計測値に基づいて誤って劣化判定するのを防止することができる。   Preferably, determination means for determining deterioration of the upstream catalyst and downstream catalyst based on the oxygen storage capacity measured by the measurement means, and sulfur poisoning of the upstream catalyst and downstream catalyst are detected by the sulfur poisoning detection means. And a determination prohibiting means for prohibiting the determination by the determination means. As a result, it is possible to prevent erroneous determination of deterioration based on the measured value of the oxygen storage capacity that has decreased due to sulfur poisoning.

好ましくは、前記上流触媒及び下流触媒の前記前々回の酸素吸蔵容量と前記前回の酸素吸蔵容量とが、それぞれ給油を挟んだ前々回トリップと前回トリップとで計測された値である。硫黄被毒による酸素吸蔵容量の低下は燃料交換即ち給油の後に直ちに発生することから、給油の前後の酸素吸蔵容量の変化を調べるのが好適である。   Preferably, the previous oxygen storage capacity and the previous oxygen storage capacity of the upstream catalyst and the downstream catalyst are values measured by the previous trip and the previous trip, respectively, with fueling interposed therebetween. Since the decrease in the oxygen storage capacity due to sulfur poisoning occurs immediately after the fuel change, i.e., refueling, it is preferable to examine the change in the oxygen storage capacity before and after refueling.

本発明の別の形態によれば、
内燃機関の排気通路に上流触媒及び下流触媒を配設した内燃機関にあって、前記上流触媒及び下流触媒の劣化を診断する装置であって、
前記上流触媒及び下流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前記上流触媒及び下流触媒の前回の酸素吸蔵容量と今回の酸素吸蔵容量とが計測されたとき、前記上流触媒の前回から今回までの酸素吸蔵容量変化量、及び前記下流触媒の前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒及び下流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置が提供される。
According to another aspect of the invention,
In an internal combustion engine in which an upstream catalyst and a downstream catalyst are arranged in an exhaust passage of the internal combustion engine, the apparatus diagnoses deterioration of the upstream catalyst and the downstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst and the downstream catalyst;
When the previous oxygen storage capacity and the current oxygen storage capacity of the upstream catalyst and the downstream catalyst are measured by the measuring means, the oxygen storage capacity change amount from the previous time to the current time of the upstream catalyst, and the previous time of the downstream catalyst. And a sulfur poisoning detecting means for detecting sulfur poisoning of the upstream catalyst and the downstream catalyst based on the amount of change in oxygen storage capacity from the current time to the present time. .

上流触媒及び下流触媒に硫黄被毒が発生すると、燃料交換直後に最初に計測された両触媒の酸素吸蔵容量が大きく低下する。よってこの別の形態のように、上流触媒の前回から今回までの酸素吸蔵容量変化量、及び下流触媒の前回から今回までの酸素吸蔵容量変化量に基づいても、上流触媒及び下流触媒の硫黄被毒を検出することが可能である。   When sulfur poisoning occurs in the upstream catalyst and the downstream catalyst, the oxygen storage capacities of both catalysts, which are first measured immediately after fuel replacement, are greatly reduced. Therefore, as in this alternative embodiment, the sulfur capacities of the upstream catalyst and the downstream catalyst are also determined based on the amount of change in the oxygen storage capacity from the previous time to the current time of the upstream catalyst and the amount of change in the oxygen storage capacity from the previous time to the current time of the downstream catalyst. It is possible to detect poison.

本発明のさらに別の形態によれば、
内燃機関の排気通路に上流触媒と下流触媒とを配設した内燃機関にあって、前記上流触媒の劣化を診断する装置であって、
前記上流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前回の酸素吸蔵容量と今回の酸素吸蔵容量とが計測されたとき、その前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置が提供される。
According to yet another aspect of the invention,
An internal combustion engine in which an upstream catalyst and a downstream catalyst are disposed in an exhaust passage of the internal combustion engine, wherein the apparatus diagnoses deterioration of the upstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst;
Sulfur poisoning detection for detecting sulfur poisoning of the upstream catalyst based on the amount of change in oxygen storage capacity from the previous time to the current time when the previous oxygen storage capacity and the current oxygen storage capacity are measured by the measuring means. An apparatus for diagnosing catalyst deterioration of an internal combustion engine is provided.

内燃機関の排気通路に上流触媒及び下流触媒を配設した場合、高硫黄燃料の給油によって、特に上流触媒の酸素吸蔵容量が燃料交換直後に大きく低下する。よってこのことを利用して、上流触媒の前回から今回までの酸素吸蔵容量変化量に基づき、上流触媒の硫黄被毒を検出することができる。   When the upstream catalyst and the downstream catalyst are disposed in the exhaust passage of the internal combustion engine, the oxygen storage capacity of the upstream catalyst is greatly reduced immediately after the fuel replacement due to the refueling of the high sulfur fuel. Therefore, by utilizing this, the sulfur poisoning of the upstream catalyst can be detected based on the amount of change in the oxygen storage capacity from the previous time to the current time of the upstream catalyst.

本発明によれば、内燃機関の排気通路に上流触媒及び下流触媒を配設した場合にあって、少なくとも一方の触媒の硫黄被毒を検出し、診断精度及び信頼性を向上することができるという、優れた効果が発揮される。   According to the present invention, when an upstream catalyst and a downstream catalyst are disposed in an exhaust passage of an internal combustion engine, sulfur poisoning of at least one of the catalysts can be detected, and diagnostic accuracy and reliability can be improved. Excellent effect is exhibited.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。   FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. To do. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   In the cylinder head of the internal combustion engine 1, an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port are provided for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、酸素吸蔵能を有する三元触媒からなる上流触媒11と下流触媒19とが直列に取り付けられている。なお排気ポート、枝管及び排気管6により排気通路が形成される。上流触媒11は、排気熱を利用して早期に活性化できるよう、燃焼室3から比較的近い位置に取り付けられている。他方、下流触媒19は、例えば車両の床下等、燃焼室3から比較的遠い位置に取り付けられている。   On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder. The exhaust pipe 6 includes an upstream catalyst 11 made of a three-way catalyst having an oxygen storage capacity and A downstream catalyst 19 is attached in series. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 6. The upstream catalyst 11 is attached at a position relatively close to the combustion chamber 3 so that it can be activated early using exhaust heat. On the other hand, the downstream catalyst 19 is attached at a position relatively far from the combustion chamber 3, such as under the floor of a vehicle.

上流触媒11の上流側には触媒前センサ17が設置され、上流触媒11と下流触媒19との間に触媒間センサ18が設置され、下流触媒19の下流側には触媒後センサ21が設置されている。これら触媒前センサ17、触媒間センサ18及び触媒後センサ21はいずれも排気ガスの空燃比を検出するための空燃比センサである。特に、触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒間センサ18及び触媒後センサ21は所謂O2センサからなり、理論空燃比を境に出力値が急変する特性を持つ。 A pre-catalyst sensor 17 is installed upstream of the upstream catalyst 11, an inter-catalyst sensor 18 is installed between the upstream catalyst 11 and the downstream catalyst 19, and a post-catalyst sensor 21 is installed downstream of the downstream catalyst 19. ing. These pre-catalyst sensor 17, inter-catalyst sensor 18 and post-catalyst sensor 21 are all air-fuel ratio sensors for detecting the air-fuel ratio of the exhaust gas. In particular, the pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the inter-catalyst sensor 18 and the post-catalyst sensor 21 are so-called O 2 sensors, and have characteristics that the output value changes suddenly with the theoretical air-fuel ratio as a boundary.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒間センサ18及び触媒後センサ21のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst sensor 17, the inter-catalyst sensor 18 and the post-catalyst sensor 21, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1, an accelerator opening, as shown in the figure. An accelerator opening sensor 15 for detecting the degree and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

上流触媒11及び下流触媒19は、それぞれに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx ,HCおよびCOを同時に浄化する。そしてこれに対応して、ECU20は、内燃機関の通常運転時、特に燃焼室3から排出され上流触媒11に流入する排気ガスの空燃比即ち触媒前空燃比A/Ffrが理論空燃比に一致するように、混合気の空燃比を制御する。具体的にはECU20は、理論空燃比に等しい目標空燃比A/Ftを設定すると共に、触媒前センサ17により検出された触媒前空燃比A/Ffrが目標空燃比A/Ftに一致するように、インジェクタ12から噴射される燃料噴射量をフィードバック制御する。これにより触媒11に流入する排気ガスの空燃比は理論空燃比近傍に保たれ、触媒11において最大の浄化性能が発揮されるようになる。かかる空燃比フィードバック制御においては、触媒前空燃比A/Ffrを理論空燃比に一致させるメインフィードバック制御の他に、触媒間センサ18によって検出される触媒間空燃比A/Fmdを理論空燃比に一致させるサブフィードバック制御が行われる。このサブフィードバック制御は、触媒前センサ17の劣化等に起因する中心空燃比のズレを無くす目的で行われる。   The upstream catalyst 11 and the downstream catalyst 19 simultaneously purify NOx, HC and CO when the air-fuel ratio A / F of the exhaust gas flowing into each of them is a stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.6). Correspondingly, during normal operation of the internal combustion engine, the ECU 20 matches the stoichiometric air-fuel ratio, that is, the air-fuel ratio of the exhaust gas discharged from the combustion chamber 3 and flowing into the upstream catalyst 11, that is, the pre-catalyst air-fuel ratio A / Ffr. Thus, the air-fuel ratio of the air-fuel mixture is controlled. Specifically, the ECU 20 sets a target air-fuel ratio A / Ft equal to the theoretical air-fuel ratio, and makes the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst sensor 17 coincide with the target air-fuel ratio A / Ft. The fuel injection amount injected from the injector 12 is feedback-controlled. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst 11 is kept in the vicinity of the theoretical air-fuel ratio, and the maximum purification performance is exhibited in the catalyst 11. In such air-fuel ratio feedback control, the inter-catalyst air-fuel ratio A / Fmd detected by the inter-catalyst sensor 18 matches the stoichiometric air-fuel ratio in addition to the main feedback control that matches the pre-catalyst air-fuel ratio A / Ffr to the stoichiometric air-fuel ratio. Sub feedback control is performed. This sub-feedback control is performed for the purpose of eliminating the deviation of the center air-fuel ratio due to deterioration of the pre-catalyst sensor 17 or the like.

ここで、劣化診断の対象となる上流触媒11及び下流触媒19についてより詳細に説明する。なお上流触媒11と下流触媒19は同じ構成であるので、上流触媒11を例にとって説明する。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸収放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeO2やジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHCおよびCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元浄化される。 Here, the upstream catalyst 11 and the downstream catalyst 19 to be subjected to deterioration diagnosis will be described in more detail. Since the upstream catalyst 11 and the downstream catalyst 19 have the same configuration, the upstream catalyst 11 will be described as an example. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and the coating material 31 is held in a state where a large number of particulate catalyst components 32 are dispersedly arranged. It is exposed inside the catalyst 11. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays the role of a promoter that promotes the reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component that can absorb and release oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. For example, when the atmosphere gas of the catalyst component 32 and the coating material 31 is richer than the theoretical air-fuel ratio, oxygen stored in the oxygen storage component existing around the catalyst component 32 is released, and as a result, the released oxygen As a result, unburned components such as HC and CO are oxidized and purified. Conversely, if the atmosphere gas of the catalyst component 32 and the coating material 31 is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmosphere gas, and as a result, NOx is reduced and purified. The

このような酸素吸放出作用により、通常の空燃比制御の際に触媒前空燃比A/Ffrが理論空燃比に対し多少ばらついたとしても、NOx、HCおよびCOといった三つの排気ガス成分を同時浄化することができる。よって通常の空燃比制御において、触媒前空燃比A/Ffrを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。   By such an oxygen absorption / release action, even if the pre-catalyst air-fuel ratio A / Ffr slightly varies from the stoichiometric air-fuel ratio during normal air-fuel ratio control, three exhaust gas components such as NOx, HC and CO are simultaneously purified. can do. Therefore, in normal air-fuel ratio control, it is also possible to purify the exhaust gas by making the pre-catalyst air-fuel ratio A / Ffr oscillate minutely around the theoretical air-fuel ratio and repeating the absorption and release of oxygen.

ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が熱ストレスにより経時的に劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。   By the way, in the catalyst 11 in the new state, as described above, a large number of fine particulate catalyst components 32 are uniformly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates with time due to thermal stress, some of the catalyst components 32 are disappeared, and some of the catalyst components 32 are baked and solidified by exhaust heat to become a sintered state ( (See dashed line in figure). In this case, the contact probability between the exhaust gas and the catalyst component 32 is lowered, and the purification rate is lowered. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.

このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、触媒11の酸素吸蔵能を検出することにより触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵容量(OSC;O2 Strage Capacity、単位はg)の大きさによって表される。 Thus, the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11 are in a correlation. Therefore, in this embodiment, the degree of deterioration of the catalyst 11 is detected by detecting the oxygen storage capacity of the catalyst 11. Here, the oxygen storage capacity of the catalyst 11 is represented by the size of the oxygen storage capacity (OSC; O 2 Strage Capacity, the unit is g), which is the maximum amount of oxygen that the current catalyst 11 can store.

以下、本実施形態における触媒劣化診断について説明する。なお、ここでは便宜上、エミッション影響の大きい上流触媒11に限定した場合の劣化診断の態様(第1の態様)を説明し、下流触媒19を含めた劣化診断の態様(第2の態様)は後に説明することとする。   Hereinafter, the catalyst deterioration diagnosis in the present embodiment will be described. For the sake of convenience, the aspect of the deterioration diagnosis (first aspect) when limited to the upstream catalyst 11 having a large emission effect will be described here, and the aspect of the deterioration diagnosis including the downstream catalyst 19 (second aspect) will be described later. I will explain.

本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、混合気の空燃比ひいては触媒前空燃比A/Ffrは、所定の中心空燃比A/Fcを境にリッチ側及びリーン側に強制的に(アクティブに)交互に切り替えられる。なおリッチ側に変化されたときの空燃比をリッチ空燃比A/Fr、リーン側に変化されたときの空燃比をリーン空燃比A/Flと称す。このアクティブ空燃比制御によって触媒前空燃比A/Ffrがリッチ側又はリーン側に変化されているときに触媒11の酸素吸蔵容量OSCが計測される。   The catalyst deterioration diagnosis of the present embodiment is basically based on the Cmax method described above. When the deterioration diagnosis of the catalyst 11 is performed, the active air-fuel ratio control is executed by the ECU 20. In the active air-fuel ratio control, the air-fuel ratio of the air-fuel mixture, and thus the pre-catalyst air-fuel ratio A / Ffr, is forcibly (actively) switched alternately to the rich side and the lean side with a predetermined center air-fuel ratio A / Fc as a boundary. The air-fuel ratio when changed to the rich side is referred to as rich air-fuel ratio A / Fr, and the air-fuel ratio when changed to the lean side is referred to as lean air-fuel ratio A / Fl. When the pre-catalyst air-fuel ratio A / Ffr is changed to the rich side or the lean side by this active air-fuel ratio control, the oxygen storage capacity OSC of the catalyst 11 is measured.

触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaに基づいて、予め設定されたマップを利用し、触媒11の温度Tcを推定する。なお、吸入空気量Ga以外のパラメータ、例えばエンジン回転速度Ne(rpm)などを触媒温度推定に用いるパラメータに含めてもよい。   The deterioration diagnosis of the catalyst 11 is executed during steady operation of the internal combustion engine 1 and when the catalyst 11 is in the active temperature range. Measurement of the temperature of the catalyst 11 (catalyst bed temperature) may be detected directly using a temperature sensor, but in the present embodiment, it is estimated from the operating state of the internal combustion engine. For example, the ECU 20 estimates the temperature Tc of the catalyst 11 using a preset map based on the intake air amount Ga detected by the air flow meter 5. It should be noted that parameters other than the intake air amount Ga, for example, the engine rotational speed Ne (rpm) may be included in the parameters used for the catalyst temperature estimation.

図3(A),(B)にはそれぞれ、アクティブ空燃比制御実行時における触媒前センサ17及び触媒間センサ18の出力が実線で示されている。また、図3(A)には、ECU20内部で発生される目標空燃比A/Ftが破線で示されている。触媒前センサ17及び触媒間センサ18の出力値はそれぞれ触媒前空燃比A/Ffr及び触媒間空燃比A/Fmdの値に対応する。   In FIGS. 3A and 3B, the outputs of the pre-catalyst sensor 17 and the inter-catalyst sensor 18 when the active air-fuel ratio control is executed are indicated by solid lines. In FIG. 3A, the target air-fuel ratio A / Ft generated inside the ECU 20 is indicated by a broken line. The output values of the pre-catalyst sensor 17 and the inter-catalyst sensor 18 correspond to the values of the pre-catalyst air-fuel ratio A / Ffr and the inter-catalyst air-fuel ratio A / Fmd, respectively.

図3(A)に示されるように、目標空燃比A/Ftは、中心空燃比としての理論空燃比(ストイキ)A/Fsを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比A/Fr)と、そこからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比A/Fl)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比A/Ftの切り替えに追従して、実際値としての触媒前空燃比A/Ffrも、目標空燃比A/Ftに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比A/Ftと触媒前空燃比A/Ffrとは時間遅れがあること以外等価であることが理解されよう。   As shown in FIG. 3A, the target air-fuel ratio A / Ft is centered on the stoichiometric air-fuel ratio (stoichiometric) A / Fs as the center air-fuel ratio, and a predetermined amplitude (rich amplitude Ar, An air-fuel ratio (rich air-fuel ratio A / Fr) separated by Ar> 0), and an air-fuel ratio (lean air-fuel ratio A / Fl) separated from it by a predetermined amplitude (lean amplitude Al, Al> 0) Forcibly and alternately. Following the switching of the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ffr as an actual value is also switched with a slight time delay with respect to the target air-fuel ratio A / Ft. From this, it will be understood that the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ffr are equivalent except that there is a time delay.

図示例においてリッチ振幅Arとリーン振幅Alとは等しい。例えば理論空燃比A/Fs=14.6、リッチ空燃比A/Fr=14.1、リーン空燃比A/Fl=15.1、リッチ振幅Ar=リーン振幅Al=0.5である。通常の空燃比制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、即ちリッチ振幅Arとリーン振幅Alとの値は大きい。   In the illustrated example, the rich amplitude Ar and the lean amplitude Al are equal. For example, theoretical air fuel ratio A / Fs = 14.6, rich air fuel ratio A / Fr = 14.1, lean air fuel ratio A / Fl = 15.1, rich amplitude Ar = lean amplitude Al = 0.5. Compared with the normal air-fuel ratio control, the active air-fuel ratio control has a larger amplitude of the air-fuel ratio, that is, the values of the rich amplitude Ar and the lean amplitude Al are larger.

ところで、目標空燃比A/Ftが切り替えられるタイミングは、触媒間センサ18の出力がリッチからリーンに、又はリーンからリッチに切り替わるタイミングである。ここで図示されるように触媒間センサ18の出力電圧は理論空燃比A/Fsを境に急変し、触媒間空燃比A/Fmdが理論空燃比A/Fsより小さいリッチ側の空燃比であるときその出力電圧がリッチ判定値VR以上となり、触媒間空燃比A/Fmdが理論空燃比A/Fsより大きいリーン側の空燃比であるときその出力電圧がリーン判定値VL以下となる。ここでVR>VLであり、例えばVR=0.59(V)、VL=0.21(V)である。   By the way, the timing at which the target air-fuel ratio A / Ft is switched is the timing at which the output of the inter-catalyst sensor 18 switches from rich to lean, or from lean to rich. As shown in the figure, the output voltage of the inter-catalyst sensor 18 suddenly changes with the theoretical air-fuel ratio A / Fs as a boundary, and the inter-catalyst air-fuel ratio A / Fmd is a rich air-fuel ratio smaller than the theoretical air-fuel ratio A / Fs. When the output voltage becomes equal to or higher than the rich determination value VR, and when the inter-catalyst air-fuel ratio A / Fmd is a lean side air-fuel ratio larger than the theoretical air-fuel ratio A / Fs, the output voltage becomes equal to or lower than the lean determination value VL. Here, VR> VL, for example, VR = 0.59 (V) and VL = 0.21 (V).

図3(A),(B)に示されるように、触媒間センサ18の出力電圧がリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比A/Ftはリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられる。その後、触媒間センサ18の出力電圧がリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比A/Ftはリッチ空燃比A/Frからリーン空燃比A/Flに切り替えられる。   As shown in FIGS. 3A and 3B, when the output voltage of the inter-catalyst sensor 18 changes from the rich side value to the lean side and becomes equal to the lean determination value VL (time t1), the target sky The fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr. Thereafter, when the output voltage of the inter-catalyst sensor 18 changes from the lean side value to the rich side and becomes equal to the rich judgment value VR (time t2), the target air-fuel ratio A / Ft becomes lean from the rich air-fuel ratio A / Fr. The air-fuel ratio is switched to A / Fl.

このような空燃比変化を行うアクティブ空燃比制御を実行しつつ、次のようにして触媒11の酸素吸蔵容量OSCが計測され、触媒11の劣化が判定される。   While performing the active air-fuel ratio control that performs such an air-fuel ratio change, the oxygen storage capacity OSC of the catalyst 11 is measured as follows, and the deterioration of the catalyst 11 is determined.

図3を参照して、時刻t1より前では目標空燃比A/Ftがリーン空燃比A/Flとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続けているが、一杯に酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒間空燃比A/Fmdがリーン側に変化し、触媒間センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、或いは反転される。このように目標空燃比A/Ftは触媒間センサ18の出力をトリガにして反転される。   Referring to FIG. 3, the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl before time t1, and the lean gas flows into the catalyst 11. At this time, the catalyst 11 continues to absorb oxygen, but when it fully absorbs oxygen, it can no longer absorb oxygen, and the lean gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the inter-catalyst air-fuel ratio A / Fmd changes to the lean side, and when the output voltage of the inter-catalyst sensor 18 reaches the lean determination value VL (t1), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / Fr. Or reversed. In this way, the target air-fuel ratio A / Ft is reversed with the output of the inter-catalyst sensor 18 as a trigger.

そして今度は触媒11にリッチガスが流入されることとなる。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比A/Fsの排気ガスが流出し、触媒間空燃比A/Fmdがリッチにならないことから、触媒間センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは全ての吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒間空燃比A/Fmdがリッチ側に変化し、触媒間センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。   This time, rich gas flows into the catalyst 11. At this time, the oxygen stored in the catalyst 11 continues to be released from the catalyst 11. Therefore, the exhaust gas of the theoretical air-fuel ratio A / Fs flows out to the downstream side of the catalyst 11 and the inter-catalyst air-fuel ratio A / Fmd does not become rich, so the output of the inter-catalyst sensor 18 is not reversed. When oxygen is continuously released from the catalyst 11, all of the stored oxygen is eventually released from the catalyst 11, and at that time, no more oxygen can be released, and the rich gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the inter-catalyst air-fuel ratio A / Fmd changes to the rich side, and when the output voltage of the inter-catalyst sensor 18 reaches the rich judgment value VR (t2), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / Fl. Can be switched to.

酸素吸蔵容量OSCが大きいほど、酸素を吸収或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は目標空燃比A/Ftの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほど目標空燃比A/Ftの反転周期は短くなる。   The larger the oxygen storage capacity OSC, the longer the time during which oxygen can be absorbed or released. That is, when the catalyst is not deteriorated, the inversion cycle of the target air-fuel ratio A / Ft (for example, the time from t1 to t2) becomes longer, and the inversion cycle of the target air-fuel ratio A / Ft becomes shorter as the deterioration of the catalyst proceeds. .

そこで、このことを利用して酸素吸蔵容量OSCが以下のようにして計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffrがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t11から、次に目標空燃比A/Ftが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵容量dOSC(酸素吸蔵容量の瞬時値)が算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが時刻t11から時刻t2まで積算される。こうしてこの酸素放出サイクルにおける酸素吸蔵容量即ち放出酸素量(図4のOSC(1))が計測される。   Therefore, using this fact, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ffr as the actual value is slightly delayed with the rich air-fuel ratio A / Fr. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ffr reaches the theoretical air-fuel ratio A / Fs to the time t2 when the target air-fuel ratio A / Ft next reverses, the following equation (1) An oxygen storage capacity dOSC (instantaneous value of the oxygen storage capacity) is calculated, and the oxygen storage capacity dOSC for each minute time is integrated from time t11 to time t2. Thus, the oxygen storage capacity, that is, the amount of released oxygen (OSC (1) in FIG. 4) in this oxygen release cycle is measured.

Figure 2009138604
Figure 2009138604

ここで、Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。   Here, Q is a fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, an air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. K is a constant representing the proportion of oxygen contained in air (about 0.23).

基本的には、この1回で計測された酸素吸蔵容量OSCを用い、これを所定の劣化判定値OSCsと比較し、酸素吸蔵容量OSCが劣化判定値OSCsを超えていれば正常、酸素吸蔵容量OSCが劣化判定値OSCs以下ならば劣化、というように触媒の劣化を判定できる。しかしながら、本実施形態では精度を向上させるため、目標空燃比A/Ftがリーン側となっている酸素吸蔵サイクルでも同様に酸素吸蔵容量(この場合吸蔵酸素量)を計測し、これら酸素吸蔵容量の平均値を1吸放出サイクルに係る1単位の酸素吸蔵容量として計測している。そしてさらに、吸放出サイクルを複数回繰り返し、複数単位の酸素吸蔵容量の値を得、その平均値を最終的な酸素吸蔵容量計測値としている。   Basically, the oxygen storage capacity OSC measured at one time is used and compared with a predetermined deterioration judgment value OSCs. If the oxygen storage capacity OSC exceeds the deterioration judgment value OSCs, the oxygen storage capacity is normal. If the OSC is equal to or lower than the deterioration determination value OSCs, the deterioration of the catalyst can be determined such as deterioration. However, in this embodiment, in order to improve the accuracy, the oxygen storage capacity (the stored oxygen amount in this case) is also measured in the oxygen storage cycle in which the target air-fuel ratio A / Ft is on the lean side. The average value is measured as an oxygen storage capacity of one unit related to one absorption / release cycle. Further, the absorption / release cycle is repeated a plurality of times to obtain a value of oxygen storage capacity of a plurality of units, and the average value is used as the final oxygen storage capacity measurement value.

酸素吸蔵サイクルにおける酸素吸蔵容量(吸蔵酸素量)の計測については、図4に示すように、時刻t2で目標空燃比A/Ftがリーン空燃比A/Flに切り替えられた後、触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t21から、次に目標空燃比A/Ftがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。こうしてこの酸素吸収サイクルにおける酸素吸蔵容量OSC即ち吸蔵酸素量(図4のOSC(2))が計測される。前回サイクルの酸素吸蔵容量OSC1と今回サイクルの酸素吸蔵容量OSC2とはほぼ等しい値となるはずである。   Regarding the measurement of the oxygen storage capacity (storage oxygen amount) in the oxygen storage cycle, as shown in FIG. 4, after the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio A / Fl at time t2, the pre-catalyst air-fuel ratio is changed. From time t21 when A / Ffr reaches the theoretical air-fuel ratio A / Fs to time t3 when the target air-fuel ratio A / Ft reverses to the rich side next, the oxygen storage capacity dOSC for each minute time is calculated from the previous equation (1). The calculated oxygen storage capacity dOSC for each minute time is integrated. Thus, the oxygen storage capacity OSC, that is, the amount of stored oxygen (OSC (2) in FIG. 4) in this oxygen absorption cycle is measured. The oxygen storage capacity OSC1 of the previous cycle and the oxygen storage capacity OSC2 of the current cycle should be approximately equal.

次に、この酸素吸蔵容量計測値を用いて触媒の劣化判定がなされる。即ち、計測された酸素吸蔵容量OSCの値が所定の劣化判定値OSCsと比較され、酸素吸蔵容量OSCの値が劣化判定値OSCsより大きければ触媒は正常、酸素吸蔵容量OSCの値が劣化判定値OSCs以下ならば触媒は劣化と判定される。なお、触媒が劣化と判定された場合、その事実をユーザに知らせるため、チェックランプ等の警告装置を起動させるのが好ましい。以上が、上流触媒11に限定した場合の劣化診断の態様(第1の態様)の基本的な内容である。   Next, the deterioration of the catalyst is determined using the measured oxygen storage capacity. That is, the measured value of the oxygen storage capacity OSC is compared with a predetermined deterioration determination value OSCs. If the value of the oxygen storage capacity OSC is larger than the deterioration determination value OSCs, the catalyst is normal and the value of the oxygen storage capacity OSC is the deterioration determination value. If OSCs or less, the catalyst is determined to be deteriorated. When it is determined that the catalyst is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact. The above is the basic content of the deterioration diagnosis aspect (first aspect) when the upstream catalyst 11 is limited.

なお、この第1の態様の方法は下流触媒19単体について適用することも可能である。この場合、触媒前センサ17の出力を触媒間センサ18の出力に置き換え、触媒間センサ18の出力を触媒後センサ21の出力に置き換えるようにする。   The method of the first aspect can also be applied to the downstream catalyst 19 alone. In this case, the output of the pre-catalyst sensor 17 is replaced with the output of the inter-catalyst sensor 18, and the output of the inter-catalyst sensor 18 is replaced with the output of the post-catalyst sensor 21.

次に、上流触媒11と下流触媒19を含めた劣化診断の態様(第2の態様)を説明する。   Next, a deterioration diagnosis mode (second mode) including the upstream catalyst 11 and the downstream catalyst 19 will be described.

この第2の態様では、アクティブ空燃比制御における目標空燃比A/Ftの切替タイミングが、下流触媒19の下流側の触媒後センサ21の反転タイミングと一致され、上流触媒11と下流触媒19に対し同時連続的に酸素の吸蔵又は放出がなされ、上流触媒11と下流触媒19の酸素吸蔵容量OSCが同時連続的に計測されるようになっている。   In this second mode, the target air-fuel ratio A / Ft switching timing in the active air-fuel ratio control is coincident with the inversion timing of the post-catalyst sensor 21 on the downstream side of the downstream catalyst 19, and the upstream catalyst 11 and the downstream catalyst 19 are Oxygen is occluded or released simultaneously and the oxygen storage capacity OSC of the upstream catalyst 11 and the downstream catalyst 19 is measured simultaneously and continuously.

図5にはアクティブ空燃比制御実行時における各値の変化の様子を示す。(A)は目標空燃比A/Ft、(B)は触媒間センサ18の出力、(C)は実際の触媒間空燃比A/Fmd、(D)は触媒後センサ21の出力、(E)は実際の触媒後空燃比A/Frrをそれぞれ示す。   FIG. 5 shows how each value changes when active air-fuel ratio control is executed. (A) is the target air-fuel ratio A / Ft, (B) is the output of the inter-catalyst sensor 18, (C) is the actual inter-catalyst air-fuel ratio A / Fmd, (D) is the output of the post-catalyst sensor 21, (E) Indicates the actual post-catalyst air-fuel ratio A / Frr.

図示例において、時刻T1以前では、目標空燃比A/Ft(及び触媒前空燃比A/Ffr)がリッチ空燃比に維持され、上流触媒11に吸蔵されていた酸素が放出して排気ガスを浄化し、その下流にほぼ理論空燃比の排気ガスが流出する。従って、その間、触媒間空燃比A/Fmdがほぼ理論空燃比に維持される。そして上流触媒11の吸蔵酸素が全て放出すると、上流触媒11の下流には未燃成分を含むリッチガスが流出し、これに対応して触媒間センサ18の出力がリーン側からリッチ側に反転する。図示例では時刻T1において、触媒間センサ18の出力がリッチ判定値VRに達している。   In the illustrated example, before the time T1, the target air-fuel ratio A / Ft (and the pre-catalyst air-fuel ratio A / Ffr) is maintained at a rich air-fuel ratio, and the oxygen stored in the upstream catalyst 11 is released to purify the exhaust gas. Then, the exhaust gas having a substantially stoichiometric air-fuel ratio flows downstream. Accordingly, during that time, the inter-catalyst air-fuel ratio A / Fmd is maintained substantially at the stoichiometric air-fuel ratio. When all the stored oxygen in the upstream catalyst 11 is released, a rich gas containing unburned components flows downstream from the upstream catalyst 11, and the output of the inter-catalyst sensor 18 is inverted from the lean side to the rich side correspondingly. In the illustrated example, the output of the inter-catalyst sensor 18 reaches the rich determination value VR at time T1.

しかしながら、前記第1の態様とは異なり、この時点ではまだ目標空燃比A/Ftが切り替えられない。すると時刻T1以降、下流触媒19に空燃比のリッチな排気ガスが流入するようになる。かかるリッチガスが流入すると、下流触媒19は、吸蔵酸素を放出しながらそのリッチガスを浄化する。そしてその下流にはほぼ理論空燃比の排気ガスが流出する。従って、その間、触媒後空燃比A/Frrがほぼ理論空燃比に維持される。   However, unlike the first aspect, the target air-fuel ratio A / Ft is not yet switched at this point. Then, after time T1, exhaust gas rich in air-fuel ratio flows into the downstream catalyst 19. When the rich gas flows, the downstream catalyst 19 purifies the rich gas while releasing the stored oxygen. Then, an exhaust gas having a substantially stoichiometric air-fuel ratio flows downstream. Accordingly, the post-catalyst air-fuel ratio A / Frr is maintained at a substantially stoichiometric air-fuel ratio during that time.

やがて下流触媒19の吸蔵酸素が全て放出されると、下流触媒19の下流にはリッチガスが流出し、これに対応して触媒後センサ21の出力がリーン側からリッチ側に反転する。図示例では時刻T2において、触媒後センサ21の出力がリッチ判定値VRに達している。この触媒後センサ21の出力がリッチ側に反転した時点で、上流触媒11も下流触媒19も全ての吸蔵酸素を放出し尽くしたと判断することができる。よってこれと同時に、触媒前空燃比A/Ffrがリーンに反転するように目標空燃比A/Ftがリーン空燃比に切り替えられる。このように触媒後センサ21の出力が反転するタイミングで目標空燃比A/Ftが切り替えられる。   Eventually, when all of the stored oxygen in the downstream catalyst 19 is released, rich gas flows out downstream of the downstream catalyst 19, and in response to this, the output of the post-catalyst sensor 21 is reversed from the lean side to the rich side. In the illustrated example, at the time T2, the output of the post-catalyst sensor 21 reaches the rich determination value VR. When the output of the post-catalyst sensor 21 is reversed to the rich side, it can be determined that both the upstream catalyst 11 and the downstream catalyst 19 have exhausted all the stored oxygen. Therefore, at the same time, the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio so that the pre-catalyst air-fuel ratio A / Ffr is reversed to lean. Thus, the target air-fuel ratio A / Ft is switched at the timing when the output of the post-catalyst sensor 21 is reversed.

時刻T2以降、上流触媒11には空燃比のリーンな排気ガスが流入され、上流触媒11は、排気ガス中の過剰酸素を吸蔵しつつ排気ガスの浄化を行う。このため時刻T2から僅かな遅れ時間を経過した後、触媒間空燃比A/Fmdは理論空燃比付近に変化する。そして上流触媒11に酸素が満杯まで吸蔵されると、上流触媒11の下流にリーンガスが流出し、これに対応して触媒間センサ18の出力がリッチ側からリーン側に反転する。図示例では時刻T3において、触媒間センサ18の出力がリーン判定値VLに達している。   After the time T2, the air-fuel ratio lean exhaust gas flows into the upstream catalyst 11, and the upstream catalyst 11 purifies the exhaust gas while storing excess oxygen in the exhaust gas. Therefore, after a slight delay time has elapsed from time T2, the inter-catalyst air-fuel ratio A / Fmd changes to the vicinity of the theoretical air-fuel ratio. When the upstream catalyst 11 is fully filled with oxygen, lean gas flows out downstream of the upstream catalyst 11, and the output of the inter-catalyst sensor 18 is inverted from the rich side to the lean side correspondingly. In the illustrated example, the output of the inter-catalyst sensor 18 reaches the lean determination value VL at time T3.

前述のように、この時点ではまだ目標空燃比A/Ftが切り替えられない。すると時刻T3以降、下流触媒19に空燃比のリーンな排気ガスが流入するようになる。かかるリーンガスが流入すると、下流触媒19は、過剰酸素を吸蔵しながらそのリーンガスを浄化する。よってその下流にはほぼ理論空燃比の排気ガスが流出し、触媒後空燃比A/Frrがほぼ理論空燃比に維持される。   As described above, at this time, the target air-fuel ratio A / Ft is not yet switched. Then, after time T3, lean exhaust gas having an air-fuel ratio flows into the downstream catalyst 19. When such lean gas flows, the downstream catalyst 19 purifies the lean gas while storing excess oxygen. Therefore, the exhaust gas having a substantially stoichiometric air-fuel ratio flows downstream, and the post-catalyst air-fuel ratio A / Frr is maintained substantially at the stoichiometric air-fuel ratio.

やがて下流触媒19に満杯まで酸素が吸蔵されると、下流触媒19の下流にリーンガスが流出し、これに対応して触媒後センサ21の出力がリッチ側からリーン側に反転する。図示例では時刻T4において、触媒後センサ21の出力がリーン判定値VLに達している。この触媒後センサ21の出力がリーン側に反転した時点で、上流触媒11も下流触媒19も酸素を容量一杯まで吸蔵したと判断することができる。よってこれと同時に、触媒前空燃比A/Ffrがリッチに反転するよう目標空燃比A/Ftがリッチ空燃比に切り替えられる。   Eventually, when the downstream catalyst 19 is fully filled with oxygen, lean gas flows out downstream of the downstream catalyst 19, and the output of the post-catalyst sensor 21 is inverted from the rich side to the lean side accordingly. In the illustrated example, the output of the post-catalyst sensor 21 reaches the lean determination value VL at time T4. When the output of the post-catalyst sensor 21 is reversed to the lean side, it can be determined that both the upstream catalyst 11 and the downstream catalyst 19 have occluded oxygen to the full capacity. Accordingly, at the same time, the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio so that the pre-catalyst air-fuel ratio A / Ffr is inverted to be rich.

以下同様に、上流触媒11にリッチガスが流入され、上流触媒11は吸蔵酸素を放出する。そして上流触媒11から酸素が放出され尽くすと上流触媒11の下流にリッチガスが流出し、触媒間センサ18の出力がリッチ側に反転する(時刻T5)。この時点では目標空燃比A/Ftを切り替えない。すると下流触媒19にリッチガスが流入し、下流触媒19において酸素放出が行われる。そして下流触媒19から酸素が放出され尽くすと下流触媒19の下流にリッチガスが流出し、触媒後センサ21の出力がリッチ側に反転する(時刻T6)。この反転と同時に目標空燃比A/Ftがリーン側に切り替えられる。   Similarly, the rich gas flows into the upstream catalyst 11 and the upstream catalyst 11 releases the stored oxygen. When oxygen is completely released from the upstream catalyst 11, the rich gas flows out downstream of the upstream catalyst 11, and the output of the inter-catalyst sensor 18 is inverted to the rich side (time T5). At this time, the target air-fuel ratio A / Ft is not switched. Then, the rich gas flows into the downstream catalyst 19, and oxygen is released in the downstream catalyst 19. When oxygen is completely released from the downstream catalyst 19, rich gas flows out downstream of the downstream catalyst 19, and the output of the post-catalyst sensor 21 is reversed to the rich side (time T6). Simultaneously with this reversal, the target air-fuel ratio A / Ft is switched to the lean side.

このようなアクティブ空燃比制御に伴い、上流触媒11と下流触媒19の酸素吸蔵容量OSC1,OSC2が前式(1)に基づき第1の態様と同様に計測される。即ち、時刻T2〜T3において上流触媒11に酸素が吸蔵されるときには、図4に示した例と同様に、触媒前センサ17の出力がリーン側に変化して理論空燃比相当の値に達した時点から、触媒間センサ18の出力がリーン側に反転した時点T3まで、前式(1)により所定の微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。このとき、空燃比差ΔA/Fの値としては、触媒前センサ17の出力から換算される空燃比と理論空燃比との差が用いられる。   Along with such active air-fuel ratio control, the oxygen storage capacities OSC1, OSC2 of the upstream catalyst 11 and the downstream catalyst 19 are measured in the same manner as in the first mode based on the previous equation (1). That is, when oxygen is stored in the upstream catalyst 11 at times T2 to T3, as in the example shown in FIG. 4, the output of the pre-catalyst sensor 17 changes to the lean side and reaches a value corresponding to the theoretical air-fuel ratio. From the time point to the time point T3 when the output of the inter-catalyst sensor 18 is reversed to the lean side, the oxygen storage capacity dOSC for each predetermined minute time is calculated by the above equation (1), and the oxygen storage capacity dOSC for each minute time is calculated. Accumulated. At this time, as the value of the air-fuel ratio difference ΔA / F, the difference between the air-fuel ratio converted from the output of the pre-catalyst sensor 17 and the stoichiometric air-fuel ratio is used.

次いで、時刻T3〜T4において下流触媒19に酸素が吸蔵されるときには、触媒間センサ18の出力がリーン側に反転した時点T3から、触媒後センサ21の出力がリーン側に反転した時点T4まで、前式(1)により所定の微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。このとき、リーンガスが上流触媒11を素通りして下流触媒11に流入することから、空燃比差ΔA/Fの値としては、触媒前センサ17の出力から換算される空燃比と理論空燃比との差が用いられる。   Next, when oxygen is stored in the downstream catalyst 19 at time T3 to T4, from time T3 when the output of the inter-catalyst sensor 18 is inverted to the lean side, to time T4 when the output of the post-catalyst sensor 21 is inverted to the lean side. The oxygen storage capacity dOSC for each predetermined minute time is calculated by the previous equation (1), and the oxygen storage capacity dOSC for each minute time is integrated. At this time, since the lean gas flows through the upstream catalyst 11 and flows into the downstream catalyst 11, the value of the air-fuel ratio ΔA / F is the air-fuel ratio converted from the output of the pre-catalyst sensor 17 and the stoichiometric air-fuel ratio. Differences are used.

この後、目標空燃比A/Ftをリッチ空燃比に切り替えたときも、同様の方法で時刻T4〜T5において上流触媒11の酸素吸蔵容量が計測され、時刻T5〜T6において下流触媒19の酸素吸蔵容量が計測される。   Thereafter, when the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio, the oxygen storage capacity of the upstream catalyst 11 is measured from time T4 to T5 in the same manner, and the oxygen storage capacity of the downstream catalyst 19 is measured from time T5 to T6. Capacity is measured.

こうして計測された酸素吸蔵容量の計測データをECU20に複数記憶しておき、前述の平均化処理を行って、最終的な上流触媒11及び下流触媒19の酸素吸蔵容量計測値OSC1,OSC2を算出する。そしてこれら計測値OSC1,OSC2を、予め個別に設定された劣化判定値OSC1s、OSC2sとそれぞれ比較し、その大小に応じて上流触媒11及び下流触媒19の正常・劣化を個別に判定する。なおいずれか一方の触媒が劣化と判定された場合、その事実をユーザに知らせるため、例えばチェックランプといった警告装置を起動させるのが好ましい。   A plurality of measurement data of the oxygen storage capacity thus measured is stored in the ECU 20 and the above-described averaging process is performed to calculate the final oxygen storage capacity measurement values OSC1 and OSC2 of the upstream catalyst 11 and the downstream catalyst 19. . These measured values OSC1 and OSC2 are respectively compared with deterioration determination values OSC1s and OSC2s set individually in advance, and the normality and deterioration of the upstream catalyst 11 and the downstream catalyst 19 are individually determined according to the magnitudes thereof. When it is determined that one of the catalysts is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact.

次に、本実施形態における触媒の硫黄被毒の検出について説明する。   Next, detection of sulfur poisoning of the catalyst in the present embodiment will be described.

前に述べたように、高硫黄濃度の燃料が使用された場合、触媒がS被毒して触媒の酸素吸蔵容量が一時的に低下し、誤診断等を引き起こす問題がある。ところで、本発明者らの鋭意研究の結果によると、上流触媒11と下流触媒19とではS被毒の仕方が異なることが判明した。   As described above, when a fuel having a high sulfur concentration is used, the catalyst is poisoned with sulfur, and the oxygen storage capacity of the catalyst is temporarily reduced, thereby causing a problem such as erroneous diagnosis. By the way, according to the results of intensive studies by the present inventors, it was found that the upstream catalyst 11 and the downstream catalyst 19 differ in the way of S poisoning.

即ち、触媒の酸素吸蔵容量が燃料中の硫黄成分により低下する現象については次の二つがある。第1の現象は、触媒に担持されている触媒成分32即ち貴金属に排ガス中のSOxが反応し、貴金属の反応速度が低下し、このために触媒の酸素吸蔵容量が低下する現象である。このときの酸素吸蔵容量の低下は、燃料が低硫黄燃料から高硫黄燃料に交換された直後(即ち、高硫黄燃料が給油された直後)から発生し、その低下量は燃料の硫黄濃度と触媒の持つ酸素吸蔵容量の大きさに依存する。また、第2の現象は、触媒の吸蔵成分31に排ガス中のSOxが吸着し、このために触媒の酸素吸蔵容量が低下する現象である。このときの酸素吸蔵容量の低下は、燃料が低硫黄燃料から高硫黄燃料に交換された後、徐々にゆっくりと進行する。   That is, there are the following two phenomena in which the oxygen storage capacity of the catalyst decreases due to the sulfur component in the fuel. The first phenomenon is a phenomenon in which SOx in the exhaust gas reacts with the catalyst component 32, that is, the noble metal supported on the catalyst, the reaction rate of the noble metal decreases, and the oxygen storage capacity of the catalyst thus decreases. The decrease in the oxygen storage capacity at this time occurs immediately after the fuel is replaced from the low sulfur fuel to the high sulfur fuel (that is, immediately after the high sulfur fuel is refueled), and the amount of the decrease is the sulfur concentration of the fuel and the catalyst. Depends on the oxygen storage capacity of The second phenomenon is a phenomenon in which SOx in the exhaust gas is adsorbed on the storage component 31 of the catalyst, and the oxygen storage capacity of the catalyst is reduced. The decrease in the oxygen storage capacity at this time gradually proceeds slowly after the fuel is replaced from the low sulfur fuel to the high sulfur fuel.

ここで上流触媒11に着目すると、上流触媒11には燃焼室3からの高温の排気ガスが最初に且つ常時流入されており、その触媒温度は高い。よって第2の現象、即ち吸蔵成分31への硫黄分吸着は起き難く、上流触媒11の酸素吸蔵容量低下は第1の現象、即ち貴金属の反応速度低下によるものが支配的である。   Here, paying attention to the upstream catalyst 11, the high-temperature exhaust gas from the combustion chamber 3 is initially and constantly flowing into the upstream catalyst 11, and the catalyst temperature is high. Therefore, the second phenomenon, that is, the adsorption of sulfur content to the storage component 31 hardly occurs, and the decrease in the oxygen storage capacity of the upstream catalyst 11 is predominantly caused by the first phenomenon, that is, the reaction rate of the noble metal is decreased.

他方、下流触媒19については、触媒温度が上流触媒11に比べて低いため、第1の現象と共に第2の現象も起きて酸素吸蔵容量が低下する。つまり、上流触媒11の酸素吸蔵容量が燃料交換直後に急激に低下し、その後殆ど変化しないのに対し、下流触媒19の酸素吸蔵容量は燃料交換直後に急激に低下した後も徐々に低下していく。   On the other hand, since the catalyst temperature of the downstream catalyst 19 is lower than that of the upstream catalyst 11, a second phenomenon occurs along with the first phenomenon, and the oxygen storage capacity decreases. In other words, the oxygen storage capacity of the upstream catalyst 11 rapidly decreases immediately after the fuel exchange and hardly changes thereafter, whereas the oxygen storage capacity of the downstream catalyst 19 gradually decreases even after the rapid decrease immediately after the fuel replacement. Go.

そこで本実施形態では、このようなS被毒の仕方の相違に鑑み、次のようにして触媒の硫黄被毒を検出し、さらには触媒の劣化判定を禁止するようにしている。   Therefore, in the present embodiment, in view of such a difference in the S poisoning method, sulfur poisoning of the catalyst is detected as follows, and further, deterioration determination of the catalyst is prohibited.

まず、劣化診断対象を上流触媒11に限定した第1実施例について説明する。図6には、高硫黄燃料に燃料交換された場合の交換前後における上流触媒11の酸素吸蔵容量OSC1の変化を示す。「今回」とは現在と同義であり、基準となる時期或いは期間を意味する。「前回」とは「今回」の1回前という意味である。後に用いられる「前々回」とは「前回」の1回前という意味である。「トリップ」とはエンジン(或いはエンジンシステム)がオンされている間の期間である。図示例では前回トリップと今回トリップの間のエンジンオフの間に燃料交換が行われている。実線で示すのが実際の酸素吸蔵容量の変化である。   First, the first embodiment in which the degradation diagnosis target is limited to the upstream catalyst 11 will be described. FIG. 6 shows a change in the oxygen storage capacity OSC1 of the upstream catalyst 11 before and after the replacement when the fuel is replaced with the high sulfur fuel. “This time” is synonymous with the present time and means a reference time or period. “Last time” means “one time before this time”. “Previous times” used later means “one time before the previous time”. A “trip” is a period during which the engine (or engine system) is on. In the illustrated example, the fuel is changed during the engine off between the previous trip and the current trip. The solid line shows the actual change in oxygen storage capacity.

図示されるように、前回トリップにおいて上流触媒11の酸素吸蔵容量OSC1n-1(前回OSC)が計測され、今回トリップにおいても上流触媒11の酸素吸蔵容量OSC1n(今回OSC)が計測されている。そして、前回の酸素吸蔵容量OSC1n-1に対し、燃料交換直後の今回の酸素吸蔵容量OSC1nは大きく変化し、より具体的には大きく低下している。よって前回の酸素吸蔵容量OSC1n-1から今回の酸素吸蔵容量OSC1nへの変化量或いは低下量を算出すれば、この値に基づいて高硫黄燃料が給油されたことを検出し、さらには上流触媒11が硫黄被毒したことを検出することができる。酸素吸蔵容量変化量(或いは低下量)ΔOSC1は、ここでは単純に前回の酸素吸蔵容量OSC1n-1と今回の酸素吸蔵容量OSC1nとの差、即ちΔOSC1=OSC1n-1−OSC1nとして定義されるが、その他の定義も可能であり、例えばΔOSC1=(OSC1n-1−OSC1n)/OSC1n-1として定義されてもよい。 As shown in the figure, the oxygen storage capacity OSC1 n-1 (previous OSC) of the upstream catalyst 11 is measured in the previous trip, and the oxygen storage capacity OSC1 n (current OSC) of the upstream catalyst 11 is also measured in the current trip. . Then, with respect to the oxygen storage capacity OSC1 n-1 of the previous, current oxygen storage capacity OSC1 n immediately after refueling vary greatly, are significantly reduced and more specifically. Therefore, if the amount of change or reduction from the previous oxygen storage capacity OSC1 n-1 to the current oxygen storage capacity OSC1 n is calculated, it is detected that high sulfur fuel has been supplied based on this value, and further upstream It can be detected that the catalyst 11 is sulfur poisoned. Here, the oxygen storage capacity change amount (or decrease amount) ΔOSC1 is simply defined as the difference between the previous oxygen storage capacity OSC1 n-1 and the current oxygen storage capacity OSC1 n , that is, ΔOSC1 = OSC1 n-1 −OSC1 n. However, other definitions are possible, for example, ΔOSC1 = (OSC1 n−1 −OSC1 n ) / OSC1 n−1 may be defined.

この第1実施例に関する触媒劣化診断処理を図7を参照しつつ説明する。当該処理はECU20により実行される。   The catalyst deterioration diagnosis process relating to the first embodiment will be described with reference to FIG. This process is executed by the ECU 20.

まずステップS101では、診断を開始するための前提条件が成立しているか否かが判断される。例えば、吸入空気量Ga及び機関回転速度Neの変動幅が所定範囲内であるなど、エンジンが定常運転状態にあり、且つ触媒11及び各空燃比センサ17,18,21が所定の活性化温度に達していれば、前提条件成立となる。なお前提条件についてはここで述べた例に限られない。前提条件が成立していない場合には処理が終了され、他方、前提条件が成立している場合にはステップS102に進む。   First, in step S101, it is determined whether a precondition for starting diagnosis is satisfied. For example, the engine is in a steady operation state such that the fluctuation range of the intake air amount Ga and the engine rotational speed Ne is within a predetermined range, and the catalyst 11 and the air-fuel ratio sensors 17, 18, and 21 are at a predetermined activation temperature. If it has been reached, the precondition is satisfied. Note that the precondition is not limited to the example described here. If the precondition is not satisfied, the process is terminated. On the other hand, if the precondition is satisfied, the process proceeds to step S102.

ステップS102においては、上流触媒11の酸素吸蔵容量OSC1が計測される。ここでは診断対象が上流触媒11のみであるため、図3及び図4に示した第1の態様で説明したような酸素吸蔵容量計測方法を採用するのが好適である。但し、図5に示した第2の態様で説明したような酸素吸蔵容量計測方法を採用し、上流触媒11の酸素吸蔵容量計測値のみを用いるようにしてもよい。   In step S102, the oxygen storage capacity OSC1 of the upstream catalyst 11 is measured. Here, since only the upstream catalyst 11 is to be diagnosed, it is preferable to employ the oxygen storage capacity measuring method as described in the first mode shown in FIGS. 3 and 4. However, the oxygen storage capacity measurement method as described in the second embodiment shown in FIG. 5 may be adopted, and only the oxygen storage capacity measurement value of the upstream catalyst 11 may be used.

次いで、ステップS103において、失火及び空燃比異常の少なくとも一方が検出されたか否か、具体的にはそのような検出履歴があるか否かが判断される。即ち、本実施形態では失火及び空燃比異常の少なくとも一方を検出する異常検出手段が備えられている。例えば機関回転速度Neの変動が所定値より大きいとき、或いは触媒前センサ17で大きなリッチ空燃比を検出したとき、或いは上流触媒前の排気通路に水素センサがある場合に排気ガス中の水素濃度が所定値より高いことを検出したとき、失火が起きたと判断することができる。また、例えばメインフィードバック空燃比制御の補正値が、空燃比をリッチに補正するような値で且つ所定のリミット値に維持されたとき、燃料系の故障で燃料が十分供給されていないことを理由とした空燃比異常が起きたと判断することができる。   Next, in step S103, it is determined whether or not at least one of misfire and air-fuel ratio abnormality has been detected, specifically, whether or not there is such a detection history. That is, in the present embodiment, an abnormality detection means for detecting at least one of misfire and air-fuel ratio abnormality is provided. For example, when the fluctuation of the engine rotational speed Ne is larger than a predetermined value, or when a large rich air-fuel ratio is detected by the pre-catalyst sensor 17 or when there is a hydrogen sensor in the exhaust passage before the upstream catalyst, the hydrogen concentration in the exhaust gas is When it is detected that the value is higher than the predetermined value, it can be determined that a misfire has occurred. Also, for example, when the correction value of the main feedback air-fuel ratio control is a value that corrects the air-fuel ratio richly and is maintained at a predetermined limit value, the reason is that fuel is not sufficiently supplied due to a fuel system failure It can be determined that the air-fuel ratio abnormality has occurred.

粗悪燃料や異種燃料(例えば軽油)等が給油された場合、異常燃焼や失火が発生し触媒が溶損する場合がある。従ってこのステップS103では触媒溶損の要因が発生したか否かを判断している。ステップS103で肯定判定されたときには、ステップS107にて通常の劣化判定が行われる。即ちステップS102で計測された上流触媒11の酸素吸蔵容量OSC1が劣化判定値OSC1sと比較され、OSC1>OSC1sなら上流触媒11は正常、OSC1≦OSC1sなら上流触媒11は劣化と判定される。仮に触媒が溶損していた場合、これは回復不能な恒久的劣化であるから、通常通り劣化判定を行って、その結果が劣化ならばチェックランプを点灯してユーザに触媒交換を促す。   When inferior fuel, dissimilar fuel (for example, light oil) or the like is supplied, abnormal combustion or misfire may occur and the catalyst may melt. Accordingly, in this step S103, it is determined whether or not a factor of catalyst melting loss has occurred. When an affirmative determination is made in step S103, a normal deterioration determination is performed in step S107. That is, the oxygen storage capacity OSC1 of the upstream catalyst 11 measured in step S102 is compared with the deterioration determination value OSC1s. If OSC1> OSC1s, the upstream catalyst 11 is determined to be normal, and if OSC1 ≦ OSC1s, the upstream catalyst 11 is determined to be deteriorated. If the catalyst is melted, this is permanent deterioration that cannot be recovered. Therefore, the deterioration is determined as usual, and if the result is deterioration, the check lamp is turned on to prompt the user to replace the catalyst.

他方、ステップS103で否定判定されたとき、ステップS104に進んで上流触媒11の酸素吸蔵容量変化量ΔOSC1が算出される。即ち、今回処理時のステップS102で計測された酸素吸蔵容量OSC1nと、前回処理時のステップS102で計測された酸素吸蔵容量OSC1n-1とを用いて、ΔOSC1=OSC1n-1−OSC1nにより酸素吸蔵容量変化量ΔOSC1が算出される。 On the other hand, when a negative determination is made in step S103, the process proceeds to step S104, and the oxygen storage capacity change amount ΔOSC1 of the upstream catalyst 11 is calculated. That is, using the oxygen storage capacity OSC1 n measured in step S102 at the time of the current process and the oxygen storage capacity OSC1 n-1 measured in step S102 at the time of the previous process, ΔOSC1 = OSC1 n-1 −OSC1 n Thus, the oxygen storage capacity change amount ΔOSC1 is calculated.

次いで、酸素吸蔵容量変化量ΔOSC1が所定のしきい値α(図6参照)と比較される。ΔOSC1≦αのときはステップS107に進んで、通常通り、ステップS102で計測された上流触媒11の酸素吸蔵容量計測値OSC1に基づき劣化判定がなされる。   Next, the oxygen storage capacity change amount ΔOSC1 is compared with a predetermined threshold value α (see FIG. 6). When ΔOSC1 ≦ α, the process proceeds to step S107, and the deterioration determination is made based on the oxygen storage capacity measurement value OSC1 of the upstream catalyst 11 measured in step S102 as usual.

他方、ΔOSC1>αのときは、上流触媒11の酸素吸蔵容量OSC1が大きく変化(低下)したときであるから、ステップS106に進んで、上流触媒11の硫黄被毒ありと判定され、同時に上流触媒11の酸素吸蔵容量計測値OSC1に基づく劣化判定が禁止される。こうして、上流触媒11の硫黄被毒が好適に検出されると共に、硫黄被毒により大きく低下した酸素吸蔵容量計測値OSC1に基づく劣化判定が禁止され、誤診断を防止し、診断精度及び信頼性を向上することができる。   On the other hand, when ΔOSC1> α, the oxygen storage capacity OSC1 of the upstream catalyst 11 has greatly changed (decreased), the process proceeds to step S106, where it is determined that the upstream catalyst 11 has sulfur poisoning, and at the same time, the upstream catalyst. 11 is not permitted to be determined based on the measured oxygen storage capacity value OSC1. In this way, sulfur poisoning of the upstream catalyst 11 is suitably detected, deterioration determination based on the oxygen storage capacity measurement value OSC1 greatly reduced by sulfur poisoning is prohibited, and misdiagnosis is prevented, and diagnostic accuracy and reliability are improved. Can be improved.

次に、第1実施例に関する別の触媒劣化診断処理を図8を参照しつつ説明する。当該処理はECU20により実行される。なお、図7の処理と同一のステップについては符号を200番台に変えるのみで詳細な説明を省略し、以下相違点を中心に説明を行う。   Next, another catalyst deterioration diagnosis process relating to the first embodiment will be described with reference to FIG. This process is executed by the ECU 20. Note that the same steps as the processing in FIG. 7 are simply described by changing the reference numerals to the 200s, and detailed description thereof will be omitted.

この別の処理は、ステップS202の次にステップS202Aが追加され、ステップS206の後にステップS208が追加されている点で、前記処理と異なる。   This other process is different from the above process in that step S202A is added after step S202, and step S208 is added after step S206.

ステップS202の後にステップS202Aが実行され、このステップS202Aでは、ステップS202の酸素吸蔵容量計測が燃料交換後の最初の酸素吸蔵容量計測か否かが判断される。上流触媒11の硫黄被毒による酸素吸蔵容量低下は燃料交換直後に急激に起こるものであるため、このように燃料交換実施の有無の情報を追加することは診断精度の向上に有利である。この場合、燃料交換の実施の有無を検出する手段が設けられ、例えば当該手段は燃料タンクの残量センサ(フュエルゲージ)や給油リッドの開放を検知するセンサを有する。燃料タンク内の燃料残量が増えたことや、給油リッドが開放されたことが検出された場合、燃料交換が実施されたとみなされる。   Step S202A is executed after step S202. In step S202A, it is determined whether or not the oxygen storage capacity measurement in step S202 is the first oxygen storage capacity measurement after the fuel change. Since the decrease in the oxygen storage capacity due to sulfur poisoning of the upstream catalyst 11 occurs abruptly immediately after fuel replacement, adding information on whether or not fuel replacement is performed in this way is advantageous in improving diagnostic accuracy. In this case, means for detecting whether or not fuel replacement is performed is provided. For example, the means includes a fuel tank remaining amount sensor (fuel gauge) and a sensor for detecting the opening of the fueling lid. If it is detected that the remaining amount of fuel in the fuel tank has increased or the refueling lid has been opened, it is considered that fuel replacement has been performed.

ステップS202Aにおいて否定判定がなされた場合、ステップS207に進んで通常の劣化判定が実施され、他方、ステップS202Aにおいて肯定判定がなされた場合、ステップS203〜S208が実施され、高硫黄燃料の給油の有無、ひいては上流触媒11の硫黄被毒の有無が検出される。つまり、この別の処理では、燃料交換後の最初の酸素吸蔵容量計測時のみ上流触媒11の硫黄被毒検出が実行される。   If a negative determination is made in step S202A, the routine proceeds to step S207 and a normal deterioration determination is performed. On the other hand, if an affirmative determination is made in step S202A, steps S203 to S208 are performed and whether or not high sulfur fuel is supplied. As a result, the presence or absence of sulfur poisoning of the upstream catalyst 11 is detected. That is, in this other process, the sulfur poisoning detection of the upstream catalyst 11 is executed only at the time of the first oxygen storage capacity measurement after the fuel exchange.

また、ステップS206で上流触媒11の硫黄被毒が検出され、上流触媒11の劣化判定が禁止された後には、ステップS208に進んでチェックランプが点灯され、同時にECU20にその旨の診断コードが記録される。これによりユーザには再度低硫黄燃料の給油を促すことができる。また後の整備の段階で、上流触媒11が一時的に硫黄被毒していること、触媒交換が不要であることなどを整備員に認識させることができる。   Further, after the sulfur poisoning of the upstream catalyst 11 is detected in step S206 and the deterioration determination of the upstream catalyst 11 is prohibited, the process proceeds to step S208 where the check lamp is turned on, and at the same time a diagnostic code to that effect is recorded in the ECU 20. Is done. As a result, the user can be prompted to supply the low sulfur fuel again. Further, at a later maintenance stage, the maintenance staff can recognize that the upstream catalyst 11 is temporarily poisoned with sulfur and that no catalyst replacement is required.

次に、劣化診断対象を上流触媒11及び下流触媒19の両触媒とした場合の第2実施例について説明する。図9及び図10には、上流触媒11及び下流触媒19の酸素吸蔵容量の燃料交換前後における変化をそれぞれ示す。図示例では前々回トリップと前回トリップの間で燃料交換が行われている。   Next, a description will be given of a second embodiment where the deterioration diagnosis target is both the upstream catalyst 11 and the downstream catalyst 19. 9 and 10 show changes in the oxygen storage capacities of the upstream catalyst 11 and the downstream catalyst 19 before and after fuel replacement, respectively. In the illustrated example, the fuel is changed between the previous trip and the previous trip.

図示されるように、前々回トリップ、前回トリップ及び今回トリップにおいて、上流触媒11及び下流触媒19の酸素吸蔵容量がそれぞれ計測されている。図9に示す上流触媒11の場合、図6に示したのと同様、前々回の酸素吸蔵容量OSC1n-2に対し、燃料交換直後の前回の酸素吸蔵容量OSC1n-1は大きく低下している。しかしながら、上流触媒11の場合、第2の現象即ち酸素吸蔵成分31への硫黄分吸着が起き難いので、これ以降、さらなる低下はほぼ見られず、従って前回の酸素吸蔵容量OSC1n-1に対し今回の酸素吸蔵容量OSC1nはほぼ変わらない。 As shown in the figure, the oxygen storage capacities of the upstream catalyst 11 and the downstream catalyst 19 are measured in the last trip, the previous trip, and the current trip, respectively. In the case of the upstream catalyst 11 shown in FIG. 9, the oxygen storage capacity OSC1 n-1 of the previous time immediately after the fuel change is greatly reduced with respect to the oxygen storage capacity OSC1 n-2 of the previous time, as shown in FIG. . However, in the case of the upstream catalyst 11, since the second phenomenon, that is, the sulfur adsorption to the oxygen storage component 31 is difficult to occur, since then, there is almost no further decrease, and therefore, with respect to the previous oxygen storage capacity OSC1 n-1. The current oxygen storage capacity OSC1 n is almost unchanged.

一方、図10に示す下流触媒19の場合、前々回の酸素吸蔵容量OSC2n-2に比べ燃料交換直後の前回の酸素吸蔵容量OSC2n-1は大きく低下するが、この低下以降もさらなる低下が見られ、前回の酸素吸蔵容量OSC2n-1に比べ今回の酸素吸蔵容量OSC2nはより低下する。前回と今回の間の低下量は前々回と前回の間の低下量より少なく、下流触媒19の酸素吸蔵容量OSC2は燃料交換直後に大きく低下し、その後も徐々に低下し続ける傾向がある。この理由は、前述したように、下流触媒19においては高硫黄燃料が給油された場合に第1の現象即ち貴金属の反応速度低下に加え、第2の現象即ち酸素吸蔵成分31への硫黄分吸着が起こるからである。硫黄分吸着が徐々に行われるので、酸素吸蔵容量も徐々に低下していくことになる。以上の酸素吸蔵容量変化特性を考慮し、次のように触媒劣化診断が実行される。 On the other hand, in the case of the downstream catalyst 19 shown in FIG. 10, the previous oxygen storage capacity OSC2 n-1 immediately after the fuel change is greatly reduced as compared to the oxygen storage capacity OSC2 n-2 of the last time, but further decrease is seen after this decrease. Therefore, the current oxygen storage capacity OSC2 n is lower than the previous oxygen storage capacity OSC2 n-1 . The amount of decrease between the previous time and the current time is smaller than the amount of decrease between the previous time and the previous time, and the oxygen storage capacity OSC2 of the downstream catalyst 19 tends to decrease greatly immediately after the fuel change, and continues to decrease gradually thereafter. The reason for this is that, as described above, in the downstream catalyst 19, when high sulfur fuel is supplied, in addition to the first phenomenon, that is, the reaction rate of the noble metal is decreased, the second phenomenon, that is, adsorption of the sulfur content on the oxygen storage component 31. Because it happens. Since the sulfur content is gradually adsorbed, the oxygen storage capacity gradually decreases. Considering the above oxygen storage capacity change characteristics, the catalyst deterioration diagnosis is executed as follows.

以下、第2実施例に関する触媒劣化診断処理を図11を参照しつつ説明する。当該処理はECU20により実行される。   Hereinafter, the catalyst deterioration diagnosis process according to the second embodiment will be described with reference to FIG. This process is executed by the ECU 20.

まずステップS301では、前記ステップS101同様、診断を開始するための前提条件が成立しているか否かが判断される。前提条件が成立していない場合には処理が終了され、他方、前提条件が成立している場合にはステップS302に進む。   First, in step S301, as in step S101, it is determined whether a precondition for starting diagnosis is satisfied. If the precondition is not satisfied, the process is terminated. If the precondition is satisfied, the process proceeds to step S302.

ステップS302においては上流触媒11の酸素吸蔵容量OSC1が計測され、次のステップS303においては下流触媒19の酸素吸蔵容量OSC2が計測される。ここでは診断対象が上流触媒11と下流触媒19であるため、図5に示した第2の態様で説明したような酸素吸蔵容量計測方法を採用する。   In step S302, the oxygen storage capacity OSC1 of the upstream catalyst 11 is measured, and in the next step S303, the oxygen storage capacity OSC2 of the downstream catalyst 19 is measured. Here, since the diagnosis target is the upstream catalyst 11 and the downstream catalyst 19, the oxygen storage capacity measuring method as described in the second mode shown in FIG. 5 is adopted.

次のステップS304では上流触媒11の酸素吸蔵容量変化量ΔOSC1が算出され、さらに次のステップS305では下流触媒19の酸素吸蔵容量変化量ΔOSC2が算出される。即ち、ステップS104と同様の方法で、まず前回処理時から今回処理時までの間の上流触媒11の酸素吸蔵容量変化量ΔOSC1=OSC1n-1−OSC1nが算出され、次いで、前回処理時から今回処理時までの間の下流触媒19の酸素吸蔵容量変化量ΔOSC2=OSC2n-1−OSC2nが算出される。 In the next step S304, the oxygen storage capacity change amount ΔOSC1 of the upstream catalyst 11 is calculated, and in the next step S305, the oxygen storage capacity change amount ΔOSC2 of the downstream catalyst 19 is calculated. That is, the oxygen storage capacity change amount ΔOSC1 = OSC1 n−1 −OSC1 n of the upstream catalyst 11 from the time of the previous processing to the time of the current processing is calculated by the same method as in step S104, and then from the time of the previous processing. The oxygen storage capacity change amount ΔOSC2 = OSC2 n-1 −OSC2 n of the downstream catalyst 19 until the current processing is calculated.

この後、ステップS306において、上流触媒11の酸素吸蔵容量変化量ΔOSC1が所定のしきい値α(図9参照)と比較される。ΔOSC1>αのときはステップS307に進んで、下流触媒19の酸素吸蔵容量変化量ΔOSC2が所定のしきい値β(図10参照)と比較される。ΔOSC2>βのときはステップS308に進んで、上流触媒11及び下流触媒19の硫黄被毒ありと判定され、同時に上流触媒11及び下流触媒19の酸素吸蔵容量計測値OSC1,OSC2に基づく劣化判定が禁止される。こうして上流触媒11及び下流触媒19の硫黄被毒が好適に検出されると共に、硫黄被毒により大きく低下した酸素吸蔵容量計測値に基づく両触媒の劣化判定が禁止され、誤診断を防止し、診断精度及び信頼性を向上することができる。   Thereafter, in step S306, the oxygen storage capacity change amount ΔOSC1 of the upstream catalyst 11 is compared with a predetermined threshold value α (see FIG. 9). When ΔOSC1> α, the routine proceeds to step S307, where the oxygen storage capacity change amount ΔOSC2 of the downstream catalyst 19 is compared with a predetermined threshold value β (see FIG. 10). When ΔOSC2> β, the routine proceeds to step S308, where it is determined that the upstream catalyst 11 and the downstream catalyst 19 are sulfur poisoned, and at the same time, the deterioration determination based on the oxygen storage capacity measurement values OSC1, OSC2 of the upstream catalyst 11 and the downstream catalyst 19 is performed. It is forbidden. Thus, the sulfur poisoning of the upstream catalyst 11 and the downstream catalyst 19 is suitably detected, and the deterioration determination of both catalysts based on the oxygen storage capacity measurement value greatly reduced by sulfur poisoning is prohibited, thereby preventing erroneous diagnosis and diagnosis. Accuracy and reliability can be improved.

他方、ステップS306においてΔOSC1≦αのとき、又はステップS307においてΔOSC2≦βのときには、ステップS309に進んで、上流触媒11及び下流触媒19に対する通常の劣化判定がなされる。即ち、ステップS102及びS103で計測された上流触媒11及び下流触媒19の酸素吸蔵容量計測値OSC1,OSC2がそれぞれに対する劣化判定値OSC1s、OSC2sと比較され、計測値が劣化判定値より大きい触媒については正常、計測値が劣化判定値以下の触媒については劣化と判定される。ここで例えば上流触媒11についてはΔOSC1>αであるが、下流触媒19についてはΔOSC2≦βのときも、ステップS309で通常の劣化判定がなされる。この場合、上流触媒11については溶損の可能性が高く、このことがステップS309の劣化判定時に劣化として判断される。よって一方の触媒の溶損による恒久的劣化を検出することが可能である。   On the other hand, when ΔOSC1 ≦ α in step S306, or when ΔOSC2 ≦ β in step S307, the process proceeds to step S309, and normal deterioration determination for the upstream catalyst 11 and the downstream catalyst 19 is made. That is, the oxygen storage capacity measurement values OSC1 and OSC2 of the upstream catalyst 11 and the downstream catalyst 19 measured in steps S102 and S103 are compared with the deterioration determination values OSC1s and OSC2s, respectively, and the measured value is larger than the deterioration determination value. A catalyst that is normal and whose measured value is equal to or less than the deterioration determination value is determined to be deteriorated. Here, for example, ΔOSC1> α for the upstream catalyst 11, but for the downstream catalyst 19, even when ΔOSC2 ≦ β, a normal deterioration determination is made in step S309. In this case, there is a high possibility of melting of the upstream catalyst 11, and this is determined as deterioration at the time of determining deterioration in step S309. Therefore, it is possible to detect permanent deterioration due to melting of one catalyst.

以上の説明から分かるように、当該診断処理では両触媒について、連続する二つの計測タイミングの酸素吸蔵容量計測値に基づき、硫黄被毒の有無を検出している。これに対し、次に述べる別の触媒劣化診断処理では、両触媒について、連続する三つの計測タイミングの酸素吸蔵容量計測値に基づき、硫黄被毒の有無を検出する。   As can be seen from the above description, in the diagnosis process, the presence or absence of sulfur poisoning is detected for both catalysts based on the oxygen storage capacity measurement values at two consecutive measurement timings. On the other hand, in another catalyst deterioration diagnosis process described below, the presence or absence of sulfur poisoning is detected for both catalysts based on the oxygen storage capacity measurement values at three consecutive measurement timings.

図12及び図13に第2実施例に関する別の触媒劣化診断処理のフローチャートを示す。当該処理はECU20により実行される。図12の処理は図13の処理より1回前に実行され、図9及び図10の例に対応づければ、例えば図12の処理が図9及び図10にいう前回トリップで実行されるもの、図13の処理が図9及び図10にいう今回トリップで実行されるものとなる。   12 and 13 are flowcharts of another catalyst deterioration diagnosis process relating to the second embodiment. This process is executed by the ECU 20. The process of FIG. 12 is executed one time before the process of FIG. 13, and if associated with the examples of FIGS. 9 and 10, for example, the process of FIG. 12 is executed in the previous trip shown in FIGS. The process of FIG. 13 is executed in the current trip shown in FIGS. 9 and 10.

図12の処理のステップS401〜S407及びS409は、図11の処理のステップS301〜S307及びS309と同じである。また図12の処理のステップS408は図11の処理のステップS308から内容が置換されている。ステップS408では、硫黄被毒の判定及び劣化判定の禁止が実行される代わりに、硫黄被毒検出仮フラグがセットされる。即ちここでは上流触媒11及び下流触媒19について、図9及び図10にいう前々回から前回までの酸素吸蔵容量変化量ΔOSC1,ΔOSC2が所定値α,βより大きいとき、硫黄被毒の可能性が暫定的に推定される。また劣化判定は保留、即ち実質的に禁止状態とされる。   Steps S401 to S407 and S409 in the process of FIG. 12 are the same as steps S301 to S307 and S309 in the process of FIG. Further, the content of step S408 in the process of FIG. 12 is replaced from that in step S308 of the process in FIG. In step S408, the sulfur poisoning detection temporary flag is set instead of executing the sulfur poisoning determination and the prohibition of the deterioration determination. That is, here, regarding the upstream catalyst 11 and the downstream catalyst 19, when the oxygen storage capacity change amounts ΔOSC1 and ΔOSC2 from the previous time to the previous time shown in FIGS. 9 and 10 are larger than the predetermined values α and β, the possibility of sulfur poisoning is tentative. Estimated. The deterioration determination is suspended, that is, substantially prohibited.

次に、図13の処理が実行される。ステップS501〜S503は図11の処理のステップS301〜S303と同じである。ステップS503の次にステップS504が実行され、硫黄被毒検出仮フラグがセットされているか否かが判断される。当該フラグがセットされていない場合、ステップS509に進んで、前記ステップS309同様、上流触媒11及び下流触媒19に対する通常の劣化判定がなされる。   Next, the process of FIG. 13 is executed. Steps S501 to S503 are the same as steps S301 to S303 in the process of FIG. After step S503, step S504 is executed, and it is determined whether or not the sulfur poisoning detection temporary flag is set. When the flag is not set, the process proceeds to step S509, and the normal deterioration determination for the upstream catalyst 11 and the downstream catalyst 19 is made as in step S309.

当該フラグがセットされている場合には、ステップS505に進んで、下流触媒19の前回処理時から今回処理時までの間の酸素吸蔵容量変化量ΔOSC2(図9及び図10にいう前回から今回までの間の酸素吸蔵容量変化量)が算出される。そして次にステップS506に進み、その酸素吸蔵容量変化量ΔOSC2が所定のしきい値γ(図10参照)と比較される。ΔOSC2≦γのときには、ステップS509に進んで、上流触媒11及び下流触媒19に対する通常の劣化判定がなされる。   When the flag is set, the process proceeds to step S505, and the oxygen storage capacity change amount ΔOSC2 between the previous processing and the current processing of the downstream catalyst 19 (from the previous time to the current time shown in FIGS. 9 and 10). Is calculated). In step S506, the oxygen storage capacity change amount ΔOSC2 is compared with a predetermined threshold value γ (see FIG. 10). When ΔOSC2 ≦ γ, the process proceeds to step S509, and the normal deterioration determination for the upstream catalyst 11 and the downstream catalyst 19 is made.

他方、ΔOSC2>γのときには、ステップS507に進んで、上流触媒11及び下流触媒19が最終的に硫黄被毒ありと判定され、同時に上流触媒11及び下流触媒19に対する劣化判定が禁止される。そしてステップS508において硫黄被毒検出仮フラグがクリアされ、処理が終了する。   On the other hand, when ΔOSC2> γ, the process proceeds to step S507, where it is finally determined that the upstream catalyst 11 and the downstream catalyst 19 are sulfur poisoned, and at the same time, deterioration determination for the upstream catalyst 11 and the downstream catalyst 19 is prohibited. In step S508, the sulfur poisoning detection temporary flag is cleared, and the process ends.

このように、図12の処理において両触媒の酸素吸蔵容量の大きな低下が検出された場合、図13の処理により下流触媒の酸素吸蔵容量がさらに低下したか否かを確認して、最終的な硫黄被毒検出を行うので、その検出精度を高められると共に、診断精度及び信頼性を向上し、誤診断をより確実に防止することができる。   As described above, when a large decrease in the oxygen storage capacity of both catalysts is detected in the process of FIG. 12, it is confirmed whether or not the oxygen storage capacity of the downstream catalyst is further decreased by the process of FIG. Since sulfur poisoning detection is performed, the detection accuracy can be improved, the diagnostic accuracy and reliability can be improved, and erroneous diagnosis can be prevented more reliably.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば、内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、直噴式等であってもよい。触媒後センサに触媒前センサと同様の広域空燃比センサを用いてもよいし、触媒前センサに触媒後センサと同様のO2センサを用いてもよい。これら広域空燃比センサやO2センサを含め、広く、排気空燃比を検出するセンサを空燃比センサということとする。本発明は三元触媒の他、酸素吸蔵能を有するあらゆる触媒に適用可能である。 Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and form of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a direct injection type or the like. A wide air-fuel ratio sensor similar to the pre-catalyst sensor may be used for the post-catalyst sensor, and an O 2 sensor similar to the post-catalyst sensor may be used for the pre-catalyst sensor. A wide range of sensors that detect the exhaust air-fuel ratio, including these wide-range air-fuel ratio sensors and O 2 sensors, are referred to as air-fuel ratio sensors. The present invention is applicable to any catalyst having an oxygen storage capacity in addition to a three-way catalyst.

図6、図9及び図10では1トリップ当たりに1回だけ酸素吸蔵容量を計測する例を示したが、これに限らず、1トリップ当たりに複数回、或いは複数トリップ当たりに1回、酸素吸蔵容量を計測する場合にも本発明は適用可能であり、また上述の各劣化診断処理も適用可能である。   6, 9, and 10 show an example in which the oxygen storage capacity is measured only once per trip. However, the present invention is not limited to this, and oxygen storage is performed multiple times per trip or once per multiple trips. The present invention can also be applied to measuring the capacity, and the above-described deterioration diagnosis processes can also be applied.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. 触媒劣化診断の第1の態様に関するタイムチャートである。It is a time chart regarding the 1st mode of catalyst degradation diagnosis. 図3と同様のタイムチャートであり、酸素吸蔵容量の計測方法を説明するための図である。FIG. 4 is a time chart similar to FIG. 3 for illustrating a method for measuring the oxygen storage capacity. 触媒劣化診断の第2の態様に関するタイムチャートである。It is a time chart regarding the 2nd mode of catalyst degradation diagnosis. 第1実施例に関し、上流触媒の酸素吸蔵容量の燃料交換前後における変化を示すグラフである。It is a graph which shows the change before and behind fuel replacement | exchange of the oxygen storage capacity of an upstream catalyst regarding 1st Example. 第1実施例に関する触媒劣化診断処理を示すフローチャートである。It is a flowchart which shows the catalyst deterioration diagnostic process regarding 1st Example. 第1実施例に関する別の触媒劣化診断処理を示すフローチャートである。It is a flowchart which shows another catalyst deterioration diagnostic process regarding 1st Example. 第2実施例に関し、上流触媒の酸素吸蔵容量の燃料交換前後における変化を示すグラフである。It is a graph which shows the change before and behind fuel replacement | exchange of the oxygen storage capacity of an upstream catalyst regarding 2nd Example. 第2実施例に関し、下流触媒の酸素吸蔵容量の燃料交換前後における変化を示すグラフである。It is a graph which shows the change before and behind fuel replacement | exchange of the oxygen storage capacity of a downstream catalyst regarding 2nd Example. 第2実施例に関する触媒劣化診断処理を示すフローチャートである。It is a flowchart which shows the catalyst deterioration diagnostic process regarding 2nd Example. 第2実施例に関する別の触媒劣化診断処理を示すフローチャートである。It is a flowchart which shows another catalyst deterioration diagnostic process regarding 2nd Example. 第2実施例に関する別の触媒劣化診断処理を示すフローチャートである。It is a flowchart which shows another catalyst deterioration diagnostic process regarding 2nd Example.

符号の説明Explanation of symbols

1 内燃機関
6 排気管
11 上流触媒
12 インジェクタ
17 触媒前センサ
18 触媒間センサ
19 下流触媒
20 電子制御ユニット(ECU)
21 触媒後センサ
OSC 酸素吸蔵容量
OSC1 上流触媒の酸素吸蔵容量
OSC2 下流触媒の酸素吸蔵容量
ΔOSC1 上流触媒の酸素吸蔵容量変化量
ΔOSC2 下流触媒の酸素吸蔵容量変化量
1 Internal combustion engine 6 Exhaust pipe 11 Upstream catalyst 12 Injector 17 Pre-catalyst sensor 18 Inter-catalyst sensor 19 Downstream catalyst 20 Electronic control unit (ECU)
21 Post-catalyst sensor OSC Oxygen storage capacity OSC1 Upstream catalyst oxygen storage capacity OSC2 Downstream catalyst oxygen storage capacity ΔOSC1 Upstream catalyst oxygen storage capacity change ΔOSC2 Downstream catalyst oxygen storage capacity change

Claims (5)

内燃機関の排気通路に上流触媒及び下流触媒を配設した内燃機関にあって、前記上流触媒及び下流触媒の劣化を診断する装置であって、
前記上流触媒及び下流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前記上流触媒及び下流触媒の前々回の酸素吸蔵容量と前回の酸素吸蔵容量が計測され、且つ、前記下流触媒の今回の酸素吸蔵容量が計測されたとき、前記上流触媒の前々回から前回までの酸素吸蔵容量変化量、前記下流触媒の前々回から前回までの酸素吸蔵容量変化量、及び前記下流触媒の前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒及び下流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置。
In an internal combustion engine in which an upstream catalyst and a downstream catalyst are arranged in an exhaust passage of the internal combustion engine, the apparatus diagnoses deterioration of the upstream catalyst and the downstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst and the downstream catalyst;
When the oxygen storage capacity and the previous oxygen storage capacity of the upstream catalyst and the downstream catalyst are measured by the measuring means, and the current oxygen storage capacity of the downstream catalyst is measured, the previous time from the previous time of the upstream catalyst is measured. Of the upstream catalyst and the downstream catalyst based on the change amount of the oxygen storage capacity from the previous time to the previous time of the downstream catalyst and the change amount of the oxygen storage capacity from the previous time to the current time of the downstream catalyst. An apparatus for diagnosing catalyst deterioration in an internal combustion engine, comprising: a sulfur poisoning detection unit that detects poison.
前記計測手段により計測された酸素吸蔵容量に基づき前記上流触媒及び下流触媒の劣化を判定する判定手段と、
前記硫黄被毒検出手段により前記上流触媒及び下流触媒の硫黄被毒が検出されたとき、前記判定手段による判定を禁止する判定禁止手段と
を備えたことを特徴とする請求項1記載の内燃機関の触媒劣化診断装置。
Determining means for determining deterioration of the upstream catalyst and downstream catalyst based on the oxygen storage capacity measured by the measuring means;
The internal combustion engine according to claim 1, further comprising: a determination prohibiting unit that prohibits determination by the determination unit when sulfur poisoning of the upstream catalyst and the downstream catalyst is detected by the sulfur poisoning detection unit. Catalyst deterioration diagnosis device.
前記上流触媒及び下流触媒の前記前々回の酸素吸蔵容量と前記前回の酸素吸蔵容量とが、それぞれ給油を挟んだ前々回トリップと前回トリップとで計測された値である
ことを特徴とする請求項1又は2記載の内燃機関の触媒劣化診断装置。
The preceding oxygen storage capacity and the previous oxygen storage capacity of the upstream catalyst and the downstream catalyst are values measured by a previous trip and a previous trip, respectively, with fueling interposed therebetween. 3. A catalyst deterioration diagnosis device for an internal combustion engine according to 2.
内燃機関の排気通路に上流触媒及び下流触媒を配設した内燃機関にあって、前記上流触媒及び下流触媒の劣化を診断する装置であって、
前記上流触媒及び下流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前記上流触媒及び下流触媒の前回の酸素吸蔵容量と今回の酸素吸蔵容量とが計測されたとき、前記上流触媒の前回から今回までの酸素吸蔵容量変化量、及び前記下流触媒の前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒及び下流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置。
In an internal combustion engine in which an upstream catalyst and a downstream catalyst are arranged in an exhaust passage of the internal combustion engine, the apparatus diagnoses deterioration of the upstream catalyst and the downstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst and the downstream catalyst;
When the previous oxygen storage capacity and the current oxygen storage capacity of the upstream catalyst and the downstream catalyst are measured by the measuring means, the oxygen storage capacity change amount from the previous time to the current time of the upstream catalyst, and the previous time of the downstream catalyst. And a sulfur poisoning detection unit for detecting sulfur poisoning of the upstream catalyst and the downstream catalyst based on the amount of change in oxygen storage capacity from the current time to the present time.
内燃機関の排気通路に上流触媒と下流触媒とを配設した内燃機関にあって、前記上流触媒の劣化を診断する装置であって、
前記上流触媒の酸素吸蔵容量を計測する計測手段と、
前記計測手段により前回の酸素吸蔵容量と今回の酸素吸蔵容量とが計測されたとき、その前回から今回までの酸素吸蔵容量変化量に基づき、前記上流触媒の硫黄被毒を検出する硫黄被毒検出手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置。
An internal combustion engine in which an upstream catalyst and a downstream catalyst are disposed in an exhaust passage of the internal combustion engine, wherein the apparatus diagnoses deterioration of the upstream catalyst,
Measuring means for measuring the oxygen storage capacity of the upstream catalyst;
Sulfur poisoning detection for detecting sulfur poisoning of the upstream catalyst based on the amount of change in oxygen storage capacity from the previous time to the current time when the previous oxygen storage capacity and the current oxygen storage capacity are measured by the measuring means. And a catalyst deterioration diagnosis device for an internal combustion engine.
JP2007314921A 2007-12-05 2007-12-05 Catalyst deterioration diagnosis device for internal combustion engine Pending JP2009138604A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314921A JP2009138604A (en) 2007-12-05 2007-12-05 Catalyst deterioration diagnosis device for internal combustion engine
US12/314,053 US20090145109A1 (en) 2007-12-05 2008-12-03 Catalyst degradation diagnosis device and diagnosis method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314921A JP2009138604A (en) 2007-12-05 2007-12-05 Catalyst deterioration diagnosis device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009138604A true JP2009138604A (en) 2009-06-25

Family

ID=40720221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314921A Pending JP2009138604A (en) 2007-12-05 2007-12-05 Catalyst deterioration diagnosis device for internal combustion engine

Country Status (2)

Country Link
US (1) US20090145109A1 (en)
JP (1) JP2009138604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150408A1 (en) * 2009-06-26 2010-12-29 トヨタ自動車株式会社 Exhaust emission control system of internal combustion engine
JP2012246842A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Fuel property determining device, and catalyst degradation diagnostic apparatus with the same
JP2021110302A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1012615B1 (en) * 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha INTERNAL COMBUSTION ENGINE EXHAUST PURIFICATION SYSTEM
FR2979949B1 (en) * 2011-09-13 2015-02-20 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR DETECTING A DEPOLLUTION MEMBER IN AN EXHAUST LINE OF A MOTOR VEHICLE, EXHAUST LINE AND MOTOR VEHICLE COMPRISING SUCH A DEVICE
JP5871009B2 (en) * 2011-10-24 2016-03-01 トヨタ自動車株式会社 Catalyst degradation detector
DE102017210678A1 (en) * 2017-06-26 2018-12-27 Ford Global Technologies, Llc Method and device for checking the functionality of a plurality of arranged in an exhaust line of a lean-running internal combustion engine in series NOx storage catalytic converters and motor vehicle
CN112539114B (en) * 2020-12-01 2022-11-29 潍柴动力股份有限公司 Method and device for treating sulfur poisoning of catalyst, electronic device and storage medium
CN114215632B (en) * 2021-12-16 2022-11-29 潍柴动力股份有限公司 Three-way catalytic converter cheating diagnosis method and related device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846375B2 (en) * 2002-07-10 2006-11-15 トヨタ自動車株式会社 Catalyst degradation judgment method
US20040031261A1 (en) * 2002-08-13 2004-02-19 Jing Sun System and method for lean NOx trap control and diagnosis
JP4288942B2 (en) * 2002-12-20 2009-07-01 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2006125279A (en) * 2004-10-28 2006-05-18 Mitsubishi Electric Corp Internal combustion engine control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150408A1 (en) * 2009-06-26 2010-12-29 トヨタ自動車株式会社 Exhaust emission control system of internal combustion engine
JP4930636B2 (en) * 2009-06-26 2012-05-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US8336293B2 (en) 2009-06-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system of an internal combustion engine
JP2012246842A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Fuel property determining device, and catalyst degradation diagnostic apparatus with the same
JP2021110302A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
JP7184056B2 (en) 2020-01-14 2022-12-06 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Also Published As

Publication number Publication date
US20090145109A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP4915256B2 (en) Catalyst degradation diagnosis apparatus and degradation diagnosis method
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP5293885B2 (en) Catalyst abnormality diagnosis device
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2008175181A (en) Catalyst deterioration detection device for internal combustion engine
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP2010185371A (en) Catalyst deterioration diagnostic device
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP4844587B2 (en) Catalyst deterioration diagnosis device
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2009127597A (en) Catalyst degradation diagnostic device
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2010159701A (en) Catalyst deterioration diagnostic device
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2010255490A (en) Catalyst abnormality diagnostic device
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4835989B2 (en) Catalyst deterioration detection device for internal combustion engine