JP2009121414A - Catalyst deterioration diagnosing device for internal combustion engine - Google Patents

Catalyst deterioration diagnosing device for internal combustion engine Download PDF

Info

Publication number
JP2009121414A
JP2009121414A JP2007298457A JP2007298457A JP2009121414A JP 2009121414 A JP2009121414 A JP 2009121414A JP 2007298457 A JP2007298457 A JP 2007298457A JP 2007298457 A JP2007298457 A JP 2007298457A JP 2009121414 A JP2009121414 A JP 2009121414A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
fuel
oxygen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298457A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyamoto
寛史 宮本
Toru Kidokoro
徹 木所
Yutaka Sawada
裕 澤田
Yasushi Iwasaki
靖志 岩▲崎▼
Koichi Kimura
光壱 木村
Koichi Kitaura
浩一 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007298457A priority Critical patent/JP2009121414A/en
Publication of JP2009121414A publication Critical patent/JP2009121414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out precise and reliable diagnosis regardless of the sulfur concentration of fuel. <P>SOLUTION: A plurality of active air/fuel ratio control having different center air/fuel ratios is executed, thereby measuring a plurality of oxygen occlusion amount corresponding to respective center air/fuel ratios. The sulfur concentration of fuel is estimated according to the change rate of the oxygen occulusion amount to change of the center air/furl ratio. According to the estimated sulfur concentration, an oxygen occulusion capacity measuring value is corrected if necessary. The oxygen occulusion capacity measuring value is corrected to be a precise value without sulfur influence, so that the precise and reliable diagnosis can be executed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気通路に配置された触媒の劣化を診断する装置に関する。   The present invention relates to an apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine.

例えば車両用の内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(Oストレージ能)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒流入排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸着保持された酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまっても、三元触媒による酸素の吸蔵・放出作用により、そのような空燃比ずれを吸収することができる。 For example, in an internal combustion engine for a vehicle, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). This is because when the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, the exhaust gas becomes lean. Excess oxygen present in the gas is adsorbed and held, and when the air-fuel ratio of the catalyst inflow exhaust gas becomes smaller than the stoichiometric, that is, becomes rich, the adsorbed and held oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric. However, such an air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.

ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係がある。よって、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。一般的には、触媒に流入する排気ガスの空燃比を強制的にリッチ及びリーンに切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴って触媒の酸素吸蔵容量を計測し、触媒の劣化を診断する方法(所謂Cmax法)が採用される。   By the way, when the catalyst deteriorates, the purification efficiency of the catalyst decreases. On the other hand, there is a correlation between the degree of deterioration of the catalyst and the degree of reduction of the oxygen storage capacity because they are reactions through noble metals. Therefore, it is possible to detect that the catalyst has deteriorated by detecting that the oxygen storage capacity has decreased. In general, active air-fuel ratio control for forcibly switching the air-fuel ratio of the exhaust gas flowing into the catalyst to rich and lean is performed, and the oxygen storage capacity of the catalyst is measured as the active air-fuel ratio control is executed. A method (so-called Cmax method) for diagnosing deterioration of the ink is employed.

一方、使用地域等によっては燃料中に硫黄(S)が比較的高濃度で含まれていることがある。このような燃料が給油された場合、硫黄成分が触媒に蓄積して触媒の性能が低下する被毒(S被毒)が発生する。S被毒が発生すると、触媒の酸素吸放出反応が妨げられて触媒の酸素吸蔵容量が低下する。しかしながら、硫黄濃度の低い燃料が再度給油されたりすると被毒状態はやがて解消される。S被毒による触媒の性能低下は一時的なものである。よって触媒の劣化診断においては、かかるS被毒による一時的劣化を、本来診断すべき恒久的劣化であると誤って診断しないようにする必要がある。とりわけ、正常と劣化との境目(クライテリア)付近にありながらなお正常である触媒について、誤って劣化と誤診断してしまわないようにする必要がある。   On the other hand, sulfur (S) may be contained in the fuel at a relatively high concentration depending on the region of use. When such fuel is supplied, poisoning (S poisoning) occurs in which sulfur components accumulate in the catalyst and the performance of the catalyst decreases. When S poisoning occurs, the oxygen storage / release reaction of the catalyst is hindered and the oxygen storage capacity of the catalyst decreases. However, if fuel with a low sulfur concentration is refueled, the poisoning state will eventually be resolved. The performance degradation of the catalyst due to S poisoning is temporary. Therefore, in the deterioration diagnosis of the catalyst, it is necessary not to mistakenly diagnose the temporary deterioration due to the S poisoning as permanent deterioration that should be diagnosed. In particular, it is necessary to prevent a catalyst that is still normal while being in the vicinity of the boundary between normality and deterioration (criteria) from being erroneously diagnosed as deterioration.

この問題を解決すべく、特許文献1に開示された技術では、触媒に流入する排気ガスの空燃比がリーンのときとリッチのときとで酸素吸蔵能に及ぼす硫黄の影響が異なるという特性を利用し、空燃比がリーンのときの酸素吸蔵能のみによって触媒の劣化を判定している。   In order to solve this problem, the technique disclosed in Patent Document 1 uses the characteristic that the influence of sulfur on the oxygen storage capacity differs between when the air-fuel ratio of the exhaust gas flowing into the catalyst is lean and when it is rich. However, the deterioration of the catalyst is determined only by the oxygen storage capacity when the air-fuel ratio is lean.

特開2006−291773号公報JP 2006-291773 A

ところで、本発明者らの試験研究の結果によると、アクティブ空燃比制御の中心空燃比を変化させた場合に、その中心空燃比の変化に対する酸素吸蔵容量の変化率が、燃料の硫黄濃度に応じて変化することが判明した。従ってこの特性を利用し、硫黄影響の無い正確な酸素吸蔵容量を計測できれば診断精度の向上に大変有利である。   By the way, according to the results of the test research by the present inventors, when the central air-fuel ratio of the active air-fuel ratio control is changed, the change rate of the oxygen storage capacity with respect to the change of the central air-fuel ratio depends on the sulfur concentration of the fuel. Turned out to change. Therefore, if this characteristic can be used to accurately measure the oxygen storage capacity without the influence of sulfur, it is very advantageous to improve diagnostic accuracy.

そこで、本発明はこのような事情に鑑みてなされたもので、その目的は、燃料の硫黄濃度に拘わらず、高精度で信頼性の高い診断が可能な内燃機関の触媒劣化診断装置を提供することにある。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a catalyst deterioration diagnosis device for an internal combustion engine capable of highly accurate and reliable diagnosis regardless of the sulfur concentration of the fuel. There is.

本発明によれば、
内燃機関の排気通路に配置された触媒の劣化を診断する装置であって、
前記触媒に流入する排気ガスの空燃比を所定の中心空燃比を境にリッチ側及びリーン側に交互に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
前記アクティブ空燃比制御の実行に伴って前記触媒の酸素吸蔵容量を計測する計測手段と、
前記アクティブ空燃比制御手段により前記中心空燃比の異なる複数のアクティブ空燃比制御を実行し、これに伴って各中心空燃比に対応する複数の酸素吸蔵容量を前記計測手段により計測したときの、前記中心空燃比の変化に対する前記酸素吸蔵容量の変化率に基づき、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置が提供される。
According to the present invention,
An apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine,
Active air-fuel ratio control means for executing active air-fuel ratio control for alternately switching the air-fuel ratio of the exhaust gas flowing into the catalyst to the rich side and the lean side with a predetermined central air-fuel ratio as a boundary;
Measuring means for measuring the oxygen storage capacity of the catalyst in accordance with execution of the active air-fuel ratio control;
When the plurality of active air-fuel ratios having different central air-fuel ratios are executed by the active air-fuel ratio control means, and a plurality of oxygen storage capacities corresponding to the respective center air-fuel ratios are measured by the measurement means. An apparatus for diagnosing catalyst deterioration in an internal combustion engine is provided, comprising: a sulfur concentration estimating means for estimating a sulfur concentration of fuel based on a rate of change of the oxygen storage capacity with respect to a change in central air-fuel ratio.

前述したように、本発明者らの試験研究の結果によれば、中心空燃比の変化に対する酸素吸蔵容量の変化率は、燃料の硫黄濃度の関数或いは相関値であることが確認された。よって本発明では、複数対の中心空燃比及び酸素吸蔵容量のデータに基づき燃料の硫黄濃度を推定することとしている。燃料の硫黄濃度を推定することにより、酸素吸蔵容量計測値に必要な補正を行って、それを硫黄影響の無い正確な値にすることができる。そしてこれを劣化判定に用いることで、高精度で信頼性の高い診断が可能となり、併せて誤診断を未然に防止することができる。   As described above, according to the results of the study by the present inventors, it has been confirmed that the rate of change of the oxygen storage capacity with respect to the change of the central air-fuel ratio is a function or correlation value of the sulfur concentration of the fuel. Therefore, in the present invention, the sulfur concentration of the fuel is estimated based on data on a plurality of pairs of central air-fuel ratio and oxygen storage capacity. By estimating the sulfur concentration of the fuel, it is possible to make a necessary correction to the measured value of the oxygen storage capacity and to make it an accurate value without the influence of sulfur. By using this for the deterioration determination, highly accurate and reliable diagnosis can be performed, and erroneous diagnosis can be prevented in advance.

好ましくは、前記中心空燃比の少なくとも一つがストイキに等しく、少なくとも一つがストイキよりリーンな値である。   Preferably, at least one of the central air-fuel ratios is equal to stoichiometric, and at least one is a value leaner than stoichiometric.

本発明者らの試験研究の結果によれば、ストイキ〜リーン間の中心空燃比の領域において、燃料の硫黄濃度の違いにより酸素吸蔵容量変化率が顕著に変化することが確認された。従って中心空燃比の異なる複数のアクティブ空燃比制御において、中心空燃比の少なくとも一つをストイキに等しくし、少なくとも一つをストイキよりリーンな値とすることで、少ない数のアクティブ空燃比制御で効率的に且つ短時間で燃料の硫黄濃度の推定ひいては触媒劣化診断を実行することができる。   According to the results of the study by the present inventors, it has been confirmed that the oxygen storage capacity change rate changes significantly due to the difference in the sulfur concentration of the fuel in the central air-fuel ratio region between stoichiometric and lean. Therefore, in a plurality of active air-fuel ratio controls with different central air-fuel ratios, by making at least one of the central air-fuel ratios equal to the stoichiometric value and making at least one a value leaner than the stoichiometric value, the efficiency can be reduced with a small number of active air-fuel ratio controls In addition, the estimation of the sulfur concentration of the fuel and the catalyst deterioration diagnosis can be executed in a short time.

好ましくは、前記中心空燃比の少なくとも一つがストイキに等しく、少なくとも一つがストイキよりリーンな値であり、少なくとも一つがストイキよりリッチな値であってもよい。   Preferably, at least one of the central air-fuel ratios is equal to stoichiometric, at least one is a leaner value than stoichiometric, and at least one is a richer value than stoichiometric.

このようにストイキよりリッチな中心空燃比を含めると、アクティブ空燃比制御の数は多くなるもののデータ数を増し、中心空燃比の範囲を拡大して、酸素吸蔵容量変化率の算出精度ひいては硫黄濃度の推定精度を高めることができる。   When the center air-fuel ratio richer than stoichiometric is included in this way, the number of active air-fuel ratio controls increases, but the number of data increases, the range of the center air-fuel ratio is expanded, the calculation accuracy of the oxygen storage capacity change rate, and the sulfur concentration The estimation accuracy can be improved.

好ましくは、前記硫黄濃度推定手段は、前記中心空燃比と前記酸素吸蔵容量のデータに基づき最小二乗法により前記酸素吸蔵容量の変化率を算出する。   Preferably, the sulfur concentration estimating means calculates a change rate of the oxygen storage capacity by a least square method based on the data of the central air-fuel ratio and the oxygen storage capacity.

好ましくは、前記アクティブ空燃比制御手段が、前記中心空燃比の異なる複数のアクティブ空燃比制御を連続的に実行する。こうすると、複数のアクティブ空燃比制御を断続的に実行する場合に比べ診断時間を短縮することができる。   Preferably, the active air-fuel ratio control means continuously executes a plurality of active air-fuel ratio controls with different central air-fuel ratios. In this way, the diagnosis time can be shortened compared to the case where a plurality of active air-fuel ratio controls are intermittently executed.

好ましくは、前記硫黄濃度推定手段により燃料の硫黄濃度が高いと推定された場合に、前記中心空燃比がストイキのときの酸素吸蔵容量を補正し、当該補正された酸素吸蔵容量に基づき前記触媒の劣化を判定する判定手段を備える。   Preferably, when the sulfur concentration of the fuel is estimated to be high by the sulfur concentration estimating means, the oxygen storage capacity when the central air-fuel ratio is stoichiometric is corrected, and based on the corrected oxygen storage capacity, the catalyst A determination means for determining deterioration is provided.

これにより、中心空燃比がストイキのときの酸素吸蔵容量を硫黄影響の無いような値に補正した上で劣化判定でき、診断精度及び信頼性を向上することができる。   As a result, it is possible to determine the deterioration after correcting the oxygen storage capacity when the central air-fuel ratio is stoichiometric to a value that does not affect the sulfur, and the diagnostic accuracy and reliability can be improved.

好ましくは、前記判定手段は、前記硫黄濃度推定手段により燃料の硫黄濃度が低いと推定された場合に、前記中心空燃比がストイキのときの酸素吸蔵容量に基づき前記触媒の劣化を判定する。   Preferably, the determination means determines the deterioration of the catalyst based on the oxygen storage capacity when the central air-fuel ratio is stoichiometric when the sulfur concentration estimation means estimates that the sulfur concentration of the fuel is low.

好ましくは、前記アクティブ空燃比制御手段は、触媒温度が低いときに前記中心空燃比の異なる複数のアクティブ空燃比制御を実行すると共に、触媒温度が高いときに前記中心空燃比をストイキとする単一のアクティブ空燃比制御を実行し、前記判定手段は、触媒温度が高いときに、前記単一のアクティブ空燃比制御に伴って前記計測手段により計測された酸素吸蔵容量に基づき前記触媒の劣化を判定する。   Preferably, the active air-fuel ratio control means performs a plurality of active air-fuel ratio controls with different central air-fuel ratios when the catalyst temperature is low, and also makes the central air-fuel ratio stoichiometric when the catalyst temperature is high When the catalyst temperature is high, the determination means determines the deterioration of the catalyst based on the oxygen storage capacity measured by the measurement means along with the single active air-fuel ratio control. To do.

触媒が硫黄影響を受けやすいのは触媒温度が低いときであり、逆に触媒温度が高いときには触媒が硫黄影響を受けづらい。よってこの好ましい形態では、触媒温度が高いときには、中心空燃比をストイキとする単一のアクティブ空燃比制御を行い、これにより計測された酸素吸蔵容量のみに基づき触媒の劣化判定を行う。こうするとアクティブ空燃比制御を複数回行わなくて済み、診断時間を短縮することができる。   The catalyst is easily influenced by sulfur when the catalyst temperature is low, and conversely, when the catalyst temperature is high, the catalyst is not easily influenced by sulfur. Therefore, in this preferred embodiment, when the catalyst temperature is high, single active air-fuel ratio control with the central air-fuel ratio as stoichiometric is performed, and deterioration of the catalyst is determined based only on the oxygen storage capacity measured thereby. In this way, the active air-fuel ratio control need not be performed a plurality of times, and the diagnosis time can be shortened.

本発明によれば、燃料の硫黄濃度に拘わらず、高精度で信頼性の高い診断が可能になるという、優れた効果が発揮される。   According to the present invention, an excellent effect is achieved that a highly accurate and reliable diagnosis is possible regardless of the sulfur concentration of the fuel.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。   FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. To do. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   In the cylinder head of the internal combustion engine 1, an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port are provided for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、酸素吸蔵能を有する三元触媒からなる触媒11,19が直列に取り付けられている。なお排気ポート、枝管及び排気管6により排気通路が形成される。上流触媒11の上流側と下流側とにそれぞれ排気ガスの空燃比を検出するための空燃比センサ、即ち触媒前センサ17及び触媒後センサ18が設置されている。触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後センサ18は所謂Oセンサからなり、理論空燃比を境に出力値が急変する特性を持つ。なお触媒後センサ18は上流触媒11と下流触媒19の間に設置されている。 On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder, and the exhaust pipe 6 has catalysts 11, 19 made of a three-way catalyst having an oxygen storage capacity. Are attached in series. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 6. Air-fuel ratio sensors for detecting the air-fuel ratio of exhaust gas, that is, a pre-catalyst sensor 17 and a post-catalyst sensor 18 are installed on the upstream side and the downstream side of the upstream catalyst 11, respectively. The pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the post-catalyst sensor 18 is a so-called O 2 sensor, and has a characteristic that the output value changes suddenly at the theoretical air-fuel ratio. The post-catalyst sensor 18 is installed between the upstream catalyst 11 and the downstream catalyst 19.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst sensor 17, and the post-catalyst sensor 18, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1 and an accelerator that detects the accelerator opening, as shown in the figure. The opening sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

触媒11,19は、これに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx ,HCおよびCOを同時に浄化する。そしてこれに対応して、ECU20は、内燃機関の通常運転時、特に上流触媒11に流入する排気ガスの空燃比即ち触媒前空燃比A/Ffrが理論空燃比に一致するように、空燃比を制御する。具体的にはECU20は、理論空燃比に等しい目標空燃比A/Ftを設定すると共に、触媒前センサ17により検出された触媒前空燃比A/Ffrが目標空燃比A/Ftに一致するように、インジェクタ12から噴射される燃料噴射量をフィードバック制御する。これにより触媒11に流入する排気ガスの空燃比は理論空燃比近傍に保たれ、触媒11において最大の浄化性能が発揮されるようになる。   The catalysts 11 and 19 simultaneously purify NOx, HC and CO when the air-fuel ratio A / F of the exhaust gas flowing into the catalysts 11 and 19 is a stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.6). In response to this, the ECU 20 adjusts the air-fuel ratio so that the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 11, that is, the pre-catalyst air-fuel ratio A / Ffr matches the stoichiometric air-fuel ratio during normal operation of the internal combustion engine. Control. Specifically, the ECU 20 sets a target air-fuel ratio A / Ft equal to the theoretical air-fuel ratio, and makes the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst sensor 17 coincide with the target air-fuel ratio A / Ft. The fuel injection amount injected from the injector 12 is feedback-controlled. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst 11 is kept in the vicinity of the theoretical air-fuel ratio, and the maximum purification performance is exhibited in the catalyst 11.

ここで、劣化診断の対象となる上流触媒11についてより詳細に説明する。なお以下の説明は下流触媒19にも同様に当てはまる。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸収放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeOやジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHCおよびCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元浄化される。 Here, the upstream catalyst 11 to be subjected to deterioration diagnosis will be described in more detail. The following description applies to the downstream catalyst 19 as well. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and the coating material 31 is held in a state in which a large number of particulate catalyst components 32 are dispersedly arranged. The catalyst 11 is exposed inside. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays the role of a promoter that promotes the reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. For example, if the atmosphere gas of the catalyst component 32 and the coating material 31 is richer than the stoichiometric air-fuel ratio, the oxygen stored in the oxygen storage component present around the catalyst component 32 is released, and as a result, the released oxygen As a result, unburned components such as HC and CO are oxidized and purified. On the contrary, when the atmosphere gas of the catalyst component 32 and the coating material 31 is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmosphere gas, and as a result, NOx is reduced and purified. The

このような酸素吸放出作用により、通常の空燃比制御の際に触媒前空燃比A/Ffrが理論空燃比に対し多少ばらついたとしても、NOx、HCおよびCOといった三つの排気ガス成分を同時浄化することができる。よって通常の空燃比制御において、触媒前空燃比A/Ffrを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。   By such an oxygen absorption / release action, even if the pre-catalyst air-fuel ratio A / Ffr slightly varies from the stoichiometric air-fuel ratio during normal air-fuel ratio control, three exhaust gas components such as NOx, HC and CO are simultaneously purified. can do. Therefore, in normal air-fuel ratio control, it is also possible to purify the exhaust gas by making the pre-catalyst air-fuel ratio A / Ffr oscillate minutely around the theoretical air-fuel ratio and repeating the absorption and release of oxygen.

ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。   By the way, in the catalyst 11 in the new state, as described above, a large number of fine particulate catalyst components 32 are uniformly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). In this case, the contact probability between the exhaust gas and the catalyst component 32 is lowered, and the purification rate is lowered. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.

このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、触媒11の酸素吸蔵能を検出することにより触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵容量(OSC;O Strage Capacity、単位はg)の大きさによって表される。 Thus, the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11 are in a correlation. Therefore, in this embodiment, the degree of deterioration of the catalyst 11 is detected by detecting the oxygen storage capacity of the catalyst 11. Here, the oxygen storage capacity of the catalyst 11 is represented by the size of the oxygen storage capacity (OSC; O 2 Strage Capacity, the unit is g), which is the maximum amount of oxygen that the current catalyst 11 can store.

以下、本実施形態における触媒劣化診断について説明する。   Hereinafter, the catalyst deterioration diagnosis in the present embodiment will be described.

本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、混合気の空燃比ひいては触媒前空燃比A/Ffrは、所定の中心空燃比A/Fcを境にリッチ側及びリーン側に強制的に(アクティブに)交互に切り替えられる。なおリッチ側に変化されたときの空燃比をリッチ空燃比A/Fr、リーン側に変化されたときの空燃比をリーン空燃比A/Flと称す。このアクティブ空燃比制御によって触媒前空燃比A/Ffrがリッチ側又はリーン側に変化されているときに触媒の酸素吸蔵容量OSCが計測される。   The catalyst deterioration diagnosis of the present embodiment is basically based on the Cmax method described above. When the deterioration diagnosis of the catalyst 11 is performed, the active air-fuel ratio control is executed by the ECU 20. In the active air-fuel ratio control, the air-fuel ratio of the air-fuel mixture, and thus the pre-catalyst air-fuel ratio A / Ffr, is forcibly (actively) switched alternately to the rich side and the lean side with a predetermined center air-fuel ratio A / Fc as a boundary. The air-fuel ratio when changed to the rich side is referred to as rich air-fuel ratio A / Fr, and the air-fuel ratio when changed to the lean side is referred to as lean air-fuel ratio A / Fl. When the pre-catalyst air-fuel ratio A / Ffr is changed to the rich side or the lean side by this active air-fuel ratio control, the oxygen storage capacity OSC of the catalyst is measured.

触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaに基づいて、予め設定されたマップを利用し、触媒11の温度Tcを推定する。なお、吸入空気量Ga以外のパラメータ、例えばエンジン回転速度Ne(rpm)などを触媒温度推定に用いるパラメータに含めてもよい。   The deterioration diagnosis of the catalyst 11 is executed during steady operation of the internal combustion engine 1 and when the catalyst 11 is in the active temperature range. Measurement of the temperature of the catalyst 11 (catalyst bed temperature) may be detected directly using a temperature sensor, but in the present embodiment, it is estimated from the operating state of the internal combustion engine. For example, the ECU 20 estimates the temperature Tc of the catalyst 11 using a preset map based on the intake air amount Ga detected by the air flow meter 5. It should be noted that parameters other than the intake air amount Ga, for example, the engine rotational speed Ne (rpm) may be included in the parameters used for the catalyst temperature estimation.

図3(A),(B)にはそれぞれ、アクティブ空燃比制御実行時における触媒前センサ17及び触媒後センサ18の出力が実線で示されている。また、図3(A)には、ECU20内部で発生される目標空燃比A/Ftが破線で示されている。触媒前センサ17及び触媒後センサ18の出力値はそれぞれ触媒前空燃比A/Ffr及び触媒後空燃比A/Frrの値に対応する。   In FIGS. 3A and 3B, the outputs of the pre-catalyst sensor 17 and the post-catalyst sensor 18 when the active air-fuel ratio control is executed are indicated by solid lines. In FIG. 3A, the target air-fuel ratio A / Ft generated inside the ECU 20 is indicated by a broken line. The output values of the pre-catalyst sensor 17 and the post-catalyst sensor 18 correspond to the values of the pre-catalyst air / fuel ratio A / Ffr and the post-catalyst air / fuel ratio A / Frr, respectively.

図3(A)に示されるように、目標空燃比A/Ftは、中心空燃比としての理論空燃比(ストイキ)A/Fsを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比A/Fr)と、そこからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比A/Fl)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比A/Ftの切り替えに追従して、実際値としての触媒前空燃比A/Ffrも、目標空燃比A/Ftに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比A/Ftと触媒前空燃比A/Ffrとは時間遅れがあること以外等価であることが理解されよう。   As shown in FIG. 3A, the target air-fuel ratio A / Ft is centered on the stoichiometric air-fuel ratio (stoichiometric) A / Fs as the center air-fuel ratio, and a predetermined amplitude (rich amplitude Ar, An air-fuel ratio (rich air-fuel ratio A / Fr) separated by Ar> 0), and an air-fuel ratio (lean air-fuel ratio A / Fl) separated from it by a predetermined amplitude (lean amplitude Al, Al> 0) Forcibly and alternately. Following the switching of the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ffr as an actual value is also switched with a slight time delay with respect to the target air-fuel ratio A / Ft. From this, it will be understood that the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ffr are equivalent except that there is a time delay.

図示例においてリッチ振幅Arとリーン振幅Alとは等しい。例えば理論空燃比A/Fs=14.6、リッチ空燃比A/Fr=14.1、リーン空燃比A/Fl=15.1、リッチ振幅Ar=リーン振幅Al=0.5である。通常の空燃比制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、即ちリッチ振幅Arとリーン振幅Alとの値は大きい。   In the illustrated example, the rich amplitude Ar and the lean amplitude Al are equal. For example, theoretical air fuel ratio A / Fs = 14.6, rich air fuel ratio A / Fr = 14.1, lean air fuel ratio A / Fl = 15.1, rich amplitude Ar = lean amplitude Al = 0.5. Compared with the normal air-fuel ratio control, the active air-fuel ratio control has a larger amplitude of the air-fuel ratio, that is, the values of the rich amplitude Ar and the lean amplitude Al are larger.

ところで、目標空燃比A/Ftが切り替えられるタイミングは、触媒後センサ18の出力がリッチからリーンに、又はリーンからリッチに切り替わるタイミングである。ここで図示されるように触媒後センサ18の出力電圧は理論空燃比A/Fsを境に急変し、触媒後空燃比A/Frrが理論空燃比A/Fsより小さいリッチ側の空燃比であるときその出力電圧がリッチ判定値VR以上となり、触媒後空燃比A/Frrが理論空燃比A/Fsより大きいリーン側の空燃比であるときその出力電圧がリーン判定値VL以下となる。ここでVR>VLであり、例えばVR=0.59(V)、VL=0.21(V)である。   By the way, the timing at which the target air-fuel ratio A / Ft is switched is the timing at which the output of the post-catalyst sensor 18 is switched from rich to lean, or from lean to rich. As shown in the figure, the output voltage of the post-catalyst sensor 18 changes suddenly at the theoretical air-fuel ratio A / Fs, and the post-catalyst air-fuel ratio A / Frr is the rich air-fuel ratio smaller than the theoretical air-fuel ratio A / Fs. When the output voltage becomes equal to or higher than the rich determination value VR, and when the post-catalyst air-fuel ratio A / Frr is the lean air-fuel ratio greater than the theoretical air-fuel ratio A / Fs, the output voltage becomes lower than the lean determination value VL. Here, VR> VL, for example, VR = 0.59 (V) and VL = 0.21 (V).

図3(A),(B)に示されるように、触媒後センサ18の出力電圧がリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比A/Ftはリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられる。その後、触媒後センサ18の出力電圧がリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比A/Ftはリッチ空燃比A/Frからリーン空燃比A/Flに切り替えられる。   As shown in FIGS. 3A and 3B, when the output voltage of the post-catalyst sensor 18 changes from the rich value to the lean value and becomes equal to the lean determination value VL (time t1), the target sky The fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr. Thereafter, when the output voltage of the post-catalyst sensor 18 changes from the lean value to the rich side and becomes equal to the rich determination value VR (time t2), the target air-fuel ratio A / Ft becomes lean from the rich air-fuel ratio A / Fr. The air-fuel ratio is switched to A / Fl.

このような空燃比変化を行うアクティブ空燃比制御を実行しつつ、次のようにして触媒11の酸素吸蔵容量OSCが計測され、触媒11の劣化が判定される。   While performing the active air-fuel ratio control that performs such an air-fuel ratio change, the oxygen storage capacity OSC of the catalyst 11 is measured as follows, and the deterioration of the catalyst 11 is determined.

図3を参照して、時刻t1より前では目標空燃比A/Ftがリーン空燃比A/Flとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続けているが、一杯に酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリーン側に変化し、触媒後センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、或いは反転される。このように目標空燃比A/Ftは触媒後センサ18の出力をトリガにして反転される。   Referring to FIG. 3, the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl before time t1, and the lean gas flows into the catalyst 11. At this time, the catalyst 11 continues to absorb oxygen, but when it fully absorbs oxygen, it can no longer absorb oxygen, and the lean gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the lean side, and when the output voltage of the post-catalyst sensor 18 reaches the lean determination value VL (t1), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / Fr. Or reversed. In this way, the target air-fuel ratio A / Ft is reversed using the output of the post-catalyst sensor 18 as a trigger.

そして今度は触媒11にリッチガスが流入されることとなる。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比A/Fsの排気ガスが流出し、触媒後空燃比A/Frrがリッチにならないことから、触媒後センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは全ての吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリッチ側に変化し、触媒後センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。   This time, rich gas flows into the catalyst 11. At this time, the oxygen stored in the catalyst 11 continues to be released from the catalyst 11. Therefore, the exhaust gas of the theoretical air-fuel ratio A / Fs flows out to the downstream side of the catalyst 11 and the post-catalyst air-fuel ratio A / Frr does not become rich, so the output of the post-catalyst sensor 18 is not reversed. When oxygen is continuously released from the catalyst 11, all the stored oxygen is eventually released from the catalyst 11, and at that time, oxygen can no longer be released, and rich gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the rich side, and when the output voltage of the post-catalyst sensor 18 reaches the rich determination value VR (t2), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / Fl. Can be switched to.

酸素吸蔵容量OSCが大きいほど、酸素を吸収或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は目標空燃比A/Ftの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほど目標空燃比A/Ftの反転周期は短くなる。   The larger the oxygen storage capacity OSC, the longer the time during which oxygen can be absorbed or released. That is, when the catalyst is not deteriorated, the inversion cycle of the target air-fuel ratio A / Ft (for example, the time from t1 to t2) becomes longer, and the inversion cycle of the target air-fuel ratio A / Ft becomes shorter as the deterioration of the catalyst proceeds. .

そこで、このことを利用して酸素吸蔵容量OSCが以下のようにして計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffrがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t11から、次に目標空燃比A/Ftが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵容量dOSC(酸素吸蔵容量の瞬時値)が算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが時刻t11から時刻t2まで積算される。こうしてこの酸素放出サイクルにおける酸素吸蔵容量即ち放出酸素量が計測される。   Therefore, using this fact, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ffr as the actual value is slightly delayed with the rich air-fuel ratio A / Fr. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ffr reaches the theoretical air-fuel ratio A / Fs to the time t2 when the target air-fuel ratio A / Ft next reverses, the following equation (1) An oxygen storage capacity dOSC (instantaneous value of the oxygen storage capacity) is calculated, and the oxygen storage capacity dOSC for each minute time is integrated from time t11 to time t2. Thus, the oxygen storage capacity, that is, the amount of released oxygen in this oxygen release cycle is measured.

Figure 2009121414
Figure 2009121414

ここで、Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。   Here, Q is a fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, an air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. K is a constant representing the proportion of oxygen contained in air (about 0.23).

基本的には、この1回で計測された酸素吸蔵容量OSCを用い、これを所定の劣化判定値OSCsと比較し、酸素吸蔵容量OSCが劣化判定値OSCsを超えていれば正常、酸素吸蔵容量OSCが劣化判定値OSCs以下ならば劣化、というように触媒の劣化を判定できる。しかしながら、本実施形態では精度を向上させるため、目標空燃比A/Ftがリーン側となっている酸素吸蔵サイクルでも同様に酸素吸蔵容量(この場合酸素吸蔵量)を計測し、これら酸素吸蔵容量の平均値を1吸放出サイクルに係る1単位の酸素吸蔵容量として計測している。そしてさらに、吸放出サイクルを複数回繰り返し、複数単位の酸素吸蔵容量の値を得、その平均値を最終的な酸素吸蔵容量計測値としている。   Basically, the oxygen storage capacity OSC measured at one time is used and compared with a predetermined deterioration judgment value OSCs. If the oxygen storage capacity OSC exceeds the deterioration judgment value OSCs, the oxygen storage capacity is normal. If the OSC is equal to or lower than the deterioration determination value OSCs, the deterioration of the catalyst can be determined such as deterioration. However, in this embodiment, in order to improve accuracy, the oxygen storage capacity (in this case, oxygen storage amount) is measured in the oxygen storage cycle in which the target air-fuel ratio A / Ft is on the lean side, and the oxygen storage capacity of these oxygen storage capacities is measured. The average value is measured as an oxygen storage capacity of one unit related to one absorption / release cycle. Further, the absorption / release cycle is repeated a plurality of times to obtain a value of oxygen storage capacity of a plurality of units, and the average value is used as the final oxygen storage capacity measurement value.

酸素吸蔵サイクルにおける酸素吸蔵容量(酸素吸蔵量)の計測については、図4に示すように、時刻t2で目標空燃比A/Ftがリーン空燃比A/Flに切り替えられた後、触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t21から、次に目標空燃比A/Ftがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。こうしてこの酸素吸収サイクルにおける酸素吸蔵容量OSC即ち吸蔵酸素量(図5のOSC2)が計測される。前回サイクルの酸素吸蔵容量OSC1と今回サイクルの酸素吸蔵容量OSC2とはほぼ等しい値となるはずである。   Regarding the measurement of the oxygen storage capacity (oxygen storage amount) in the oxygen storage cycle, as shown in FIG. 4, after the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio A / Fl at time t2, the pre-catalyst air-fuel ratio is measured. From time t21 when A / Ffr reaches the theoretical air-fuel ratio A / Fs to time t3 when the target air-fuel ratio A / Ft reverses to the rich side next, the oxygen storage capacity dOSC for each minute time is calculated from the previous equation (1). The calculated oxygen storage capacity dOSC for each minute time is integrated. Thus, the oxygen storage capacity OSC, that is, the amount of stored oxygen (OSC2 in FIG. 5) in this oxygen absorption cycle is measured. The oxygen storage capacity OSC1 of the previous cycle and the oxygen storage capacity OSC2 of the current cycle should be approximately equal.

次に、この酸素吸蔵容量計測値を用いて触媒の劣化判定がなされる。即ち、計測された酸素吸蔵容量OSCの値が所定の劣化判定値OSCsと比較され、酸素吸蔵容量OSCの値が劣化判定値OSCsより大きければ触媒は正常、酸素吸蔵容量OSCの値が劣化判定値OSCs以下ならば触媒は劣化と判定される。なお、触媒が劣化と判定された場合、その事実をユーザに知らせるため、チェックランプ等の警告装置を起動させるのが好ましい。以上が触媒劣化診断の基本的な内容である。   Next, the deterioration of the catalyst is determined using the measured oxygen storage capacity. That is, the measured value of the oxygen storage capacity OSC is compared with a predetermined deterioration determination value OSCs. If the value of the oxygen storage capacity OSC is larger than the deterioration determination value OSCs, the catalyst is normal and the value of the oxygen storage capacity OSC is the deterioration determination value. If OSCs or less, the catalyst is determined to be deteriorated. When it is determined that the catalyst is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact. The above is the basic content of the catalyst deterioration diagnosis.

次に、本実施形態における燃料の硫黄濃度の推定等について説明する。   Next, estimation of the sulfur concentration of the fuel in this embodiment will be described.

図5に、アクティブ空燃比制御の中心空燃比A/Fcと酸素吸蔵容量計測値OSCとの関係を調べた試験結果を示す。図中、菱形のデータは燃料の硫黄濃度が低い場合(低硫黄燃料の場合)を示し、正方形のデータは燃料の硫黄濃度が高い場合(高硫黄燃料の場合)を示す。低硫黄燃料としては硫黄濃度30ppmのものが、高硫黄燃料としては硫黄濃度300ppmのものが使用されている。中心空燃比A/Fcについては14.3,14.6(ストイキ),14.9というように異ならせている。中心空燃比及び燃料硫黄濃度以外の条件は同じであり、触媒温度は770℃である。見られるように、高硫黄燃料の場合には低硫黄燃料の場合に比べ、硫黄被毒の影響により、同一中心空燃比における酸素吸蔵容量計測値OSCが低下しているのが明らかである。   FIG. 5 shows the test results of examining the relationship between the central air-fuel ratio A / Fc of active air-fuel ratio control and the measured oxygen storage capacity OSC. In the figure, rhombus data indicates a case where the fuel sulfur concentration is low (in the case of low sulfur fuel), and square data indicates a case where the fuel sulfur concentration is high (in the case of high sulfur fuel). A low sulfur fuel having a sulfur concentration of 30 ppm and a high sulfur fuel having a sulfur concentration of 300 ppm are used. The center air-fuel ratio A / Fc is differentiated as 14.3, 14.6 (Stoichi), 14.9. The conditions other than the central air-fuel ratio and the fuel sulfur concentration are the same, and the catalyst temperature is 770 ° C. As can be seen, it is clear that the oxygen storage capacity measurement value OSC at the same central air-fuel ratio is lower in the case of high sulfur fuel than in the case of low sulfur fuel due to the influence of sulfur poisoning.

また、これに加え、高硫黄燃料の場合と低硫黄燃料の場合とでは、中心空燃比A/Fcの変化に対する酸素吸蔵容量OSCの変化率が異なる。この酸素吸蔵容量OSCの変化率をH、中心空燃比A/Fcの変化量をΔA/Fc、これに対応する酸素吸蔵容量OSCの変化量をΔOSCとすると、H=ΔOSC/ΔA/Fcで表される。例えば、図示例の高硫黄燃料の場合において、中心空燃比が14.6(ストイキ)のときの酸素吸蔵容量をOSCh14.6、中心空燃比が14.9(ストイキよりリーン)のときの酸素吸蔵容量をOSCh14.9とすると、中心空燃比が14.6〜14.9の間の酸素吸蔵容量変化率HはH=(OSCh14.9−OSCh14.6)/(14.9−14.6)で表される。つまり当該変化率Hはグラフの傾き或いは勾配を意味し、中心空燃比が14.6〜14.9の間の酸素吸蔵容量変化率Hは、OSCh14.9<OSCh14.6なので、マイナスの値となる。以下、変化率Hがマイナス方向に大きいことを単に「変化率H(或いは傾き)が大きい」ともいう。 In addition to this, the rate of change of the oxygen storage capacity OSC with respect to the change of the central air-fuel ratio A / Fc is different between the case of high sulfur fuel and the case of low sulfur fuel. When the change rate of the oxygen storage capacity OSC is H, the change amount of the central air-fuel ratio A / Fc is ΔA / Fc, and the corresponding change amount of the oxygen storage capacity OSC is ΔOSC, H = ΔOSC / ΔA / Fc. Is done. For example, in the case of the high-sulfur fuel in the illustrated example, the oxygen storage capacity when the central air-fuel ratio is 14.6 (stoichiometric) is OSCh 14.6 , and the oxygen when the central air-fuel ratio is 14.9 (lean from stoichiometric) When the storage capacity is OSCh 14.9 , the oxygen storage capacity change rate H between the center air-fuel ratio of 14.6 and 14.9 is H = (OSCh 14.9 -OSCh 14.6 ) / (14.9- 14.6). That is, the change rate H means the slope or gradient of the graph, and the oxygen storage capacity change rate H between the center air-fuel ratio of 14.6 to 14.9 is OSCh 14.9 <OSCh 14.6 . Value. Hereinafter, the fact that the rate of change H is large in the negative direction is also simply referred to as “the rate of change H (or slope) is large”.

図5の結果によると、中心空燃比が14.3〜14.9の間の平均的な酸素吸蔵容量変化率H(図中破線で示す)は、低硫黄燃料の場合より高硫黄燃料の場合の方が大きい。また中心空燃比を14.6〜14.9の間に限定すると、酸素吸蔵容量変化率Hは低硫黄燃料の場合より高硫黄燃料の場合の方が顕著に大きい。よって、中心空燃比を一定量変化させたときの酸素吸蔵容量変化率Hは、燃料の硫黄濃度を反映し且つそれに相関する値であり、燃料の硫黄濃度が高くなるほど大きくなる値である。従って本実施形態ではこのことを利用し、酸素吸蔵容量変化率Hに基づいて燃料の硫黄濃度を推定することとしている。   According to the results of FIG. 5, the average oxygen storage capacity change rate H (indicated by a broken line in the figure) between the center air-fuel ratio of 14.3 to 14.9 is higher in the case of high sulfur fuel than in the case of low sulfur fuel. Is bigger. Further, if the central air-fuel ratio is limited to between 14.6 and 14.9, the oxygen storage capacity change rate H is significantly larger in the case of high sulfur fuel than in the case of low sulfur fuel. Therefore, the oxygen storage capacity change rate H when the central air-fuel ratio is changed by a certain amount is a value that reflects and correlates with the sulfur concentration of the fuel, and is a value that increases as the sulfur concentration of the fuel increases. Therefore, in the present embodiment, this is utilized to estimate the sulfur concentration of the fuel based on the oxygen storage capacity change rate H.

図6に、本実施形態のアクティブ空燃比制御の一例を示し、特に目標空燃比A/Ftの変化の様子を示す。図示例においては、中心空燃比A/Fcがリーン、ストイキ、リッチの順で異なる三つのアクティブ空燃比制御I〜IIIが連続的に実行される。即ち、中心空燃比A/Fcがストイキよりリーンな所定値(例えば15.1)である第1のアクティブ空燃比制御Iに伴って、第1の酸素吸蔵容量計測値OSCが計測され、同様に、中心空燃比A/Fcがストイキ(例えば14.6)に等しい第2のアクティブ空燃比制御IIに伴って第2の酸素吸蔵容量計測値OSCIIが計測され、中心空燃比A/Fcがストイキよりリッチな所定値(例えば14.1)である第3のアクティブ空燃比制御IIIに伴って第3の酸素吸蔵容量計測値OSCIIIが計測される。そしてこれら三つの中心空燃比A/Fcの値と三つの酸素吸蔵容量計測値OSC〜OSCIIIとを用いて平均的な酸素吸蔵容量変化率Hが算出され、これに基づいて燃料の硫黄濃度が推定される。第1のアクティブ空燃比制御Iにおいて、目標空燃比A/Ftがリッチ側に切り替えられたときの目標空燃比A/Ftの値は、ストイキより僅かにリッチな値(例えば14.5、即ちリッチ振幅Ar=0.6)とされている。また第3のアクティブ空燃比制御IIIにおいて、目標空燃比A/Ftがリーン側に切り替えられたときの目標空燃比A/Ftの値は、ストイキより僅かにリーンな値(例えば14.7、即ちリーン振幅Al=0.6)とされている。 FIG. 6 shows an example of the active air-fuel ratio control of this embodiment, and particularly shows how the target air-fuel ratio A / Ft changes. In the illustrated example, three active air-fuel ratio controls I to III in which the central air-fuel ratio A / Fc is different in the order of lean, stoichiometric, and rich are continuously executed. That is, the first oxygen storage capacity measurement value OSC I is measured along with the first active air-fuel ratio control I in which the center air-fuel ratio A / Fc is a predetermined value (eg, 15.1) leaner than the stoichiometric value. Further, the second oxygen storage capacity measurement value OSC II is measured along with the second active air-fuel ratio control II in which the center air-fuel ratio A / Fc is equal to the stoichiometric value (for example, 14.6). The third oxygen storage capacity measurement value OSC III is measured along with the third active air-fuel ratio control III that is a predetermined value (eg, 14.1) richer than the stoichiometry. Then, an average oxygen storage capacity change rate H is calculated using these three central air-fuel ratios A / Fc and the three oxygen storage capacity measured values OSC I to OSC III, and based on this, the sulfur concentration of the fuel is calculated. Is estimated. In the first active air-fuel ratio control I, the value of the target air-fuel ratio A / Ft when the target air-fuel ratio A / Ft is switched to the rich side is slightly richer than stoichiometric (for example, 14.5, that is, rich Amplitude Ar = 0.6). In the third active air-fuel ratio control III, the value of the target air-fuel ratio A / Ft when the target air-fuel ratio A / Ft is switched to the lean side is slightly leaner than the stoichiometric value (for example, 14.7, ie, Lean amplitude Al = 0.6).

後に述べるが、本実施形態では、推定された硫黄濃度に基づいて酸素吸蔵容量計測値が必要に応じて補正され、この補正された酸素吸蔵容量計測値に基づいて最終的な触媒劣化判定がなされる。この補正により酸素吸蔵容量計測値は硫黄影響の無い真の値に増大補正される。これによって硫黄影響が除去され、燃料の硫黄濃度に拘わらず高精度で信頼性の高い診断が可能となる。   As will be described later, in the present embodiment, the oxygen storage capacity measurement value is corrected as necessary based on the estimated sulfur concentration, and the final catalyst deterioration determination is made based on the corrected oxygen storage capacity measurement value. The By this correction, the measured value of oxygen storage capacity is increased and corrected to a true value having no sulfur influence. This eliminates the effect of sulfur and enables highly accurate and reliable diagnosis regardless of the sulfur concentration of the fuel.

なお、図6に示したアクティブ空燃比制御の例は一つの好適例に過ぎず、これ以外のアクティブ空燃比制御の態様も可能である。例えば、中心空燃比A/Fc及びアクティブ空燃比制御の数は三つに限定されず、二以上の複数であればいかなる数であってもよい。特に図5の結果によれば、中心空燃比A/Fcがストイキからリーンまでの間の酸素吸蔵容量変化率Hにおいて燃料中の硫黄濃度による違いが顕著に表れることから、例えば中心空燃比A/Fcをストイキとリーンの二つ、或いはストイキとリーン間で三つ以上とし、それぞれに対しアクティブ空燃比制御を実行してもよい。こうするとアクティブ空燃比制御の数を最小で二つとすることができ、より効率的に短時間で劣化診断を行える可能性がある。   The example of active air-fuel ratio control shown in FIG. 6 is only one preferred example, and other modes of active air-fuel ratio control are possible. For example, the number of the central air-fuel ratio A / Fc and the active air-fuel ratio control is not limited to three, and may be any number as long as it is two or more. In particular, according to the result of FIG. 5, the difference due to the sulfur concentration in the fuel remarkably appears in the oxygen storage capacity change rate H from the stoichiometric to the lean state of the central air-fuel ratio A / Fc. Fc may be two or more stoichiometric and lean, or three or more between stoichiometric and lean, and active air-fuel ratio control may be executed for each. In this way, the number of active air-fuel ratio controls can be reduced to two, and there is a possibility that deterioration diagnosis can be performed more efficiently in a short time.

また、複数のアクティブ空燃比制御を連続的ではなく断続的に実行してもよい。但し連続的に実行した方が診断時間を短縮できるので有利である。また図6の例ではリーン側からリッチ側に中心空燃比A/Fcを変更するようにしたが、これに限らず、リッチ側からリーン側に中心空燃比A/Fcを変更してもよいし、ストイキ、リッチ(若しくはリーン)、リーン(若しくはリッチ)というように中心空燃比A/Fcを変更してもよい。図6の例では一つのアクティブ空燃比制御において数回程度しか目標空燃比A/Ftが切替えられていないが、当然に、この切替え回数は任意であり、適宜増減が可能である。   Further, a plurality of active air-fuel ratio controls may be executed intermittently instead of continuously. However, continuous execution is advantageous because the diagnosis time can be shortened. In the example of FIG. 6, the center air-fuel ratio A / Fc is changed from the lean side to the rich side. However, the present invention is not limited to this, and the center air-fuel ratio A / Fc may be changed from the rich side to the lean side. The central air-fuel ratio A / Fc may be changed to stoichiometric, rich (or lean), lean (or rich). In the example of FIG. 6, the target air-fuel ratio A / Ft is switched only about several times in one active air-fuel ratio control. Naturally, the number of times of switching is arbitrary, and can be increased or decreased as appropriate.

ここで図5の結果について補足すると、図6の第1のアクティブ空燃比制御Iのように中心空燃比A/Fcがストイキよりリーンの場合、たとえ目標空燃比A/Ftをリッチ側にしたとしても触媒前空燃比A/Ffrのストイキに対するリッチ度合いが少なく、触媒からの酸素放出時間(図6のTa)が長くなる傾向にある。このリッチ側の酸素放出時に硫黄の影響が出やすく、高硫黄の場合には硫黄により触媒成分(貴金属)が被毒されてしまい、酸素放出反応が妨げられ、低硫黄の場合よりも酸素放出が顕著に早く終了する(即ち、より早いタイミングで触媒後センサ18が反転する)。よって図5に示すように、中心空燃比A/Fcがストイキよりリーンのときには、燃料が低硫黄から高硫黄になったときの酸素吸蔵容量の低下量が比較的大きい。これに対し、図6の第3のアクティブ空燃比制御IIIのように中心空燃比A/Fcがストイキよりリッチの場合、目標空燃比A/Ftをリッチ側にしたときの触媒前空燃比A/Ffrのストイキに対するリッチ度合いが非常に大きく、触媒からの酸素放出時間(図6のTb)が短くなる傾向にある。このリッチ側の酸素放出時では硫黄の影響がそれほど出ず、硫黄濃度の大小に拘わらず酸素放出は早く終了する。よって図5に示すように、中心空燃比A/Fcがストイキよりリッチのときには、燃料が低硫黄から高硫黄になったときの酸素吸蔵容量の低下量が比較的小さい。なお中心空燃比A/Fcに対しリーン側の酸素吸蔵時には高硫黄であっても硫黄の影響が出にくいことが知られている。以上の理由に基づき、特に中心空燃比A/Fcのストイキ〜リーン間において、酸素吸蔵容量変化率Hに硫黄による影響ないし違いが顕著に見られることとなる。   Here, supplementing the results of FIG. 5, if the central air-fuel ratio A / Fc is leaner than the stoichiometric ratio as in the first active air-fuel ratio control I of FIG. 6, it is assumed that the target air-fuel ratio A / Ft is set to the rich side. However, the richness of the pre-catalyst air-fuel ratio A / Ffr with respect to stoichiometry is small, and the oxygen release time from the catalyst (Ta in FIG. 6) tends to be long. The effect of sulfur is likely to occur when oxygen is released on the rich side. In the case of high sulfur, the catalyst component (noble metal) is poisoned by sulfur, and the oxygen releasing reaction is hindered. The process ends significantly earlier (that is, the post-catalyst sensor 18 is reversed at an earlier timing). Therefore, as shown in FIG. 5, when the center air-fuel ratio A / Fc is leaner than stoichiometric, the amount of decrease in the oxygen storage capacity when the fuel is changed from low sulfur to high sulfur is relatively large. On the other hand, when the center air-fuel ratio A / Fc is richer than the stoichiometric ratio as in the third active air-fuel ratio control III in FIG. 6, the pre-catalyst air-fuel ratio A / F when the target air-fuel ratio A / Ft is set to the rich side. The richness of Ffr with respect to stoichiometry is very large, and the oxygen release time from the catalyst (Tb in FIG. 6) tends to be short. At the time of oxygen release on the rich side, the influence of sulfur does not appear so much, and the oxygen release ends quickly regardless of the sulfur concentration. Therefore, as shown in FIG. 5, when the center air-fuel ratio A / Fc is richer than stoichiometric, the amount of decrease in the oxygen storage capacity when the fuel is changed from low sulfur to high sulfur is relatively small. It is known that the influence of sulfur is less likely to occur even if the sulfur content is high when oxygen is stored on the lean side with respect to the central air-fuel ratio A / Fc. Based on the above reason, the influence or difference due to sulfur is noticeable in the oxygen storage capacity change rate H especially in the stoichiometric to lean range of the central air-fuel ratio A / Fc.

次に、図7を参照しつつ、本実施形態における劣化診断処理の第1の態様を説明する。当該処理はECU20により実行される。   Next, a first aspect of the deterioration diagnosis process in the present embodiment will be described with reference to FIG. This process is executed by the ECU 20.

まず、ステップS101において、中心空燃比がストイキよりリーンな所定値A/Fc(例えば15.1)である第1のアクティブ空燃比制御Iが実行され、これに伴って第1の酸素吸蔵容量OSCが計測される。次にステップS102において、中心空燃比がストイキに等しい値A/FcII(例えば14.6)である第2のアクティブ空燃比制御IIが実行され、これに伴って第2の酸素吸蔵容量OSCIIが計測される。さらにステップS103において、中心空燃比がストイキよりリッチな所定値A/FcIII(例えば14.1)である第3のアクティブ空燃比制御IIIが実行され、これに伴って第3の酸素吸蔵容量OSCIIIが計測される。 First, in step S101, the first active air-fuel ratio control I having a predetermined value A / Fc I (for example, 15.1) whose center air-fuel ratio is leaner than stoichiometric is executed, and accordingly, the first oxygen storage capacity is OSC I is measured. Next, in step S102, the second active air-fuel ratio control II in which the center air-fuel ratio is equal to the stoichiometric value A / Fc II (for example, 14.6) is executed, and accordingly, the second oxygen storage capacity OSC II. Is measured. Further, in step S103, the third active air-fuel ratio control III in which the center air-fuel ratio is a predetermined value A / Fc III (for example, 14.1) richer than the stoichiometric is executed, and accordingly, the third oxygen storage capacity OSC. III is measured.

次に、ステップS104において、ステップS101〜S103に係る中心空燃比のデータA/Fc、A/FcII、A/FcIII及び各中心空燃比に対応する酸素吸蔵容量計測値のデータOSC、OSC、OSCIIIを用いて、酸素吸蔵容量変化率Hの値が算出される。ここでは3点のデータを用いて一つの傾きを求める処理を行っており、様々な近似方法を採用し得るが、本実施形態では最小二乗法を用いてこれを行う。この場合、酸素吸蔵容量変化率Hは次式(2)により算出される。 Next, in step S104, data A / Fc I , A / Fc II , A / Fc III and oxygen storage capacity measurement data OSC I corresponding to each central air-fuel ratio according to steps S101 to S103, The value of the oxygen storage capacity change rate H is calculated using OSC I and OSC III . Here, processing for obtaining one inclination is performed using three points of data, and various approximation methods can be adopted. In the present embodiment, this is performed using the least square method. In this case, the oxygen storage capacity change rate H is calculated by the following equation (2).

Figure 2009121414
Figure 2009121414

次に、ステップS105において、算出された酸素吸蔵容量変化率Hが所定のしきい値Hs(但しHs<0)と比較される。酸素吸蔵容量変化率Hが所定のしきい値Hs以上の場合、即ち図5で示したようなグラフにおいてマイナス方向の傾きが小さいか或いは傾きがプラス方向である場合には、燃料の硫黄濃度が低いと推定され、ステップS106において、中心空燃比がストイキに等しい値A/FcIIであるときに計測された第2の酸素吸蔵容量OSCIIに基づき、触媒の劣化判定がなされる。即ち、第2の酸素吸蔵容量OSCIIが所定の劣化判定値OSCsと比較され、第2の酸素吸蔵容量OSCIIが劣化判定値OSCsより大きければ触媒は正常、第2の酸素吸蔵容量OSCIIが劣化判定値OSCs以下ならば触媒は劣化と判定される。以上で本処理が終了される。 Next, in step S105, the calculated oxygen storage capacity change rate H is compared with a predetermined threshold value Hs (where Hs <0). When the oxygen storage capacity change rate H is equal to or greater than the predetermined threshold value Hs, that is, when the slope in the negative direction is small or the slope is positive in the graph as shown in FIG. In step S106, the deterioration of the catalyst is determined based on the second oxygen storage capacity OSC II measured when the center air-fuel ratio is a value A / Fc II equal to the stoichiometric value. That is, the second oxygen storage capacity OSC II is compared with a predetermined deterioration judgment value OSCs, and if the second oxygen storage capacity OSC II is larger than the deterioration judgment value OSCs, the catalyst is normal and the second oxygen storage capacity OSC II is If the deterioration determination value OSCs or less, the catalyst is determined to be deteriorated. This process is completed.

他方、ステップS105において酸素吸蔵容量変化率Hが所定のしきい値Hs未満の場合、即ち図5で示したようなグラフにおいてマイナス方向の傾きが大きい場合には、燃料の硫黄濃度が高いと推定され、ステップS107において、第2の酸素吸蔵容量OSCIIを補正した上で触媒の劣化判定がなされる。補正は例えば第2の酸素吸蔵容量OSCIIに所定の補正係数αを乗じて行われる。補正係数αは予めECU20に記憶されたマップ又は関数に従って酸素吸蔵容量変化率Hに基づき算出される。補正係数αは1より大きい値であり、酸素吸蔵容量変化率Hがマイナス方向に大きいほど大きな値が得られるようになっている。この補正により、第2の酸素吸蔵容量OSCIIは硫黄影響を無くすよう増大補正され、燃料の硫黄濃度が高いほどより大きく増大補正されることとなる。こうして補正された第2の酸素吸蔵容量OSCII’(=α×OSCII)が得られたら、この値が劣化判定値OSCsと比較されて前記同様に触媒の劣化判定がなされる。以上で本処理が終了される。なお、補正方法としては他の方法も可能であり、例えば所定の補正量を加算して第2の酸素吸蔵容量OSCIIを増大補正してもよい。 On the other hand, if the oxygen storage capacity change rate H is less than the predetermined threshold value Hs in step S105, that is, if the slope in the negative direction is large in the graph as shown in FIG. 5, it is estimated that the fuel sulfur concentration is high. In step S107, the deterioration of the catalyst is determined after correcting the second oxygen storage capacity OSC II . The correction is performed, for example, by multiplying the second oxygen storage capacity OSC II by a predetermined correction coefficient α. The correction coefficient α is calculated based on the oxygen storage capacity change rate H according to a map or function stored in the ECU 20 in advance. The correction coefficient α is a value larger than 1, and a larger value is obtained as the oxygen storage capacity change rate H increases in the negative direction. By this correction, the second oxygen storage capacity OSC II is increased and corrected so as to eliminate the influence of sulfur, and the correction is increased and increased as the sulfur concentration of the fuel is higher. When the corrected second oxygen storage capacity OSC II ′ (= α × OSC II ) is obtained in this way, this value is compared with the deterioration determination value OSCs to determine the deterioration of the catalyst in the same manner as described above. This process is completed. Note that other correction methods are possible. For example, the second oxygen storage capacity OSC II may be increased and corrected by adding a predetermined correction amount.

図8にはステップS105で行われた硫黄濃度判定の方法が示されている。低硫黄燃料の場合、中心空燃比を変化させても酸素吸蔵容量の変化が小さいため、酸素吸蔵容量変化率Hはゼロ付近となる。これに対し高硫黄燃料の場合、中心空燃比をリーン側に変化させるにつれ酸素吸蔵容量が減少する傾向にあるため、酸素吸蔵容量変化率Hは硫黄濃度に応じた比較的大きなマイナスの値を取る。よって、酸素吸蔵容量計測値に補正が必要か否かを判断するための負のしきい値Hsが、実験等を通じ、バラツキ等を考慮して予め設定される。こうして設定されたしきい値Hsと実際の酸素吸蔵容量変化率Hとを比較することで、高硫黄燃料が使用されていることを速やかに判定し、硫黄影響を排除する補正を行って誤診断を防止することができる。   FIG. 8 shows the method for determining the sulfur concentration performed in step S105. In the case of low sulfur fuel, even if the central air-fuel ratio is changed, the change in the oxygen storage capacity is small, so the oxygen storage capacity change rate H is near zero. On the other hand, in the case of high sulfur fuel, the oxygen storage capacity tends to decrease as the central air-fuel ratio is changed to the lean side, so the oxygen storage capacity change rate H takes a relatively large negative value corresponding to the sulfur concentration. . Therefore, the negative threshold value Hs for determining whether or not the oxygen storage capacity measurement value needs to be corrected is set in advance through consideration of variations and the like through experiments and the like. By comparing the threshold value Hs set in this way with the actual oxygen storage capacity change rate H, it is quickly determined that high-sulfur fuel is being used, and correction is made to eliminate the influence of sulfur, thereby making a false diagnosis. Can be prevented.

次に、本実施形態における劣化診断処理の第2の態様を図9を参照しつつ説明する。なお、前記第1の態様と同様のステップについては符号を200番台に変更するのみで詳細な説明を省略する。この第2の態様においては、ステップS201の前にステップS201Aが追加され、ステップS201Aで否定判定がなされたときにはステップS201に進み、ステップS201Aで肯定判定がなされたときには新たに追加されたステップS208に進むようになっている。   Next, a second aspect of the deterioration diagnosis process in the present embodiment will be described with reference to FIG. In addition, about the step similar to the said 1st aspect, detailed description is abbreviate | omitted only by changing a code | symbol to 200 series. In this second mode, step S201A is added before step S201. If a negative determination is made in step S201A, the process proceeds to step S201. If an affirmative determination is made in step S201A, the process proceeds to newly added step S208. It has come to go.

ステップS201Aでは、推定値としての触媒温度Tcが所定のしきい値Tcsと比較される。しきい値Tcsは比較的高温な値に設定されている。即ち、触媒が硫黄影響を受けやすい(硫黄被毒されやすい)のは触媒温度が低いときであり、逆に言うと、触媒温度が高いとき(例えば600℃以上)には触媒が硫黄影響を受けづらい。よってこの第2の態様では、そのような触媒温度が低いときのみ、酸素吸蔵容量変化率Hの算出、硫黄濃度の推定及び酸素吸蔵容量の補正等を行い、逆に触媒温度が高いときには、中心空燃比がストイキのときの酸素吸蔵容量計測値のみに基づき触媒の劣化判定を行うようにしている。こうすると、触媒温度が高いときには単一(1回)のアクティブ空燃比制御で済むことになり、アクティブ空燃比制御を複数回行う必要が無くなって診断時間を短縮できる。   In step S201A, the catalyst temperature Tc as an estimated value is compared with a predetermined threshold value Tcs. The threshold value Tcs is set to a relatively high value. That is, the catalyst is susceptible to sulfur (sulfur poisoning) when the catalyst temperature is low, and conversely, when the catalyst temperature is high (eg, 600 ° C. or higher), the catalyst is susceptible to sulfur. It ’s hard. Therefore, in this second aspect, only when such a catalyst temperature is low, calculation of the oxygen storage capacity change rate H, estimation of the sulfur concentration, correction of the oxygen storage capacity, etc. are performed. The deterioration determination of the catalyst is made based only on the measured oxygen storage capacity when the air-fuel ratio is stoichiometric. In this way, when the catalyst temperature is high, only one (one time) active air-fuel ratio control is required, and it is not necessary to perform the active air-fuel ratio control a plurality of times, and the diagnosis time can be shortened.

ステップS201Aにおいて、触媒温度Tcがしきい値Tcs以下の低温の場合、ステップS201〜S207が実行されて第1の態様同様に触媒の劣化判定がなされる。   In step S201A, when the catalyst temperature Tc is a low temperature equal to or lower than the threshold value Tcs, steps S201 to S207 are executed to determine the deterioration of the catalyst as in the first mode.

他方、触媒温度Tcがしきい値Tcsより大きい高温の場合、ステップS208に進んで、中心空燃比がストイキに等しい値A/FcIIである第2のアクティブ空燃比制御IIが実行され、これに伴って第2の酸素吸蔵容量OSCIIが計測される。そしてステップS206において、その第2の酸素吸蔵容量OSCIIに基づき触媒の劣化判定がなされる。以上で本処理が終了される。 On the other hand, if the catalyst temperature Tc is a threshold Tcs greater high temperature, the process proceeds to step S208, the second active air-fuel ratio control II is executed center air-fuel ratio is equal to A / Fc II to the stoichiometric, to Accordingly, the second oxygen storage capacity OSC II is measured. In step S206, the deterioration of the catalyst is determined based on the second oxygen storage capacity OSC II . This process is completed.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば、内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、直噴式等であってもよい。触媒後センサに触媒前センサと同様の広域空燃比センサを用いてもよいし、触媒前センサに触媒後センサと同様のOセンサを用いてもよい。これら広域空燃比センサやOセンサを含め、広く、排気空燃比を検出するセンサを空燃比センサということとする。本発明は三元触媒の他、酸素吸蔵能を有するあらゆる触媒に適用可能である。 Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and type of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a direct injection type or the like. A wide air-fuel ratio sensor similar to the pre-catalyst sensor may be used as the post-catalyst sensor, and an O 2 sensor similar to the post-catalyst sensor may be used as the pre-catalyst sensor. A wide range of sensors that detect the exhaust air-fuel ratio, including these wide-range air-fuel ratio sensors and O 2 sensors, are referred to as air-fuel ratio sensors. The present invention is applicable to any catalyst having an oxygen storage capacity in addition to a three-way catalyst.

硫黄濃度の推定に関し、前記実施形態では低硫黄と高硫黄の2段階の推定としたが、当然ながら、より細かい推定を行うことも可能である。例えば、実測された酸素吸蔵容量変化率Hに基づき、実験的に予め得られたマップ又は関数から、硫黄濃度の絶対値を推定してもよい。   Regarding the estimation of the sulfur concentration, in the above-described embodiment, the estimation is made in two stages of low sulfur and high sulfur. Of course, finer estimation can be performed. For example, based on the actually measured oxygen storage capacity change rate H, the absolute value of the sulfur concentration may be estimated from a map or function obtained experimentally in advance.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. アクティブ空燃比制御を説明するためのタイムチャートである。It is a time chart for demonstrating active air fuel ratio control. 図3と同様のタイムチャートであり、酸素吸蔵容量の計測方法を説明するための図である。FIG. 4 is a time chart similar to FIG. 3 for illustrating a method for measuring the oxygen storage capacity. アクティブ空燃比制御の中心空燃比と酸素吸蔵容量との関係を示すグラフである。It is a graph which shows the relationship between the central air fuel ratio of active air fuel ratio control, and oxygen storage capacity. 本実施形態のアクティブ空燃比制御における目標空燃比の変化の様子を示すタイムチャートである。It is a time chart which shows the mode of the change of the target air fuel ratio in the active air fuel ratio control of this embodiment. 劣化診断処理の第1の態様を示すフローチャートである。It is a flowchart which shows the 1st aspect of a deterioration diagnostic process. 硫黄濃度判定の方法を説明するためのグラフである。It is a graph for demonstrating the method of sulfur concentration determination. 劣化診断処理の第2の態様を示すフローチャートである。It is a flowchart which shows the 2nd aspect of a deterioration diagnostic process.

符号の説明Explanation of symbols

1 内燃機関
6 排気管
11 上流触媒
12 インジェクタ
17 触媒前センサ
18 触媒後センサ
19 下流触媒
20 電子制御ユニット(ECU)
A/Fc 中心空燃比
OSC 酸素吸蔵容量
H 変化率
α 補正係数
Tc 触媒温度
1 internal combustion engine 6 exhaust pipe 11 upstream catalyst 12 injector 17 pre-catalyst sensor 18 post-catalyst sensor 19 downstream catalyst 20 electronic control unit (ECU)
A / Fc Center air-fuel ratio OSC Oxygen storage capacity H Rate of change α Correction factor Tc Catalyst temperature

Claims (8)

内燃機関の排気通路に配置された触媒の劣化を診断する装置であって、
前記触媒に流入する排気ガスの空燃比を所定の中心空燃比を境にリッチ側及びリーン側に交互に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
前記アクティブ空燃比制御の実行に伴って前記触媒の酸素吸蔵容量を計測する計測手段と、
前記アクティブ空燃比制御手段により前記中心空燃比の異なる複数のアクティブ空燃比制御を実行し、これに伴って各中心空燃比に対応する複数の酸素吸蔵容量を前記計測手段により計測したときの、前記中心空燃比の変化に対する前記酸素吸蔵容量の変化率に基づき、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする内燃機関の触媒劣化診断装置。
An apparatus for diagnosing deterioration of a catalyst disposed in an exhaust passage of an internal combustion engine,
Active air-fuel ratio control means for executing active air-fuel ratio control for alternately switching the air-fuel ratio of the exhaust gas flowing into the catalyst to the rich side and the lean side with a predetermined central air-fuel ratio as a boundary;
Measuring means for measuring the oxygen storage capacity of the catalyst in accordance with execution of the active air-fuel ratio control;
When the plurality of active air-fuel ratios having different central air-fuel ratios are executed by the active air-fuel ratio control means, and a plurality of oxygen storage capacities corresponding to the respective center air-fuel ratios are measured by the measurement means. An apparatus for diagnosing catalyst deterioration in an internal combustion engine, comprising: a sulfur concentration estimating means for estimating a sulfur concentration of fuel based on a rate of change of the oxygen storage capacity with respect to a change in central air-fuel ratio.
前記中心空燃比の少なくとも一つがストイキに等しく、少なくとも一つがストイキよりリーンな値である
ことを特徴とする請求項1記載の内燃機関の触媒劣化診断装置。
The catalyst deterioration diagnosis apparatus for an internal combustion engine according to claim 1, wherein at least one of the central air-fuel ratios is equal to stoichiometric, and at least one of the values is leaner than stoichiometric.
前記中心空燃比の少なくとも一つがストイキに等しく、少なくとも一つがストイキよりリーンな値であり、少なくとも一つがストイキよりリッチな値である
ことを特徴とする請求項1記載の内燃機関の触媒劣化診断装置。
2. The catalyst deterioration diagnosis device for an internal combustion engine according to claim 1, wherein at least one of the central air-fuel ratios is equal to stoichiometric, at least one is a value leaner than stoichiometric, and at least one is a richer value than stoichiometric. .
前記硫黄濃度推定手段は、前記中心空燃比と前記酸素吸蔵容量のデータに基づき最小自乗法により前記酸素吸蔵容量の変化率を算出する
ことを特徴とする請求項1乃至3のいずれかに記載の内燃機関の触媒劣化診断装置。
The said sulfur concentration estimation means calculates the change rate of the said oxygen storage capacity by the least squares method based on the data of the said central air fuel ratio and the said oxygen storage capacity. A catalyst deterioration diagnosis device for an internal combustion engine.
前記アクティブ空燃比制御手段が、前記中心空燃比の異なる複数のアクティブ空燃比制御を連続的に実行する
ことを特徴とする請求項1乃至4のいずれかに記載の内燃機関の触媒劣化診断装置。
The catalyst deterioration diagnosis apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the active air-fuel ratio control means continuously executes a plurality of active air-fuel ratio controls with different central air-fuel ratios.
前記硫黄濃度推定手段により燃料の硫黄濃度が高いと推定された場合に、前記中心空燃比がストイキのときの酸素吸蔵容量を補正し、当該補正された酸素吸蔵容量に基づき前記触媒の劣化を判定する判定手段を備えた
ことを特徴とする請求項1乃至5のいずれかに記載の内燃機関の触媒劣化診断装置。
When the sulfur concentration of the fuel is estimated to be high by the sulfur concentration estimating means, the oxygen storage capacity when the central air-fuel ratio is stoichiometric is corrected, and the deterioration of the catalyst is determined based on the corrected oxygen storage capacity An apparatus for diagnosing catalyst deterioration of an internal combustion engine according to any one of claims 1 to 5, further comprising a determination unit that performs the determination.
前記判定手段は、前記硫黄濃度推定手段により燃料の硫黄濃度が低いと推定された場合に、前記中心空燃比がストイキのときの酸素吸蔵容量に基づき前記触媒の劣化を判定する
ことを特徴とする請求項6記載の内燃機関の触媒劣化診断装置。
The determination means determines deterioration of the catalyst based on an oxygen storage capacity when the central air-fuel ratio is stoichiometric when the sulfur concentration estimation means estimates that the sulfur concentration of the fuel is low. The catalyst deterioration diagnosis device for an internal combustion engine according to claim 6.
前記アクティブ空燃比制御手段は、触媒温度が低いときに前記中心空燃比の異なる複数のアクティブ空燃比制御を実行すると共に、触媒温度が高いときに前記中心空燃比をストイキとする単一のアクティブ空燃比制御を実行し、
前記判定手段は、触媒温度が高いときに、前記単一のアクティブ空燃比制御に伴って前記計測手段により計測された酸素吸蔵容量に基づき前記触媒の劣化を判定する
ことを特徴とする請求項6又は7記載の内燃機関の触媒劣化診断装置。
The active air-fuel ratio control means executes a plurality of active air-fuel ratio controls with different central air-fuel ratios when the catalyst temperature is low, and a single active air-fuel ratio that makes the central air-fuel ratio stoichiometric when the catalyst temperature is high. Execute the fuel ratio control
The determination means determines deterioration of the catalyst based on the oxygen storage capacity measured by the measurement means in association with the single active air-fuel ratio control when the catalyst temperature is high. Or a catalyst deterioration diagnosis device for an internal combustion engine according to claim 7.
JP2007298457A 2007-11-16 2007-11-16 Catalyst deterioration diagnosing device for internal combustion engine Pending JP2009121414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298457A JP2009121414A (en) 2007-11-16 2007-11-16 Catalyst deterioration diagnosing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298457A JP2009121414A (en) 2007-11-16 2007-11-16 Catalyst deterioration diagnosing device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009121414A true JP2009121414A (en) 2009-06-04

Family

ID=40813816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298457A Pending JP2009121414A (en) 2007-11-16 2007-11-16 Catalyst deterioration diagnosing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009121414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224610A (en) * 2012-04-20 2013-10-31 Toyota Motor Corp Catalyst abnormality diagnosis apparatus
JP2016079911A (en) * 2014-10-17 2016-05-16 トヨタ自動車株式会社 Sulfur concentration determination system for internal combustion engine
DE102014114587B4 (en) * 2013-10-14 2017-09-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) CONTROLLER FOR DIAGNOSIS OF A SELECTIVE CATALYTIC REDUCTION ("SCR") DEVICE IN A COMBUSTION ENGINE EMISSION CONTROL SYSTEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224610A (en) * 2012-04-20 2013-10-31 Toyota Motor Corp Catalyst abnormality diagnosis apparatus
DE102014114587B4 (en) * 2013-10-14 2017-09-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) CONTROLLER FOR DIAGNOSIS OF A SELECTIVE CATALYTIC REDUCTION ("SCR") DEVICE IN A COMBUSTION ENGINE EMISSION CONTROL SYSTEM
JP2016079911A (en) * 2014-10-17 2016-05-16 トヨタ自動車株式会社 Sulfur concentration determination system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP4729518B2 (en) NOx catalyst deterioration diagnosis device
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP4915256B2 (en) Catalyst degradation diagnosis apparatus and degradation diagnosis method
JP2008175181A (en) Catalyst deterioration detection device for internal combustion engine
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP2010185371A (en) Catalyst deterioration diagnostic device
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP2010159701A (en) Catalyst deterioration diagnostic device
JP2009127597A (en) Catalyst degradation diagnostic device
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2010255490A (en) Catalyst abnormality diagnostic device
JP2012219803A (en) Fuel property determining device and catalyst abnormality diagnostic device
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2010168923A (en) Catalyst degradation diagnostic device