JP2009215924A - Fuel property determination device and catalyst deterioration diagnostic device having the same - Google Patents

Fuel property determination device and catalyst deterioration diagnostic device having the same Download PDF

Info

Publication number
JP2009215924A
JP2009215924A JP2008058520A JP2008058520A JP2009215924A JP 2009215924 A JP2009215924 A JP 2009215924A JP 2008058520 A JP2008058520 A JP 2008058520A JP 2008058520 A JP2008058520 A JP 2008058520A JP 2009215924 A JP2009215924 A JP 2009215924A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
fuel
sulfur concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058520A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyamoto
寛史 宮本
Toru Kidokoro
徹 木所
Yutaka Sawada
裕 澤田
Yasushi Iwasaki
靖志 岩▲崎▼
Koichi Kimura
光壱 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008058520A priority Critical patent/JP2009215924A/en
Publication of JP2009215924A publication Critical patent/JP2009215924A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel property determination device estimating sulfur concentration of fuel, and to provide a catalyst deterioration diagnostic device having the same. <P>SOLUTION: An air-fuel ratio (a target air-fuel ratio A/Ft) of exhaust gas supplied to a catalyst is gradually changed from a rich side to a lean side, and the sulfur concentration of fuel is estimated based on values A/Ft1, A/Ft2 of the air-fuel ratio at timing t1, t2 where an output Vrr of an air-fuel ratio sensor after the catalyst is inverted to the lean side. Since the inversion timing differs depending on the sulfur concentration of fuel, the sulfur concentration of fuel is estimated by using the fact. When the estimation results in the fuel sulfur concentration of a predetermined value or more, catalyst deterioration diagnosis is suspended to prevent wrong diagnosis. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料性状判別装置及びこれを備えた触媒劣化診断装置に係り、特に、内燃機関における使用燃料の硫黄濃度を推定可能な燃料性状判別装置、及びその推定結果を利用して触媒の劣化を診断する触媒劣化診断装置に関する。   The present invention relates to a fuel property determination device and a catalyst deterioration diagnosis device including the same, and more particularly, a fuel property determination device capable of estimating the sulfur concentration of fuel used in an internal combustion engine, and catalyst deterioration using the estimation result. The present invention relates to a catalyst deterioration diagnosis device for diagnosing the catalyst.

例えば車両用の内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(O2ストレージ能)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒流入排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸着保持された酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまっても、三元触媒による酸素の吸蔵・放出作用により、そのような空燃比ずれを吸収することができる。 For example, in an internal combustion engine for a vehicle, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). This is because when the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, the exhaust gas becomes lean. Excess oxygen present in the gas is adsorbed and held, and when the air-fuel ratio of the catalyst inflow exhaust gas becomes smaller than the stoichiometric, that is, becomes rich, the adsorbed and held oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric. However, such an air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.

ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係がある。よって、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。一般的には、燃焼室内の混合気ひいては触媒に流入する排気ガスの空燃比を強制的にリッチ又はリーンに切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴って触媒の酸素吸蔵容量を計測し、触媒の劣化を診断する方法(所謂Cmax法)が採用される。   By the way, when the catalyst deteriorates, the purification efficiency of the catalyst decreases. On the other hand, there is a correlation between the degree of deterioration of the catalyst and the degree of reduction of the oxygen storage capacity because they are reactions through noble metals. Therefore, it is possible to detect that the catalyst has deteriorated by detecting that the oxygen storage capacity has decreased. In general, active air-fuel ratio control for forcibly switching the air-fuel ratio of the air-fuel mixture in the combustion chamber and thus the exhaust gas flowing into the catalyst to rich or lean is performed, and the oxygen storage of the catalyst is performed as the active air-fuel ratio control is executed. A method of measuring the capacity and diagnosing catalyst deterioration (so-called Cmax method) is employed.

例えば特許文献1には、Cmax法を利用した触媒劣化判定装置であって、計測された酸素吸蔵容量と酸素吸蔵容量の算出回数とに基づいて触媒の劣化度合いを判定する装置が開示されている。   For example, Patent Document 1 discloses an apparatus for determining catalyst deterioration using the Cmax method, which determines the degree of catalyst deterioration based on the measured oxygen storage capacity and the number of times the oxygen storage capacity is calculated. .

特開2004−176611号公報JP 2004-176611 A

一方、使用地域等によっては燃料中に硫黄(S)が比較的高濃度で含まれていることがある。このような燃料が給油された場合、硫黄成分が触媒に蓄積して触媒の性能が低下する被毒(S被毒)が発生する。S被毒が発生すると、触媒の酸素吸放出反応が妨げられて触媒の見掛け上の酸素吸蔵容量が低下する。しかしながら、硫黄濃度の低い燃料が再給油されると被毒状態はやがて解消される。S被毒による触媒の性能低下は一時的なものである。よって触媒の劣化診断においては、かかるS被毒による一時的劣化を、本来診断すべき熱劣化等の恒久的劣化ないし異常であると誤って診断しないようにする必要がある。とりわけ、正常と劣化との境目(クライテリア)付近にありながらなお正常である触媒について、誤って劣化と誤診断してしまわないようにする必要がある。   On the other hand, sulfur (S) may be contained in the fuel at a relatively high concentration depending on the region of use. When such fuel is supplied, poisoning (S poisoning) occurs in which sulfur components accumulate in the catalyst and the performance of the catalyst decreases. When S poisoning occurs, the oxygen storage / release reaction of the catalyst is hindered, and the apparent oxygen storage capacity of the catalyst decreases. However, if the fuel with a low sulfur concentration is refueled, the poisoning state will eventually be resolved. The performance degradation of the catalyst due to S poisoning is temporary. Therefore, in the catalyst deterioration diagnosis, it is necessary not to mistakenly diagnose the temporary deterioration due to the S poisoning as permanent deterioration or abnormality such as heat deterioration to be originally diagnosed. In particular, it is necessary to prevent a catalyst that is still normal while being in the vicinity of the boundary between normality and deterioration (criteria) from being erroneously diagnosed as deterioration.

かかる誤診断を防止するためには、燃料性状を判別すること、特に燃料の硫黄濃度を推定することが好適である。かかる判別ないし推定を行えば、燃料が高硫黄濃度であると推定したときに診断を保留するなど必要な措置を執ることができ、誤診断を未然に防止できるからである。   In order to prevent such a misdiagnosis, it is preferable to discriminate the fuel property, particularly to estimate the sulfur concentration of the fuel. This is because if such discrimination or estimation is performed, necessary measures such as deferring diagnosis when the fuel is estimated to have a high sulfur concentration can be taken, and erroneous diagnosis can be prevented in advance.

そこで、本発明はこのような実情に鑑みてなされたもので、その目的は、燃料の硫黄濃度を推定可能な燃料性状判別装置、及びその推定結果を利用して誤診断を未然に防止し得る触媒劣化診断装置を提供することにある。   Therefore, the present invention has been made in view of such a situation, and an object of the present invention is to prevent a misdiagnosis by using a fuel property determination device capable of estimating the sulfur concentration of fuel and an estimation result thereof. The object is to provide a catalyst deterioration diagnosis device.

本発明の一形態によれば、
内燃機関の排気通路に設けられた触媒と、
前記触媒の下流側に設けられた触媒後空燃比センサと、
前記触媒に供給される排気ガスの空燃比をリッチ側からリーン側に又はその逆に徐変させる空燃比制御手段と、
前記空燃比制御手段により排気ガスの空燃比を徐変させたときに前記触媒後空燃比センサの出力がリーン側又はリッチ側に反転するタイミングにおける空燃比の値に基づいて、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする燃料性状判別装置が提供される。
According to one aspect of the invention,
A catalyst provided in the exhaust passage of the internal combustion engine;
A post-catalyst air-fuel ratio sensor provided downstream of the catalyst;
Air-fuel ratio control means for gradually changing the air-fuel ratio of the exhaust gas supplied to the catalyst from the rich side to the lean side, or vice versa;
Based on the value of the air-fuel ratio at the timing when the output of the post-catalyst air-fuel ratio sensor reverses to the lean side or the rich side when the air-fuel ratio of the exhaust gas is gradually changed by the air-fuel ratio control means, the sulfur concentration of the fuel is determined. There is provided a fuel property discriminating device comprising a sulfur concentration estimating means for estimating.

触媒に供給される排気ガスの空燃比をリッチ側からリーン側に又はその逆に徐変させると、触媒後空燃比センサの出力がリーン側又はリッチ側に反転するタイミングが燃料の硫黄濃度に応じて異なる。そこでこの相関性を利用し、触媒後空燃比センサ出力の反転タイミングにおける空燃比の値に基づき燃料の硫黄濃度が推定される。   When the air-fuel ratio of the exhaust gas supplied to the catalyst is gradually changed from the rich side to the lean side or vice versa, the timing at which the output of the post-catalyst air-fuel ratio sensor reverses to the lean side or the rich side depends on the sulfur concentration of the fuel Different. Therefore, using this correlation, the sulfur concentration of the fuel is estimated based on the value of the air-fuel ratio at the inversion timing of the post-catalyst air-fuel ratio sensor output.

好ましくは、前記燃料性状判別装置が、前記触媒の上流側に設けられた触媒前空燃比センサを備え、前記空燃比制御手段が、前記触媒前空燃比センサにより検出された排気ガスの空燃比を目標空燃比に一致させるように空燃比を制御すると共に、前記目標空燃比をリッチ側からリーン側に又はその逆に徐変させることにより前記触媒に供給される排気ガスの空燃比をリッチ側からリーン側に又はその逆に徐変させ、前記硫黄濃度推定手段が、前記触媒後空燃比センサの出力がリーン側又はリッチ側に反転するタイミングにおける目標空燃比の値に基づいて、燃料の硫黄濃度を推定する。   Preferably, the fuel property determination device includes a pre-catalyst air-fuel ratio sensor provided upstream of the catalyst, and the air-fuel ratio control means determines the air-fuel ratio of the exhaust gas detected by the pre-catalyst air-fuel ratio sensor. The air-fuel ratio is controlled so as to coincide with the target air-fuel ratio, and the air-fuel ratio of the exhaust gas supplied to the catalyst is gradually changed from the rich side by gradually changing the target air-fuel ratio from the rich side to the lean side or vice versa. The sulfur concentration of the fuel is determined based on the value of the target air-fuel ratio at the timing when the output of the post-catalyst air-fuel ratio sensor reverses to the lean side or the rich side. Is estimated.

好ましくは、前記空燃比制御手段が、前記触媒に供給される排気ガスの空燃比をストイキに対してリッチ側からリーン側に又はその逆に徐変させる。   Preferably, the air-fuel ratio control means gradually changes the air-fuel ratio of the exhaust gas supplied to the catalyst from the rich side to the lean side with respect to the stoichiometry or vice versa.

好ましくは、前記空燃比制御手段が、前記目標空燃比を所定時間毎に所定値ずつ更新する。   Preferably, the air-fuel ratio control unit updates the target air-fuel ratio by a predetermined value every predetermined time.

本発明の他の形態によれば、
前記燃料性状判別装置を備えた触媒劣化診断装置であって、前記硫黄濃度推定手段により所定値以上の燃料硫黄濃度が推定されたとき、前記触媒の劣化診断を保留することを特徴とする触媒劣化診断装置が提供される。
According to another aspect of the invention,
A catalyst deterioration diagnosis device comprising the fuel property determination device, wherein the catalyst deterioration diagnosis is suspended when a fuel sulfur concentration greater than a predetermined value is estimated by the sulfur concentration estimation means. A diagnostic device is provided.

これによれば、所定値以上の燃料硫黄濃度が推定されたときに触媒の劣化診断が保留されるので、燃料中の硫黄の影響による誤診断を未然に防止することができる。   According to this, since the deterioration diagnosis of the catalyst is suspended when the fuel sulfur concentration equal to or higher than the predetermined value is estimated, a false diagnosis due to the influence of sulfur in the fuel can be prevented in advance.

好ましくは、前記触媒の劣化度に相関するパラメータを計測する計測手段を備え、前記計測されたパラメータが劣化触媒相当の値であるときに、前記空燃比制御手段による空燃比の徐変と前記硫黄濃度推定手段による硫黄濃度の推定とが実行される。   Preferably, measuring means for measuring a parameter correlated with the degree of deterioration of the catalyst is provided, and when the measured parameter is a value corresponding to the deteriorated catalyst, the air-fuel ratio is gradually changed by the air-fuel ratio control means and the sulfur The sulfur concentration is estimated by the concentration estimating means.

これによれば、まず当該パラメータの計測が実行され、この計測されたパラメータが劣化触媒相当の値であるときに、硫黄影響の有無を調べるべく空燃比の徐変と硫黄濃度の推定とが実行される。よって必要最小限の頻度で空燃比の徐変と硫黄濃度の推定とを実行することができる。   According to this, the measurement of the parameter is first executed, and when the measured parameter is a value corresponding to the deteriorated catalyst, the gradual change of the air-fuel ratio and the estimation of the sulfur concentration are executed in order to examine the presence or absence of the influence of sulfur. Is done. Therefore, the gradual change of the air-fuel ratio and the estimation of the sulfur concentration can be executed with the minimum frequency.

本発明のさらなる他の形態によれば、
前記燃料性状判別装置を備えた触媒劣化診断装置であって、前記触媒の劣化度に相関するパラメータを計測する計測手段を備え、前記硫黄濃度推定手段により所定値以上の燃料硫黄濃度が推定されたとき、前記計測されたパラメータを補正すると共に、この補正されたパラメータに基づいて触媒の劣化診断を実行することを特徴とする触媒劣化診断装置が提供される。
According to yet another aspect of the invention,
A catalyst deterioration diagnosis device comprising the fuel property determination device, comprising a measuring means for measuring a parameter correlated with the degree of deterioration of the catalyst, and a fuel sulfur concentration greater than or equal to a predetermined value estimated by the sulfur concentration estimating means. A catalyst deterioration diagnosis device is provided that corrects the measured parameter and executes a catalyst deterioration diagnosis based on the corrected parameter.

これによれば、所定値以上の燃料硫黄濃度が推定されたとき、計測されたパラメータが補正されて触媒の劣化診断が実行されるので、燃料中の硫黄の影響による誤診断を未然に防止することができる。   According to this, when the fuel sulfur concentration of a predetermined value or more is estimated, the measured parameter is corrected and the deterioration diagnosis of the catalyst is executed, so that erroneous diagnosis due to the influence of sulfur in the fuel is prevented in advance. be able to.

本発明によれば、燃料の硫黄濃度を推定可能な燃料性状判別装置、及びその推定結果を利用して誤診断を未然に防止し得る触媒劣化診断装置を提供することができるという、優れた効果が発揮される。   According to the present invention, it is possible to provide a fuel property determination device that can estimate the sulfur concentration of fuel, and a catalyst deterioration diagnosis device that can prevent erroneous diagnosis by using the estimation result. Is demonstrated.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。   FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. To do. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   In the cylinder head of the internal combustion engine 1, an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port are provided for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、酸素吸蔵能を有する三元触媒からなる触媒11,19が直列に取り付けられている。なお排気ポート、枝管及び排気管6により排気通路が形成される。上流触媒11の上流側と下流側とにそれぞれ排気ガスの空燃比を検出するための空燃比センサ、即ち触媒前空燃比センサ17及び触媒後空燃比センサ18が設置されている。触媒前空燃比センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後空燃比センサ18は所謂O2センサからなり、理論空燃比を境に出力値が急変する特性を持つ。なお触媒後空燃比センサ18は上流触媒11と下流触媒19の間に設置されている。 On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder, and the exhaust pipe 6 has catalysts 11, 19 made of a three-way catalyst having an oxygen storage capacity. Are attached in series. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 6. Air-fuel ratio sensors for detecting the air-fuel ratio of exhaust gas, that is, a pre-catalyst air-fuel ratio sensor 17 and a post-catalyst air-fuel ratio sensor 18 are installed on the upstream side and the downstream side of the upstream catalyst 11, respectively. The pre-catalyst air-fuel ratio sensor 17 is a so-called wide-area air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the post-catalyst air-fuel ratio sensor 18 is a so-called O 2 sensor and has a characteristic that the output value changes suddenly at the theoretical air-fuel ratio. The post-catalyst air-fuel ratio sensor 18 is installed between the upstream catalyst 11 and the downstream catalyst 19.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前空燃比センサ17、触媒後空燃比センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst air-fuel ratio sensor 17, and the post-catalyst air-fuel ratio sensor 18, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1, an accelerator opening, as shown in the figure. The accelerator opening sensor 15 for detecting the above and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

触媒11,19は、これに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.55)近傍のときにNOx,HCおよびCOを同時に浄化する。そしてこれに対応して、ECU20は、通常時、燃焼室3から排出され上流触媒11に供給される排気ガスの空燃比即ち触媒前空燃比A/Ffrを理論空燃比にフィードバック制御する(ストイキフィードバック制御)。具体的にはECU20は、理論空燃比に等しい目標空燃比A/Ftを設定すると共に、触媒前空燃比センサ17により検出された触媒前空燃比A/Ffrが目標空燃比A/Ftに一致するように、インジェクタ12から噴射される燃料噴射量、ひいては空燃比をフィードバック制御する。   The catalysts 11 and 19 simultaneously purify NOx, HC and CO when the air-fuel ratio A / F of the exhaust gas flowing into the catalysts 11 and 19 is near the stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.55). In response to this, the ECU 20 normally performs feedback control of the air-fuel ratio of the exhaust gas discharged from the combustion chamber 3 and supplied to the upstream catalyst 11, that is, the pre-catalyst air-fuel ratio A / Ffr, to the stoichiometric air-fuel ratio (stoichiometric feedback). control). Specifically, the ECU 20 sets a target air-fuel ratio A / Ft equal to the theoretical air-fuel ratio, and the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17 matches the target air-fuel ratio A / Ft. As described above, feedback control is performed on the fuel injection amount injected from the injector 12, and consequently the air-fuel ratio.

ここで上流触媒11についてより詳細に説明する。なお以下の説明は下流触媒19にも同様に当てはまる。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸収放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeO2やジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHCおよびCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元浄化される。 Here, the upstream catalyst 11 will be described in more detail. The following description applies to the downstream catalyst 19 as well. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and the coating material 31 is held in a state in which a large number of particulate catalyst components 32 are dispersedly arranged. The catalyst 11 is exposed inside. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays the role of a promoter that promotes the reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. For example, if the atmosphere gas of the catalyst component 32 and the coating material 31 is richer than the stoichiometric air-fuel ratio, the oxygen stored in the oxygen storage component present around the catalyst component 32 is released, and as a result, the released oxygen As a result, unburned components such as HC and CO are oxidized and purified. On the contrary, when the atmosphere gas of the catalyst component 32 and the coating material 31 is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmosphere gas, and as a result, NOx is reduced and purified. The

このような酸素吸放出作用により、通常の空燃比制御の際に触媒前空燃比A/Ffrが理論空燃比に対し多少ばらついたとしても、NOx、HCおよびCOといった三つの排気ガス成分を同時浄化することができる。よって通常の空燃比制御において、触媒前空燃比A/Ffrを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。   By such an oxygen absorption / release action, even if the pre-catalyst air-fuel ratio A / Ffr slightly varies from the stoichiometric air-fuel ratio during normal air-fuel ratio control, three exhaust gas components such as NOx, HC and CO are simultaneously purified. can do. Therefore, in normal air-fuel ratio control, it is also possible to purify the exhaust gas by making the pre-catalyst air-fuel ratio A / Ffr oscillate minutely around the theoretical air-fuel ratio and repeating the absorption and release of oxygen.

ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。   By the way, in the catalyst 11 in the new state, as described above, a large number of fine particulate catalyst components 32 are uniformly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). In this case, the contact probability between the exhaust gas and the catalyst component 32 is lowered, and the purification rate is lowered. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.

このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、特にエミッションへの影響が大きい上流触媒11の酸素吸蔵能を検出することにより、上流触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵容量(OSC;O2 Storage Capacity、単位はg)の大きさによって表される。この酸素吸蔵容量OSCが、触媒11の劣化度に相関するパラメータとなる。 Thus, the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11 are in a correlation. Therefore, in the present embodiment, the deterioration degree of the upstream catalyst 11 is detected by detecting the oxygen storage capacity of the upstream catalyst 11 that has a particularly large influence on the emission. Here, the oxygen storage capacity of the catalyst 11 is represented by the size of the oxygen storage capacity (OSC; O 2 Storage Capacity, the unit is g), which is the maximum amount of oxygen that the current catalyst 11 can store. This oxygen storage capacity OSC is a parameter that correlates with the degree of deterioration of the catalyst 11.

本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、混合気の空燃比ひいては触媒前空燃比A/Ffrは、所定の中心空燃比A/Fcを境にリッチ側及びリーン側にアクティブに(強制的に)交互に切り替えられる。なおリッチ側に切り替えられているときの空燃比をリッチ空燃比A/Fr、リーン側に切り替えられているときの空燃比をリーン空燃比A/Flと称す。このアクティブ空燃比制御によって触媒前空燃比A/Ffrがリッチ側又はリーン側に切り替えられている最中に触媒の酸素吸蔵容量OSCが計測される。   The catalyst deterioration diagnosis of the present embodiment is basically based on the Cmax method described above. When the deterioration diagnosis of the catalyst 11 is performed, the active air-fuel ratio control is executed by the ECU 20. In the active air-fuel ratio control, the air-fuel ratio of the air-fuel mixture, and thus the pre-catalyst air-fuel ratio A / Ffr, is switched alternately (forcedly) to the rich side and the lean side at a predetermined center air-fuel ratio A / Fc. The air-fuel ratio when switched to the rich side is referred to as rich air-fuel ratio A / Fr, and the air-fuel ratio when switched to the lean side is referred to as lean air-fuel ratio A / Fl. While the pre-catalyst air-fuel ratio A / Ffr is switched to the rich side or the lean side by this active air-fuel ratio control, the oxygen storage capacity OSC of the catalyst is measured.

触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaに基づいて、予め設定されたマップを利用し、触媒11の温度Tcを推定する。なお、吸入空気量Ga以外のパラメータ、例えばエンジン回転速度Ne(rpm)などを触媒温度推定に用いるパラメータに含めてもよい。   The deterioration diagnosis of the catalyst 11 is executed during steady operation of the internal combustion engine 1 and when the catalyst 11 is in the active temperature range. Measurement of the temperature of the catalyst 11 (catalyst bed temperature) may be detected directly using a temperature sensor, but in the present embodiment, it is estimated from the operating state of the internal combustion engine. For example, the ECU 20 estimates the temperature Tc of the catalyst 11 using a preset map based on the intake air amount Ga detected by the air flow meter 5. It should be noted that parameters other than the intake air amount Ga, for example, the engine rotational speed Ne (rpm) may be included in the parameters used for the catalyst temperature estimation.

図3(A),(B)にはそれぞれ、アクティブ空燃比制御実行時における触媒前空燃比センサ17の出力及び触媒後空燃比センサ18の出力が実線で示されている。また、図3(A)には、ECU20内部で発生される目標空燃比A/Ftが破線で示されている。なお図3(A)に示すのは触媒前空燃比A/Ffrへの換算値、図3(B)に示すのは触媒後空燃比センサ18の出力電圧Vrrである。   3A and 3B, the output of the pre-catalyst air-fuel ratio sensor 17 and the output of the post-catalyst air-fuel ratio sensor 18 when the active air-fuel ratio control is executed are indicated by solid lines, respectively. In FIG. 3A, the target air-fuel ratio A / Ft generated inside the ECU 20 is indicated by a broken line. 3A shows the converted value to the pre-catalyst air-fuel ratio A / Ffr, and FIG. 3B shows the output voltage Vrr of the post-catalyst air-fuel ratio sensor 18.

図3(A)に示されるように、目標空燃比A/Ftは、中心空燃比としての理論空燃比(ストイキ)A/Fsを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比A/Fr)と、そこからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比A/Fl)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比A/Ftの切り替えに追従して、実際値としての触媒前空燃比A/Ffrも、目標空燃比A/Ftに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比A/Ftと触媒前空燃比A/Ffrとは時間遅れがあること以外等価であることが理解されよう。   As shown in FIG. 3A, the target air-fuel ratio A / Ft is centered on the stoichiometric air-fuel ratio (stoichiometric) A / Fs as the center air-fuel ratio, and a predetermined amplitude (rich amplitude Ar, An air-fuel ratio (rich air-fuel ratio A / Fr) separated by Ar> 0), and an air-fuel ratio (lean air-fuel ratio A / Fl) separated from it by a predetermined amplitude (lean amplitude Al, Al> 0) Forcibly and alternately. Following the switching of the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ffr as an actual value is also switched with a slight time delay with respect to the target air-fuel ratio A / Ft. From this, it will be understood that the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ffr are equivalent except that there is a time delay.

図示例においてリッチ振幅Arとリーン振幅Alとは等しい。例えば中心空燃比=理論空燃比A/Fs=14.55、リッチ空燃比A/Fr=14.05、リーン空燃比A/Fl=15.05、リッチ振幅Ar=リーン振幅Al=0.5である。通常のストイキフィードバック制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、即ちリッチ振幅Arとリーン振幅Alとの値は大きい。   In the illustrated example, the rich amplitude Ar and the lean amplitude Al are equal. For example, the center air fuel ratio = theoretical air fuel ratio A / Fs = 14.55, the rich air fuel ratio A / Fr = 14.05, the lean air fuel ratio A / Fl = 15.05, the rich amplitude Ar = the lean amplitude Al = 0.5. is there. Compared to the normal stoichiometric feedback control, the active air-fuel ratio control has a larger air-fuel ratio amplitude, that is, the values of the rich amplitude Ar and the lean amplitude Al are larger.

ところで、目標空燃比A/Ftが切り替えられる時期ないしタイミングは、触媒後空燃比センサ18の出力がリッチからリーンに、又はリーンからリッチに切り替わる(或いは反転する)タイミングである。ここで図示されるように触媒後空燃比センサ18の出力電圧Vrrは理論空燃比A/Fsを境に急変する。そして当該出力電圧Vrrの反転時期、即ち当該出力電圧Vrrがリッチ側に反転したかどうか或いはリーン側に反転したかどうかを定めるため、当該出力電圧Vrrに関する二つの反転しきい値VR,VLが定められている。ここでVRをリッチ判定値、VLをリーン判定値という。VR>VLであり、例えばVR=0.59(V)、VL=0.21(V)とされる。出力電圧Vrrがリーン側即ち減少方向に変化してリーン判定値VLに達した時、出力電圧Vrrはリーン側に反転したとみなされ、触媒後空燃比センサ18によって検出された触媒後空燃比A/Frrは少なくとも理論空燃比よりリーンであると判断される。他方、出力電圧Vrrがリッチ側即ち増大方向に変化してリッチ判定値VRに達した時、出力電圧Vrrはリッチ側に反転したとみなされ、触媒後空燃比A/Frrは少なくとも理論空燃比よりリッチであると判断される。   By the way, the timing or timing at which the target air-fuel ratio A / Ft is switched is the timing at which the output of the post-catalyst air-fuel ratio sensor 18 switches (or reverses) from rich to lean or from lean to rich. As shown in the figure, the output voltage Vrr of the post-catalyst air-fuel ratio sensor 18 changes suddenly at the theoretical air-fuel ratio A / Fs. In order to determine the inversion timing of the output voltage Vrr, that is, whether the output voltage Vrr is inverted to the rich side or the lean side, the two inversion thresholds VR and VL relating to the output voltage Vrr are determined. It has been. Here, VR is referred to as a rich determination value, and VL is referred to as a lean determination value. VR> VL, for example, VR = 0.59 (V) and VL = 0.21 (V). When the output voltage Vrr changes to the lean side, that is, decreases and reaches the lean determination value VL, the output voltage Vrr is considered to be reversed to the lean side, and the post-catalyst air-fuel ratio A detected by the post-catalyst air-fuel ratio sensor 18 is obtained. / Frr is determined to be leaner than at least the stoichiometric air-fuel ratio. On the other hand, when the output voltage Vrr changes to the rich side, that is, increases and reaches the rich determination value VR, the output voltage Vrr is considered to be reversed to the rich side, and the post-catalyst air-fuel ratio A / Frr is at least greater than the stoichiometric air-fuel ratio. Judged to be rich.

図3(A),(B)に示されるように、触媒後空燃比センサ18の出力電圧がリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比A/Ftはリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられる。その後、触媒後空燃比センサ18の出力電圧がリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比A/Ftはリッチ空燃比A/Frからリーン空燃比A/Flに切り替えられる。このように、触媒後空燃比センサ18によって検出された触媒後空燃比A/Frrがリーン側又はリッチ側に反転する毎に空燃比がリッチ側又はリーン側にアクティブに切替制御される。   As shown in FIGS. 3A and 3B, when the output voltage of the post-catalyst air-fuel ratio sensor 18 changes from the rich side value to the lean side and becomes equal to the lean determination value VL (time t1), The target air-fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr. Thereafter, when the output voltage of the post-catalyst air-fuel ratio sensor 18 changes from the lean value to the rich side and becomes equal to the rich determination value VR (time t2), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / Fr. To a lean air-fuel ratio A / Fl. In this way, every time the post-catalyst air-fuel ratio A / Frr detected by the post-catalyst air-fuel ratio sensor 18 is reversed to the lean side or the rich side, the air-fuel ratio is actively switched to the rich side or the lean side.

このような空燃比変化を行うアクティブ空燃比制御を実行しつつ、次のようにして触媒11の酸素吸蔵容量OSCが計測され、触媒11の劣化が判定される。   While performing the active air-fuel ratio control that performs such an air-fuel ratio change, the oxygen storage capacity OSC of the catalyst 11 is measured as follows, and the deterioration of the catalyst 11 is determined.

図3を参照して、時刻t1より前では目標空燃比A/Ftがリーン空燃比A/Flとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続けているが、一杯に酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリーン側に変化し、触媒後空燃比センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、或いは反転される。   Referring to FIG. 3, the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl before time t1, and the lean gas flows into the catalyst 11. At this time, the catalyst 11 continues to absorb oxygen, but when it fully absorbs oxygen, it can no longer absorb oxygen, and the lean gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the lean side, and when the output voltage of the post-catalyst air-fuel ratio sensor 18 reaches the lean determination value VL (t1), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A. Switched to / Fr or inverted.

そして今度は触媒11にリッチガスが流入されることとなる。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比A/Fsの排気ガスが流出し、触媒後空燃比A/Frrがリッチにならないことから、触媒後空燃比センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは全ての吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリッチ側に変化し、触媒後空燃比センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。   This time, rich gas flows into the catalyst 11. At this time, the oxygen stored in the catalyst 11 continues to be released from the catalyst 11. Therefore, the exhaust gas of the theoretical air-fuel ratio A / Fs flows out to the downstream side of the catalyst 11 and the post-catalyst air-fuel ratio A / Frr does not become rich, so the output of the post-catalyst air-fuel ratio sensor 18 is not reversed. When oxygen is continuously released from the catalyst 11, all the stored oxygen is eventually released from the catalyst 11, and at that time, oxygen can no longer be released, and rich gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the rich side, and the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A when the output voltage of the post-catalyst air-fuel ratio sensor 18 reaches the rich determination value VR (t2). / Fl.

酸素吸蔵容量OSCが大きいほど、酸素を吸収或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は目標空燃比A/Ftの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほど目標空燃比A/Ftの反転周期は短くなる。   The larger the oxygen storage capacity OSC, the longer the time during which oxygen can be absorbed or released. That is, when the catalyst is not deteriorated, the inversion cycle of the target air-fuel ratio A / Ft (for example, the time from t1 to t2) becomes longer, and the inversion cycle of the target air-fuel ratio A / Ft becomes shorter as the deterioration of the catalyst proceeds. .

そこで、このことを利用して酸素吸蔵容量OSCが以下のようにして計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffrがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t11から、次に目標空燃比A/Ftが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵容量dOSC(酸素吸蔵容量の瞬時値)が算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが時刻t11から時刻t2まで積算される。こうしてこの酸素放出サイクルにおける酸素吸蔵容量即ち放出酸素量(図4のOSC1)が計測される。   Therefore, using this fact, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ffr as the actual value is slightly delayed with the rich air-fuel ratio A / Fr. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ffr reaches the theoretical air-fuel ratio A / Fs to the time t2 when the target air-fuel ratio A / Ft next reverses, the following equation (1) An oxygen storage capacity dOSC (instantaneous value of the oxygen storage capacity) is calculated, and the oxygen storage capacity dOSC for each minute time is integrated from time t11 to time t2. Thus, the oxygen storage capacity, that is, the amount of released oxygen (OSC1 in FIG. 4) in this oxygen release cycle is measured.

Figure 2009215924
Figure 2009215924

ここで、Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。   Here, Q is a fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, an air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. K is a constant representing the proportion of oxygen contained in air (about 0.23).

基本的には、この1回で計測された酸素吸蔵容量OSCを用い、これを所定の劣化判定値OSCsと比較し、酸素吸蔵容量OSCが劣化判定値OSCsを超えていれば正常、酸素吸蔵容量OSCが劣化判定値OSCs以下ならば劣化、というように触媒の劣化を判定できる。しかしながら、本実施形態では精度を向上させるため、目標空燃比A/Ftがリーン側となっている酸素吸蔵サイクルでも同様に酸素吸蔵容量(この場合吸蔵酸素量)を計測し、これら酸素吸蔵容量の平均値を1吸放出サイクルに係る1単位の酸素吸蔵容量として計測している。そしてさらに、吸放出サイクルを複数回繰り返し、複数単位の酸素吸蔵容量の値を得、その平均値を最終的な酸素吸蔵容量計測値としている。   Basically, the oxygen storage capacity OSC measured at one time is used and compared with a predetermined deterioration judgment value OSCs. If the oxygen storage capacity OSC exceeds the deterioration judgment value OSCs, the oxygen storage capacity is normal. If the OSC is equal to or lower than the deterioration determination value OSCs, the deterioration of the catalyst can be determined such as deterioration. However, in this embodiment, in order to improve the accuracy, the oxygen storage capacity (the stored oxygen amount in this case) is also measured in the oxygen storage cycle in which the target air-fuel ratio A / Ft is on the lean side. The average value is measured as an oxygen storage capacity of one unit related to one absorption / release cycle. Further, the absorption / release cycle is repeated a plurality of times to obtain a value of oxygen storage capacity of a plurality of units, and the average value is used as the final oxygen storage capacity measurement value.

酸素吸蔵サイクルにおける酸素吸蔵容量(酸素吸蔵量)の計測については、図4に示すように、時刻t2で目標空燃比A/Ftがリーン空燃比A/Flに切り替えられた後、触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t21から、次に目標空燃比A/Ftがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。こうしてこの酸素吸蔵サイクルにおける酸素吸蔵容量OSC即ち吸蔵酸素量(図4のOSC2)が計測される。酸素放出サイクルの酸素吸蔵容量OSC1と酸素吸蔵サイクルの酸素吸蔵容量OSC2とはほぼ等しい値となるのが理想的である。   Regarding the measurement of the oxygen storage capacity (oxygen storage amount) in the oxygen storage cycle, as shown in FIG. 4, after the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio A / Fl at time t2, the pre-catalyst air-fuel ratio is measured. From time t21 when A / Ffr reaches the theoretical air-fuel ratio A / Fs to time t3 when the target air-fuel ratio A / Ft reverses to the rich side next, the oxygen storage capacity dOSC for each minute time is calculated from the previous equation (1). The calculated oxygen storage capacity dOSC for each minute time is integrated. Thus, the oxygen storage capacity OSC, that is, the amount of stored oxygen (OSC2 in FIG. 4) in this oxygen storage cycle is measured. Ideally, the oxygen storage capacity OSC1 of the oxygen release cycle and the oxygen storage capacity OSC2 of the oxygen storage cycle are substantially equal to each other.

次に、この酸素吸蔵容量計測値を用いて触媒の劣化判定がなされる。即ち、酸素吸蔵容量計測値OSCが所定の劣化判定値OSCsと比較され、酸素吸蔵容量計測値OSCが劣化判定値OSCsより大きければ触媒は正常、酸素吸蔵容量計測値OSCが劣化判定値OSCs以下ならば触媒は劣化と判定される。なお、触媒が劣化と判定された場合、その事実をユーザに知らせるため、チェックランプ等の警告装置を起動させるのが好ましい。以上が触媒劣化診断の基本的な内容である。   Next, the deterioration of the catalyst is determined using the measured oxygen storage capacity. That is, the oxygen storage capacity measurement value OSC is compared with the predetermined deterioration determination value OSCs. If the oxygen storage capacity measurement value OSC is larger than the deterioration determination value OSCs, the catalyst is normal, and if the oxygen storage capacity measurement value OSC is less than or equal to the deterioration determination value OSCs. The catalyst is judged to be deteriorated. When it is determined that the catalyst is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact. The above is the basic content of the catalyst deterioration diagnosis.

ところで前述したように、硫黄濃度が高い燃料(高硫黄燃料)が給油されると触媒がS被毒し、酸素吸蔵容量の計測値が低下する。そして正常な触媒であるにも拘わらず劣化と誤診断する可能性がある。かかる誤診断を防止するためには、燃料性状を判別すること、特に燃料中の硫黄濃度を推定することが好適である。かかる判別ないし推定を行えば、燃料が高硫黄濃度であると推定したときに診断を保留するなど必要な措置を執ることができ、誤診断を未然に防止できるからである。   As described above, when fuel with a high sulfur concentration (high sulfur fuel) is supplied, the catalyst is poisoned with sulfur, and the measured value of the oxygen storage capacity decreases. And although it is a normal catalyst, there is a possibility of misdiagnosis as deterioration. In order to prevent such a misdiagnosis, it is preferable to discriminate the fuel property, particularly to estimate the sulfur concentration in the fuel. This is because if such discrimination or estimation is performed, necessary measures such as deferring diagnosis when the fuel is estimated to have a high sulfur concentration can be taken, and erroneous diagnosis can be prevented in advance.

そこで本実施形態では、かかる燃料性状の判別、特に燃料中の硫黄濃度の推定を行うようにしている。以下、その内容について説明する。   Therefore, in this embodiment, the determination of the fuel property, particularly the estimation of the sulfur concentration in the fuel is performed. The contents will be described below.

本実施形態では、触媒11に供給される排気ガスの空燃比をリッチ側からリーン側に徐変させ、このときに触媒後空燃比センサ18の出力がリーン側に反転するタイミングにおける空燃比の値に基づいて、燃料の硫黄濃度を推定することとしている。以下、予め使用が予定されている硫黄濃度が低い燃料、即ち硫黄濃度が所定値未満の燃料を低硫黄燃料又は低S燃料という。また、硫黄濃度がそれよりも高い燃料、即ち硫黄濃度が当該所定値以上の燃料を高硫黄燃料又は高S燃料という。低硫黄燃料は例えば硫黄濃度が30ppmの燃料であり、高硫黄燃料は例えば硫黄濃度が300ppmの燃料である。以下の例では理論空燃比即ちストイキを14.55とする。   In this embodiment, the air-fuel ratio of the exhaust gas supplied to the catalyst 11 is gradually changed from the rich side to the lean side, and the value of the air-fuel ratio at the timing when the output of the post-catalyst air-fuel ratio sensor 18 is reversed to the lean side at this time. Based on this, the sulfur concentration of the fuel is estimated. Hereinafter, a fuel having a low sulfur concentration scheduled to be used in advance, that is, a fuel having a sulfur concentration less than a predetermined value is referred to as a low sulfur fuel or a low S fuel. A fuel having a higher sulfur concentration, that is, a fuel having a sulfur concentration higher than the predetermined value is referred to as a high sulfur fuel or a high S fuel. The low sulfur fuel is, for example, a fuel having a sulfur concentration of 30 ppm, and the high sulfur fuel is, for example, a fuel having a sulfur concentration of 300 ppm. In the following example, the stoichiometric air-fuel ratio, that is, the stoichiometric value is 14.55.

図5に、かかる空燃比徐変を実行したときの各値の変化を示す。(A)は目標空燃比A/Ft、(B)は触媒前空燃比センサ17で検出された触媒前空燃比A/Ffr、(C)は触媒後空燃比センサ18の出力電圧Vrr(V)を示す。触媒後空燃比センサ18の出力電圧Vrrのリッチ/リーンの境界を規定するしきい値をVrefとする。当該しきい値はストイキ付近に相当する所定値とし、ここでは0.5Vとする。   FIG. 5 shows changes in values when such air-fuel ratio gradual change is executed. (A) is the target air-fuel ratio A / Ft, (B) is the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17, and (C) is the output voltage Vrr (V) of the post-catalyst air-fuel ratio sensor 18. Indicates. The threshold value that defines the rich / lean boundary of the output voltage Vrr of the post-catalyst air-fuel ratio sensor 18 is defined as Vref. The threshold value is set to a predetermined value corresponding to the vicinity of stoichiometry, and is set to 0.5 V here.

(A)に示すように、目標空燃比A/Ftは、ストイキよりリッチ側の所定値からストイキよりリーン側の所定値に徐変されている。具体的には、目標空燃比A/Ftは、ストイキよりリッチ側の所定値からストイキよりリーン側の所定値に、一定速度で、ストイキを交差するように徐々に変化(スイープ)されている。一方、触媒前空燃比センサ17で検出された触媒前空燃比A/Ffrが目標空燃比A/Ftに一致するようフィードバック制御がなされているので、(B)に示すように、その触媒前空燃比A/Ffrも目標空燃比A/Ftと同じように変化する。但しフィードバック制御の特性上、触媒前空燃比A/Ffrは振動しながらその振動中心が目標空燃比A/Ftに一致するように変化する。この結果、触媒11に供給される排気ガスの空燃比も目標空燃比A/Ftと同じように変化する。   As shown in (A), the target air-fuel ratio A / Ft is gradually changed from a predetermined value richer than stoichiometric to a predetermined value leaner than stoichiometric. Specifically, the target air-fuel ratio A / Ft is gradually changed (swept) from a predetermined value richer than stoichiometric to a predetermined value leaner than stoichiometric at a constant speed so as to cross stoichiometric. On the other hand, since the feedback control is performed so that the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17 coincides with the target air-fuel ratio A / Ft, as shown in FIG. The fuel ratio A / Ffr also changes in the same manner as the target air fuel ratio A / Ft. However, due to the characteristics of feedback control, the pre-catalyst air-fuel ratio A / Ffr changes so that the center of vibration coincides with the target air-fuel ratio A / Ft while oscillating. As a result, the air-fuel ratio of the exhaust gas supplied to the catalyst 11 also changes in the same manner as the target air-fuel ratio A / Ft.

かかる空燃比の徐変を行うと、(C)に示すように、触媒後空燃比センサ18の出力電圧Vrrがあるタイミングでリッチ側からリーン側に反転する。即ち、徐変初期において目標空燃比A/Ftがストイキよりリッチ側にあるときは、触媒11にリッチガスが供給され、触媒11で反応しきれなかったリッチガスが触媒11下流に吹き抜けて触媒後空燃比センサ出力Vrrがリッチを示す。しかし、空燃比徐変が進むにつれ、触媒11に供給されるガスが徐々にリーンになっていくと、あるタイミングにおいて触媒11下流にリーンガスが吹き抜け、触媒後空燃比センサ出力Vrrがリーン側に反転する。   When such a gradual change of the air-fuel ratio is performed, as shown in (C), the output voltage Vrr of the post-catalyst air-fuel ratio sensor 18 is reversed from the rich side to the lean side at a certain timing. That is, when the target air-fuel ratio A / Ft is on the rich side from the stoichiometry at the beginning of the gradual change, the rich gas is supplied to the catalyst 11 and the rich gas that could not be reacted by the catalyst 11 is blown down downstream of the catalyst 11 The sensor output Vrr is rich. However, as the air-fuel ratio gradually changes, when the gas supplied to the catalyst 11 gradually becomes lean, the lean gas blows down downstream of the catalyst 11 at a certain timing, and the post-catalyst air-fuel ratio sensor output Vrr is reversed to the lean side. To do.

ここで特に、触媒後空燃比センサ出力Vrrがリーン側に反転するタイミングは燃料の硫黄濃度に応じて異なる。即ち、(C)に示すように、触媒後空燃比センサ出力Vrrがしきい値Vrefを下回ったタイミングをリーン側への反転タイミングとすると、高硫黄燃料のときの反転タイミングt2は低硫黄燃料のときの反転タイミングt1よりも遅くなり、前者は後者より目標空燃比A/Ftがリーン側にある時のタイミングとなる。このように燃料硫黄濃度と反転タイミングとの間には、燃料硫黄濃度が高いほど反転タイミングが遅れるという相関性があるので、このことを利用して、その反転タイミングにおける空燃比の値に基づき燃料の硫黄濃度が推定される。ここで触媒前空燃比A/Ffrの値は振動を伴うので、空燃比の値としては目標空燃比A/Ftの値が用いられる。これにより安定した空燃比の値を得ることが可能である。但し、ある程度の変動が許容されるような場合等であれば、触媒前空燃比センサ17で検出された触媒前空燃比A/Ffrの値を用いることも可能である。図示例では高硫黄燃料のときの反転タイミングt2に相当する目標空燃比はA/Ft2、低硫黄燃料のときの反転タイミングt1に相当する目標空燃比はA/Ft1である。   Here, in particular, the timing at which the post-catalyst air-fuel ratio sensor output Vrr reverses to the lean side varies depending on the sulfur concentration of the fuel. That is, as shown in (C), assuming that the timing when the post-catalyst air-fuel ratio sensor output Vrr falls below the threshold value Vref is the reversal timing to the lean side, the reversal timing t2 for the high sulfur fuel is the low sulfur fuel. The reversal timing t1 is later, and the former is the timing when the target air-fuel ratio A / Ft is on the lean side than the latter. In this way, there is a correlation between the fuel sulfur concentration and the reversal timing that the reversal timing is delayed as the fuel sulfur concentration is higher. The sulfur concentration is estimated. Here, since the value of the pre-catalyst air-fuel ratio A / Ffr is accompanied by vibration, the value of the target air-fuel ratio A / Ft is used as the value of the air-fuel ratio. This makes it possible to obtain a stable air-fuel ratio value. However, the value of the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17 can be used if a certain degree of fluctuation is allowed. In the illustrated example, the target air-fuel ratio corresponding to the reversal timing t2 for the high sulfur fuel is A / Ft2, and the target air-fuel ratio corresponding to the reversal timing t1 for the low sulfur fuel is A / Ft1.

ここで、燃料硫黄濃度が高いほど反転タイミングが遅れる理由を図6に示した実験結果と併せて説明する。図6は、触媒への供給ガスの空燃比と、触媒におけるCO,HC,NOxの各浄化率(%)との関係を示したもので、黒塗りのプロットが低硫黄燃料のデータ、白抜きのプロットが高硫黄燃料のデータである。HC浄化率については燃料の違いによる差異は殆ど見られない。   Here, the reason why the inversion timing is delayed as the fuel sulfur concentration is increased will be described together with the experimental results shown in FIG. FIG. 6 shows the relationship between the air-fuel ratio of the gas supplied to the catalyst and the purification rates (%) of CO, HC, and NOx in the catalyst. These plots are high sulfur fuel data. There is almost no difference in the HC purification rate due to the difference in fuel.

一方、CO浄化率に着目すると、空燃比がストイキ(14.55)まで増大するときのCO浄化率の上昇ラインは低硫黄燃料時より高硫黄燃料時の方がリーン側にある。また空燃比がストイキのとき、高硫黄燃料時の浄化率の方が低硫黄燃料時の浄化率より低く、つまり触媒下流側には高硫黄燃料時の方が低硫黄燃料時より多くのCOが排出されることとなる。   On the other hand, paying attention to the CO purification rate, the CO purification rate increasing line when the air-fuel ratio increases to stoichiometric (14.55) is on the lean side when high sulfur fuel is used than when low sulfur fuel is used. In addition, when the air-fuel ratio is stoichiometric, the purification rate at the time of high sulfur fuel is lower than the purification rate at the time of low sulfur fuel, that is, more CO at the time of high sulfur fuel than at the time of low sulfur fuel is downstream of the catalyst. Will be discharged.

また、NOx浄化率にも同様の傾向が見え、空燃比がストイキから増大するときのNOx浄化率の下降ラインは低硫黄燃料時より高硫黄燃料時の方がリーン側にある。またストイキより大きい(リーンの)一定空燃比(例えば14.59)で比較した場合、高硫黄燃料時の浄化率の方が低硫黄燃料時の浄化率より高く、つまり触媒下流側には高硫黄燃料時の方が低硫黄燃料時より少ないNOxしか排出されないこととなる。   Further, the same tendency is seen in the NOx purification rate, and the NOx purification rate descending line when the air-fuel ratio increases from stoichiometric is on the lean side when the high sulfur fuel is used than when the low sulfur fuel is used. Further, when compared at a constant air-fuel ratio (for example, 14.59) larger than stoichiometric, the purification rate at the time of high sulfur fuel is higher than the purification rate at the time of low sulfur fuel, that is, high sulfur is present downstream of the catalyst. Less NOx is emitted when fuel is used than when low sulfur fuel is used.

これらCO浄化率とNOx浄化率の結果から、燃料を低硫黄燃料から高硫黄燃料にすると空燃比同一でも触媒下流側にはよりリッチなガスが排出されるようになり、その分、触媒に供給するガスをリーンにしないと触媒下流側にリーンガスを排出させることができないということがいえる。このことから、触媒後空燃比センサ出力Vrrがリーン側に反転するタイミングは、燃料の硫黄濃度が高いほど遅れるものと思料される。   From the results of these CO purification rates and NOx purification rates, if the fuel is changed from low sulfur fuel to high sulfur fuel, richer gas will be discharged to the downstream side of the catalyst even if the air-fuel ratio is the same. It can be said that the lean gas cannot be discharged downstream of the catalyst unless the gas to be made lean. From this, it is considered that the timing at which the post-catalyst air-fuel ratio sensor output Vrr is reversed to the lean side is delayed as the sulfur concentration of the fuel increases.

次に、図7に基づき本実施形態の燃料性状判別処理を説明する。図示するルーチンはECU20により所定の演算周期(例えば16msec)毎に繰り返し実行される。なお、図8に、燃料性状判別処理実行時の(A)目標空燃比A/Ft及び(B)触媒後空燃比センサ出力Vrrの変化の様子を示す。   Next, the fuel property determination process of the present embodiment will be described with reference to FIG. The illustrated routine is repeatedly executed by the ECU 20 every predetermined calculation cycle (for example, 16 msec). FIG. 8 shows changes in (A) the target air-fuel ratio A / Ft and (B) the post-catalyst air-fuel ratio sensor output Vrr when the fuel property determination process is executed.

ステップS101では、目標空燃比A/Ftを所定値に設定して空燃比制御が実行される。目標空燃比A/Ftの初期値はストイキよりもリッチ側の所定値に設定されている。   In step S101, the target air-fuel ratio A / Ft is set to a predetermined value and air-fuel ratio control is executed. The initial value of the target air-fuel ratio A / Ft is set to a predetermined value richer than the stoichiometric value.

次に、ステップS102では、触媒後空燃比センサ出力Vrrがしきい値Vrefを下回ったか否かが判断される。   Next, in step S102, it is determined whether or not the post-catalyst air-fuel ratio sensor output Vrr has fallen below a threshold value Vref.

触媒後空燃比センサ出力Vrrがしきい値Vrefを下回ってない場合、ステップS103に進んで、目標空燃比A/Ftの更新時から所定時間Tが経過したか否かが判断される。ここで目標空燃比A/Ftを徐変させるべく、目標空燃比A/Ftは所定時間T毎に所定値Dずつ増大、更新されるようになっており(ステップS104参照)、当該ステップS103ではこのような目標空燃比A/Ftの更新タイミングになったかどうかが実質的に判断されている。   If the post-catalyst air-fuel ratio sensor output Vrr is not lower than the threshold value Vref, the routine proceeds to step S103, where it is determined whether or not a predetermined time T has elapsed since the update of the target air-fuel ratio A / Ft. Here, in order to gradually change the target air-fuel ratio A / Ft, the target air-fuel ratio A / Ft is increased and updated by a predetermined value D every predetermined time T (see step S104). It is substantially determined whether or not the target air-fuel ratio A / Ft has been updated.

目標空燃比A/Ftの更新時から所定時間Tが経過していないと判断された場合、ルーチンが終了される。他方、目標空燃比A/Ftの更新時から所定時間Tが経過したと判断された場合、ステップS104に進んで、目標空燃比A/Ftの現在値に所定値Dが加算され、目標空燃比A/Ftが更新され、ルーチンが終了される。   If it is determined that the predetermined time T has not elapsed since the update of the target air-fuel ratio A / Ft, the routine is terminated. On the other hand, if it is determined that the predetermined time T has elapsed since the update of the target air-fuel ratio A / Ft, the process proceeds to step S104, where the predetermined value D is added to the current value of the target air-fuel ratio A / Ft, A / Ft is updated and the routine is terminated.

こうして目標空燃比A/Ftが所定時間T毎に所定値Dずつ増大、更新される結果、触媒11に供給される排気ガスの空燃比がリーン側に徐変される。そしてやがて触媒11から排出されるガスがリーンになっていくと、あるタイミングで触媒後空燃比センサ出力Vrrがしきい値Vrefを下回る。このリーン反転と同時にステップS102の判定結果がイエスとなり、ステップS105に進む。ステップS105では、リーン反転時の目標空燃比A/Ftの値が取得される。そしてステップS106においてその取得した目標空燃比A/Ftの値に基づき燃料の硫黄濃度が推定され、ルーチンが終了される。ここで燃料硫黄濃度の推定方法については、取得した目標空燃比A/Ftの値が所定値B以下であれば低硫黄燃料、所定値Bより大きいときは高硫黄燃料というように、二段階で推定することができる。或いは、目標空燃比A/Ftと燃料硫黄濃度の関係を予め実験的にマップ、関数等で定めておき、この関係を利用して、実際に取得した目標空燃比A/Ftの値に対応した燃料硫黄濃度の推定値を算出するようにしてもよい。これ以外にも種々の方法が可能である。   Thus, as a result of the target air-fuel ratio A / Ft being increased and updated by the predetermined value D every predetermined time T, the air-fuel ratio of the exhaust gas supplied to the catalyst 11 is gradually changed to the lean side. When the gas discharged from the catalyst 11 becomes leaner, the post-catalyst air / fuel ratio sensor output Vrr falls below the threshold value Vref at a certain timing. Simultaneously with this lean reversal, the determination result in step S102 is yes, and the process proceeds to step S105. In step S105, the value of the target air-fuel ratio A / Ft at the time of lean inversion is acquired. In step S106, the sulfur concentration of the fuel is estimated based on the acquired target air-fuel ratio A / Ft, and the routine is terminated. Here, the fuel sulfur concentration is estimated in two stages, such as a low sulfur fuel if the acquired target air-fuel ratio A / Ft is a predetermined value B or less, and a high sulfur fuel if the value is greater than the predetermined value B. Can be estimated. Alternatively, the relationship between the target air-fuel ratio A / Ft and the fuel sulfur concentration is experimentally determined in advance by a map, function, etc., and this relationship is used to correspond to the actually acquired target air-fuel ratio A / Ft value. An estimated value of the fuel sulfur concentration may be calculated. Various other methods are possible.

次に、図9を参照しつつ、上述の燃料性状判別を利用した触媒劣化診断処理の手順を説明する。図示する処理もECU20により実行される。   Next, the procedure of the catalyst deterioration diagnosis process using the above-described fuel property determination will be described with reference to FIG. The illustrated process is also executed by the ECU 20.

まずステップS201において、触媒11の酸素吸蔵容量OSCが前述のCmax法に基づき計測される。このステップではまず劣化診断を実行するのに適した前提条件が成立しているか否かが判断される。例えば、吸入空気量Ga及び機関回転速度Neの変動幅が所定範囲内であるなど、エンジンが定常運転状態にあり、且つ触媒11及び触媒前後センサ17,18が所定の活性温度に達していれば、前提条件成立となる。前提条件が成立していない場合には待機状態となる。他方、前提条件が成立した場合には酸素吸蔵容量OSCの計測が開始される。即ち前述したように、アクティブ空燃比制御が開始され、このアクティブ空燃比制御の実行に伴って触媒11の酸素吸蔵容量OSCが計測される。   First, in step S201, the oxygen storage capacity OSC of the catalyst 11 is measured based on the aforementioned Cmax method. In this step, it is first determined whether or not a precondition suitable for executing the deterioration diagnosis is satisfied. For example, if the engine is in a steady operation state such that the fluctuation range of the intake air amount Ga and the engine rotational speed Ne is within a predetermined range, and the catalyst 11 and the catalyst front and rear sensors 17 and 18 have reached a predetermined activation temperature. The precondition is satisfied. When the precondition is not satisfied, the standby state is entered. On the other hand, when the precondition is satisfied, measurement of the oxygen storage capacity OSC is started. That is, as described above, the active air-fuel ratio control is started, and the oxygen storage capacity OSC of the catalyst 11 is measured as the active air-fuel ratio control is executed.

こうして酸素吸蔵容量OSCの計測が終了したならば、次にステップS202において、酸素吸蔵容量計測値OSCが所定の劣化判定値OSCsと比較される。酸素吸蔵容量計測値OSCが劣化判定値OSCsより大きいときには、ステップS203において触媒11は正常と判定ないし診断される。   When the measurement of the oxygen storage capacity OSC is completed in this way, in step S202, the oxygen storage capacity measurement value OSC is compared with a predetermined deterioration determination value OSCs. When the oxygen storage capacity measurement value OSC is larger than the deterioration determination value OSCs, it is determined or diagnosed that the catalyst 11 is normal in step S203.

他方、酸素吸蔵容量計測値OSCが劣化判定値OSCs以下のときにはステップS204に進む。このステップS204では、図7に示したような燃料性状判別処理(但しステップS106を除く)が実行され、触媒後空燃比センサ出力Vrrがリーン反転した時の目標空燃比A/Ftの値(ステップS105で取得される値)が取得される。このように、酸素吸蔵容量計測値OSCが劣化判定値OSCs以下の劣化触媒相当の値であるときのみ、空燃比徐変と燃料硫黄濃度推定とが実行されるので、これらを必要最小限の頻度で実行することができる。   On the other hand, when the oxygen storage capacity measurement value OSC is equal to or less than the deterioration determination value OSCs, the process proceeds to step S204. In step S204, the fuel property determination process (excluding step S106) as shown in FIG. 7 is executed, and the target air-fuel ratio A / Ft value when the post-catalyst air-fuel ratio sensor output Vrr is lean-reversed (step S204). The value acquired in S105) is acquired. As described above, the air-fuel ratio gradual change and the fuel sulfur concentration estimation are executed only when the oxygen storage capacity measurement value OSC is a value corresponding to the deterioration catalyst equal to or less than the deterioration determination value OSCs. Can be done with.

次に、ステップS205において、この取得された目標空燃比A/Ftの値が所定値Bと比較される。この所定値Bは実験結果等に基づき、低硫黄燃料と高硫黄燃料との境界を規定するような値に設定されている。目標空燃比A/Ftの値が所定値Bより大きい場合、高硫黄燃料が使用されているとみなされ、硫黄影響による誤診断が懸念されることから、ステップS206に進んで、触媒11が正常とも劣化とも判定ないし診断されず、即ち劣化判定ないし劣化診断が保留される。他方、目標空燃比A/Ftの値が所定値B以下の場合、低硫黄燃料が使用されており硫黄による影響はないことから、ステップS207に進んで、触媒11は劣化と判定ないし診断される。   Next, in step S205, the acquired value of the target air-fuel ratio A / Ft is compared with a predetermined value B. The predetermined value B is set to a value that defines the boundary between the low sulfur fuel and the high sulfur fuel based on the experimental results and the like. If the value of the target air-fuel ratio A / Ft is larger than the predetermined value B, it is considered that high sulfur fuel is being used, and there is a concern about misdiagnosis due to the influence of sulfur. Therefore, the process proceeds to step S206, and the catalyst 11 is normal. Neither is it determined or diagnosed as deterioration, that is, the deterioration determination or deterioration diagnosis is suspended. On the other hand, when the value of the target air-fuel ratio A / Ft is equal to or less than the predetermined value B, the low-sulfur fuel is used and there is no influence of sulfur. Therefore, the process proceeds to step S207 and the catalyst 11 is determined or diagnosed as deteriorated. .

なお、ステップS205において目標空燃比A/Ftの値が所定値Bより大きい場合、即ち高硫黄燃料が使用されているとみなされる場合、ステップS201で計測された酸素吸蔵容量OSCの値を補正し、この補正された酸素吸蔵容量OSCの値を劣化判定値OSCsと比較して触媒が正常か劣化かを判定ないし診断してもよい。即ち、高硫黄燃料使用中とみなされた場合にはその硫黄影響による酸素吸蔵容量計測値OSCの低下量を補うように補正する。こうすることにより硫黄影響を排除して誤診断を防止できる。この補正方法としては、例えば、目標空燃比A/Ftと補正係数の関係を予め実験的にマップ、関数等で定めておき、この関係を利用して、実際に取得した目標空燃比A/Ftの値に対応した補正係数の値を算出する。そしてこの算出した補正係数を酸素吸蔵容量計測値OSCに乗じて酸素吸蔵容量計測値OSCを増大補正する。なおこれ以外にも種々の補正方法が可能である。   When the target air-fuel ratio A / Ft is larger than the predetermined value B in step S205, that is, when it is considered that high sulfur fuel is used, the value of the oxygen storage capacity OSC measured in step S201 is corrected. The corrected oxygen storage capacity OSC may be compared with the deterioration determination value OSCs to determine or diagnose whether the catalyst is normal or deteriorated. That is, when it is determined that the high sulfur fuel is being used, correction is made to compensate for the amount of decrease in the oxygen storage capacity measurement value OSC due to the influence of sulfur. By doing so, the influence of sulfur can be eliminated and misdiagnosis can be prevented. As this correction method, for example, the relationship between the target air-fuel ratio A / Ft and the correction coefficient is experimentally determined in advance by a map, function, etc., and the target air-fuel ratio A / Ft actually obtained using this relationship is used. The correction coefficient value corresponding to the value is calculated. Then, the oxygen storage capacity measurement value OSC is increased and corrected by multiplying the calculated correction coefficient by the oxygen storage capacity measurement value OSC. In addition, various correction methods are possible.

ところで、上述の実施形態では燃料性状判別に際して空燃比をリッチ側からリーン側に徐変させたが、これとは逆に、空燃比をリーン側からリッチ側に徐変させてもよい。   By the way, in the above-described embodiment, the air-fuel ratio is gradually changed from the rich side to the lean side when determining the fuel property, but conversely, the air-fuel ratio may be gradually changed from the lean side to the rich side.

図10にはかかる空燃比徐変を実行したときの各値の変化を示す。(A)は目標空燃比A/Ft、(B)は触媒前空燃比センサ17で検出された触媒前空燃比A/Ffr、(C)は触媒後空燃比センサ18の出力電圧Vrr(V)を示す。(A)に示すように、目標空燃比A/Ftは、ストイキよりリーン側の所定値からストイキよりリッチ側の所定値に、一定速度で、ストイキを交差するように徐々に変化(スイープ)されている。そして(B)に示すように、触媒前空燃比A/Ffrも目標空燃比A/Ftと同じように変化する。かかる空燃比徐変を行ったとき、(C)に示すように、触媒後空燃比センサ18の出力電圧Vrrはリーン側からリッチ側に反転する。   FIG. 10 shows changes in values when such air-fuel ratio gradual change is executed. (A) is the target air-fuel ratio A / Ft, (B) is the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17, and (C) is the output voltage Vrr (V) of the post-catalyst air-fuel ratio sensor 18. Indicates. As shown in (A), the target air-fuel ratio A / Ft is gradually changed (sweep) from a predetermined value leaner than the stoichiometric value to a predetermined value richer than the stoichiometric value at a constant speed so as to cross the stoichiometric value. ing. As shown in (B), the pre-catalyst air-fuel ratio A / Ffr also changes in the same manner as the target air-fuel ratio A / Ft. When such an air-fuel ratio gradual change is performed, as shown in (C), the output voltage Vrr of the post-catalyst air-fuel ratio sensor 18 is reversed from the lean side to the rich side.

触媒後空燃比センサ出力Vrrがリッチ側に反転するタイミングは燃料の硫黄濃度に応じて異なる。触媒後空燃比センサ出力Vrrが所定のしきい値Vref(ここでは約0.55(V))を上回ったタイミングをリッチ側への反転タイミングとすると、高硫黄燃料のときの反転タイミングt3は低硫黄燃料のときの反転タイミングt4よりも早くなり、図5と逆の結果となる。但し、前者は後者より目標空燃比A/Ftがリーン側にある時のタイミングとなり、この点では図5と同じ結果となる。このような燃料硫黄濃度と反転タイミングとの間の相関性を利用し、その反転タイミングにおける空燃比、好ましくは目標空燃比A/Ftの値に基づき、燃料の硫黄濃度が推定可能である。なお各反転タイミングt3,t4に相当する目標空燃比をA/Ft3,A/Ft4で示す。   The timing at which the post-catalyst air-fuel ratio sensor output Vrr reverses to the rich side varies depending on the sulfur concentration of the fuel. Assuming that the timing when the post-catalyst air-fuel ratio sensor output Vrr exceeds a predetermined threshold value Vref (here, about 0.55 (V)) as the reversal timing to the rich side, the reversal timing t3 for high sulfur fuel is low. This is earlier than the reversal timing t4 for sulfur fuel, and the result is the reverse of FIG. However, the former is the timing when the target air-fuel ratio A / Ft is on the lean side than the latter, and in this respect, the same result as in FIG. 5 is obtained. Using the correlation between the fuel sulfur concentration and the reversal timing, the fuel sulfur concentration can be estimated based on the air-fuel ratio at the reversal timing, preferably the value of the target air-fuel ratio A / Ft. The target air-fuel ratios corresponding to the inversion timings t3 and t4 are indicated by A / Ft3 and A / Ft4.

この逆方向の空燃比徐変を行う場合にも図7の燃料性状判別処理及び図9の触媒劣化診断処理が流用可能である。この場合、図7の燃料性状判別処理については、ステップS102において、触媒後空燃比センサ出力Vrrがしきい値Vrefを上回ったか否かが判断され、ステップS104において、目標空燃比A/Ftの現在値から所定値Dが減算されて目標空燃比A/Ftが更新される。他方、図9の触媒劣化診断処理については、ステップS204において、触媒後空燃比センサ出力Vrrがリッチ反転した時の目標空燃比A/Ftの値が取得される。   The fuel property determination process of FIG. 7 and the catalyst deterioration diagnosis process of FIG. 9 can also be used when this reverse air-fuel ratio gradual change is performed. In this case, for the fuel property determination process of FIG. 7, it is determined in step S102 whether the post-catalyst air-fuel ratio sensor output Vrr exceeds the threshold value Vref, and in step S104, the current target air-fuel ratio A / Ft is determined. A predetermined value D is subtracted from the value to update the target air-fuel ratio A / Ft. On the other hand, for the catalyst deterioration diagnosis process of FIG. 9, in step S204, the value of the target air-fuel ratio A / Ft when the post-catalyst air-fuel ratio sensor output Vrr is richly inverted is acquired.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば、内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、直噴式等であってもよい。触媒後空燃比センサに触媒前空燃比センサと同様の広域空燃比センサを用いてもよいし、触媒前空燃比センサに触媒後空燃比センサと同様のO2センサを用いてもよい。これら広域空燃比センサやO2センサを含め、広く、排気空燃比を検出するセンサを空燃比センサということとする。 Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and type of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a direct injection type or the like. A wide-area air-fuel ratio sensor similar to the pre-catalyst air-fuel ratio sensor may be used as the post-catalyst air-fuel ratio sensor, or an O 2 sensor similar to the post-catalyst air-fuel ratio sensor may be used as the pre-catalyst air-fuel ratio sensor. A wide range of sensors that detect the exhaust air-fuel ratio, including these wide-range air-fuel ratio sensors and O 2 sensors, are referred to as air-fuel ratio sensors.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. アクティブ空燃比制御を説明するためのタイムチャートである。It is a time chart for demonstrating active air fuel ratio control. 図3と同様のタイムチャートであり、酸素吸蔵容量の計測方法を説明するための図である。FIG. 4 is a time chart similar to FIG. 3 for illustrating a method for measuring the oxygen storage capacity. 空燃比をリーン側に徐変させたときの各値の変化を示すタイムチャートである。It is a time chart which shows the change of each value when an air fuel ratio is gradually changed to the lean side. 触媒における供給ガスの空燃比とCO,HC,NOxの各浄化率との関係を示すグラフである。It is a graph which shows the relationship between the air fuel ratio of the supply gas in a catalyst, and each purification rate of CO, HC, and NOx. 燃料性状判別処理のフローチャートである。It is a flowchart of a fuel property discrimination | determination process. 燃料性状判別処理実行時の各値の変化を示すタイムチャートである。It is a time chart which shows the change of each value at the time of fuel property discrimination processing execution. 触媒劣化診断処理のフローチャートである。It is a flowchart of a catalyst deterioration diagnosis process. 空燃比をリッチ側に徐変させたときの各値の変化を示すタイムチャートである。It is a time chart which shows the change of each value when an air fuel ratio is gradually changed to the rich side.

符号の説明Explanation of symbols

1 内燃機関
6 排気管
11 上流触媒
12 インジェクタ
17 触媒前空燃比センサ
18 触媒後空燃比センサ
19 下流触媒
20 電子制御ユニット(ECU)
OSC 酸素吸蔵容量
OSCs 劣化判定値
Vrr 触媒後空燃比センサ出力
Vref しきい値
A/Ft 目標空燃比
A/Ffr 触媒前空燃比
1 Internal combustion engine 6 Exhaust pipe 11 Upstream catalyst 12 Injector 17 Pre-catalyst air-fuel ratio sensor 18 Post-catalyst air-fuel ratio sensor 19 Downstream catalyst 20 Electronic control unit (ECU)
OSC Oxygen storage capacity OSCs Degradation judgment value Vrr Post-catalyst air-fuel ratio sensor output Vref Threshold A / Ft Target air-fuel ratio A / Ffr Pre-catalyst air-fuel ratio

Claims (7)

内燃機関の排気通路に設けられた触媒と、
前記触媒の下流側に設けられた触媒後空燃比センサと、
前記触媒に供給される排気ガスの空燃比をリッチ側からリーン側に又はその逆に徐変させる空燃比制御手段と、
前記空燃比制御手段により排気ガスの空燃比を徐変させたときに前記触媒後空燃比センサの出力がリーン側又はリッチ側に反転するタイミングにおける空燃比の値に基づいて、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする燃料性状判別装置。
A catalyst provided in the exhaust passage of the internal combustion engine;
A post-catalyst air-fuel ratio sensor provided downstream of the catalyst;
Air-fuel ratio control means for gradually changing the air-fuel ratio of the exhaust gas supplied to the catalyst from the rich side to the lean side, or vice versa;
Based on the value of the air-fuel ratio at the timing when the output of the post-catalyst air-fuel ratio sensor reverses to the lean side or the rich side when the air-fuel ratio of the exhaust gas is gradually changed by the air-fuel ratio control means, the sulfur concentration of the fuel is determined. A fuel property discrimination device comprising: a sulfur concentration estimation means for estimation.
前記触媒の上流側に設けられた触媒前空燃比センサを備え、
前記空燃比制御手段が、前記触媒前空燃比センサにより検出された排気ガスの空燃比を目標空燃比に一致させるように空燃比を制御すると共に、前記目標空燃比をリッチ側からリーン側に又はその逆に徐変させることにより前記触媒に供給される排気ガスの空燃比をリッチ側からリーン側に又はその逆に徐変させ、
前記硫黄濃度推定手段が、前記触媒後空燃比センサの出力がリーン側又はリッチ側に反転するタイミングにおける目標空燃比の値に基づいて、燃料の硫黄濃度を推定する
ことを特徴とする請求項1記載の燃料性状判別装置。
A pre-catalyst air-fuel ratio sensor provided upstream of the catalyst;
The air-fuel ratio control means controls the air-fuel ratio so that the air-fuel ratio of the exhaust gas detected by the pre-catalyst air-fuel ratio sensor matches the target air-fuel ratio, and the target air-fuel ratio is changed from the rich side to the lean side or The air-fuel ratio of the exhaust gas supplied to the catalyst is gradually changed from the rich side to the lean side or vice versa by gradually changing the reverse.
2. The sulfur concentration of the fuel is estimated based on a value of a target air-fuel ratio at a timing when the output of the post-catalyst air-fuel ratio sensor reverses to a lean side or a rich side. The fuel property discriminating apparatus described.
前記空燃比制御手段が、前記触媒に供給される排気ガスの空燃比をストイキに対してリッチ側からリーン側に又はその逆に徐変させる
ことを特徴とする請求項1又は2記載の燃料性状判別装置。
3. The fuel property according to claim 1, wherein the air-fuel ratio control means gradually changes the air-fuel ratio of the exhaust gas supplied to the catalyst from the rich side to the lean side with respect to the stoichiometry or vice versa. Discriminator.
前記空燃比制御手段が、前記目標空燃比を所定時間毎に所定値ずつ更新する
ことを特徴とする請求項2記載の燃料性状判別装置。
The fuel property determination device according to claim 2, wherein the air-fuel ratio control means updates the target air-fuel ratio by a predetermined value every predetermined time.
請求項1乃至4のいずれかに記載の燃料性状判別装置を備えた触媒劣化診断装置であって、前記硫黄濃度推定手段により所定値以上の燃料硫黄濃度が推定されたとき、前記触媒の劣化診断を保留することを特徴とする触媒劣化診断装置。   A catalyst deterioration diagnosis device comprising the fuel property determination device according to any one of claims 1 to 4, wherein the catalyst deterioration diagnosis is performed when a fuel sulfur concentration greater than a predetermined value is estimated by the sulfur concentration estimation means. The catalyst deterioration diagnosis device characterized by holding the battery. 前記触媒の劣化度に相関するパラメータを計測する計測手段を備え、前記計測されたパラメータが劣化触媒相当の値であるときに、前記空燃比制御手段による空燃比の徐変と前記硫黄濃度推定手段による硫黄濃度の推定とが実行される
ことを特徴とする請求項5記載の触媒劣化診断装置。
Measuring means for measuring a parameter correlated with the degree of deterioration of the catalyst, and when the measured parameter is a value corresponding to the deteriorated catalyst, the air-fuel ratio gradually changes by the air-fuel ratio control means and the sulfur concentration estimation means The catalyst deterioration diagnosis apparatus according to claim 5, wherein the estimation of the sulfur concentration is performed.
請求項1乃至4のいずれかに記載の燃料性状判別装置を備えた触媒劣化診断装置であって、前記触媒の劣化度に相関するパラメータを計測する計測手段を備え、前記硫黄濃度推定手段により所定値以上の燃料硫黄濃度が推定されたとき、前記計測されたパラメータを補正すると共に、この補正されたパラメータに基づいて触媒の劣化診断を実行することを特徴とする触媒劣化診断装置。   5. A catalyst deterioration diagnosis apparatus comprising the fuel property determination apparatus according to claim 1, further comprising a measuring unit that measures a parameter correlated with the degree of deterioration of the catalyst, and the sulfur concentration estimating unit determines a predetermined value. When the fuel sulfur concentration equal to or greater than the value is estimated, the measured parameter is corrected, and a catalyst deterioration diagnosis is performed based on the corrected parameter.
JP2008058520A 2008-03-07 2008-03-07 Fuel property determination device and catalyst deterioration diagnostic device having the same Pending JP2009215924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058520A JP2009215924A (en) 2008-03-07 2008-03-07 Fuel property determination device and catalyst deterioration diagnostic device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058520A JP2009215924A (en) 2008-03-07 2008-03-07 Fuel property determination device and catalyst deterioration diagnostic device having the same

Publications (1)

Publication Number Publication Date
JP2009215924A true JP2009215924A (en) 2009-09-24

Family

ID=41188036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058520A Pending JP2009215924A (en) 2008-03-07 2008-03-07 Fuel property determination device and catalyst deterioration diagnostic device having the same

Country Status (1)

Country Link
JP (1) JP2009215924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246842A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Fuel property determining device, and catalyst degradation diagnostic apparatus with the same
WO2013179373A1 (en) 2012-05-28 2013-12-05 トヨタ自動車株式会社 Catalyst degradation determination system
CN113167161A (en) * 2019-11-22 2021-07-23 康明斯排放处理公司 System and method for virtually determining fuel sulfur concentration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246842A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Fuel property determining device, and catalyst degradation diagnostic apparatus with the same
WO2013179373A1 (en) 2012-05-28 2013-12-05 トヨタ自動車株式会社 Catalyst degradation determination system
CN104350263A (en) * 2012-05-28 2015-02-11 丰田自动车株式会社 Catalyst degradation determination system
JP5835478B2 (en) * 2012-05-28 2015-12-24 トヨタ自動車株式会社 Catalyst deterioration judgment system
CN104350263B (en) * 2012-05-28 2017-03-01 丰田自动车株式会社 Catalyst degradation decision-making system
US9670819B2 (en) 2012-05-28 2017-06-06 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration determination system
CN113167161A (en) * 2019-11-22 2021-07-23 康明斯排放处理公司 System and method for virtually determining fuel sulfur concentration
CN113167161B (en) * 2019-11-22 2022-07-05 康明斯排放处理公司 System and method for virtually determining fuel sulfur concentration

Similar Documents

Publication Publication Date Title
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP5293885B2 (en) Catalyst abnormality diagnosis device
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP2008175181A (en) Catalyst deterioration detection device for internal combustion engine
JP2008031901A (en) Catalyst degradation detecting apparatus of internal-combustion engine
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2010185371A (en) Catalyst deterioration diagnostic device
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2009127597A (en) Catalyst degradation diagnostic device
JP2008291751A (en) Catalyst deterioration detecting device of internal combustion engine
JP2010159701A (en) Catalyst deterioration diagnostic device
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2010255490A (en) Catalyst abnormality diagnostic device
JP2012031761A (en) Catalyst abnormality diagnostic device
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2010168923A (en) Catalyst degradation diagnostic device
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP5088632B2 (en) Catalyst deterioration diagnosis device