WO2013157048A1 - Catalyst anomaly diagnosis device - Google Patents

Catalyst anomaly diagnosis device Download PDF

Info

Publication number
WO2013157048A1
WO2013157048A1 PCT/JP2012/002754 JP2012002754W WO2013157048A1 WO 2013157048 A1 WO2013157048 A1 WO 2013157048A1 JP 2012002754 W JP2012002754 W JP 2012002754W WO 2013157048 A1 WO2013157048 A1 WO 2013157048A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel ratio
air
rich
determination value
Prior art date
Application number
PCT/JP2012/002754
Other languages
French (fr)
Japanese (ja)
Inventor
北浦 浩一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/002754 priority Critical patent/WO2013157048A1/en
Publication of WO2013157048A1 publication Critical patent/WO2013157048A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Definitions

  • the present invention relates to an abnormality diagnosis of a catalyst, and more particularly to an apparatus for diagnosing an abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine.
  • a catalyst for purifying exhaust gas is installed in the exhaust system.
  • Some of these catalysts have an oxygen storage capacity (O 2 storage capacity).
  • O 2 storage capacity oxygen storage capacity
  • the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, when the engine becomes lean
  • the catalyst having oxygen storage capacity occludes excess oxygen present in the exhaust gas.
  • the fuel ratio becomes smaller than stoichiometric, that is, when it becomes rich, the stored oxygen is released.
  • air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric.
  • a post-catalyst sensor for detecting the exhaust air / fuel ratio downstream of the catalyst is provided, and at the same time as the output of the post-catalyst sensor is reversed, the lean control and the rich control are switched, and the measurement of the oxygen amount is finished. I am doing so.
  • one object of the present invention is to provide a catalyst abnormality diagnosis device that can reduce measurement errors, improve diagnosis accuracy, and suppress erroneous diagnosis. is there.
  • An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine This is a post-catalyst sensor that detects the exhaust air / fuel ratio downstream of the catalyst, and the output changes suddenly at the stoichiometric boundary, and when the exhaust air / fuel ratio changes from the rich side to the lean side with respect to the stoichiometry, and changes from the lean side to the rich side
  • a post-catalyst sensor having a hysteresis characteristic in which the output characteristic near the stoichiometry differs depending on Active air-fuel ratio control for executing active air-fuel ratio control for switching the air-fuel ratio upstream of the catalyst from one of the lean air-fuel ratio and the rich air-fuel ratio in synchronization with the output of the post-catalyst sensor reaching a predetermined determination value
  • the determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
  • the measuring means is configured so that the output of the post-catalyst sensor reaches the lean side from the predetermined stoichiometric determination value before reaching the lean determination value.
  • the integrated measurement of the oxygen amount is terminated.
  • the stoichiometric determination value is a value corresponding to stoichiometry on a hysteresis characteristic line when the post-catalyst sensor output changes from the rich side to the lean side.
  • the stoichiometric determination value may be a richer value than the rich determination value.
  • the stoichiometric determination value may be a value equal to the rich determination value.
  • the stoichiometric determination value may be a value leaner than the rich determination value, and may be a richer value than a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output.
  • the determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
  • the measurement means is configured to output the post-catalyst sensor before reaching the rich determination value and from the predetermined stoichiometric determination value toward the rich side.
  • the integrated measurement of the oxygen amount is terminated.
  • the stoichiometric rich determination value is a value corresponding to the stoichiometric value on the hysteresis characteristic line when the post-catalyst sensor output changes from the lean side to the rich side.
  • the stoichiometric determination value may be a leaner value than the lean determination value.
  • the stoichiometric determination value may be a value equal to the lean determination value.
  • the stoichiometric determination value may be a value on the rich side with respect to the lean determination value, and may be a value on the lean side with respect to a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output.
  • the active air-fuel ratio control means changes the determination value according to the intake air amount.
  • the active air-fuel ratio control means switches the air-fuel ratio after a predetermined delay time has elapsed since the output of the post-catalyst sensor reaches the determination value, and changes the delay time according to the intake air amount.
  • the figure which added the example which changed the sulfur concentration of a fuel and the oxygen storage capacity measuring method to the example of FIG. 9 is shown.
  • It is a figure for demonstrating a delay process It is a figure which shows the relationship between FIG. 15A and FIG. 15B.
  • the map for calculating delay time is shown.
  • FIG. 1 is a schematic diagram showing the configuration of the present embodiment.
  • an engine 1 that is an internal combustion engine burns a mixture of fuel and air in a combustion chamber 3 formed in a cylinder block 2 and reciprocates a piston 4 in the combustion chamber 3 to drive power. Is generated.
  • the engine 1 of the present embodiment is a multi-cylinder engine for automobiles (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.
  • the cylinder head of the engine 1 is provided with an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port for each cylinder.
  • Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown).
  • a spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.
  • the intake port of each cylinder is connected to a surge tank 8 which is an intake manifold through an intake manifold.
  • An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13.
  • the intake pipe 13 includes an air flow meter 5 for detecting an air amount per unit time flowing into the engine, that is, an intake air amount Ga (g / s), and an electronically controlled throttle valve 10 in order from the upstream side. Is provided.
  • An intake passage is formed by the intake port, the intake manifold, the surge tank 8 and the intake pipe 13.
  • An injector for injecting fuel into the intake passage, particularly the intake port, that is, a fuel injection valve 12 is provided for each cylinder.
  • the fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture.
  • the air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.
  • the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through an exhaust manifold.
  • An exhaust passage is formed by the exhaust port, the exhaust manifold, and the exhaust pipe 6.
  • the exhaust pipe 6 is provided with a catalyst composed of a three-way catalyst having oxygen storage capacity, that is, an upstream catalyst 11 and a downstream catalyst 19 in series on the upstream side and the downstream side.
  • the upstream catalyst 11 is disposed immediately after the exhaust manifold, and the downstream catalyst 19 is disposed under the floor of the vehicle.
  • the pre-catalyst sensor 17 is composed of a wide-range air-fuel ratio sensor, can continuously detect the air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio.
  • the post-catalyst sensor 18 is composed of an oxygen sensor (O 2 sensor) and has a characteristic (Z characteristic) in which the output value changes suddenly with the theoretical air-fuel ratio as a boundary.
  • the above-described spark plug 7, throttle valve 10, injector 12 and the like are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means.
  • the ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown.
  • the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the engine 1, and an accelerator opening that detects the accelerator opening, as shown in the figure.
  • the degree sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown).
  • the ECU 20 controls the ignition plug 7, the injector 12, the throttle valve 10, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.
  • the downstream catalyst 19 is configured in the same manner as the upstream catalyst 11.
  • a coating material 31 is coated on the surface of a carrier base material (not shown), and a large number of particulate catalyst components 32 are supported on the coating material 31 in a dispersed manner.
  • the catalyst 11 is exposed inside.
  • the catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point when reacting exhaust gas components such as NOx, HC and CO.
  • the coating material 31 plays a role of a promoter that promotes a reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas.
  • the oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. Note that “absorption” or “adsorption” may be used in the same meaning as “occlusion”.
  • the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmospheric gas, and as a result, NOx is reduced and purified.
  • the atmospheric gas in the catalyst is richer than the stoichiometric air-fuel ratio, oxygen stored in the oxygen storage component is released, and the released oxygen oxidizes and purifies HC and CO.
  • This oxygen absorption / release action can absorb this variation even if the actual air-fuel ratio varies somewhat with respect to stoichiometry during normal stoichiometric air-fuel ratio control.
  • the new catalyst 11 As described above, a large number of catalyst components 32 are evenly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). If it becomes like this, the contact probability of exhaust gas and the catalyst component 32 will fall, and it will become the cause of reducing a purification rate. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.
  • the deterioration degree of the upstream catalyst 11 is detected by detecting the oxygen storage capacity of the upstream catalyst 11 that has a particularly large influence on the emission, and the abnormality of the upstream catalyst 11 is diagnosed.
  • the oxygen storage capacity of the catalyst 11 is represented by the amount of oxygen storage capacity (OSC; O 2 Storage Capacity, unit is g), which is the amount of oxygen that the current catalyst 11 can store or release.
  • the abnormality diagnosis of this embodiment is based on the following method based on the Cmax method described above.
  • the active air-fuel ratio control is executed by the ECU 20. That is, the ECU 20 controls the air-fuel ratio on the upstream side of the catalyst, specifically, the air-fuel ratio of the air-fuel mixture in the combustion chamber 3 alternately and richly and lean, with the stoichiometric A / Fs being the central air-fuel ratio as a boundary.
  • the air-fuel ratio of the exhaust gas supplied to the catalyst 11 is also controlled to be rich and lean alternately.
  • active air-fuel ratio control and diagnosis are executed only when predetermined preconditions are satisfied. This precondition will be described later.
  • the broken line indicates the target air-fuel ratio A / Ft
  • the solid line indicates the output of the pre-catalyst sensor 17 (however, the converted value to the pre-catalyst air-fuel ratio A / Ff).
  • the solid line indicates the output of the post-catalyst sensor 18 (however, the output voltage Vr).
  • the target air-fuel ratio A / Ft is set to a predetermined lean air-fuel ratio A / Fl (for example, 15.1), and the catalyst 11 is supplied with a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft.
  • the catalyst 11 continues to occlude oxygen. However, when the oxygen is occluded until it is saturated, that is, full, it can no longer occlude oxygen. As a result, the lean gas passes through the catalyst 11 and flows out downstream of the catalyst 11.
  • the output of the post-catalyst sensor 18 changes to the lean side, and the target air-fuel ratio A / Ft becomes the predetermined rich air-fuel ratio at the time t1 when the output voltage Vr reaches a predetermined lean determination value VL (for example, 0.2 V). It is switched to A / Fr (for example, 14.1). As a result, the air-fuel ratio control is switched from lean control to rich control, and rich gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
  • VL for example, 0.2 V
  • the catalyst 11 When the rich gas is supplied, the catalyst 11 continues to release the stored oxygen. When the stored oxygen is eventually released from the catalyst 11, the catalyst 11 cannot release oxygen at that time, and the rich gas passes through the catalyst 11 and flows out downstream of the catalyst 11. When this happens, the output of the post-catalyst sensor 18 changes to the rich side, and at the time t2 when the output voltage Vr reaches a predetermined rich determination value VR (for example, 0.6 V), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / It is switched to Fl. As a result, the air-fuel ratio control is switched from rich control to lean control, and a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
  • a predetermined rich determination value VR for example, 0.6 V
  • a set of adjacent lean control and rich control is defined as one cycle of active air-fuel ratio control.
  • Active air-fuel ratio control is executed in a predetermined N cycle (N is an integer of 2 or more).
  • the lean determination value VL defines the switching timing from lean control to rich control. As shown in FIG. 5, the lean determination value VL is set to a value smaller (lean side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
  • the rich determination value VR defines the switching timing from rich control to lean control. As shown in FIG. 5, the rich determination value VR is set in advance to a value that is larger (rich side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
  • the oxygen storage capacity OSC of the catalyst 11 is measured by the following method.
  • the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ff as an actual value is slightly delayed with the rich air-fuel ratio A / Ff. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ff reaches the stoichiometric A / Fs to the time t2 when the post-catalyst sensor output Vr is next reversed, the oxygen storage capacity for each predetermined calculation cycle is obtained by the following equation (1).
  • the oxygen storage capacity OSC as the final integrated value during the rich control, that is, the amount of released oxygen indicated by OSCb in FIG. 4 is measured.
  • the oxygen storage capacity that is, the stored oxygen amount indicated by OSCa in FIG. 4 is measured.
  • the released oxygen amount and the stored oxygen amount are alternately measured.
  • the normality / abnormality determination of the catalyst is performed by the following method.
  • the ECU 20 calculates an average value OSCav of the measured values of the released oxygen amount and the stored oxygen amount.
  • the average value OSCav is compared with a predetermined abnormality determination value ⁇ .
  • the ECU 20 determines that the catalyst 11 is normal when the average value OSCav is greater than the abnormality determination value ⁇ , and determines that the catalyst 11 is abnormal when the average value OSCav is less than or equal to the abnormality determination value ⁇ .
  • a warning device not shown
  • a check lamp such as a check lamp
  • Oxygen storage capacity OSC and “oxygen amount” are terms that encompass “amount of stored oxygen OSCa” and “amount of released oxygen OSCb”.
  • FIG. 6 shows the case of a normal catalyst
  • FIG. 7 shows the case of an abnormal catalyst. Both figures show the test results when switching from lean control to rich control. However, even when the post-catalyst sensor output Vr is reversed (that is, even when the rich determination value VR is reached), switching to lean control is not performed.
  • (A) shows the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ff (line a) detected by the pre-catalyst sensor 17, and the post-catalyst air-fuel ratio A / Fr (line b).
  • an air-fuel ratio sensor similar to the pre-catalyst sensor 17 is installed for testing on the downstream side of the catalyst, and the air-fuel ratio detected by the test air-fuel ratio sensor is set as the post-catalyst air-fuel ratio A / Fr.
  • (B) shows the post-catalyst sensor output Vr
  • (C) shows the integrated value of the released oxygen amount OSCb.
  • the post-catalyst sensor output Vr can vary within the range of 0 to 1 (V).
  • the rich determination value VR of the post-catalyst sensor output Vr is 0.6 (V).
  • the post-catalyst air-fuel ratio A / Fr is slightly richer than stoichiometric during this period t1 to t3.
  • the area of the region d sandwiched between the stoichiometry and the post-catalyst air-fuel ratio A / Fr is the portion of the rich gas that could not be actually processed by the catalyst, in other words, the amount of oxygen that could not be released from the catalyst (OSCe for convenience) Represents.
  • the area of the region d corresponds to an error in the total released oxygen amount OSCb at time t3.
  • the value obtained by subtracting the area (OSCe) of the region d from the area (OSCb) of the region c represents the amount of oxygen actually released from the catalyst.
  • the measured released oxygen amount OSCb includes the actually released oxygen amount OSCe.
  • the post-catalyst air-fuel ratio A / Fr starts to decrease to the rich side at time t2 between time t1 and time t3, and the post-catalyst sensor output
  • the rate of increase or change rate of Vr to the rich side has begun to increase. This is considered to mean that the release of oxygen from the catalyst is substantially completed at time t2, and thereafter oxygen remaining in the catalyst is released relatively slowly. Alternatively, it is considered that the main oxygen release of the catalyst is completed at the time t2, and then the secondary residual oxygen is released.
  • (C) schematically shows the amount of oxygen OSCe corresponding to the error.
  • the proportion of the oxygen amount OSCe corresponding to the error is relatively small.
  • the ratio of the error is very large in the released oxygen amount OSCb measured in the period t2 to t3.
  • the error amount in the period t2 to t3 accounts for a large proportion of the total released oxygen amount. it is conceivable that.
  • (C) schematically shows the amount of oxygen OSCe corresponding to the error.
  • the proportion of the oxygen amount OSCe corresponding to the error is large.
  • the error rate immediately before reversing the sensor output after the catalyst increases compared to the case of a normal catalyst, and the increase rate of the measured value relative to the true value also increases.
  • an abnormal catalyst is actually misdiagnosed as normal.
  • the difference in the measured oxygen amount between the normal catalyst and the abnormal catalyst cannot be enlarged, and there is a possibility that sufficient diagnostic accuracy cannot be ensured particularly in the case of a catalyst where these differences are originally small.
  • the post-catalyst sensor 18 has a cup-shaped detection element 31 disposed in the exhaust pipe 6, and the detection element 31 is covered with a cover 32 with a hole.
  • An inner surface or inner electrode (not shown) of the detection element 31 is exposed to the atmosphere (air), and an outer surface or outer electrode of the detection element 31 is exposed in the cover 32.
  • Exhaust gas outside the cover 32 enters the cover 32 through the hole 33 of the cover 32.
  • the difference in oxygen partial pressure between the inner and outer surfaces of the detection element 31 in other words, the oxygen partial pressure between the atmospheric gas that is the atmospheric gas on the inner surface of the detection element 31 and the exhaust gas that is the atmospheric gas on the outer surface of the detection element 31.
  • An electromotive force is generated according to the difference. Based on this electromotive force, the air-fuel ratio of the exhaust gas is detected. The smaller the oxygen concentration of the exhaust gas, that is, the richer the air-fuel ratio of the exhaust gas, the larger the electromotive force.
  • the post-catalyst sensor 18 generates an electromotive force according to the air-fuel ratio of the ambient gas outside the detection element 31, and rather, passively generates an output corresponding to the air-fuel ratio of the ambient gas. . Therefore, even if the ambient gas outside the cover 32 changes to rich gas, the rich gas enters the cover 32 and is exchanged with the existing gas in the cover 32, and the post-catalyst sensor 18 generates an electromotive force corresponding to the rich gas in the cover. There is a time delay before it occurs.
  • This delay is a response delay, and this response delay is much larger than the response delay of the pre-catalyst sensor 17 composed of the wide-range air-fuel ratio sensor and the test air-fuel ratio sensor installed on the downstream side of the catalyst. This is because the pre-catalyst sensor 17 and the test air-fuel ratio sensor are applied with a predetermined voltage and rather can actively generate an output corresponding to the air-fuel ratio of the atmospheric gas.
  • one of the causes of the above problem is that the post-catalyst sensor 18 has a hysteresis characteristic.
  • the post-catalyst sensor 18 has a single characteristic as indicated by a solid line qualitatively or statically, but has a hysteresis characteristic as indicated by a one-dot chain line in practice or dynamically.
  • the exhaust air-fuel ratio changes from the rich side to the lean side with respect to the stoichiometry (line a)
  • the exhaust air-fuel ratio changes from the lean side to the rich side (line b)
  • the output characteristics or transient characteristics near the stoichiometry are different.
  • This hysteresis characteristic also causes a response delay of the post-catalyst sensor output Vr, resulting in a measurement error.
  • the post-catalyst sensor output Vr diagram does not match the post-catalyst air-fuel ratio A / Fr diagram (line b) in the examples of FIGS.
  • FIGS. 6 and 7 are the case of rich control, but the same problem occurs in the case of lean control.
  • the oxygen amount measurement method is changed as follows.
  • the output of the post-catalyst sensor 18 indicates that the exhaust air-fuel ratio on the downstream side of the catalyst moves from the stoichiometric direction toward the one.
  • the integrated measurement of the oxygen amount is terminated.
  • the air-fuel ratio switching timing of the active air-fuel ratio control is not changed, the oxygen amount measurement end timing is changed, and the integrated measurement of the oxygen amount is ended at a timing earlier than the air-fuel ratio switching timing.
  • the integration of the oxygen amount can be completed at the moment when the one gas starts to leak from the catalyst, and only the substantial oxygen amount occluded or released can be measured.
  • the subsequent measurement of the error during the response delay time of the post-catalyst sensor 18 can be eliminated, and the measurement error due to the response delay of the post-catalyst sensor 18 can be greatly reduced.
  • the measurement error can be reduced to improve the diagnostic accuracy, and misdiagnosis can be suppressed.
  • the difference of the measured value between right and wrong catalysts is expanded substantially, and even if the difference of both originally is delicate, it becomes possible to distinguish the difference correctly.
  • (A) shows the pre-catalyst air-fuel ratio A / Ff and target air-fuel ratio A / Ft detected by the pre-catalyst sensor 17, and (B) shows the post-catalyst sensor output Vr.
  • (C) shows the post-catalyst air-fuel ratio A / Fr detected by the test air-fuel ratio sensor for convenience, and (D) shows the integrated value of the stored oxygen amount OSCa.
  • test air-fuel ratio sensor is much more responsive than the post-catalyst sensor 18. Therefore, the post-catalyst air-fuel ratio A / Fr shown in (C) can be considered to accurately indicate the exhaust air-fuel ratio downstream of the catalyst.
  • the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio at the time t5 when the post-catalyst sensor output Vr further changes to the lean side and reaches the lean determination value VL, and rich control is started.
  • VL 0.2 (V).
  • the air-fuel ratio switching timing is the same as in the basic method, and the integration end timing is earlier than the air-fuel ratio switching timing.
  • the post-catalyst air-fuel ratio A / Fr approaches the stoichiometry during the period from t2 to t3, and is maintained substantially stoichiometric during the period from t3 to t4. It has a waveform with a certain shelf in the middle, which approaches the lean air-fuel ratio in the period of t5.
  • the post-catalyst sensor output Vr in (B) also has a waveform similar to this.
  • the stoichiometric determination value VA is set in accordance with the timing when the leakage starts. That is, the timing at which the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA means the timing at which substantial oxygen occlusion has ended in the catalyst and oxygen begins to leak.
  • the rich determination value VR and the lean determination value VL, and the stoichiometric determination value VA and the stoichiometric rich determination value VB are all adapted values set in advance in consideration of the test results, sensor characteristics, and the like. is there.
  • the lean determination value VL is a value indicating that the post-catalyst air-fuel ratio A / Fr is completely leaner than the stoichiometric value
  • the stoichiometric determination value VA is equal to the post-catalyst air-fuel ratio A / Fr. This value indicates that the stoichi has started to become lean.
  • the rich determination value VR is a value indicating that the post-catalyst air-fuel ratio A / Fr is completely richer than the stoichiometric ratio
  • the stoichiometric rich determination value VB is the post-catalyst air-fuel ratio A / Fr. Is a value indicating that has started to become rich from stoichiometric.
  • the stoichiometric determination value VA is a value close to the rich determination value VR.
  • the stoichiometric determination value VB is a value close to the lean determination value VL.
  • stoichiometric determination value VA is most preferably value VA 1 corresponding to stoichiometry on hysteresis characteristic line a when changing from the rich side to the lean side.
  • the value VA 1 is a value on the rich side with respect to the rich determination value VR.
  • the output characteristics and hysteresis characteristics of the post-catalyst sensor 18 differ depending on the sensor, and may not be as shown in the example of illustration. Further, the above value may not necessarily be a value indicating that the post-catalyst air-fuel ratio A / Fr starts to change from stoichiometric to lean.
  • the stoichiometric determination value VA may alternatively be a value VA 2 equal to the rich determination value VR, or stoichiometrically on the single characteristic line (solid line) on the lean side with respect to the rich determination value VR.
  • the value VA 3 on the richer side than the equivalent value Vst may be used.
  • VA 0.6 (V).
  • VR ⁇ VA in terms of control. This is because if VR ⁇ VA, the post-catalyst sensor output Vr that has increased to the rich side and exceeded the rich determination value VR may decrease before reaching VA.
  • the same measurement method is adopted when the air-fuel ratio is controlled to the opposite side, that is, the rich air-fuel ratio. That is, as shown in FIG. 9, during the rich control before time t2, while the after-catalyst sensor output Vr is changing to the rich side, the after-catalyst sensor output Vr first reaches the predetermined stoichiometric determination value VB. At the time t1 when the value exceeds, the integrated measurement of the released oxygen amount OSCb is completed.
  • the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio, and lean control is started.
  • the post-catalyst air-fuel ratio A / Fr is almost stoichiometric before time t1, but starts to change toward the rich air-fuel ratio at time t1. It is considered that at this time t1, the processing of the rich gas by the oxygen released from the catalyst is not in time, and part of the rich gas has started to leak from the catalyst.
  • the stoichiometric determination value VB is set in accordance with the timing when the leakage starts. That is, the timing at which the post-catalyst sensor output Vr first exceeds the stoichiometric rich determination value VB means the timing at which the substantial oxygen release has ended in the catalyst and the rich gas has started to leak.
  • stoichiometric rich determination value VB is most preferably value VB 1 corresponding to stoichiometry on hysteresis characteristic line b when changing from the lean side to the rich side.
  • this value VB 1 is a value on the lean side of the lean determination value VL.
  • the output characteristics and hysteresis characteristics of the post-catalyst sensor 18 differ depending on the sensor, and may not be as shown in the example of illustration. Further, the above value may not necessarily be a value indicating the time point when the post-catalyst air-fuel ratio A / Fr starts to change from stoichiometric to rich.
  • the stoichiometric determination value VB may alternatively be a value VB 2 equal to the lean determination value VL, or stoichiometric on the rich characteristic side of the lean determination value VL and on a single characteristic line (solid line).
  • the value VB 3 on the lean side of the equivalent value Vst may be used.
  • VL ⁇ VB it may be preferable to satisfy VL ⁇ VB. This is because, if VL> VB, the post-catalyst sensor output Vr that has decreased to the lean side and exceeded the lean determination value VL may increase before reaching VB.
  • FIG. 10 shows a diagram in which an example in which the method for measuring the sulfur (S) concentration of fuel and the amount of oxygen is changed is added to the example of FIG.
  • the example of FIG. 9 is an example in the case of using a standard fuel having a low sulfur concentration and a predetermined value or less (hereinafter referred to as low S fuel). For this reason, the same diagram as FIG. 9 in FIG. 10 is displayed as “low S”, and the additional diagram is also displayed as “low S” when the low S fuel is used.
  • “high S” is displayed for a diagram in the case where a fuel having a high sulfur concentration and exceeding a predetermined value (hereinafter referred to as high S fuel) is used.
  • A1 is the stored oxygen amount measurement value when the integration is terminated at time t4 when the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA according to the present embodiment when low S fuel is used.
  • A2 is the stored oxygen amount measurement value when the integration is terminated at time t5 when the post-catalyst sensor output Vr reaches the lean determination value VL according to the basic method when using low S fuel. Since the integration is completed at a later timing than in the present embodiment when low S fuel is used, the measured value increases (A1 ⁇ A2).
  • B1 is a measured value of the stored oxygen amount when the integration ends at time t6 when the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA according to the present embodiment when high S fuel is used. Since the integration is completed at an earlier timing than in the present embodiment when using low S fuel, the measured value decreases (B1 ⁇ A1).
  • B2 is the measured value of the stored oxygen amount when the integration ends at time t7 when the post-catalyst sensor output Vr reaches the lean determination value VL according to the basic method when using high S fuel. Compared with the basic method when using low S fuel, the integration is completed at an earlier timing, so the measured value decreases (B2 ⁇ A2).
  • the difference between A1 and B1 in this embodiment is smaller than the difference between A2 and B2 in the basic method. Therefore, it can be said that the change or variation of the measured value with respect to the change or variation in the S concentration of the fuel is less in the present embodiment than in the basic method. Therefore, the present embodiment has an advantage that a relatively stable measurement value can be obtained without being easily influenced by the S concentration of the fuel.
  • This difference is due to the fact that the integration end timing of this embodiment is earlier than the integration end timing of the basic method. That is, as shown in (B), in the integration end timing of this embodiment, the difference in the integration end timing due to the difference in S concentration is a relatively short time between t6 and t4. On the other hand, at the integration end timing of the basic method, the difference in the integration end timing due to the difference in S concentration becomes a relatively long time between t7 and t5. The reason for this is that the rate of change of the post-catalyst sensor output Vr after the integration end timing of the present embodiment varies depending on the S concentration, and the later the difference in the post-catalyst sensor output Vr increases. Therefore, there is a large difference between the two timings at the integration end timing of the basic method, and a large difference also occurs in the measured values obtained as a result.
  • FIG. 11 is a diagram for illustrating the influence of the response variation of the post-catalyst sensor 18 on the measured value.
  • (A) shows the pre-catalyst air-fuel ratio A / Ff and post-catalyst air-fuel ratio A / Fr
  • (B) shows the integrated value of the stored oxygen amount OSCa
  • (C) shows the post-catalyst sensor output. Vr is shown.
  • the area of the portion I sandwiched between the pre-catalyst air-fuel ratio A / Ff and the post-catalyst air-fuel ratio A / Fr represents the true stored oxygen amount OSCa of the catalyst.
  • the area of the portion sandwiched between the pre-catalyst air-fuel ratio A / Ff and the stoichiometry represents the actually stored stored oxygen amount OSCa
  • a indicates the case of a post-catalyst sensor (hereinafter referred to as a reference sensor) whose response is an intermediate reference.
  • b shows the case of a post-catalyst sensor (hereinafter referred to as a high response sensor) whose response is faster than the reference sensor due to secular change
  • c is a catalyst whose response is slower than the reference sensor due to secular change.
  • the case of a rear sensor hereinafter referred to as a low response sensor
  • the integration end timing is over a relatively long period from t3 to t4 due to the response variation of the post-catalyst sensor. It varies. This is because, as described above, the difference in the post-catalyst sensor output Vr becomes larger due to the difference in the change rate of the post-catalyst sensor. Therefore, as shown in (B), the variation of the final integrated value increases as shown by d.
  • the variation in the integration end timing is reduced to a relatively short period from t1 to t2. This is because the integration ends before the difference in the post-catalyst sensor output Vr increases. Therefore, as shown in (B), the variation of the final integrated value can also be reduced as shown by e. In addition, the proportion of error included in these final integrated values is very small, and a highly accurate final integrated value can be obtained.
  • FIG. 12 shows the relationship between the post-catalyst sensor output Vr value (horizontal axis), which is the integration end timing, and the final integrated value (vertical axis) of the stored oxygen amount OSCa. As shown in the figure, the final integrated value tends to be larger as the post-catalyst sensor output Vr is decreased toward the lean side.
  • line a is reference data when a normal catalyst, a reference sensor, and low S fuel are used.
  • the line b is lower limit data when the normal catalyst, the high response sensor, and the high S fuel are used, that is, data when the sensor response and the fuel S concentration vary so that the final integrated value becomes the smallest. It is.
  • a fuel having an S concentration of 30 ppm is used as the low S fuel, and a fuel having an S concentration of 200 ppm is used as the high S fuel.
  • line c is reference data when an abnormal catalyst, a reference sensor, and low S fuel are used.
  • line d is upper limit data when the abnormal catalyst, the low response sensor, and the low S fuel are used, that is, when the sensor response and the fuel S concentration vary so that the final integrated value becomes the largest. It is data.
  • the difference between the lower limit data b of the normal catalyst and the upper limit data d of the abnormal catalyst when the integration end timing is set to the lean determination value VL as in the basic method is indicated by e.
  • the difference between the lower limit data b of the normal catalyst and the upper limit data d of the abnormal catalyst when the integration end timing is set to the stoichiometric determination value VA as in this embodiment is indicated by f.
  • the magnitude of the difference f itself is not much different from the difference e of the basic method, but since the original final integrated value is small, the ratio or ratio of the difference f with respect to the final integrated value is large. . Therefore, when taking into account variations in sensor responsiveness and fuel S concentration, the difference between the final integrated values between the normal and abnormal catalysts can be substantially enlarged, and both can be easily identified and the resolution can be improved.
  • the lean determination value VL and the rich determination value VR are changed according to the intake air amount Ga detected by the air flow meter 5.
  • the hysteresis width c which is the width between the hysteresis characteristic line a when changing to the lean side and the hysteresis characteristic line b when changing to the rich side, is supplied to the post-catalyst sensor 18. It changes in accordance with the flow rate of the gas, and consequently the intake air amount Ga that is the substitute value, and tends to increase as the intake air amount Ga increases. Then, according to the intake air amount Ga, the air-fuel ratio corresponding to the lean determination value VL and the rich determination value VR changes, and the value of the air-fuel ratio for switching the air-fuel ratio in the active air-fuel ratio control changes.
  • the lean determination value VL and the rich determination value VR are changed according to the intake air amount Ga in order to compensate for the change in the air-fuel ratio.
  • the intake air amount Ga is a predetermined reference value
  • the hysteresis characteristic line when changing to the lean side is a 1 and the lean determination value is VL 1 .
  • the lean determination value is changed to a larger (rich side) VL 2 so that switching is performed at the same air-fuel ratio at this time as well.
  • Such a change is performed using a map or the like stored in advance in the ECU 20.
  • the lean judgment value is changed to a smaller value (on the lean side).
  • the lean determination value is changed or corrected so that the value of the air-fuel ratio at which the air-fuel ratio is switched is always the value when the intake air amount Ga is the reference value.
  • the rich determination value VR When the intake air amount Ga increases from the reference value, the rich determination value is changed to a smaller value, and the intake air amount Ga decreases from the reference value. Sometimes the lean determination value is changed to a larger value, and the rich determination value is changed or corrected so that the value of the air-fuel ratio at which the air-fuel ratio is switched is always the value when the intake air amount Ga is the reference value.
  • a delay process for switching the air-fuel ratio is performed later than the timing when the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. That is, the air-fuel ratio is switched after a predetermined delay time has elapsed since the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR.
  • the delay time is changed according to the intake air amount Ga.
  • Fig. 14 shows an example of delay processing.
  • the post-catalyst sensor output Vr reaches the rich determination value VR at time t1
  • the target air-fuel ratio A / Ft changes from the rich air-fuel ratio A / Fr (for example, 14.1) to the lean air-fuel ratio A / Fl ( For example, the control is switched to 15.1) and the lean control is started.
  • the post-catalyst sensor output Vr reaches the lean determination value VL at time t2, the target air-fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr, and rich control is started.
  • the lean gas starts to leak from the catalyst around time t11, and the value of the post-catalyst air-fuel ratio A / Fr starts to increase from the stoichiometric value toward the lean air-fuel ratio A / Fl.
  • the post-catalyst sensor output Vr reaches the lean determination value VL
  • the post-catalyst air-fuel ratio A / Fr has sufficiently reached the vicinity of the lean air-fuel ratio A / Fl, and it can be considered that the catalyst has completely occluded oxygen. .
  • the post-catalyst sensor output Vr reaches the lean determination value VL at an earlier timing, and the air-fuel ratio becomes the rich air-fuel ratio A / Fr. Can be switched. Then, even though the post-catalyst air-fuel ratio A / Fr has not yet reached the vicinity of the lean air-fuel ratio A / F1, that is, oxygen is not completely occluded in the catalyst, the air-fuel ratio switching occurs.
  • the rich control is started before the desired initial state for the rich control is achieved. Therefore, during rich control, an oxygen amount with a smaller value than the original value may be measured.
  • the air-fuel ratio is switched after a predetermined delay time has elapsed since the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR.
  • the delay time is increased as the intake air amount Ga is smaller. This is because the smaller the intake air amount Ga, the lower the gas flow rate with respect to the catalyst, the lowering the oxygen storage rate or release rate, and it takes time to create a complete storage state or complete release state.
  • the change of the delay time is performed using a map or the like stored in advance in the ECU 20.
  • the delay process can be omitted, and in this case, the air-fuel ratio is switched at the same time when the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. In any case, the air-fuel ratio is performed in synchronization with the post-catalyst sensor output Vr reaching the lean determination value VL or the rich determination value VR.
  • step S101 it is determined whether or not the diagnosis permission flag is on.
  • the diagnosis permission flag is a flag that is turned on when a precondition for diagnosis execution is satisfied.
  • the precondition is satisfied when the following conditions are satisfied. (1)
  • the upstream catalyst 11 is activated.
  • the pre-catalyst sensor 17 and the post-catalyst sensor 18 are activated.
  • the engine is in steady operation.
  • the diagnosis is incomplete during the current trip.
  • Condition (1) is established when the catalyst temperature Tc of the upstream catalyst 11 is within a predetermined activation temperature range.
  • the catalyst temperature Tc is estimated by the ECU 20 based on the engine operating state, but may be detected directly by a temperature sensor.
  • Condition (2) is satisfied when the temperatures of the detection elements of the pre-catalyst sensor 17 and the post-catalyst sensor 18 estimated by the ECU 20 are within a predetermined activation temperature range.
  • Condition (3) is when the engine speed calculated based on the output of the crank angle sensor 14 and the fluctuation range of the intake air amount Ga detected by the air flow meter 5 within a predetermined time are within a predetermined value. Is established.
  • the trip means the period from one start to stop of the engine.
  • the diagnosis is executed once per trip, and (4) is established when the diagnosis has not been completed once during the current trip.
  • diagnosis permission flag is not on (if it is off), it enters a standby state. On the other hand, when the diagnosis permission flag is on, the first target air-fuel ratio (A / Ft) of the active air-fuel ratio control is set in steps S102 to S104.
  • step S103 the initial target air-fuel ratio A / Ft is set to the lean air-fuel ratio. The As a result, lean control is executed.
  • step S104 the initial target air-fuel ratio A / Ft is set to the rich air-fuel ratio. Is done. Thus, rich control is executed.
  • the active air-fuel ratio control is started from the air-fuel ratio opposite to the air-fuel ratio of the current post-catalyst gas.
  • the first lean control or rich control is a so-called deserted mountain where no oxygen amount measurement is performed.
  • step S105 a lean determination value VL and a rich determination value VR are calculated based on the detected intake air amount Ga. This calculation is performed according to a predetermined map as described above. As the intake air amount Ga increases, a larger lean determination value VL is calculated, and a smaller rich determination value VR is calculated.
  • step S106 the delay time D is calculated based on the detected intake air amount Ga. This calculation is performed according to a predetermined map as shown in FIG. 16, and the larger the delay time D is, the smaller the intake air amount Ga is.
  • step S107 it is determined whether the current target air-fuel ratio A / Ft is a rich air-fuel ratio, that is, whether rich control is being executed. If the target air-fuel ratio A / Ft is a rich air-fuel ratio, the process proceeds to step S121. If the target air-fuel ratio A / Ft is not a rich air-fuel ratio (in the case of a lean air-fuel ratio), the process proceeds to step S108.
  • step S108 it is determined whether or not the post-catalyst sensor output Vr is equal to or less than the lean determination value VL, that is, whether or not the post-catalyst sensor output Vr is reversed to the lean side. If the after-catalyst sensor output Vr is not less than or equal to the lean determination value VL, the standby state is entered.
  • step S109 the time from when the post-catalyst sensor output Vr first becomes equal to or less than the lean determination value VL is counted, and whether or not this time is equal to or greater than the delay time D is determined. If no, the process enters a standby state. If yes, the process proceeds to step S110.
  • step S110 the target air-fuel ratio A / Ft is set to the rich air-fuel ratio, and rich control is started.
  • step S111 it is determined in step S111 whether or not the pre-catalyst air-fuel ratio A / Ff detected by the pre-catalyst sensor 17 is less than the stoichiometric value. If not, the process returns to step S110 to enter a standby state, and if so, the process proceeds to step S112, and the oxygen storage capacity OSC, here, the released oxygen amount OSCb is integrated and measured.
  • step S113 whether or not the post-catalyst sensor output Vr that is changing to the rich side exceeds the stoichiometric determination value VB, that is, whether or not the post-catalyst air-fuel ratio starts to change from stoichiometric to the rich air-fuel ratio. To be judged. If not, the process returns to step S110. If it exceeds, the process proceeds to step S114, and the integration of the released oxygen amount OSCb is terminated.
  • step S115 it is determined whether or not both the stored oxygen amount OSCa and the released oxygen amount OSCb have been measured. If not measured, the process proceeds to step S121, and if measured, the process proceeds to step S116.
  • steps S121 to S128 processing in which rich and lean are reversed from steps S108 to S115 is performed.
  • step S121 it is determined whether or not the post-catalyst sensor output Vr is greater than or equal to the rich determination value VR, that is, whether or not the post-catalyst sensor output Vr is reversed to the rich side. If not, the process enters a standby state. If the post-catalyst sensor output Vr is equal to or greater than the rich determination value VR, the process proceeds to step S122.
  • step S122 the time from when the post-catalyst sensor output Vr first becomes equal to or greater than the rich determination value VR is counted, and it is determined whether or not this time is equal to or greater than the delay time D. If no, the process enters a standby state. If yes, the process proceeds to step S123.
  • step S123 the target air-fuel ratio A / Ft is set to a lean air-fuel ratio, and lean control is started.
  • step S124 it is determined whether or not the pre-catalyst air-fuel ratio A / Ff detected by the pre-catalyst sensor 17 is larger than the stoichiometric value. If not, the process returns to step S123 to enter a standby state, and if so, the process proceeds to step S125, and the oxygen storage capacity OSC, here the stored oxygen amount OSCa, is integrated and measured.
  • the oxygen storage capacity OSC here the stored oxygen amount OSCa
  • step S126 it is determined whether or not the post-catalyst sensor output Vr that is changing to the lean side is lower than the stoichiometric determination value VA, that is, whether or not the post-catalyst air-fuel ratio starts to change from stoichiometric to the lean air-fuel ratio. To be judged. If not, the process returns to step S123. If it is less, the process proceeds to step S127, and the accumulation of the stored oxygen amount OSCa is terminated.
  • step S127 it is determined whether or not both the stored oxygen amount OSCa and the released oxygen amount OSCb have been measured. If not measured, the process proceeds to step S108, and if measured, the process proceeds to step S116.
  • step S117 the calculated value of the oxygen storage capacity OSC is compared with a predetermined abnormality determination value ⁇ . If OSC> ⁇ , the upstream catalyst 11 is determined to be normal in step S119, and the process proceeds to step S120. If OSC ⁇ ⁇ , the upstream catalyst 11 is determined to be abnormal in step S118, and the process proceeds to step S120.
  • step S120 the diagnosis permission flag is turned off, thereby ending the diagnosis process.
  • the diagnosis was performed by measuring the stored oxygen amount OSCa and the released oxygen amount OSCb once for simplification.
  • the lean control and the rich control are alternately executed repeatedly, the stored oxygen amount OSCa and the released oxygen amount OSCb are measured a plurality of times, and the average value is calculated. Based on the average value, A diagnosis may be made. Further, the diagnosis may be performed based on only one measurement value of the stored oxygen amount OSCa and the released oxygen amount OSCb.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Provided is a device for diagnosing anomalies in the catalyst arranged in the exhaust gas passage of an internal combustion engine. A post-catalyst sensor for detecting the exhaust gas air-fuel ratio downstream of the catalyst is provided, said sensor having hysteresis characteristics near stoichiometry. Simultaneously with the post-catalyst sensor output reaching a prescribed determination value, active air-fuel ratio control is performed for switching the air-fuel ratio upstream of the catalyst from a lean air-fuel ratio to a rich air-fuel ratio, or vice versa, and during said control, the amount of oxygen absorbed and released by the catalyst is cumulatively measured. During the control in which the air-fuel ratio is set to the lean air-fuel ratio or the rich air-fuel ratio, cumulative oxygen measurement ends when the output of the post-catalyst sensor assumes a value indicating that the exhaust gas air-fuel ratio downstream of the catalyst has started to change from stoichiometry towards said lean air-fuel ratio or rich air-fuel ratio.

Description

触媒異常診断装置Catalyst abnormality diagnosis device
 本発明は、触媒の異常診断に係り、特に、内燃機関の排気通路に配置された触媒の異常を診断する装置に関する。 The present invention relates to an abnormality diagnosis of a catalyst, and more particularly to an apparatus for diagnosing an abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine.
 例えば自動車用内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(Oストレージ能)を有するものがある。この酸素吸蔵能を有する触媒は、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸蔵し、排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸蔵した酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少ズレてしまっても、三元触媒の酸素吸蔵・放出作用により、かかる空燃比ズレを吸収することができる。 For example, in an internal combustion engine for automobiles, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). When the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, when the engine becomes lean, the catalyst having oxygen storage capacity occludes excess oxygen present in the exhaust gas. When the fuel ratio becomes smaller than stoichiometric, that is, when it becomes rich, the stored oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric. However, if a three-way catalyst having an oxygen storage capacity is used, the actual air-fuel ratio slightly deviates from the stoichiometric depending on the operating conditions. However, such an air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.
 一方、触媒が劣化すると触媒の浄化率が低下する。触媒の劣化度と酸素吸蔵能の低下度との間には相関関係がある。よって、酸素吸蔵能の低下を検出することで触媒の劣化ないし異常を検出することができる。一般的には、触媒上流側の空燃比をリッチおよびリーンに交互に制御するアクティブ空燃比制御を行い、それらリーン制御中およびリッチ制御中に前記触媒が吸放出する酸素量を計測し、この酸素量に基づき触媒の異常を診断する方法(所謂Cmax法)が採用される(例えば特許文献1参照)。 On the other hand, when the catalyst deteriorates, the purification rate of the catalyst decreases. There is a correlation between the deterioration degree of the catalyst and the reduction degree of the oxygen storage capacity. Therefore, it is possible to detect deterioration or abnormality of the catalyst by detecting a decrease in oxygen storage capacity. In general, active air-fuel ratio control is performed to alternately and richly control the air-fuel ratio upstream of the catalyst, and the amount of oxygen absorbed and released by the catalyst during the lean control and rich control is measured. A method of diagnosing catalyst abnormality based on the amount (so-called Cmax method) is employed (see, for example, Patent Document 1).
 ところでこのCmax法では、触媒の下流側の排気空燃比を検出する触媒後センサを設け、触媒後センサの出力が反転するのと同時にリーン制御とリッチ制御を切り替え、且つ酸素量の計測を終了するようにしている。 By the way, in this Cmax method, a post-catalyst sensor for detecting the exhaust air / fuel ratio downstream of the catalyst is provided, and at the same time as the output of the post-catalyst sensor is reversed, the lean control and the rich control are switched, and the measurement of the oxygen amount is finished. I am doing so.
 しかしながら酸素量の計測に際しては、実際には吸放出されていない酸素量が併せて計測されてしまうという計測誤差の問題がある。特に、従来のCmax法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値が真の値より大きくなる傾向が強まる。こうなると、実際には異常な触媒を正常と誤診断することに繋がりかねない。また正常触媒と異常触媒の間での酸素量計測値の差を拡大することができず、特にこれらの差が元々小さい触媒の場合では、十分な診断精度を確保できない虞がある。 However, when measuring the amount of oxygen, there is a problem of measurement error that the amount of oxygen that is not actually absorbed and released is also measured. In particular, in the case of the conventional Cmax method, in the case of an abnormal catalyst, the error rate immediately before reversal of the sensor output after the catalyst increases compared to the case of a normal catalyst, and the tendency that the measured value becomes larger than the true value increases. This can lead to misdiagnosis of an abnormal catalyst as normal. In addition, the difference in the measured oxygen amount between the normal catalyst and the abnormal catalyst cannot be increased, and particularly in the case of a catalyst in which these differences are originally small, there is a possibility that sufficient diagnostic accuracy cannot be ensured.
 そこで本発明は以上の事情に鑑みて創案されたものであり、その一の目的は、計測誤差を縮小して診断精度を向上し、誤診断を抑制し得る触媒異常診断装置を提供することにある。 Therefore, the present invention was created in view of the above circumstances, and one object of the present invention is to provide a catalyst abnormality diagnosis device that can reduce measurement errors, improve diagnosis accuracy, and suppress erroneous diagnosis. is there.
特開2008-8158号公報JP 2008-8158 A
 本発明の一の態様によれば、
 内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
 触媒下流側の排気空燃比を検出する触媒後センサであって、ストイキを境に出力が急変し、排気空燃比がストイキに対しリッチ側からリーン側に変化するときとリーン側からリッチ側に変化するときとでストイキ付近の出力特性が異なるヒステリシス特性を有する触媒後センサと、
 前記触媒後センサの出力が所定の判定値に達したのと同期して触媒上流側の空燃比をリーン空燃比およびリッチ空燃比の一方から他方に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
 前記アクティブ空燃比制御の実行中に前記触媒が吸蔵または放出する酸素量を積算計測する計測手段と、
 前記計測手段により計測された前記酸素量に基づき前記触媒が正常か異常かを判定する判定手段と、
 を備え、
 前記計測手段は、触媒上流側の空燃比をリーン空燃比およびリッチ空燃比の一方とする制御中、前記触媒後センサの出力が、触媒下流側の排気空燃比がストイキから前記一方に向かって変化し始めたことを示すような値になった時に、前記酸素量の積算計測を終了する
 ことを特徴とする触媒異常診断装置が提供される。
According to one aspect of the invention,
An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine,
This is a post-catalyst sensor that detects the exhaust air / fuel ratio downstream of the catalyst, and the output changes suddenly at the stoichiometric boundary, and when the exhaust air / fuel ratio changes from the rich side to the lean side with respect to the stoichiometry, and changes from the lean side to the rich side A post-catalyst sensor having a hysteresis characteristic in which the output characteristic near the stoichiometry differs depending on
Active air-fuel ratio control for executing active air-fuel ratio control for switching the air-fuel ratio upstream of the catalyst from one of the lean air-fuel ratio and the rich air-fuel ratio in synchronization with the output of the post-catalyst sensor reaching a predetermined determination value Means,
Measuring means for integrating and measuring the amount of oxygen stored or released by the catalyst during execution of the active air-fuel ratio control;
Determination means for determining whether the catalyst is normal or abnormal based on the amount of oxygen measured by the measurement means;
With
During the control in which the air-fuel ratio on the upstream side of the catalyst is set to one of the lean air-fuel ratio and the rich air-fuel ratio, the output of the post-catalyst sensor changes the exhaust air-fuel ratio on the downstream side of the catalyst from the stoichiometric direction toward the one. Thus, there is provided a catalyst abnormality diagnosis device characterized in that the integrated measurement of the oxygen amount is terminated when a value indicating that it has started.
 好ましくは、前記判定値は、リーン空燃比からリッチ空燃比への切り替えタイミングを規定するリーン判定値と、リッチ空燃比からリーン空燃比への切り替えタイミングを規定するリッチ判定値とからなり、
 前記計測手段は、触媒上流側の空燃比をリーン空燃比とするリーン制御中、前記触媒後センサの出力が、前記リーン判定値に達する前で且つ所定のストイキリーン判定値からリーン側に向かって変化し始めた時に、前記酸素量の積算計測を終了する。
Preferably, the determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
During the lean control in which the air-fuel ratio on the upstream side of the catalyst is set to the lean air-fuel ratio, the measuring means is configured so that the output of the post-catalyst sensor reaches the lean side from the predetermined stoichiometric determination value before reaching the lean determination value. When the change starts, the integrated measurement of the oxygen amount is terminated.
 好ましくは、前記ストイキリーン判定値は、前記触媒後センサ出力がリッチ側からリーン側に変化するときのヒステリシス特性線上のストイキに対応する値である。 Preferably, the stoichiometric determination value is a value corresponding to stoichiometry on a hysteresis characteristic line when the post-catalyst sensor output changes from the rich side to the lean side.
 前記ストイキリーン判定値は、前記リッチ判定値よりリッチ側の値であってもよい。 The stoichiometric determination value may be a richer value than the rich determination value.
 前記ストイキリーン判定値は、前記リッチ判定値に等しい値であってもよい。 The stoichiometric determination value may be a value equal to the rich determination value.
 前記ストイキリーン判定値は、前記リッチ判定値よりリーン側の値であって、且つ前記触媒後センサ出力の単一特性線上のストイキ相当値よりリッチ側の値であってもよい。 The stoichiometric determination value may be a value leaner than the rich determination value, and may be a richer value than a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output.
 好ましくは、前記判定値は、リーン空燃比からリッチ空燃比への切り替えタイミングを規定するリーン判定値と、リッチ空燃比からリーン空燃比への切り替えタイミングを規定するリッチ判定値とからなり、
 前記計測手段は、触媒上流側の空燃比をリッチ空燃比とするリッチ制御中、前記触媒後センサの出力が、前記リッチ判定値に達する前で且つ所定のストイキリッチ判定値からリッチ側に向かって変化し始めた時に、前記酸素量の積算計測を終了する。
Preferably, the determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
During the rich control in which the air-fuel ratio on the upstream side of the catalyst is set to the rich air-fuel ratio, the measurement means is configured to output the post-catalyst sensor before reaching the rich determination value and from the predetermined stoichiometric determination value toward the rich side. When the change starts, the integrated measurement of the oxygen amount is terminated.
 好ましくは、前記ストイキリッチ判定値は、前記触媒後センサ出力がリーン側からリッチ側に変化するときのヒステリシス特性線上のストイキに対応する値である。 Preferably, the stoichiometric rich determination value is a value corresponding to the stoichiometric value on the hysteresis characteristic line when the post-catalyst sensor output changes from the lean side to the rich side.
 前記ストイキリッチ判定値は、前記リーン判定値よりリーン側の値であってもよい。 The stoichiometric determination value may be a leaner value than the lean determination value.
 前記ストイキリッチ判定値は、前記リーン判定値に等しい値であってもよい。 The stoichiometric determination value may be a value equal to the lean determination value.
 前記ストイキリッチ判定値は、前記リーン判定値よりリッチ側の値であって、且つ前記触媒後センサ出力の単一特性線上のストイキ相当値よりリーン側の値であってもよい。 The stoichiometric determination value may be a value on the rich side with respect to the lean determination value, and may be a value on the lean side with respect to a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output.
 好ましくは、前記アクティブ空燃比制御手段は、吸入空気量に応じて前記判定値を変更する。 Preferably, the active air-fuel ratio control means changes the determination value according to the intake air amount.
 好ましくは、前記アクティブ空燃比制御手段は、前記触媒後センサの出力が前記判定値に達してから所定のディレー時間経過後に空燃比を切り替え、且つ前記ディレー時間を吸入空気量に応じて変更する。 Preferably, the active air-fuel ratio control means switches the air-fuel ratio after a predetermined delay time has elapsed since the output of the post-catalyst sensor reaches the determination value, and changes the delay time according to the intake air amount.
 本発明によれば、計測誤差を縮小して診断精度を向上し、誤診断を抑制することができるという、優れた作用効果が発揮される。 According to the present invention, an excellent effect of reducing measurement errors and improving diagnostic accuracy and suppressing misdiagnosis is exhibited.
本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. 基本方法におけるアクティブ空燃比制御のタイムチャートである。It is a time chart of active air fuel ratio control in a basic method. 基本方法における酸素吸蔵容量の計測方法を示すタイムチャートである。It is a time chart which shows the measuring method of the oxygen storage capacity in a basic method. 触媒前センサ及び触媒後センサの出力特性を示すグラフである。It is a graph which shows the output characteristic of a pre-catalyst sensor and a post-catalyst sensor. リッチ制御時の試験結果を示すタイムチャートであり、正常触媒の場合である。It is a time chart which shows the test result at the time of rich control, and is a case of a normal catalyst. リッチ制御時の試験結果を示すタイムチャートであり、異常触媒の場合である。It is a time chart which shows the test result at the time of rich control, and is a case of an abnormal catalyst. 触媒後センサの部分断面図である。It is a fragmentary sectional view of a post-catalyst sensor. 本実施形態における酸素吸蔵容量の計測方法を示すタイムチャートである。It is a time chart which shows the measuring method of the oxygen storage capacity in this embodiment. 図9の例に、燃料の硫黄濃度および酸素吸蔵容量計測方法を変更した例を追加した図を示す。The figure which added the example which changed the sulfur concentration of a fuel and the oxygen storage capacity measuring method to the example of FIG. 9 is shown. 触媒後センサの応答性ばらつきが計測値に及ぼす影響を示すための図である。It is a figure for showing the influence which the responsiveness variation of the post-catalyst sensor has on the measured value. 積算終了タイミングとなる触媒後センサ出力の値と吸蔵酸素量の最終積算値との関係を示すグラフである。It is a graph which shows the relationship between the value of the post-catalyst sensor output used as the integration end timing, and the final integrated value of the stored oxygen amount. 吸入空気量に応じたリーン判定値およびリッチ判定値の変更方法を説明するための図である。It is a figure for demonstrating the change method of the lean determination value and rich determination value according to the amount of intake air. ディレー処理を説明するための図である。It is a figure for demonstrating a delay process. 図15Aと図15Bの関係を示す図である。It is a figure which shows the relationship between FIG. 15A and FIG. 15B. 本実施形態の異常診断処理を示すフローチャートである。It is a flowchart which shows the abnormality diagnosis process of this embodiment. 本実施形態の異常診断処理を示すフローチャートである。It is a flowchart which shows the abnormality diagnosis process of this embodiment. ディレー時間を算出するためのマップを示す。The map for calculating delay time is shown.
 以下、本発明の好適実施形態を添付図面に基づき説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関たるエンジン1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。本実施形態のエンジン1は自動車用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。 FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the figure, an engine 1 that is an internal combustion engine burns a mixture of fuel and air in a combustion chamber 3 formed in a cylinder block 2 and reciprocates a piston 4 in the combustion chamber 3 to drive power. Is generated. The engine 1 of the present embodiment is a multi-cylinder engine for automobiles (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.
 エンジン1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。 The cylinder head of the engine 1 is provided with an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.
 各気筒の吸気ポートは吸気マニホールドを介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、エンジンに流入する単位時間当たりの空気量すなわち吸入空気量Ga(g/s)を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが設けられている。なお吸気ポート、吸気マニホールド、サージタンク8及び吸気管13により吸気通路が形成される。 The intake port of each cylinder is connected to a surge tank 8 which is an intake manifold through an intake manifold. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. The intake pipe 13 includes an air flow meter 5 for detecting an air amount per unit time flowing into the engine, that is, an intake air amount Ga (g / s), and an electronically controlled throttle valve 10 in order from the upstream side. Is provided. An intake passage is formed by the intake port, the intake manifold, the surge tank 8 and the intake pipe 13.
 吸気通路、特に吸気ポート内に燃料を噴射するインジェクタすなわち燃料噴射弁12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。 An injector for injecting fuel into the intake passage, particularly the intake port, that is, a fuel injection valve 12 is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.
 一方、各気筒の排気ポートは、排気マニホールドを介して排気集合通路をなす排気管6に接続されている。これら排気ポート、排気マニホールド及び排気管6により排気通路が形成される。排気管6には、その上流側と下流側に、酸素吸蔵能を有する三元触媒からなる触媒、即ち上流触媒11及び下流触媒19が直列に設けられている。例えば、上流触媒11は排気マニホールドの直後に配置され、下流触媒19は車両の床下などに配置される。 On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through an exhaust manifold. An exhaust passage is formed by the exhaust port, the exhaust manifold, and the exhaust pipe 6. The exhaust pipe 6 is provided with a catalyst composed of a three-way catalyst having oxygen storage capacity, that is, an upstream catalyst 11 and a downstream catalyst 19 in series on the upstream side and the downstream side. For example, the upstream catalyst 11 is disposed immediately after the exhaust manifold, and the downstream catalyst 19 is disposed under the floor of the vehicle.
 上流触媒11の上流側及び下流側に、それぞれ、酸素濃度に基づいて排気ガスの空燃比を検出する空燃比センサ、即ち触媒前センサ17及び触媒後センサ18が設けられている。図5に示すように、触媒前センサ17は広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後センサ18は酸素センサ(Oセンサ)からなり、理論空燃比を境に出力値が急変する特性(Z特性)を持つ。 On the upstream side and downstream side of the upstream catalyst 11, air-fuel ratio sensors that detect the air-fuel ratio of the exhaust gas based on the oxygen concentration, that is, the pre-catalyst sensor 17 and the post-catalyst sensor 18, are provided. As shown in FIG. 5, the pre-catalyst sensor 17 is composed of a wide-range air-fuel ratio sensor, can continuously detect the air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the post-catalyst sensor 18 is composed of an oxygen sensor (O 2 sensor) and has a characteristic (Z characteristic) in which the output value changes suddenly with the theoretical air-fuel ratio as a boundary.
 上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、エンジン1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、インジェクタ12、スロットルバルブ10等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。 The above-described spark plug 7, throttle valve 10, injector 12 and the like are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst sensor 17, and the post-catalyst sensor 18, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the engine 1, and an accelerator opening that detects the accelerator opening, as shown in the figure. The degree sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the injector 12, the throttle valve 10, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.
 上流触媒11及び下流触媒19は、これに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx、HCおよびCOを同時に高効率で浄化する。よってこの特性に合わせて、ECU20は、エンジンの通常運転時、上流触媒11の上流側の排気ガスの空燃比がストイキに一致するよう、燃焼室3に供給される混合気の空燃比(具体的にはインジェクタ12からの燃料噴射量)を触媒前センサ17及び触媒後センサ18の出力に基づきフィードバック制御する。 The upstream catalyst 11 and the downstream catalyst 19 simultaneously convert NOx, HC, and CO at high efficiency when the air-fuel ratio A / F of the exhaust gas flowing into the upstream catalyst 11 and the downstream catalyst 19 is the stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.6). Purify. Therefore, in accordance with this characteristic, the ECU 20 controls the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 3 (specifically, so that the air-fuel ratio of the exhaust gas upstream of the upstream catalyst 11 matches the stoichiometric condition during normal operation of the engine. The amount of fuel injected from the injector 12 is feedback-controlled based on the outputs of the pre-catalyst sensor 17 and the post-catalyst sensor 18.
 ここで、異常診断の対象となる上流触媒11についてより詳細に説明する。なお下流触媒19も上流触媒11と同様に構成されている。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で担持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx、HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeOやジルコニアからなる。なお、「吸蔵」と同義で「吸収」または「吸着」を用いることもある。 Here, the upstream catalyst 11 to be subjected to abnormality diagnosis will be described in more detail. The downstream catalyst 19 is configured in the same manner as the upstream catalyst 11. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and a large number of particulate catalyst components 32 are supported on the coating material 31 in a dispersed manner. The catalyst 11 is exposed inside. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point when reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays a role of a promoter that promotes a reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. Note that “absorption” or “adsorption” may be used in the same meaning as “occlusion”.
 例えば、触媒内の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元され、浄化される。他方、触媒内の雰囲気ガスが理論空燃比よりリッチであると、酸素吸蔵成分に吸蔵されていた酸素が放出され、この放出された酸素によりHCおよびCOが酸化され、浄化される。 For example, if the atmospheric gas in the catalyst is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmospheric gas, and as a result, NOx is reduced and purified. On the other hand, when the atmospheric gas in the catalyst is richer than the stoichiometric air-fuel ratio, oxygen stored in the oxygen storage component is released, and the released oxygen oxidizes and purifies HC and CO.
 この酸素吸放出作用により、通常のストイキ空燃比制御に際して実際の空燃比がストイキに対して多少ばらついたとしても、このばらつきを吸収することができる。 This oxygen absorption / release action can absorb this variation even if the actual air-fuel ratio varies somewhat with respect to stoichiometry during normal stoichiometric air-fuel ratio control.
 ところで、新品状態の触媒11では前述したように多数の触媒成分32が均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率が低下し、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。 By the way, in the new catalyst 11, as described above, a large number of catalyst components 32 are evenly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). If it becomes like this, the contact probability of exhaust gas and the catalyst component 32 will fall, and it will become the cause of reducing a purification rate. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.
 このように、触媒11の劣化度と触媒11の酸素吸蔵能低下度との間には相関関係がある。そこで本実施形態では、特にエミッションへの影響が大きい上流触媒11の酸素吸蔵能を検出することにより、上流触媒11の劣化度を検出し、上流触媒11の異常を診断することとしている。ここで触媒11の酸素吸蔵能は、現状の触媒11が吸蔵または放出し得る酸素量である酸素吸蔵容量(OSC;O Storage Capacity、単位はg)の大きさによって表される。 Thus, there is a correlation between the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11. Therefore, in the present embodiment, the deterioration degree of the upstream catalyst 11 is detected by detecting the oxygen storage capacity of the upstream catalyst 11 that has a particularly large influence on the emission, and the abnormality of the upstream catalyst 11 is diagnosed. Here, the oxygen storage capacity of the catalyst 11 is represented by the amount of oxygen storage capacity (OSC; O 2 Storage Capacity, unit is g), which is the amount of oxygen that the current catalyst 11 can store or release.
[異常診断の基本方法]
 本実施形態の異常診断は、前述のCmax法に基づき、以下の方法を基本とする。異常診断に際しては、ECU20によりアクティブ空燃比制御が実行される。すなわちECU20は、触媒上流側の空燃比、具体的には燃焼室3内の混合気の空燃比を、中心空燃比であるストイキA/Fsを境に、リッチおよびリーンに交互に制御する。これにより、触媒11に供給される排気ガスの空燃比も、リッチおよびリーンに交互に制御されることとなる。
[Basic method of abnormality diagnosis]
The abnormality diagnosis of this embodiment is based on the following method based on the Cmax method described above. In the abnormality diagnosis, the active air-fuel ratio control is executed by the ECU 20. That is, the ECU 20 controls the air-fuel ratio on the upstream side of the catalyst, specifically, the air-fuel ratio of the air-fuel mixture in the combustion chamber 3 alternately and richly and lean, with the stoichiometric A / Fs being the central air-fuel ratio as a boundary. As a result, the air-fuel ratio of the exhaust gas supplied to the catalyst 11 is also controlled to be rich and lean alternately.
 また、アクティブ空燃比制御および診断は、所定の前提条件が満たされているときに限って実行される。この前提条件については後述する。 In addition, active air-fuel ratio control and diagnosis are executed only when predetermined preconditions are satisfied. This precondition will be described later.
 以下、図3及び図4を用いて、上流触媒11の酸素吸蔵容量の計測方法を説明する。 Hereinafter, a method for measuring the oxygen storage capacity of the upstream catalyst 11 will be described with reference to FIGS. 3 and 4.
 図3(A)において、破線は目標空燃比A/Ft、実線は触媒前センサ17の出力(但し触媒前空燃比A/Ffへの換算値)を示す。また図3(B)において、実線は触媒後センサ18の出力(但しその出力電圧Vr)を示す。 3A, the broken line indicates the target air-fuel ratio A / Ft, and the solid line indicates the output of the pre-catalyst sensor 17 (however, the converted value to the pre-catalyst air-fuel ratio A / Ff). In FIG. 3B, the solid line indicates the output of the post-catalyst sensor 18 (however, the output voltage Vr).
 図示するように、時刻t1より前では、空燃比をリーンに切り替えるリーン制御が実行されている。このとき、目標空燃比A/Ftは所定のリーン空燃比A/Fl(例えば15.1)とされ、触媒11には、目標空燃比A/Ftと等しい空燃比のリーンガスが供給されている。このとき触媒11は酸素を吸蔵し続けているが、飽和状態即ち満杯まで酸素を吸蔵した時点でそれ以上酸素を吸蔵できなくなる。この結果、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後センサ18の出力がリーン側に変化し、出力電圧Vrが所定のリーン判定値VL(例えば0.2V)に達した時点t1で、目標空燃比A/Ftが所定のリッチ空燃比A/Fr(例えば14.1)に切り替えられる。これにより空燃比制御はリーン制御からリッチ制御に切り替えられ、目標空燃比A/Ftと等しい空燃比のリッチガスが供給されるようになる。 As shown in the figure, before the time t1, lean control for switching the air-fuel ratio to lean is executed. At this time, the target air-fuel ratio A / Ft is set to a predetermined lean air-fuel ratio A / Fl (for example, 15.1), and the catalyst 11 is supplied with a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft. At this time, the catalyst 11 continues to occlude oxygen. However, when the oxygen is occluded until it is saturated, that is, full, it can no longer occlude oxygen. As a result, the lean gas passes through the catalyst 11 and flows out downstream of the catalyst 11. When this happens, the output of the post-catalyst sensor 18 changes to the lean side, and the target air-fuel ratio A / Ft becomes the predetermined rich air-fuel ratio at the time t1 when the output voltage Vr reaches a predetermined lean determination value VL (for example, 0.2 V). It is switched to A / Fr (for example, 14.1). As a result, the air-fuel ratio control is switched from lean control to rich control, and rich gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
 リッチガスが供給されると、触媒11は吸蔵酸素を放出し続ける。やがて触媒11から吸蔵酸素が放出され尽くすとその時点で触媒11は酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後センサ18の出力がリッチ側に変化し、出力電圧Vrが所定のリッチ判定値VR(例えば0.6V)に達した時点t2で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。これにより空燃比制御はリッチ制御からリーン制御に切り替えられ、目標空燃比A/Ftと等しい空燃比のリーンガスが供給されるようになる。 When the rich gas is supplied, the catalyst 11 continues to release the stored oxygen. When the stored oxygen is eventually released from the catalyst 11, the catalyst 11 cannot release oxygen at that time, and the rich gas passes through the catalyst 11 and flows out downstream of the catalyst 11. When this happens, the output of the post-catalyst sensor 18 changes to the rich side, and at the time t2 when the output voltage Vr reaches a predetermined rich determination value VR (for example, 0.6 V), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / It is switched to Fl. As a result, the air-fuel ratio control is switched from rich control to lean control, and a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
 再び、触媒11が満杯まで酸素を吸蔵し、触媒後センサ18の出力電圧Vrがリーン判定値VLに達すると、その時点t3で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、リッチ制御が開始される。 When the catalyst 11 again stores oxygen until it is full and the output voltage Vr of the post-catalyst sensor 18 reaches the lean determination value VL, the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t3. Rich control is started.
 こうして、触媒後センサ18の出力が反転する毎に、リーン制御とリッチ制御とが交互に繰り返し実行される。隣り合うリーン制御とリッチ制御の組をアクティブ空燃比制御の1周期とする。アクティブ空燃比制御は所定のN周期(Nは2以上の整数)実行される。 Thus, every time the output of the post-catalyst sensor 18 is reversed, the lean control and the rich control are alternately and repeatedly executed. A set of adjacent lean control and rich control is defined as one cycle of active air-fuel ratio control. Active air-fuel ratio control is executed in a predetermined N cycle (N is an integer of 2 or more).
 ここでリーン判定値VLは、リーン制御からリッチ制御への切替タイミングを規定する。このリーン判定値VLは、図5にも示すように、触媒後センサ出力のストイキ相当値Vstよりも小さい(リーン側の)値に予め定められている。 Here, the lean determination value VL defines the switching timing from lean control to rich control. As shown in FIG. 5, the lean determination value VL is set to a value smaller (lean side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
 同様に、リッチ判定値VRは、リッチ制御からリーン制御への切替タイミングを規定する。このリッチ判定値VRは、図5にも示すように、触媒後センサ出力のストイキ相当値Vstよりも大きい(リッチ側の)値に予め定められている。 Similarly, the rich determination value VR defines the switching timing from rich control to lean control. As shown in FIG. 5, the rich determination value VR is set in advance to a value that is larger (rich side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
 このアクティブ空燃比制御の実行中、次の方法で触媒11の酸素吸蔵容量OSCが計測される。 During execution of this active air-fuel ratio control, the oxygen storage capacity OSC of the catalyst 11 is measured by the following method.
 触媒11の有する酸素吸蔵容量が大きいほど、酸素を吸蔵或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は触媒後センサ出力Vrの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほどその反転周期は短くなる。 The larger the oxygen storage capacity of the catalyst 11, the longer the time during which oxygen can be stored or released. That is, when the catalyst has not deteriorated, the inversion period of the post-catalyst sensor output Vr (for example, the time from t1 to t2) becomes longer, and the inversion period becomes shorter as the deterioration of the catalyst proceeds.
 そこで、このことを利用して酸素吸蔵容量OSCが次のように計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/FfがストイキA/Fsに達した時点t11から、次に触媒後センサ出力Vrが反転する時点t2まで、次式(1)により、所定の演算周期毎の酸素吸蔵容量dOSCが逐次的に算出され、且つこの酸素吸蔵容量dOSCが時刻t11から時刻t2まで逐次的に積算される。こうして、リッチ制御時における最終積算値としての酸素吸蔵容量OSC、すなわち図4にOSCbで示す放出酸素量が計測される。 Therefore, using this, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ff as an actual value is slightly delayed with the rich air-fuel ratio A / Ff. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ff reaches the stoichiometric A / Fs to the time t2 when the post-catalyst sensor output Vr is next reversed, the oxygen storage capacity for each predetermined calculation cycle is obtained by the following equation (1). dOSC is sequentially calculated, and the oxygen storage capacity dOSC is sequentially accumulated from time t11 to time t2. Thus, the oxygen storage capacity OSC as the final integrated value during the rich control, that is, the amount of released oxygen indicated by OSCb in FIG. 4 is measured.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。σは空気に含まれる酸素割合(約0.23)を表す定数である。 Q is the fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, the air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. σ is a constant representing the proportion of oxygen contained in air (about 0.23).
 リーン制御時にも同様に酸素吸蔵容量、すなわち図4にOSCaで示す吸蔵酸素量が計測される。そしてリッチ制御とリーン制御が交互に行われる度に、放出酸素量と吸蔵酸素量が交互に計測される。 Similarly, during the lean control, the oxygen storage capacity, that is, the stored oxygen amount indicated by OSCa in FIG. 4 is measured. Each time the rich control and the lean control are alternately performed, the released oxygen amount and the stored oxygen amount are alternately measured.
 こうして複数ずつの放出酸素量と吸蔵酸素量との計測値が得られたならば、次の方法により触媒の正異常判定が行われる。 Thus, when a plurality of measured values of the released oxygen amount and the occluded oxygen amount are obtained in each manner, the normality / abnormality determination of the catalyst is performed by the following method.
 まずECU20は、これら放出酸素量と吸蔵酸素量との計測値の平均値OSCavを算出する。そしてこの平均値OSCavを所定の異常判定値αと比較する。ECU20は、平均値OSCavが異常判定値αより大きいときには触媒11を正常と判定し、平均値OSCavが異常判定値α以下のときには触媒11を異常と判定する。なお触媒を異常と判定した場合、その事実をユーザに知らせるため、チェックランプ等の警告装置(図示せず)を起動させるのが好ましい。 First, the ECU 20 calculates an average value OSCav of the measured values of the released oxygen amount and the stored oxygen amount. The average value OSCav is compared with a predetermined abnormality determination value α. The ECU 20 determines that the catalyst 11 is normal when the average value OSCav is greater than the abnormality determination value α, and determines that the catalyst 11 is abnormal when the average value OSCav is less than or equal to the abnormality determination value α. When it is determined that the catalyst is abnormal, it is preferable to activate a warning device (not shown) such as a check lamp in order to notify the user of the fact.
[本実施形態の異常診断方法]
 次に、本実施形態の異常診断方法を説明する。なお「酸素吸蔵容量OSC」および「酸素量」とは、「吸蔵酸素量OSCa」と「放出酸素量OSCb」を包括する用語である。
[Abnormality diagnosis method of this embodiment]
Next, the abnormality diagnosis method of this embodiment will be described. “Oxygen storage capacity OSC” and “oxygen amount” are terms that encompass “amount of stored oxygen OSCa” and “amount of released oxygen OSCb”.
 前述したように、酸素吸蔵容量OSCの計測に際しては、実際には吸放出されていない酸素量が併せて計測されてしまうという計測誤差の問題がある。特に、従来のCmax法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値が真の値より大きくなる傾向が強まる。こうなると、実際には異常な触媒を正常と誤診断する可能性がある。 As described above, when measuring the oxygen storage capacity OSC, there is a problem of measurement error in which the amount of oxygen that is not actually absorbed and released is also measured. In particular, in the case of the conventional Cmax method, in the case of an abnormal catalyst, the error rate immediately before reversal of the sensor output after the catalyst increases compared to the case of a normal catalyst, and the tendency that the measured value becomes larger than the true value increases. In this case, there is a possibility that an abnormal catalyst is actually misdiagnosed as normal.
 この点を図6および図7を用いて詳しく説明する。図6は正常触媒の場合、図7は異常触媒の場合である。両図は、リーン制御からリッチ制御に切り替えたときの試験結果を示している。但し、触媒後センサ出力Vrが反転しても(すなわちリッチ判定値VRに達しても)リーン制御への切り替えは行っていない。 This point will be described in detail with reference to FIGS. FIG. 6 shows the case of a normal catalyst, and FIG. 7 shows the case of an abnormal catalyst. Both figures show the test results when switching from lean control to rich control. However, even when the post-catalyst sensor output Vr is reversed (that is, even when the rich determination value VR is reached), switching to lean control is not performed.
 両図において、(A)には目標空燃比A/Ftと、触媒前センサ17によって検出された触媒前空燃比A/Ff(線a)と、触媒後空燃比A/Fr(線b)とを示す。ここでは触媒前センサ17と同様の空燃比センサを触媒下流側に試験用に設置し、この試験用空燃比センサにより検出された空燃比を触媒後空燃比A/Frとしている。 In both figures, (A) shows the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ff (line a) detected by the pre-catalyst sensor 17, and the post-catalyst air-fuel ratio A / Fr (line b). Indicates. Here, an air-fuel ratio sensor similar to the pre-catalyst sensor 17 is installed for testing on the downstream side of the catalyst, and the air-fuel ratio detected by the test air-fuel ratio sensor is set as the post-catalyst air-fuel ratio A / Fr.
 (B)には触媒後センサ出力Vrを示し、(C)には放出酸素量OSCbの積算値を示す。触媒後センサ出力Vrは0~1(V)の範囲内で変化し得る。触媒後センサ出力Vrのリッチ判定値VRは0.6(V)である。 (B) shows the post-catalyst sensor output Vr, and (C) shows the integrated value of the released oxygen amount OSCb. The post-catalyst sensor output Vr can vary within the range of 0 to 1 (V). The rich determination value VR of the post-catalyst sensor output Vr is 0.6 (V).
 まず図6の正常触媒の場合を説明する。触媒前空燃比A/Ffが低下してストイキ(=14.6)に到達した時点t1から、触媒後センサ出力Vrがリッチ側に移動してリッチ判定値VRに到達する時点t3まで、放出酸素量OSCbが積算される。この放出酸素量OSCbの時刻t3での最終積算値は、(A)に示す領域cの面積で表すことができる。この領域cは、時刻t1から時刻t3までの、ストイキ(14.6)と触媒前空燃比A/Ffとで挟まれた領域である。 First, the case of the normal catalyst in FIG. 6 will be described. From the time t1 when the pre-catalyst air-fuel ratio A / Ff decreases and reaches the stoichiometric (= 14.6), until the time t3 when the post-catalyst sensor output Vr moves to the rich side and reaches the rich determination value VR, the released oxygen The amount OSCb is integrated. The final integrated value of the released oxygen amount OSCb at the time t3 can be expressed by the area of the region c shown in (A). This region c is a region sandwiched between the stoichiometry (14.6) and the pre-catalyst air-fuel ratio A / Ff from time t1 to time t3.
 一方、この期間t1~t3内において、触媒後空燃比A/Frはストイキより若干リッチとなっている。ストイキと触媒後空燃比A/Frとで挟まれた領域dの面積が、触媒で実際に処理しきれなかったリッチガスの部分、言い換えれば触媒から放出できなかった酸素の量(便宜上OSCeとする)を表す。この領域dの面積が、時刻t3における全放出酸素量OSCbのうちの誤差分に相当する。 On the other hand, the post-catalyst air-fuel ratio A / Fr is slightly richer than stoichiometric during this period t1 to t3. The area of the region d sandwiched between the stoichiometry and the post-catalyst air-fuel ratio A / Fr is the portion of the rich gas that could not be actually processed by the catalyst, in other words, the amount of oxygen that could not be released from the catalyst (OSCe for convenience) Represents. The area of the region d corresponds to an error in the total released oxygen amount OSCb at time t3.
 領域cの面積(OSCb)から、領域dの面積(OSCe)を差し引いて得られた値が、実際に触媒から放出された酸素量を表すことになる。このように、計測された放出酸素量OSCbには、実際には放出されていない酸素量OSCeが含まれている。 The value obtained by subtracting the area (OSCe) of the region d from the area (OSCb) of the region c represents the amount of oxygen actually released from the catalyst. Thus, the measured released oxygen amount OSCb includes the actually released oxygen amount OSCe.
 なお図1に示した本実施形態の装置構成では、触媒後空燃比A/Frの絶対値まで検出できる空燃比センサがないので、誤差分自体を単独で計測することができない。便宜上、ストイキと触媒前空燃比A/Ffとで挟まれた領域cを放出酸素量OSCbとして計測しているのである。 In the apparatus configuration of the present embodiment shown in FIG. 1, since there is no air-fuel ratio sensor that can detect the absolute value of the post-catalyst air-fuel ratio A / Fr, the error itself cannot be measured alone. For convenience, the region c sandwiched between the stoichiometry and the pre-catalyst air-fuel ratio A / Ff is measured as the released oxygen amount OSCb.
 ところで、触媒後空燃比A/Frと触媒後センサ出力Vrに着目すると、時刻t1と時刻t3の間の時刻t2において、触媒後空燃比A/Frがリッチ側に低下し始め、触媒後センサ出力Vrのリッチ側への上昇速度ないし変化率が増大し始めている。これは、時刻t2で触媒の酸素放出が実質的に終了し、その後は触媒に残存している酸素が比較的ゆっくりと放出されていることを意味すると考えられる。或いは、時刻t2で触媒のメインの酸素放出が終了し、その後は副次的な残存酸素の放出が行われていることを意味すると考えられる。 By the way, paying attention to the post-catalyst air-fuel ratio A / Fr and the post-catalyst sensor output Vr, the post-catalyst air-fuel ratio A / Fr starts to decrease to the rich side at time t2 between time t1 and time t3, and the post-catalyst sensor output The rate of increase or change rate of Vr to the rich side has begun to increase. This is considered to mean that the release of oxygen from the catalyst is substantially completed at time t2, and thereafter oxygen remaining in the catalyst is released relatively slowly. Alternatively, it is considered that the main oxygen release of the catalyst is completed at the time t2, and then the secondary residual oxygen is released.
 もっとも、時刻t2から時刻t3までの期間でも、触媒後空燃比A/Frと触媒前空燃比A/Ffとの間には差があり、実際に酸素が放出され、リッチガスが処理されている。よってこの期間t2~t3で計測された放出酸素量OSCbのうち、誤差分が占める割合は比較的少ないものと考えられる。そして正常触媒の場合、全期間t1~t3で計測される全放出酸素量の値が大きいことから、この全放出酸素量のうち、期間t2~t3内の誤差分が占める割合は比較的少ないと考えられる。 However, even during the period from time t2 to time t3, there is a difference between the post-catalyst air-fuel ratio A / Fr and the pre-catalyst air-fuel ratio A / Ff, and oxygen is actually released and rich gas is processed. Therefore, it is considered that the proportion of the error is relatively small in the released oxygen amount OSCb measured during the period t2 to t3. In the case of a normal catalyst, since the value of the total released oxygen amount measured in the entire period t1 to t3 is large, the ratio of the error in the period t2 to t3 in the total released oxygen amount is relatively small. Conceivable.
 (C)に、誤差分に相当する酸素量OSCeを概略的に示す。時刻t3における全放出酸素量OSCbのうち、誤差分に相当する酸素量OSCeの割合は比較的少ない。 (C) schematically shows the amount of oxygen OSCe corresponding to the error. Of the total released oxygen amount OSCb at time t3, the proportion of the oxygen amount OSCe corresponding to the error is relatively small.
 これとは対照的に、図7に示す異常触媒の場合だと、時刻t2から時刻t3までの間の期間において、触媒後空燃比A/Frと触媒前空燃比A/Ffとの間には差が殆ど無い。これは、触媒が実質的に酸素を放出していないことを意味する。しかしながら、この期間t2~t3でも、ストイキと触媒前空燃比A/Ffとの差が積算され、あたかも触媒が酸素を放出しているかのように放出酸素量OSCbが計測されている。 In contrast, in the case of the abnormal catalyst shown in FIG. 7, during the period from time t2 to time t3, there is no difference between the post-catalyst air-fuel ratio A / Fr and the pre-catalyst air-fuel ratio A / Ff. There is almost no difference. This means that the catalyst does not substantially release oxygen. However, even during this period t2 to t3, the difference between the stoichiometric ratio and the pre-catalyst air-fuel ratio A / Ff is integrated, and the released oxygen amount OSCb is measured as if the catalyst is releasing oxygen.
 よってこの期間t2~t3で計測された放出酸素量OSCbのうち、誤差分が占める割合は非常に多いと考えられる。そして異常触媒の場合、全期間t1~t3で計測される全放出酸素量の値が比較的小さいことから、この全放出酸素量のうち、期間t2~t3内の誤差分が占める割合も多いものと考えられる。 Therefore, it is considered that the ratio of the error is very large in the released oxygen amount OSCb measured in the period t2 to t3. In the case of an abnormal catalyst, since the value of the total released oxygen amount measured during the entire period t1 to t3 is relatively small, the error amount in the period t2 to t3 accounts for a large proportion of the total released oxygen amount. it is conceivable that.
 (C)に、誤差分に相当する酸素量OSCeを概略的に示す。時刻t3における全放出酸素量OSCbのうち、誤差分に相当する酸素量OSCeの割合は多い。 (C) schematically shows the amount of oxygen OSCe corresponding to the error. Of the total released oxygen amount OSCb at time t3, the proportion of the oxygen amount OSCe corresponding to the error is large.
 このように、基本方法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値の真の値に対する増加割合も大きくなる。こうなると、実際には異常な触媒を正常と誤診断する可能性がある。 Thus, with the basic method, in the case of an abnormal catalyst, the error rate immediately before reversing the sensor output after the catalyst increases compared to the case of a normal catalyst, and the increase rate of the measured value relative to the true value also increases. In this case, there is a possibility that an abnormal catalyst is actually misdiagnosed as normal.
 また、正常触媒と異常触媒の間での酸素量計測値の差を拡大することができず、特にこれらの差が元々小さい触媒の場合では、十分な診断精度を確保できない虞がある。近年では、触媒の貴金属量を低減する傾向にあり、こうした触媒では、正異常触媒間での吸放出可能な酸素量の差が元々小さい。よって誤差割合が大きいと、正異常触媒間での微妙な酸素量の差を見分けることができず、十分な診断精度を確保できない虞がある。 Also, the difference in the measured oxygen amount between the normal catalyst and the abnormal catalyst cannot be enlarged, and there is a possibility that sufficient diagnostic accuracy cannot be ensured particularly in the case of a catalyst where these differences are originally small. In recent years, there is a tendency to reduce the amount of noble metal in the catalyst, and in such a catalyst, the difference in the amount of oxygen that can be absorbed and released between the normal and abnormal catalysts is originally small. Therefore, if the error ratio is large, it is not possible to distinguish a subtle difference in oxygen amount between the normal and abnormal catalysts, and there is a possibility that sufficient diagnostic accuracy cannot be ensured.
 当然ながら、正常と異常の境目(クライテリア)に対してやや正常側にある劣化の進んだ正常触媒と、やや異常側にある異常触媒との間でも、吸放出可能な酸素量の差が小さい。よって誤差割合が大きいとこれらの微妙な酸素量の差を見分けることができず、十分な診断精度を確保できない虞がある。 Of course, the difference in the amount of oxygen that can be absorbed and released is small between the normal catalyst that has deteriorated slightly on the normal side and the abnormal catalyst that is on the abnormal side. Therefore, if the error rate is large, these subtle differences in oxygen amount cannot be distinguished, and there is a possibility that sufficient diagnostic accuracy cannot be ensured.
 ところで、この問題の原因の一つに、触媒後センサ18の応答性が比較的良くないことが挙げられる。 Incidentally, one of the causes of this problem is that the responsiveness of the post-catalyst sensor 18 is relatively poor.
 図8に示すように、触媒後センサ18は、排気管6内に配置されるコップ形の検出素子31を有し、この検出素子31が孔付カバー32で覆われる構造となっている。検出素子31の図示しない内表面あるいは内側電極は大気(空気)に露呈され、検出素子31の外表面あるいは外側電極はカバー32内に露呈されている。カバー32外の排気ガスは、カバー32の孔33を通じてカバー32内に浸入する。検出素子31の内外表面間の酸素分圧の差、言い換えれば、検出素子31の内表面の雰囲気ガスである大気と、検出素子31の外表面の雰囲気ガスである排気ガスとの酸素分圧の差に応じて、起電力が発生する。この起電力に基づいて排気ガスの空燃比が検出される。排気ガスの酸素濃度が少ないほど、すなわち排気ガスの空燃比がリッチであるほど、起電力が大きくなる。 As shown in FIG. 8, the post-catalyst sensor 18 has a cup-shaped detection element 31 disposed in the exhaust pipe 6, and the detection element 31 is covered with a cover 32 with a hole. An inner surface or inner electrode (not shown) of the detection element 31 is exposed to the atmosphere (air), and an outer surface or outer electrode of the detection element 31 is exposed in the cover 32. Exhaust gas outside the cover 32 enters the cover 32 through the hole 33 of the cover 32. The difference in oxygen partial pressure between the inner and outer surfaces of the detection element 31, in other words, the oxygen partial pressure between the atmospheric gas that is the atmospheric gas on the inner surface of the detection element 31 and the exhaust gas that is the atmospheric gas on the outer surface of the detection element 31. An electromotive force is generated according to the difference. Based on this electromotive force, the air-fuel ratio of the exhaust gas is detected. The smaller the oxygen concentration of the exhaust gas, that is, the richer the air-fuel ratio of the exhaust gas, the larger the electromotive force.
 このように触媒後センサ18は、検出素子31の外側雰囲気ガスの空燃比に応じて起電力を発生し、どちらかといえば受動的に雰囲気ガスの空燃比に対応した出力を発生するものである。よって仮にカバー32の外側雰囲気ガスがリッチガスに変化したとしても、このリッチガスがカバー32内に浸入し、カバー32内の既存ガスと交換され、触媒後センサ18がカバー内リッチガスに対応した起電力を発生するまでに時間的な遅れが存在する。この遅れが応答遅れであり、この応答遅れは、広域空燃比センサからなる触媒前センサ17、さらには触媒下流側に試験的に設置した試験用空燃比センサの応答遅れよりも遙かに大きい。触媒前センサ17および試験用空燃比センサが所定電圧を印加されてむしろ積極的に雰囲気ガスの空燃比に対応した出力を発生し得るからである。 As described above, the post-catalyst sensor 18 generates an electromotive force according to the air-fuel ratio of the ambient gas outside the detection element 31, and rather, passively generates an output corresponding to the air-fuel ratio of the ambient gas. . Therefore, even if the ambient gas outside the cover 32 changes to rich gas, the rich gas enters the cover 32 and is exchanged with the existing gas in the cover 32, and the post-catalyst sensor 18 generates an electromotive force corresponding to the rich gas in the cover. There is a time delay before it occurs. This delay is a response delay, and this response delay is much larger than the response delay of the pre-catalyst sensor 17 composed of the wide-range air-fuel ratio sensor and the test air-fuel ratio sensor installed on the downstream side of the catalyst. This is because the pre-catalyst sensor 17 and the test air-fuel ratio sensor are applied with a predetermined voltage and rather can actively generate an output corresponding to the air-fuel ratio of the atmospheric gas.
 また、上記問題の原因の一つに、触媒後センサ18がヒステリシス特性を有することも挙げられる。 Also, one of the causes of the above problem is that the post-catalyst sensor 18 has a hysteresis characteristic.
 図5に示すように、触媒後センサ18は、定性的あるいは静的には実線で示すような単一特性を有するが、実際上あるいは動的には一点鎖線で示すようなヒステリシス特性を有し、排気空燃比がストイキに対しリッチ側からリーン側に変化するとき(線a)と、リーン側からリッチ側に変化するとき(線b)とで、ストイキ付近の出力特性あるいは過渡特性が異なる。例えばリーン側に変化するときには、実線で示す単一特性よりも遅れてリーン側に変化し、逆も同様である。このヒステリシス特性によっても触媒後センサ出力Vrの応答遅れが発生し、これに起因して計測誤差が生じる。 As shown in FIG. 5, the post-catalyst sensor 18 has a single characteristic as indicated by a solid line qualitatively or statically, but has a hysteresis characteristic as indicated by a one-dot chain line in practice or dynamically. When the exhaust air-fuel ratio changes from the rich side to the lean side with respect to the stoichiometry (line a), and when the exhaust air-fuel ratio changes from the lean side to the rich side (line b), the output characteristics or transient characteristics near the stoichiometry are different. For example, when changing to the lean side, it changes to the lean side later than the single characteristic indicated by the solid line, and vice versa. This hysteresis characteristic also causes a response delay of the post-catalyst sensor output Vr, resulting in a measurement error.
 図6および図7の例において、触媒後センサ出力Vrの線図が触媒後空燃比A/Frの線図(線b)と一致しないのも、これらの理由による。 In these examples, the post-catalyst sensor output Vr diagram does not match the post-catalyst air-fuel ratio A / Fr diagram (line b) in the examples of FIGS.
 図7の例において、仮にリッチガスが触媒から漏れ始めた時刻t2で、瞬時に触媒後センサ出力Vrがリッチ判定値VRに達すれば、応答遅れによる計測誤差は大幅に抑制される。しかしながら実際にはそうならないために応答遅れによる計測誤差が顕著となる。 In the example of FIG. 7, if the post-catalyst sensor output Vr instantaneously reaches the rich judgment value VR at time t2 when the rich gas begins to leak from the catalyst, the measurement error due to the response delay is greatly suppressed. However, since this is not the case, the measurement error due to the response delay becomes remarkable.
 なお図6および図7の例はリッチ制御の場合であるが、リーン制御の場合にも同様の問題がある。 Note that the examples of FIGS. 6 and 7 are the case of rich control, but the same problem occurs in the case of lean control.
 そこで以上の問題に鑑み、本実施形態では、触媒後センサ18の応答性に起因する誤差割合を縮小するため、次のように酸素量の計測方法を変更する。まず概略的に述べると、触媒上流側の空燃比をリーン空燃比およびリッチ空燃比の一方とする制御中、触媒後センサ18の出力が、触媒下流側の排気空燃比がストイキから前記一方に向かって変化し始めたことを示すような値になった時に、酸素量の積算計測を終了する。アクティブ空燃比制御の空燃比切り替えタイミングは変更せず、酸素量の計測終了タイミングを変更し、空燃比切り替えタイミングより早いタイミングで酸素量の積算計測を終了する。 Therefore, in view of the above problems, in the present embodiment, in order to reduce the error rate due to the responsiveness of the post-catalyst sensor 18, the oxygen amount measurement method is changed as follows. First, generally speaking, during the control in which the air-fuel ratio on the upstream side of the catalyst is one of the lean air-fuel ratio and the rich air-fuel ratio, the output of the post-catalyst sensor 18 indicates that the exhaust air-fuel ratio on the downstream side of the catalyst moves from the stoichiometric direction toward the one. When the value reaches a value indicating that it has started to change, the integrated measurement of the oxygen amount is terminated. The air-fuel ratio switching timing of the active air-fuel ratio control is not changed, the oxygen amount measurement end timing is changed, and the integrated measurement of the oxygen amount is ended at a timing earlier than the air-fuel ratio switching timing.
 こうすることにより、触媒から前記一方のガスが漏れ始めた瞬間に酸素量の積算を終了することができ、吸蔵または放出された実質的な酸素量のみを計測することができる。そしてその後の、触媒後センサ18の応答遅れ時間中の誤差分の計測を無くし、触媒後センサ18の応答遅れに起因する計測誤差を大幅に縮小することができる。 By so doing, the integration of the oxygen amount can be completed at the moment when the one gas starts to leak from the catalyst, and only the substantial oxygen amount occluded or released can be measured. The subsequent measurement of the error during the response delay time of the post-catalyst sensor 18 can be eliminated, and the measurement error due to the response delay of the post-catalyst sensor 18 can be greatly reduced.
 結果的に、計測誤差を縮小して診断精度を向上し、誤診断を抑制することができる。そして正異常触媒間の計測値の差を実質的に拡大し、元々の両者の差が微妙であってもその差を正確に見分けることが可能となる。 As a result, the measurement error can be reduced to improve the diagnostic accuracy, and misdiagnosis can be suppressed. And the difference of the measured value between right and wrong catalysts is expanded substantially, and even if the difference of both originally is delicate, it becomes possible to distinguish the difference correctly.
 以下、本実施形態の酸素量計測方法を図9を参照して詳細に説明する。 Hereinafter, the oxygen amount measurement method of the present embodiment will be described in detail with reference to FIG.
 図中、(A)には触媒前センサ17によって検出された触媒前空燃比A/Ffと目標空燃比A/Ftとを示し、(B)には触媒後センサ出力Vrを示す。(C)には試験用空燃比センサによって検出された触媒後空燃比A/Frを便宜上示し、(D)には吸蔵酸素量OSCaの積算値を示す。 (A) shows the pre-catalyst air-fuel ratio A / Ff and target air-fuel ratio A / Ft detected by the pre-catalyst sensor 17, and (B) shows the post-catalyst sensor output Vr. (C) shows the post-catalyst air-fuel ratio A / Fr detected by the test air-fuel ratio sensor for convenience, and (D) shows the integrated value of the stored oxygen amount OSCa.
 前述したように、試験用空燃比センサは触媒後センサ18より遙かに応答性が良い。よって(C)に示される触媒後空燃比A/Frは触媒下流側の排気空燃比を正確に示すものと考えて差し支えない。 As described above, the test air-fuel ratio sensor is much more responsive than the post-catalyst sensor 18. Therefore, the post-catalyst air-fuel ratio A / Fr shown in (C) can be considered to accurately indicate the exhaust air-fuel ratio downstream of the catalyst.
 時刻t2において触媒後センサ出力Vrがリッチ判定値VRに達したと同時に、目標空燃比A/Ftがリッチ空燃比からリーン空燃比に切り替えられ、リーン制御が開始される。なおここではVR=0.66(V)とされている。 At the time t2, as soon as the post-catalyst sensor output Vr reaches the rich determination value VR, the target air-fuel ratio A / Ft is switched from the rich air-fuel ratio to the lean air-fuel ratio, and lean control is started. Here, VR = 0.66 (V).
 そして時刻t3で触媒前空燃比A/Ffがストイキとなった時点から、吸蔵酸素量OSCaの積算計測が開始される。すなわち酸素量の計測開始タイミングは基本方法と同様である。 Then, from the time when the pre-catalyst air-fuel ratio A / Ff becomes stoichiometric at time t3, integrated measurement of the stored oxygen amount OSCa is started. That is, the measurement start timing of the oxygen amount is the same as in the basic method.
 その後、触媒後センサ出力Vrがリーン側に変化している最中に、触媒後センサ出力Vrが所定のストイキリーン判定値VAを最初に下回った時点t4で、吸蔵酸素量OSCaの積算計測が終了される。 Thereafter, while the post-catalyst sensor output Vr is changing to the lean side, at the time t4 when the post-catalyst sensor output Vr first falls below the predetermined stoichiometric determination value VA, the integrated measurement of the stored oxygen amount OSCa is completed. Is done.
 その後、触媒後センサ出力Vrがさらにリーン側に変化し、リーン判定値VLに達した時点t5で、目標空燃比A/Ftがリッチ空燃比に切り替えられ、リッチ制御が開始される。ここではVL=0.2(V)とされている。このように空燃比切り替えタイミングは基本方法と同様であり、積算終了タイミングは空燃比切り替えタイミングより先である。 Thereafter, the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio at the time t5 when the post-catalyst sensor output Vr further changes to the lean side and reaches the lean determination value VL, and rich control is started. Here, VL = 0.2 (V). As described above, the air-fuel ratio switching timing is the same as in the basic method, and the integration end timing is earlier than the air-fuel ratio switching timing.
 ここで(C)の触媒後空燃比A/Frに着目すると、触媒後空燃比A/Frは、t2~t3の期間でストイキに近づき、t3~t4の期間でほぼストイキに維持され、t4~t5の期間でリーン空燃比に近づくという、中間に一定の棚部を持つ波形を有する。そして(B)の触媒後センサ出力Vrも大凡これに似た波形を有する。 Here, paying attention to the post-catalyst air-fuel ratio A / Fr in (C), the post-catalyst air-fuel ratio A / Fr approaches the stoichiometry during the period from t2 to t3, and is maintained substantially stoichiometric during the period from t3 to t4. It has a waveform with a certain shelf in the middle, which approaches the lean air-fuel ratio in the period of t5. The post-catalyst sensor output Vr in (B) also has a waveform similar to this.
 触媒後空燃比A/Frがストイキに維持されている期間では、リーンガス中の過剰酸素が全て触媒に吸蔵されていると考えられる。しかし、触媒後空燃比A/Frがストイキからリーン空燃比に向かって変化し始めた時点、すなわち時刻t4では、リーンガス中の過剰酸素の一部が触媒に吸蔵されず漏れ始めていると考えられる。 In the period when the post-catalyst air-fuel ratio A / Fr is maintained at stoichiometric, it is considered that all excess oxygen in the lean gas is occluded by the catalyst. However, at the time when the post-catalyst air-fuel ratio A / Fr starts to change from stoichiometric to the lean air-fuel ratio, that is, at time t4, it is considered that a part of the excess oxygen in the lean gas is not stored in the catalyst but starts to leak.
 従って原則的に、この漏れ始めたタイミングに合わせてストイキリーン判定値VAが設定される。すなわち、触媒後センサ出力Vrがストイキリーン判定値VAを最初に下回ったタイミングは、触媒中で実質的な酸素吸蔵が終了し、酸素が漏れ始めたタイミングを意味する。 Therefore, in principle, the stoichiometric determination value VA is set in accordance with the timing when the leakage starts. That is, the timing at which the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA means the timing at which substantial oxygen occlusion has ended in the catalyst and oxygen begins to leak.
 ここでリッチ判定値VRおよびリーン判定値VLと、ストイキリーン判定値VAおよびストイキリッチ判定値VB(詳しくは後述)とは、全て試験結果やセンサ特性等を考慮して予め設定される適合値である。但し、リーン判定値VLが、触媒後空燃比A/Frがストイキよりも完全にリーンになったことを示す値であるのに対し、ストイキリーン判定値VAは、触媒後空燃比A/Frがストイキからリーンになり始めたことを示す値である。 Here, the rich determination value VR and the lean determination value VL, and the stoichiometric determination value VA and the stoichiometric rich determination value VB (details will be described later) are all adapted values set in advance in consideration of the test results, sensor characteristics, and the like. is there. However, while the lean determination value VL is a value indicating that the post-catalyst air-fuel ratio A / Fr is completely leaner than the stoichiometric value, the stoichiometric determination value VA is equal to the post-catalyst air-fuel ratio A / Fr. This value indicates that the stoichi has started to become lean.
 同様に、リッチ判定値VRが、触媒後空燃比A/Frがストイキよりも完全にリッチになったことを示す値であるのに対し、ストイキリッチ判定値VBは、触媒後空燃比A/Frがストイキからリッチになり始めたことを示す値である。 Similarly, the rich determination value VR is a value indicating that the post-catalyst air-fuel ratio A / Fr is completely richer than the stoichiometric ratio, while the stoichiometric rich determination value VB is the post-catalyst air-fuel ratio A / Fr. Is a value indicating that has started to become rich from stoichiometric.
 図9に示すように、ストイキリーン判定値VAはリッチ判定値VRに近い値である。またストイキリッチ判定値VBはリーン判定値VLに近い値である。 As shown in FIG. 9, the stoichiometric determination value VA is a value close to the rich determination value VR. Further, the stoichiometric determination value VB is a value close to the lean determination value VL.
 図5を参照して、ストイキリーン判定値VAは、最も好ましくは、リッチ側からリーン側に変化するときのヒステリシス特性線a上におけるストイキに対応する値VAである。図示例の場合、この値VAはリッチ判定値VRよりリッチ側の値である。 Referring to FIG. 5, stoichiometric determination value VA is most preferably value VA 1 corresponding to stoichiometry on hysteresis characteristic line a when changing from the rich side to the lean side. In the illustrated example, the value VA 1 is a value on the rich side with respect to the rich determination value VR.
 但し、触媒後センサ18の出力特性およびヒステリシス特性はセンサに応じて異なり、図示例のようにならない場合もある。また上記の値が必ずしも、触媒後空燃比A/Frがストイキからリーンに変化し始めたことを示す値とはならないこともある。 However, the output characteristics and hysteresis characteristics of the post-catalyst sensor 18 differ depending on the sensor, and may not be as shown in the example of illustration. Further, the above value may not necessarily be a value indicating that the post-catalyst air-fuel ratio A / Fr starts to change from stoichiometric to lean.
 よって状況に応じて、代替的に、ストイキリーン判定値VAは、リッチ判定値VRに等しい値VAとしてもよいし、リッチ判定値VRよりリーン側で且つ単一特性線(実線)上におけるストイキ相当値Vstよりリッチ側の値VAとしてもよい。図9はVR>VAであり、VA=VAの場合を示す。図9の例においては例えばVA=0.6(V)である。 Therefore, depending on the situation, the stoichiometric determination value VA may alternatively be a value VA 2 equal to the rich determination value VR, or stoichiometrically on the single characteristic line (solid line) on the lean side with respect to the rich determination value VR. The value VA 3 on the richer side than the equivalent value Vst may be used. FIG. 9 shows a case where VR> VA and VA = VA 3 . In the example of FIG. 9, for example, VA = 0.6 (V).
 なお、制御上はVR≧VAとするのが好ましい場合がある。VR<VAとすると、リッチ側に上昇してリッチ判定値VRを超えた触媒後センサ出力VrがVAに達する前に低下する可能性もあるからである。 Note that it may be preferable that VR ≧ VA in terms of control. This is because if VR <VA, the post-catalyst sensor output Vr that has increased to the rich side and exceeded the rich determination value VR may decrease before reaching VA.
 以上の説明により、空燃比が逆側すなわちリッチ空燃比に制御されている場合にも同様の計測方法が採用されることが理解されよう。すなわち、図9に示すように、時刻t2の前のリッチ制御中、触媒後センサ出力Vrがリッチ側に変化している最中に、触媒後センサ出力Vrが所定のストイキリッチ判定値VBを最初に上回った時点t1で、放出酸素量OSCbの積算計測が終了される。 From the above description, it will be understood that the same measurement method is adopted when the air-fuel ratio is controlled to the opposite side, that is, the rich air-fuel ratio. That is, as shown in FIG. 9, during the rich control before time t2, while the after-catalyst sensor output Vr is changing to the rich side, the after-catalyst sensor output Vr first reaches the predetermined stoichiometric determination value VB. At the time t1 when the value exceeds, the integrated measurement of the released oxygen amount OSCb is completed.
 その後、触媒後センサ出力Vrがさらにリッチ側に変化し、リッチ判定値VRに達した時点t2で、目標空燃比A/Ftがリーン空燃比に切り替えられリーン制御が開始される。 Thereafter, at the time t2 when the post-catalyst sensor output Vr further changes to the rich side and reaches the rich determination value VR, the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio, and lean control is started.
 (C)に示すように、触媒後空燃比A/Frは、時刻t1の前ではほぼストイキに維持されているが、時刻t1でリッチ空燃比に向かって変化し始めている。この時刻t1で、触媒からの放出酸素によるリッチガスの処理が間に合わずリッチガスの一部が触媒から漏れ始めたと考えられる。 As shown in (C), the post-catalyst air-fuel ratio A / Fr is almost stoichiometric before time t1, but starts to change toward the rich air-fuel ratio at time t1. It is considered that at this time t1, the processing of the rich gas by the oxygen released from the catalyst is not in time, and part of the rich gas has started to leak from the catalyst.
 従って原則的に、この漏れ始めたタイミングに合わせてストイキリッチ判定値VBが設定される。すなわち、触媒後センサ出力Vrがストイキリッチ判定値VBを最初に上回ったタイミングは、触媒中で実質的な酸素放出が終了し、リッチガスが漏れ始めたタイミングを意味する。 Therefore, in principle, the stoichiometric determination value VB is set in accordance with the timing when the leakage starts. That is, the timing at which the post-catalyst sensor output Vr first exceeds the stoichiometric rich determination value VB means the timing at which the substantial oxygen release has ended in the catalyst and the rich gas has started to leak.
 図5を参照して、ストイキリッチ判定値VBは、最も好ましくは、リーン側からリッチ側に変化するときのヒステリシス特性線b上におけるストイキに対応する値VBである。図示例の場合、この値VBはリーン判定値VLよりリーン側の値である。 Referring to FIG. 5, stoichiometric rich determination value VB is most preferably value VB 1 corresponding to stoichiometry on hysteresis characteristic line b when changing from the lean side to the rich side. In the illustrated example, this value VB 1 is a value on the lean side of the lean determination value VL.
 但し、触媒後センサ18の出力特性およびヒステリシス特性はセンサに応じて異なり、図示例のようにならない場合もある。また上記の値が必ずしも、触媒後空燃比A/Frがストイキからリッチに変化し始めた時点を示す値とはならないこともある。 However, the output characteristics and hysteresis characteristics of the post-catalyst sensor 18 differ depending on the sensor, and may not be as shown in the example of illustration. Further, the above value may not necessarily be a value indicating the time point when the post-catalyst air-fuel ratio A / Fr starts to change from stoichiometric to rich.
 よって状況に応じて、代替的に、ストイキリッチ判定値VBは、リーン判定値VLに等しい値VBとしてもよいし、リーン判定値VLよりリッチ側で且つ単一特性線(実線)上におけるストイキ相当値Vstよりリーン側の値VBとしてもよい。図9はVL>VBであり、VB=VBの場合を示す。図9の例においては例えばVB=0.18(V)である。 Therefore, depending on the situation, the stoichiometric determination value VB may alternatively be a value VB 2 equal to the lean determination value VL, or stoichiometric on the rich characteristic side of the lean determination value VL and on a single characteristic line (solid line). The value VB 3 on the lean side of the equivalent value Vst may be used. FIG. 9 shows a case where VL> VB and VB = VB 1 . In the example of FIG. 9, for example, VB = 0.18 (V).
 制御上、VL≦VBとするのが好ましい場合がある。VL>VBとすると、リーン側に低下してリーン判定値VLを超えた触媒後センサ出力VrがVBに達する前に上昇する可能性もあるからである。 For control purposes, it may be preferable to satisfy VL ≦ VB. This is because, if VL> VB, the post-catalyst sensor output Vr that has decreased to the lean side and exceeded the lean determination value VL may increase before reaching VB.
 次に、本実施形態の作用効果に関して追加説明を行う。 Next, additional explanation will be given regarding the operational effects of the present embodiment.
 図10は、図9の例に、燃料の硫黄(S)濃度および酸素量計測方法を変更した例を追加した図を示す。図9の例は、硫黄濃度が低い、既定値以下の標準燃料(以下、低S燃料という)を使用した場合の例であった。このため図10のうち図9と同一の線図については「低S」と表示し、追加の線図についても低S燃料使用時の線図については「低S」と表示する。他方、硫黄濃度が高い、既定値を超える燃料(以下、高S燃料という)を使用した場合の線図については「高S」と表示する。 FIG. 10 shows a diagram in which an example in which the method for measuring the sulfur (S) concentration of fuel and the amount of oxygen is changed is added to the example of FIG. The example of FIG. 9 is an example in the case of using a standard fuel having a low sulfur concentration and a predetermined value or less (hereinafter referred to as low S fuel). For this reason, the same diagram as FIG. 9 in FIG. 10 is displayed as “low S”, and the additional diagram is also displayed as “low S” when the low S fuel is used. On the other hand, “high S” is displayed for a diagram in the case where a fuel having a high sulfur concentration and exceeding a predetermined value (hereinafter referred to as high S fuel) is used.
 (D)において、A1は、低S燃料使用時に本実施形態に従って触媒後センサ出力Vrがストイキリーン判定値VAを最初に下回った時点t4で積算を終了した場合の吸蔵酸素量計測値である。 In (D), A1 is the stored oxygen amount measurement value when the integration is terminated at time t4 when the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA according to the present embodiment when low S fuel is used.
 A2は、低S燃料使用時に基本方法に従って触媒後センサ出力Vrがリーン判定値VLに達した時点t5で積算を終了した場合の吸蔵酸素量計測値である。低S燃料使用時の本実施形態のときと比べ、積算がより遅いタイミングで終了されるため、計測値は増加する(A1<A2)。 A2 is the stored oxygen amount measurement value when the integration is terminated at time t5 when the post-catalyst sensor output Vr reaches the lean determination value VL according to the basic method when using low S fuel. Since the integration is completed at a later timing than in the present embodiment when low S fuel is used, the measured value increases (A1 <A2).
 B1は、高S燃料使用時に本実施形態に従って触媒後センサ出力Vrがストイキリーン判定値VAを最初に下回った時点t6で積算を終了した場合の吸蔵酸素量計測値である。低S燃料使用時の本実施形態のときと比べ、積算がより早いタイミングで終了されるため、計測値は減少する(B1<A1)。 B1 is a measured value of the stored oxygen amount when the integration ends at time t6 when the post-catalyst sensor output Vr first falls below the stoichiometric determination value VA according to the present embodiment when high S fuel is used. Since the integration is completed at an earlier timing than in the present embodiment when using low S fuel, the measured value decreases (B1 <A1).
 B2は、高S燃料使用時に基本方法に従って触媒後センサ出力Vrがリーン判定値VLに達した時点t7で積算を終了した場合の吸蔵酸素量計測値である。低S燃料使用時の基本方法のときと比べ、積算がより早いタイミングで終了されるため、計測値は減少する(B2<A2)。 B2 is the measured value of the stored oxygen amount when the integration ends at time t7 when the post-catalyst sensor output Vr reaches the lean determination value VL according to the basic method when using high S fuel. Compared with the basic method when using low S fuel, the integration is completed at an earlier timing, so the measured value decreases (B2 <A2).
 なお、高S燃料を使用すると触媒が硫黄被毒(S被毒)し、触媒の見掛け上の酸素吸蔵容量が低下する。しかしこのようなS被毒による劣化は回復可能な一時的劣化であるため、本実施形態の検出対象である熱劣化等による回復不能な恒久的劣化と区別する必要がある。 Note that when high S fuel is used, the catalyst is sulfur poisoned (S poison), and the apparent oxygen storage capacity of the catalyst is reduced. However, since such deterioration due to S poisoning is recoverable temporary deterioration, it is necessary to distinguish from permanent deterioration that cannot be recovered due to thermal deterioration or the like, which is a detection target of the present embodiment.
 ここで本実施形態におけるA1とB1の差は、基本方法におけるA2とB2の差より小さい。よって、燃料のS濃度の変化ないしばらつきに対する計測値の変化ないしばらつきは、基本方法より本実施形態の方が少ないと言える。よって本実施形態は、燃料のS濃度に影響を受け難く、比較的安定した計測値を得られる利点がある。 Here, the difference between A1 and B1 in this embodiment is smaller than the difference between A2 and B2 in the basic method. Therefore, it can be said that the change or variation of the measured value with respect to the change or variation in the S concentration of the fuel is less in the present embodiment than in the basic method. Therefore, the present embodiment has an advantage that a relatively stable measurement value can be obtained without being easily influenced by the S concentration of the fuel.
 このような違いは、本実施形態の積算終了タイミングが基本方法の積算終了タイミングより早いことに起因する。すなわち、(B)に示すように、本実施形態の積算終了タイミングだと、S濃度の違いによる積算終了タイミングの差がt6とt4の間の比較的短い時間である。これに対し、基本方法の積算終了タイミングだと、S濃度の違いによる積算終了タイミングの差がt7とt5の間の比較的長い時間となってしまう。その理由は、本実施形態の積算終了タイミングから後の触媒後センサ出力Vrの変化速度がS濃度に応じて異なり、後になればなるほど触媒後センサ出力Vrの差が拡大してしまうからである。よって基本方法の積算終了タイミングでは両タイミングに大きな差が生じ、結果的に得られる計測値にも大きな差が生じてしまう。 This difference is due to the fact that the integration end timing of this embodiment is earlier than the integration end timing of the basic method. That is, as shown in (B), in the integration end timing of this embodiment, the difference in the integration end timing due to the difference in S concentration is a relatively short time between t6 and t4. On the other hand, at the integration end timing of the basic method, the difference in the integration end timing due to the difference in S concentration becomes a relatively long time between t7 and t5. The reason for this is that the rate of change of the post-catalyst sensor output Vr after the integration end timing of the present embodiment varies depending on the S concentration, and the later the difference in the post-catalyst sensor output Vr increases. Therefore, there is a large difference between the two timings at the integration end timing of the basic method, and a large difference also occurs in the measured values obtained as a result.
 次に図11は、触媒後センサ18の応答性ばらつきが計測値に及ぼす影響を示すための図である。図中、(A)には触媒前空燃比A/Ffと触媒後空燃比A/Frを示し、(B)には吸蔵酸素量OSCaの積算値を示し、(C)には触媒後センサ出力Vrを示す。 Next, FIG. 11 is a diagram for illustrating the influence of the response variation of the post-catalyst sensor 18 on the measured value. In the figure, (A) shows the pre-catalyst air-fuel ratio A / Ff and post-catalyst air-fuel ratio A / Fr, (B) shows the integrated value of the stored oxygen amount OSCa, and (C) shows the post-catalyst sensor output. Vr is shown.
 (A)において、触媒前空燃比A/Ffと触媒後空燃比A/Frで挟まれた部分Iの面積は、触媒の真の吸蔵酸素量OSCaを表す。これに対し、触媒前空燃比A/Ffとストイキで挟まれた部分の面積は実際に計測される吸蔵酸素量OSCaを表し、触媒後空燃比A/Frとストイキで挟まれた部分IIの面積は計測値のうちの誤差分を表す。(B)には前記部分I,IIに対応した積算値I’,II’を示す。図示するように、リーン制御の後期になるほど計測値に対する誤差分の割合が多くなっていく。 In (A), the area of the portion I sandwiched between the pre-catalyst air-fuel ratio A / Ff and the post-catalyst air-fuel ratio A / Fr represents the true stored oxygen amount OSCa of the catalyst. On the other hand, the area of the portion sandwiched between the pre-catalyst air-fuel ratio A / Ff and the stoichiometry represents the actually stored stored oxygen amount OSCa, and the area of the portion II sandwiched between the post-catalyst air-fuel ratio A / Fr and the stoichiometry. Represents an error in the measured value. (B) shows integrated values I ′ and II ′ corresponding to the portions I and II. As shown in the figure, the ratio of the error to the measured value increases as the later stage of the lean control.
 (C)において、aは応答性が中間の基準となる触媒後センサ(以下、基準センサという)の場合を示す。これに対しbは、経年変化により基準センサより応答性が速くなった触媒後センサ(以下、高応答センサという)の場合を示し、cは、経年変化により基準センサより応答性が遅くなった触媒後センサ(以下、低応答センサという)の場合を示す。 In (C), a indicates the case of a post-catalyst sensor (hereinafter referred to as a reference sensor) whose response is an intermediate reference. On the other hand, b shows the case of a post-catalyst sensor (hereinafter referred to as a high response sensor) whose response is faster than the reference sensor due to secular change, and c is a catalyst whose response is slower than the reference sensor due to secular change. The case of a rear sensor (hereinafter referred to as a low response sensor) is shown.
 触媒後センサ出力Vrがリーン判定値VLに達するまで積算を続ける基本方法だと、かかる触媒後センサの応答性ばらつきに起因して、t3からt4までの比較的長い期間に亘って積算終了タイミングがばらつく。前記同様、触媒後センサの変化速度の相違に起因して、後になればなるほど触媒後センサ出力Vrの差が拡大してしまうからである。よって(B)に示すように最終積算値のばらつきもdの如く大きくなる。 In the basic method in which the integration is continued until the post-catalyst sensor output Vr reaches the lean determination value VL, the integration end timing is over a relatively long period from t3 to t4 due to the response variation of the post-catalyst sensor. It varies. This is because, as described above, the difference in the post-catalyst sensor output Vr becomes larger due to the difference in the change rate of the post-catalyst sensor. Therefore, as shown in (B), the variation of the final integrated value increases as shown by d.
 しかし、基本方法より早いタイミングで積算終了する本実施形態だと、積算終了タイミングのばらつきがt1からt2までの比較的短い期間に減少される。触媒後センサ出力Vrの差が拡大する前に積算を終了するからである。よって(B)に示すように最終積算値のばらつきもeの如く縮小することができる。しかもこれら最終積算値に含まれる誤差分の割合は非常に少なく、精度の高い最終積算値を得ることができる。 However, in the present embodiment in which the integration ends at a timing earlier than the basic method, the variation in the integration end timing is reduced to a relatively short period from t1 to t2. This is because the integration ends before the difference in the post-catalyst sensor output Vr increases. Therefore, as shown in (B), the variation of the final integrated value can also be reduced as shown by e. In addition, the proportion of error included in these final integrated values is very small, and a highly accurate final integrated value can be obtained.
 図12は、積算終了タイミングとなる触媒後センサ出力Vrの値(横軸)と、吸蔵酸素量OSCaの最終積算値(縦軸)との関係を示す。図示するように、触媒後センサ出力Vrの値をリーン側に小さくするほど、大きな最終積算値が得られる傾向にある。 FIG. 12 shows the relationship between the post-catalyst sensor output Vr value (horizontal axis), which is the integration end timing, and the final integrated value (vertical axis) of the stored oxygen amount OSCa. As shown in the figure, the final integrated value tends to be larger as the post-catalyst sensor output Vr is decreased toward the lean side.
 図中、線aは、正常触媒と基準センサと低S燃料とを使用したときの基準データである。これに対し線bは、正常触媒と高応答センサと高S燃料を使用したときの下限データであり、すなわち最終積算値が最も小さくなるようにセンサ応答性と燃料S濃度がばらついたときのデータである。なお低S燃料としてS濃度が30ppmの燃料を使用し、高S燃料としてS濃度が200ppmの燃料を使用している。 In the figure, line a is reference data when a normal catalyst, a reference sensor, and low S fuel are used. On the other hand, the line b is lower limit data when the normal catalyst, the high response sensor, and the high S fuel are used, that is, data when the sensor response and the fuel S concentration vary so that the final integrated value becomes the smallest. It is. A fuel having an S concentration of 30 ppm is used as the low S fuel, and a fuel having an S concentration of 200 ppm is used as the high S fuel.
 同様に、線cは、異常触媒と基準センサと低S燃料とを使用したときの基準データである。これに対し線dは、異常触媒と低応答センサと低S燃料とを使用したときの上限データであり、すなわち最終積算値が最も大きくなるようにセンサ応答性と燃料S濃度がばらついたときのデータである。 Similarly, line c is reference data when an abnormal catalyst, a reference sensor, and low S fuel are used. On the other hand, the line d is upper limit data when the abnormal catalyst, the low response sensor, and the low S fuel are used, that is, when the sensor response and the fuel S concentration vary so that the final integrated value becomes the largest. It is data.
 基本方法のように積算終了タイミングをリーン判定値VLに定めたときの正常触媒の下限データbと異常触媒の上限データdとの差をeで示す。これに対し、本実施形態のように積算終了タイミングをストイキリーン判定値VAに定めたときの正常触媒の下限データbと異常触媒の上限データdとの差をfで示す。 The difference between the lower limit data b of the normal catalyst and the upper limit data d of the abnormal catalyst when the integration end timing is set to the lean determination value VL as in the basic method is indicated by e. On the other hand, the difference between the lower limit data b of the normal catalyst and the upper limit data d of the abnormal catalyst when the integration end timing is set to the stoichiometric determination value VA as in this embodiment is indicated by f.
 基本方法の場合、元々の最終積算値の値が大きいので、最終積算値に対する差eの割合ないし比率は小さい。よってセンサ応答性と燃料S濃度のばらつきを考慮すると、正常・異常触媒間の最終積算値の差が実質的に縮小し、両者を識別し難い。 In the case of the basic method, since the original final integrated value is large, the ratio or ratio of the difference e with respect to the final integrated value is small. Therefore, in consideration of variations in sensor responsiveness and fuel S concentration, the difference between the final integrated values between normal and abnormal catalysts is substantially reduced, making it difficult to distinguish both.
 他方、本実施形態の場合だと、差fの大きさ自体は基本方法の差eと大差ないが、元々の最終積算値の値が小さいので、最終積算値に対する差fの割合ないし比率が大きい。よってセンサ応答性と燃料S濃度のばらつきを考慮したとき、正常・異常触媒間の最終積算値の差を実質的に拡大することができ、両者の識別を容易にし、分解能を高めることができる。 On the other hand, in the case of this embodiment, the magnitude of the difference f itself is not much different from the difference e of the basic method, but since the original final integrated value is small, the ratio or ratio of the difference f with respect to the final integrated value is large. . Therefore, when taking into account variations in sensor responsiveness and fuel S concentration, the difference between the final integrated values between the normal and abnormal catalysts can be substantially enlarged, and both can be easily identified and the resolution can be improved.
 このように、本実施形態によれば、触媒後センサと燃料性状がばらついた場合であっても正確な診断を実行可能である。 Thus, according to the present embodiment, accurate diagnosis can be executed even when the post-catalyst sensor and the fuel properties vary.
 ところで、本実施形態では更なる精度向上のため、以下のような処理を実行する。 By the way, in the present embodiment, the following processing is executed for further accuracy improvement.
 まず、リーン判定値VLおよびリッチ判定値VRを、エアフローメータ5により検出された吸入空気量Gaに応じて変更する。 First, the lean determination value VL and the rich determination value VR are changed according to the intake air amount Ga detected by the air flow meter 5.
 すなわち、図5に示すように、リーン側に変化するときのヒステリシス特性線aとリッチ側に変化するときのヒステリシス特性線bとの幅であるヒステリシス幅cは、触媒後センサ18に供給されるガスの流量、ひいてはその代用値である吸入空気量Gaに応じて変化し、吸入空気量Gaが大きいほど増大する傾向にある。すると、吸入空気量Gaに応じて、リーン判定値VLおよびリッチ判定値VRに対応する空燃比が変化し、アクティブ空燃比制御の空燃比切り替えを行う空燃比の値が変化する。 That is, as shown in FIG. 5, the hysteresis width c, which is the width between the hysteresis characteristic line a when changing to the lean side and the hysteresis characteristic line b when changing to the rich side, is supplied to the post-catalyst sensor 18. It changes in accordance with the flow rate of the gas, and consequently the intake air amount Ga that is the substitute value, and tends to increase as the intake air amount Ga increases. Then, according to the intake air amount Ga, the air-fuel ratio corresponding to the lean determination value VL and the rich determination value VR changes, and the value of the air-fuel ratio for switching the air-fuel ratio in the active air-fuel ratio control changes.
 そこでこの空燃比変化を補償すべく、リーン判定値VLおよびリッチ判定値VRを吸入空気量Gaに応じて変更する。 Therefore, the lean determination value VL and the rich determination value VR are changed according to the intake air amount Ga in order to compensate for the change in the air-fuel ratio.
 図13に示すように、例えば吸入空気量Gaが所定の基準値のとき、リーン側に変化するときのヒステリシス特性線がa、リーン判定値がVLであるとする。吸入空気量Gaが基準値より増大するとヒステリシス特性線がaに変化する。そこでこのときにも同じ空燃比で切り替えが行われるよう、リーン判定値はより大きい(リッチ側の)VLに変更される。こうした変更はECU20に予め記憶されたマップ等を用いて行われる。 As shown in FIG. 13, for example, when the intake air amount Ga is a predetermined reference value, it is assumed that the hysteresis characteristic line when changing to the lean side is a 1 and the lean determination value is VL 1 . When the intake air amount Ga increases than the reference hysteresis characteristic line is changed to a 2. Therefore, the lean determination value is changed to a larger (rich side) VL 2 so that switching is performed at the same air-fuel ratio at this time as well. Such a change is performed using a map or the like stored in advance in the ECU 20.
 吸入空気量Gaが基準値より減少した際にはリーン判定値がより小さい(リーン側の)値に変更されることが理解されよう。こうして、空燃比切り替えを行う空燃比の値が常に吸入空気量Gaが基準値であるときの値になるよう、リーン判定値が変更ないし補正される。 It will be understood that when the intake air amount Ga decreases from the reference value, the lean judgment value is changed to a smaller value (on the lean side). Thus, the lean determination value is changed or corrected so that the value of the air-fuel ratio at which the air-fuel ratio is switched is always the value when the intake air amount Ga is the reference value.
 なお、図示しないが、リッチ判定値VRについても同様の変更がなされ、吸入空気量Gaが基準値より増大したときにはリッチ判定値がより小さい値に変更され、吸入空気量Gaが基準値より減少したときにはリーン判定値がより大きい値に変更され、空燃比切り替えを行う空燃比の値が常に吸入空気量Gaが基準値であるときの値になるよう、リッチ判定値が変更ないし補正される。 Although not shown, the same change is made for the rich determination value VR. When the intake air amount Ga increases from the reference value, the rich determination value is changed to a smaller value, and the intake air amount Ga decreases from the reference value. Sometimes the lean determination value is changed to a larger value, and the rich determination value is changed or corrected so that the value of the air-fuel ratio at which the air-fuel ratio is switched is always the value when the intake air amount Ga is the reference value.
 次に、本実施形態では、触媒後センサ出力Vrがリーン判定値VLまたはリッチ判定値VRに達したタイミングよりも遅れて空燃比を切り替えるディレー処理を行う。すなわち、触媒後センサ出力Vrがリーン判定値VLまたはリッチ判定値VRに達してから所定のディレー時間経過後に空燃比を切り替える。そしてディレー時間を吸入空気量Gaに応じて変更する。 Next, in this embodiment, a delay process for switching the air-fuel ratio is performed later than the timing when the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. That is, the air-fuel ratio is switched after a predetermined delay time has elapsed since the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. The delay time is changed according to the intake air amount Ga.
 図14にディレー処理の例を示す。まず実線に着目して、時刻t1で触媒後センサ出力Vrがリッチ判定値VRに達し、目標空燃比A/Ftがリッチ空燃比A/Fr(例えば14.1)からリーン空燃比A/Fl(例えば15.1)に切り替えられ、リーン制御が開始される。そしてその後、時刻t2で触媒後センサ出力Vrがリーン判定値VLに達し、目標空燃比A/Ftがリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられ、リッチ制御が開始される。 Fig. 14 shows an example of delay processing. First, paying attention to the solid line, the post-catalyst sensor output Vr reaches the rich determination value VR at time t1, and the target air-fuel ratio A / Ft changes from the rich air-fuel ratio A / Fr (for example, 14.1) to the lean air-fuel ratio A / Fl ( For example, the control is switched to 15.1) and the lean control is started. Thereafter, the post-catalyst sensor output Vr reaches the lean determination value VL at time t2, the target air-fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr, and rich control is started.
 リーン制御後期、時刻t11付近からリーンガスが触媒から漏れ始め、触媒後空燃比A/Frの値がストイキからリーン空燃比A/Flに向かって上昇し始める。そして触媒後センサ出力Vrがリーン判定値VLに達した時点では、触媒後空燃比A/Frの値がリーン空燃比A/Fl付近に十分達しており、触媒に酸素が完全に吸蔵されたとみなせる。 In the latter period of lean control, the lean gas starts to leak from the catalyst around time t11, and the value of the post-catalyst air-fuel ratio A / Fr starts to increase from the stoichiometric value toward the lean air-fuel ratio A / Fl. When the post-catalyst sensor output Vr reaches the lean determination value VL, the post-catalyst air-fuel ratio A / Fr has sufficiently reached the vicinity of the lean air-fuel ratio A / Fl, and it can be considered that the catalyst has completely occluded oxygen. .
 しかし、一点鎖線で示すように、経年変化により触媒後センサ18の応答性が速くなると、より早いタイミングで触媒後センサ出力Vrがリーン判定値VLに達し、空燃比がリッチ空燃比A/Frに切り替えられる。すると、触媒後空燃比A/Frの値がリーン空燃比A/Fl付近にまだ達していないのに、すなわち触媒に酸素がまだ完全に吸蔵されていないのに、空燃比切り替えが起こり、次のリッチ制御のための望ましい初期状態ができる前にリッチ制御が開始されてしまう。よってリッチ制御中、本来より少ない値の酸素量が計測されてしまうことがあり得る。 However, as indicated by the alternate long and short dash line, when the responsiveness of the post-catalyst sensor 18 becomes faster due to aging, the post-catalyst sensor output Vr reaches the lean determination value VL at an earlier timing, and the air-fuel ratio becomes the rich air-fuel ratio A / Fr. Can be switched. Then, even though the post-catalyst air-fuel ratio A / Fr has not yet reached the vicinity of the lean air-fuel ratio A / F1, that is, oxygen is not completely occluded in the catalyst, the air-fuel ratio switching occurs. The rich control is started before the desired initial state for the rich control is achieved. Therefore, during rich control, an oxygen amount with a smaller value than the original value may be measured.
 よってこの問題を解消するため、本実施形態では、触媒後センサ出力Vrがリーン判定値VLまたはリッチ判定値VRに達してから所定のディレー時間経過後に空燃比を切り替える。こうしたディレー時間を設定することにより、触媒に酸素が完全に吸蔵された状態または触媒から酸素が完全に放出された状態という一定の望ましい初期状態をリッチ制御またはリーン制御開始前に作ることができ、触媒後センサ18の応答性ばらつきの影響を抑制すると共に、酸素量の計測精度を向上できる。 Therefore, in order to solve this problem, in this embodiment, the air-fuel ratio is switched after a predetermined delay time has elapsed since the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. By setting such a delay time, it is possible to create a desired initial state in which oxygen is completely stored in the catalyst or oxygen is completely released from the catalyst before the start of rich control or lean control. While suppressing the influence of the responsiveness variation of the post-catalyst sensor 18, it is possible to improve the measurement accuracy of the oxygen amount.
 ディレー時間は、吸入空気量Gaが少ないほど長くされる。吸入空気量Gaが少ないほど触媒に対するガス流量が減り、酸素の吸蔵速度または放出速度が低下し、完全吸蔵状態または完全放出状態を作るのに時間がかかるからである。かかるディレー時間の変更はECU20に予め記憶されたマップ等を用いて行われる。 The delay time is increased as the intake air amount Ga is smaller. This is because the smaller the intake air amount Ga, the lower the gas flow rate with respect to the catalyst, the lowering the oxygen storage rate or release rate, and it takes time to create a complete storage state or complete release state. The change of the delay time is performed using a map or the like stored in advance in the ECU 20.
 なお、ディレー処理は省略することもでき、この場合空燃比は触媒後センサ出力Vrがリーン判定値VLまたはリッチ判定値VRに達したのと同時に切り替えられる。いずれにしても、空燃比は、触媒後センサ出力Vrがリーン判定値VLまたはリッチ判定値VRに達したのと同期して行われることとなる。 Note that the delay process can be omitted, and in this case, the air-fuel ratio is switched at the same time when the post-catalyst sensor output Vr reaches the lean determination value VL or the rich determination value VR. In any case, the air-fuel ratio is performed in synchronization with the post-catalyst sensor output Vr reaching the lean determination value VL or the rich determination value VR.
 以上の説明は主に空燃比をリーン側に切り替えている場合、すなわちリーン制御の場合に対するものであったが、逆の場合すなわちリッチ制御の場合にも同様の説明が当て嵌まることが理解されよう。 The above description is mainly for the case where the air-fuel ratio is switched to the lean side, that is, the case of lean control, but it will be understood that the same explanation applies to the reverse case, that is, the case of rich control. .
[本実施形態の異常診断処理]
 次に、ECU20が実行する本実施形態の異常診断処理を図15A,15Bを参照して説明する。
[Abnormality diagnosis processing of this embodiment]
Next, the abnormality diagnosis process of the present embodiment executed by the ECU 20 will be described with reference to FIGS. 15A and 15B.
 ステップS101では、診断許可フラグがオンであるか否かが判断される。診断許可フラグとは、診断実行の前提条件が成立した場合にオンとなるフラグである。前提条件は次の各条件が成立したときに成立する。
(1)上流触媒11が活性化している。
(2)触媒前センサ17および触媒後センサ18が活性化している。
(3)エンジンが定常運転中である。
(4)現トリップ中で診断が未完了である。
In step S101, it is determined whether or not the diagnosis permission flag is on. The diagnosis permission flag is a flag that is turned on when a precondition for diagnosis execution is satisfied. The precondition is satisfied when the following conditions are satisfied.
(1) The upstream catalyst 11 is activated.
(2) The pre-catalyst sensor 17 and the post-catalyst sensor 18 are activated.
(3) The engine is in steady operation.
(4) The diagnosis is incomplete during the current trip.
 条件(1)は、上流触媒11の触媒温度Tcが所定の活性温度域に入っている場合に成立する。触媒温度Tcは、エンジン運転状態に基づきECU20により推定されるが、温度センサで直接検出してもよい。 Condition (1) is established when the catalyst temperature Tc of the upstream catalyst 11 is within a predetermined activation temperature range. The catalyst temperature Tc is estimated by the ECU 20 based on the engine operating state, but may be detected directly by a temperature sensor.
 条件(2)は、ECU20によって推定される触媒前センサ17および触媒後センサ18の検出素子の温度が所定の活性温度域に入っている場合に成立する。 Condition (2) is satisfied when the temperatures of the detection elements of the pre-catalyst sensor 17 and the post-catalyst sensor 18 estimated by the ECU 20 are within a predetermined activation temperature range.
 条件(3)は、クランク角センサ14の出力に基づいて計算されるエンジン回転数と、エアフローメータ5により検出される吸入空気量Gaの所定時間中の変動幅が所定値以内に収まっている場合に成立する。 Condition (3) is when the engine speed calculated based on the output of the crank angle sensor 14 and the fluctuation range of the intake air amount Ga detected by the air flow meter 5 within a predetermined time are within a predetermined value. Is established.
 条件(4)について、トリップとは、エンジンの1回の始動から停止までの期間をいう。本実施形態では1トリップ当たりに1回、診断を実行するようにしており、現トリップ中で未だ診断が1回も完了していない場合に(4)が成立する。 Regarding condition (4), the trip means the period from one start to stop of the engine. In this embodiment, the diagnosis is executed once per trip, and (4) is established when the diagnosis has not been completed once during the current trip.
 診断許可フラグがオンでない場合(オフの場合)、待機状態となる。他方、診断許可フラグがオンの場合には、ステップS102~S104において、アクティブ空燃比制御の初回の目標空燃比(A/Ft)が設定される。 If the diagnosis permission flag is not on (if it is off), it enters a standby state. On the other hand, when the diagnosis permission flag is on, the first target air-fuel ratio (A / Ft) of the active air-fuel ratio control is set in steps S102 to S104.
 ステップS102では、触媒後センサ出力Vrがストイキ相当値Vst以上であるか否かが判断される。ストイキ相当値Vstとは、図5に示すように、実線で示す単一特性線上におけるストイキ相当の触媒後センサ出力Vrの値をいう。 In step S102, it is determined whether the post-catalyst sensor output Vr is equal to or greater than the stoichiometric equivalent value Vst. As shown in FIG. 5, the stoichiometric equivalent value Vst refers to the value of the post-catalyst sensor output Vr corresponding to the stoichiometry on a single characteristic line indicated by a solid line.
 触媒後センサ出力Vrがストイキ相当値Vst以上である場合、現時点の触媒後のガスが概ねリッチであるとみなして、ステップS103に進み、初回の目標空燃比A/Ftがリーン空燃比に設定される。これによりリーン制御が実行される。 If the post-catalyst sensor output Vr is greater than or equal to the stoichiometric equivalent value Vst, the current post-catalyst gas is considered to be substantially rich, and the process proceeds to step S103 where the initial target air-fuel ratio A / Ft is set to the lean air-fuel ratio. The As a result, lean control is executed.
 他方、触媒後センサ出力Vrがストイキ相当値Vst以上でない場合、現時点の触媒後のガスが概ねリーンであるとみなして、ステップS104に進み、初回の目標空燃比A/Ftがリッチ空燃比に設定される。これによりリッチ制御が実行される。 On the other hand, if the post-catalyst sensor output Vr is not equal to or greater than the stoichiometric equivalent value Vst, it is assumed that the current post-catalyst gas is substantially lean, and the process proceeds to step S104 where the initial target air-fuel ratio A / Ft is set to the rich air-fuel ratio. Is done. Thus, rich control is executed.
 このように現時点の触媒後ガスの空燃比とは逆側の空燃比からアクティブ空燃比制御が開始される。但しこの初回のリーン制御またはリッチ制御は酸素量計測が行われない所謂捨て山である。こうした空の制御を行い、完全に酸素を吸蔵または放出させてから計測を開始することで、初期条件を一定とし、計測精度の向上が図れる。 Thus, the active air-fuel ratio control is started from the air-fuel ratio opposite to the air-fuel ratio of the current post-catalyst gas. However, the first lean control or rich control is a so-called deserted mountain where no oxygen amount measurement is performed. By performing such empty control and starting the measurement after completely storing or releasing oxygen, the initial condition can be made constant and the measurement accuracy can be improved.
 次にステップS105において、検出された吸入空気量Gaに基づきリーン判定値VLとリッチ判定値VRが算出される。この算出は前述したように所定のマップに従って行われる。吸入空気量Gaが多いほど、大きいリーン判定値VLが算出され、小さいリッチ判定値VRが算出される。 Next, in step S105, a lean determination value VL and a rich determination value VR are calculated based on the detected intake air amount Ga. This calculation is performed according to a predetermined map as described above. As the intake air amount Ga increases, a larger lean determination value VL is calculated, and a smaller rich determination value VR is calculated.
 次にステップS106において、検出された吸入空気量Gaに基づきディレー時間Dが算出される。この算出は図16に示すような所定のマップに従って行われ、吸入空気量Gaが少ないほど大きいディレー時間Dが算出される。 Next, in step S106, the delay time D is calculated based on the detected intake air amount Ga. This calculation is performed according to a predetermined map as shown in FIG. 16, and the larger the delay time D is, the smaller the intake air amount Ga is.
 次いでステップS107では、現時点の目標空燃比A/Ftがリッチ空燃比か否か、すなわちリッチ制御実行中であるか否かが判断される。目標空燃比A/Ftがリッチ空燃比の場合、ステップS121に進み、目標空燃比A/Ftがリッチ空燃比でない場合(リーン空燃比の場合)、ステップS108に進む。 Next, in step S107, it is determined whether the current target air-fuel ratio A / Ft is a rich air-fuel ratio, that is, whether rich control is being executed. If the target air-fuel ratio A / Ft is a rich air-fuel ratio, the process proceeds to step S121. If the target air-fuel ratio A / Ft is not a rich air-fuel ratio (in the case of a lean air-fuel ratio), the process proceeds to step S108.
 ステップS108では、触媒後センサ出力Vrがリーン判定値VL以下になったか否か、すなわち触媒後センサ出力Vrがリーン側に反転したか否かが判断される。触媒後センサ出力Vrがリーン判定値VL以下になっていなければ待機状態となり、触媒後センサ出力Vrがリーン判定値VL以下になったならばステップS109に進む。 In step S108, it is determined whether or not the post-catalyst sensor output Vr is equal to or less than the lean determination value VL, that is, whether or not the post-catalyst sensor output Vr is reversed to the lean side. If the after-catalyst sensor output Vr is not less than or equal to the lean determination value VL, the standby state is entered.
 ステップS109では、触媒後センサ出力Vrが最初にリーン判定値VL以下になった時点からの時間がカウントされると共に、この時間がディレー時間D以上になったか否かが判断される。ノーの場合待機状態となり、イエスの場合ステップS110に進む。 In step S109, the time from when the post-catalyst sensor output Vr first becomes equal to or less than the lean determination value VL is counted, and whether or not this time is equal to or greater than the delay time D is determined. If no, the process enters a standby state. If yes, the process proceeds to step S110.
 ステップS110では、目標空燃比A/Ftがリッチ空燃比に設定され、リッチ制御が開始される。 In step S110, the target air-fuel ratio A / Ft is set to the rich air-fuel ratio, and rich control is started.
 リッチ制御開始後、ステップS111において、触媒前センサ17によって検出される触媒前空燃比A/Ffがストイキ未満となっているか否かが判断される。なっていなければステップS110に戻って待機状態となり、なっていればステップS112に進んで酸素吸蔵容量OSC、ここでは放出酸素量OSCbが積算計測される。 After the rich control is started, it is determined in step S111 whether or not the pre-catalyst air-fuel ratio A / Ff detected by the pre-catalyst sensor 17 is less than the stoichiometric value. If not, the process returns to step S110 to enter a standby state, and if so, the process proceeds to step S112, and the oxygen storage capacity OSC, here, the released oxygen amount OSCb is integrated and measured.
 次いで、ステップS113において、リッチ側に変化中の触媒後センサ出力Vrがストイキリッチ判定値VBを上回ったか否か、すなわち触媒後空燃比がストイキからリッチ空燃比に向かって変化し始めたか否かが判断される。上回ってない場合にはステップS110に戻り、上回った場合にはステップS114に進んで放出酸素量OSCbの積算が終了される。 Next, in step S113, whether or not the post-catalyst sensor output Vr that is changing to the rich side exceeds the stoichiometric determination value VB, that is, whether or not the post-catalyst air-fuel ratio starts to change from stoichiometric to the rich air-fuel ratio. To be judged. If not, the process returns to step S110. If it exceeds, the process proceeds to step S114, and the integration of the released oxygen amount OSCb is terminated.
 そして、ステップS115において、吸蔵酸素量OSCaと放出酸素量OSCbの両方が計測済みであるか否かが判断される。計測済みでなければステップS121に進み、計測済みであればステップS116に進む。 In step S115, it is determined whether or not both the stored oxygen amount OSCa and the released oxygen amount OSCb have been measured. If not measured, the process proceeds to step S121, and if measured, the process proceeds to step S116.
 計測済みでない場合、ステップS121~S128において、ステップS108~S115とはリッチとリーンが逆の処理が行われる。 If the measurement has not been completed, in steps S121 to S128, processing in which rich and lean are reversed from steps S108 to S115 is performed.
 すなわち、ステップS121では、触媒後センサ出力Vrがリッチ判定値VR以上になったか否か、すなわち触媒後センサ出力Vrがリッチ側に反転したか否かが判断される。なっていなければ待機状態となり、触媒後センサ出力Vrがリッチ判定値VR以上になったならばステップS122に進む。 That is, in step S121, it is determined whether or not the post-catalyst sensor output Vr is greater than or equal to the rich determination value VR, that is, whether or not the post-catalyst sensor output Vr is reversed to the rich side. If not, the process enters a standby state. If the post-catalyst sensor output Vr is equal to or greater than the rich determination value VR, the process proceeds to step S122.
 ステップS122では、触媒後センサ出力Vrが最初にリッチ判定値VR以上になった時点からの時間がカウントされると共に、この時間がディレー時間D以上になったか否かが判断される。ノーの場合待機状態となり、イエスの場合ステップS123に進む。 In step S122, the time from when the post-catalyst sensor output Vr first becomes equal to or greater than the rich determination value VR is counted, and it is determined whether or not this time is equal to or greater than the delay time D. If no, the process enters a standby state. If yes, the process proceeds to step S123.
 ステップS123では、目標空燃比A/Ftがリーン空燃比に設定され、リーン制御が開始される。 In step S123, the target air-fuel ratio A / Ft is set to a lean air-fuel ratio, and lean control is started.
 リーン制御開始後、ステップS124において、触媒前センサ17によって検出される触媒前空燃比A/Ffがストイキより大きくなっているか否かが判断される。なっていなければステップS123に戻って待機状態となり、なっていればステップS125に進んで酸素吸蔵容量OSC、ここでは吸蔵酸素量OSCaが積算計測される。 After starting the lean control, in step S124, it is determined whether or not the pre-catalyst air-fuel ratio A / Ff detected by the pre-catalyst sensor 17 is larger than the stoichiometric value. If not, the process returns to step S123 to enter a standby state, and if so, the process proceeds to step S125, and the oxygen storage capacity OSC, here the stored oxygen amount OSCa, is integrated and measured.
 次いで、ステップS126において、リーン側に変化中の触媒後センサ出力Vrがストイキリーン判定値VAを下回ったか否か、すなわち触媒後空燃比がストイキからリーン空燃比に向かって変化し始めたか否かが判断される。下回ってない場合にはステップS123に戻り、下回った場合にはステップS127に進んで吸蔵酸素量OSCaの積算が終了される。 Next, in step S126, it is determined whether or not the post-catalyst sensor output Vr that is changing to the lean side is lower than the stoichiometric determination value VA, that is, whether or not the post-catalyst air-fuel ratio starts to change from stoichiometric to the lean air-fuel ratio. To be judged. If not, the process returns to step S123. If it is less, the process proceeds to step S127, and the accumulation of the stored oxygen amount OSCa is terminated.
 そして、ステップS127において、吸蔵酸素量OSCaと放出酸素量OSCbの両方が計測済みであるか否かが判断される。計測済みでなければステップS108に進み、計測済みであればステップS116に進む。 In step S127, it is determined whether or not both the stored oxygen amount OSCa and the released oxygen amount OSCb have been measured. If not measured, the process proceeds to step S108, and if measured, the process proceeds to step S116.
 ステップS116では、計測済みの吸蔵酸素量OSCaと放出酸素量OSCbに基づき酸素吸蔵容量OSCの値が算出される。すなわち、吸蔵酸素量OSCaと放出酸素量OSCbの和を2で割って単純平均化し、酸素吸蔵容量OSCの値が算出される(OSC=(OSCa+OSCb)/2)。 In step S116, the value of the oxygen storage capacity OSC is calculated based on the measured stored oxygen amount OSCa and the released oxygen amount OSCb. That is, the value of the oxygen storage capacity OSC is calculated by dividing the sum of the stored oxygen amount OSCa and the released oxygen amount OSCb by 2 and performing simple averaging (OSC = (OSCa + OSCb) / 2).
 次いでステップS117では、算出された酸素吸蔵容量OSCの値が所定の異常判定値αと比較される。OSC>αならステップS119において上流触媒11は正常と判定され、ステップS120に進む。OSC≦αならステップS118において上流触媒11は異常と判定され、ステップS120に進む。 Next, in step S117, the calculated value of the oxygen storage capacity OSC is compared with a predetermined abnormality determination value α. If OSC> α, the upstream catalyst 11 is determined to be normal in step S119, and the process proceeds to step S120. If OSC ≦ α, the upstream catalyst 11 is determined to be abnormal in step S118, and the process proceeds to step S120.
 ステップS120では診断許可フラグがオフされ、これにより診断処理が終了される。 In step S120, the diagnosis permission flag is turned off, thereby ending the diagnosis process.
 以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば内燃機関の用途や形式等は任意であり、自動車用以外であってもよいし、直噴式等であってもよい。上記の説明ではリーン側とリッチ側若しくは吸蔵側と放出側の一方のみしか説明していない箇所があるが、この一方に対する説明によって他方も理解されることが当業者にとって明らかであろう。 As mentioned above, although the embodiment of the present invention has been described in detail, various other embodiments of the present invention are conceivable. For example, the use and type of the internal combustion engine are arbitrary, and may be other than for automobiles, or may be a direct injection type or the like. In the above description, only one of the lean side and the rich side or the occlusion side and the discharge side has been described. However, it will be apparent to those skilled in the art that the description of one of the two can also be understood.
 図15A,15Bに示した診断処理の例では、簡単化のため、吸蔵酸素量OSCaと放出酸素量OSCbを1回ずつ計測して診断を行った。しかしながら当然に、精度向上のため、リーン制御とリッチ制御を交互に繰り返し実行し、吸蔵酸素量OSCaと放出酸素量OSCbを複数回ずつ計測してその平均値を算出し、当該平均値に基づいて診断を行ってもよい。また、より単純化して吸蔵酸素量OSCaと放出酸素量OSCbの一方の1回の計測値のみに基づいて診断を行ってもよい。 In the example of the diagnosis process shown in FIGS. 15A and 15B, the diagnosis was performed by measuring the stored oxygen amount OSCa and the released oxygen amount OSCb once for simplification. However, of course, in order to improve accuracy, the lean control and the rich control are alternately executed repeatedly, the stored oxygen amount OSCa and the released oxygen amount OSCb are measured a plurality of times, and the average value is calculated. Based on the average value, A diagnosis may be made. Further, the diagnosis may be performed based on only one measurement value of the stored oxygen amount OSCa and the released oxygen amount OSCb.
 本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The present invention includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

Claims (13)

  1.  内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
     触媒下流側の排気空燃比を検出する触媒後センサであって、ストイキを境に出力が急変し、排気空燃比がストイキに対しリッチ側からリーン側に変化するときとリーン側からリッチ側に変化するときとでストイキ付近の出力特性が異なるヒステリシス特性を有する触媒後センサと、
     前記触媒後センサの出力が所定の判定値に達したのと同期して触媒上流側の空燃比をリーン空燃比およびリッチ空燃比の一方から他方に切り替えるアクティブ空燃比制御を実行するアクティブ空燃比制御手段と、
     前記アクティブ空燃比制御の実行中に前記触媒が吸蔵または放出する酸素量を積算計測する計測手段と、
     前記計測手段により計測された前記酸素量に基づき前記触媒が正常か異常かを判定する判定手段と、
     を備え、
     前記計測手段は、触媒上流側の空燃比をリーン空燃比およびリッチ空燃比の一方とする制御中、前記触媒後センサの出力が、触媒下流側の排気空燃比がストイキから前記一方に向かって変化し始めたことを示すような値になった時に、前記酸素量の積算計測を終了する
     ことを特徴とする触媒異常診断装置。
    An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine,
    This is a post-catalyst sensor that detects the exhaust air / fuel ratio downstream of the catalyst, and the output changes suddenly at the stoichiometric boundary, and when the exhaust air / fuel ratio changes from the rich side to the lean side with respect to the stoichiometry, and changes from the lean side to the rich side A post-catalyst sensor having a hysteresis characteristic in which the output characteristic near the stoichiometry differs depending on
    Active air-fuel ratio control for executing active air-fuel ratio control for switching the air-fuel ratio upstream of the catalyst from one of the lean air-fuel ratio and the rich air-fuel ratio in synchronization with the output of the post-catalyst sensor reaching a predetermined determination value Means,
    Measuring means for integrating and measuring the amount of oxygen stored or released by the catalyst during execution of the active air-fuel ratio control;
    Determination means for determining whether the catalyst is normal or abnormal based on the amount of oxygen measured by the measurement means;
    With
    During the control in which the air-fuel ratio on the upstream side of the catalyst is set to one of the lean air-fuel ratio and the rich air-fuel ratio, the output of the post-catalyst sensor changes the exhaust air-fuel ratio on the downstream side of the catalyst from the stoichiometric direction toward the one. The catalyst abnormality diagnosis device is characterized in that the integrated measurement of the oxygen amount is terminated when the value reaches a value indicating that the operation has started.
  2.  前記判定値は、リーン空燃比からリッチ空燃比への切り替えタイミングを規定するリーン判定値と、リッチ空燃比からリーン空燃比への切り替えタイミングを規定するリッチ判定値とからなり、
     前記計測手段は、触媒上流側の空燃比をリーン空燃比とするリーン制御中、前記触媒後センサの出力が、前記リーン判定値に達する前で且つ所定のストイキリーン判定値からリーン側に向かって変化し始めた時に、前記酸素量の積算計測を終了する
     ことを特徴とする請求項1に記載の触媒異常診断装置。
    The determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
    During the lean control in which the air-fuel ratio on the upstream side of the catalyst is set to the lean air-fuel ratio, the measuring means is configured so that the output of the post-catalyst sensor reaches the lean side from the predetermined stoichiometric determination value before reaching the lean determination value. The catalyst abnormality diagnosis device according to claim 1, wherein when the change starts, the integrated measurement of the oxygen amount is terminated.
  3.  前記ストイキリーン判定値は、前記触媒後センサ出力がリッチ側からリーン側に変化するときのヒステリシス特性線上のストイキに対応する値である
     ことを特徴とする請求項2に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 2, wherein the stoichiometric determination value is a value corresponding to stoichiometry on a hysteresis characteristic line when the post-catalyst sensor output changes from a rich side to a lean side.
  4.  前記ストイキリーン判定値は、前記リッチ判定値よりリッチ側の値である
     ことを特徴とする請求項2または3に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 2 or 3, wherein the stoichiometric determination value is a value on a richer side than the rich determination value.
  5.  前記ストイキリーン判定値は、前記リッチ判定値に等しい値である
     ことを特徴とする請求項2または3に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 2, wherein the stoichiometric determination value is equal to the rich determination value.
  6.  前記ストイキリーン判定値は、前記リッチ判定値よりリーン側の値であって、且つ前記触媒後センサ出力の単一特性線上のストイキ相当値よりリッチ側の値である
     ことを特徴とする請求項2または3に記載の触媒異常診断装置。
    The stoichiometric determination value is a value that is leaner than the rich determination value, and is a value that is richer than a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output. Or the catalyst abnormality diagnosis device according to 3.
  7.  前記判定値は、リーン空燃比からリッチ空燃比への切り替えタイミングを規定するリーン判定値と、リッチ空燃比からリーン空燃比への切り替えタイミングを規定するリッチ判定値とからなり、
     前記計測手段は、触媒上流側の空燃比をリッチ空燃比とするリッチ制御中、前記触媒後センサの出力が、前記リッチ判定値に達する前で且つ所定のストイキリッチ判定値からリッチ側に向かって変化し始めた時に、前記酸素量の積算計測を終了する
     ことを特徴とする請求項1~6のいずれか一項に記載の触媒異常診断装置。
    The determination value includes a lean determination value that defines the switching timing from the lean air-fuel ratio to the rich air-fuel ratio, and a rich determination value that defines the switching timing from the rich air-fuel ratio to the lean air-fuel ratio,
    During the rich control in which the air-fuel ratio on the upstream side of the catalyst is set to the rich air-fuel ratio, the measurement means is configured to output the post-catalyst sensor before reaching the rich determination value and from the predetermined stoichiometric determination value toward the rich side. The catalyst abnormality diagnosis device according to any one of claims 1 to 6, wherein when the change starts, the integrated measurement of the oxygen amount is terminated.
  8.  前記ストイキリッチ判定値は、前記触媒後センサ出力がリーン側からリッチ側に変化するときのヒステリシス特性線上のストイキに対応する値である
     ことを特徴とする請求項7に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 7, wherein the stoichiometric rich determination value is a value corresponding to stoichiometry on a hysteresis characteristic line when the post-catalyst sensor output changes from a lean side to a rich side.
  9.  前記ストイキリッチ判定値は、前記リーン判定値よりリーン側の値である
     ことを特徴とする請求項7または8に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 7 or 8, wherein the stoichiometric determination value is a value on a lean side with respect to the lean determination value.
  10.  前記ストイキリッチ判定値は、前記リーン判定値に等しい値である
     ことを特徴とする請求項7または8に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to claim 7 or 8, wherein the stoichiometric determination value is equal to the lean determination value.
  11.  前記ストイキリッチ判定値は、前記リーン判定値よりリッチ側の値であって、且つ前記触媒後センサ出力の単一特性線上のストイキ相当値よりリーン側の値である
     ことを特徴とする請求項7または8に記載の触媒異常診断装置。
    The stoichiometric rich determination value is a value on the rich side of the lean determination value, and is a value on the lean side of a stoichiometric equivalent value on a single characteristic line of the post-catalyst sensor output. Or the catalyst abnormality diagnosis device according to 8.
  12.  前記アクティブ空燃比制御手段は、吸入空気量に応じて前記判定値を変更する
     ことを特徴とする請求項1~11のいずれか一項に記載の触媒異常診断装置。
    The catalyst abnormality diagnosis device according to any one of claims 1 to 11, wherein the active air-fuel ratio control means changes the determination value according to an intake air amount.
  13.  前記アクティブ空燃比制御手段は、前記触媒後センサの出力が前記判定値に達してから所定のディレー時間経過後に空燃比を切り替え、且つ前記ディレー時間を吸入空気量に応じて変更する
     ことを特徴とする請求項1~12のいずれか一項に記載の触媒異常診断装置。
    The active air-fuel ratio control means switches the air-fuel ratio after a predetermined delay time has elapsed since the output of the post-catalyst sensor reaches the determination value, and changes the delay time according to the intake air amount. The catalyst abnormality diagnosis device according to any one of claims 1 to 12.
PCT/JP2012/002754 2012-04-20 2012-04-20 Catalyst anomaly diagnosis device WO2013157048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002754 WO2013157048A1 (en) 2012-04-20 2012-04-20 Catalyst anomaly diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002754 WO2013157048A1 (en) 2012-04-20 2012-04-20 Catalyst anomaly diagnosis device

Publications (1)

Publication Number Publication Date
WO2013157048A1 true WO2013157048A1 (en) 2013-10-24

Family

ID=49383045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002754 WO2013157048A1 (en) 2012-04-20 2012-04-20 Catalyst anomaly diagnosis device

Country Status (1)

Country Link
WO (1) WO2013157048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222046A (en) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 Internal combustion engine control unit
US10066534B2 (en) 2015-08-31 2018-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225684A (en) * 2002-11-27 2004-08-12 Toyota Motor Corp Oxygen sensor abnormality detecting device
JP2005220901A (en) * 2004-01-06 2005-08-18 Toyota Motor Corp Catalyst deterioration state evaluation system for internal combustion engine
JP2005299587A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
JP2010185371A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Catalyst deterioration diagnostic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225684A (en) * 2002-11-27 2004-08-12 Toyota Motor Corp Oxygen sensor abnormality detecting device
JP2005220901A (en) * 2004-01-06 2005-08-18 Toyota Motor Corp Catalyst deterioration state evaluation system for internal combustion engine
JP2005299587A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
JP2010185371A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Catalyst deterioration diagnostic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222046A (en) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 Internal combustion engine control unit
US10066534B2 (en) 2015-08-31 2018-09-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Similar Documents

Publication Publication Date Title
JP5293885B2 (en) Catalyst abnormality diagnosis device
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP2010185371A (en) Catalyst deterioration diagnostic device
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP4844587B2 (en) Catalyst deterioration diagnosis device
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2010159701A (en) Catalyst deterioration diagnostic device
JP2009127597A (en) Catalyst degradation diagnostic device
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP2012219803A (en) Fuel property determining device and catalyst abnormality diagnostic device
WO2013157048A1 (en) Catalyst anomaly diagnosis device
JP2010255490A (en) Catalyst abnormality diagnostic device
JP2010168923A (en) Catalyst degradation diagnostic device
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP2011231626A (en) Device for diagnosis of catalyst abnormal condition
JP5780202B2 (en) Catalyst abnormality diagnosis device
JP5088632B2 (en) Catalyst deterioration diagnosis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP