JP2010181232A - Method of preparing test sample for triaxial test - Google Patents

Method of preparing test sample for triaxial test Download PDF

Info

Publication number
JP2010181232A
JP2010181232A JP2009023921A JP2009023921A JP2010181232A JP 2010181232 A JP2010181232 A JP 2010181232A JP 2009023921 A JP2009023921 A JP 2009023921A JP 2009023921 A JP2009023921 A JP 2009023921A JP 2010181232 A JP2010181232 A JP 2010181232A
Authority
JP
Japan
Prior art keywords
specimen
sample
negative pressure
mold
triaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009023921A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuura
正 松浦
Akihiro Okaichi
明大 岡市
Toshio Yasuhara
敏夫 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2009023921A priority Critical patent/JP2010181232A/en
Publication of JP2010181232A publication Critical patent/JP2010181232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing a test sample for a triaxial test wherein the test sample can be properly saturated with water without changing the particle size and a difference in a saturation rate of the test sample is not caused by a particle size difference of the test sample. <P>SOLUTION: In the method of preparing a test sample for a triaxial test, a sample X the particle size of which has been adjusted is divided and put into a storage part 7 of each of five deaeration containers 1, and air inside the storage part 7 is sucked with a vacuum pump P while an opening of the deaeration container 1 is covered with a lid 3, so that a negative pressure is applied to the storage part 7. After this, the sample X in the storage part 7 is transferred to the interior of a mold 20 for preparing a test sample wherein the inner wall is covered with a rubber membrane 21, and the sample X is piled up inside the mold from the lower side and compacted by a rammer 28 each time the filling of the sample X of one deaeration container 1 is finished. The step of transferring the sample X from the storage part 7 of the deaeration container 1 to the interior of the mold 20 and the step of compacting the sample X are alternately performed, and thus all the samples X contained in the storage parts 7 of the deaeration containers 1 are compacted. After a test sample Y prepared using the mold 20 is placed in a triaxial testing apparatus 30, deaerated water is supplied while applying a lower negative pressure by the vacuum pump P. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、土の強度を測定する三軸試験に使用する供試体の作製方法に関するものである。   The present invention relates to a method for producing a specimen used for a triaxial test for measuring the strength of soil.

三軸試験に使用する供試体は、試験条件により、水を供給して飽和させる場合と、水で飽和させない場合とがある。   Depending on the test conditions, the specimen used for the triaxial test may be saturated by supplying water or may not be saturated by water.

水で飽和させた供試体の作製方法について、図13〜図17を参照して以下に説明する。なお、図13に上記供試体の作製方法をフロー図で示した。   A method for producing a specimen saturated with water will be described below with reference to FIGS. FIG. 13 is a flowchart showing the method for manufacturing the specimen.

まず、図14に示すように、供試体を作製するための円筒状をなす型枠120を板状部材126の型枠設置部124に固定する。この固定は、型枠設置部124に形成されている凹所124aに型枠120を嵌合することにより行う。また、型枠120の内壁は、型枠120を型枠設置部124に固定後、ゴム製メンブレン121で覆う。   First, as shown in FIG. 14, a cylindrical mold 120 for producing a specimen is fixed to a mold installation portion 124 of a plate-like member 126. This fixing is performed by fitting the mold 120 into a recess 124a formed in the mold setting portion 124. The inner wall of the mold 120 is covered with a rubber membrane 121 after the mold 120 is fixed to the mold installation portion 124.

次に、図14に示すように、型枠120の内部に水を張る。この後、粒度を調整した試料Q(以下、散点模様で示す)を、柄杓127を用いて型枠120の内部に入れ、型枠120の内部の下部側(図面下側)から層状に積み重ねる(図13のS1工程およびS2工程)。なお、「粒度を調整した試料Q」とは、試料Qを構成する大小様々な粒子の構成比率(粒度分布)を、三軸試験の試験条件に適した比率(分布)にすることを指す。   Next, as shown in FIG. 14, water is applied to the inside of the mold 120. After that, the sample Q with adjusted particle size (hereinafter referred to as a dotted pattern) is placed inside the mold 120 using the handle 127 and stacked in layers from the lower side (lower side of the drawing) inside the mold 120. (Step S1 and step S2 in FIG. 13). Note that “sample Q with adjusted particle size” means that the composition ratio (particle size distribution) of various large and small particles constituting sample Q is set to a ratio (distribution) suitable for the test conditions of the triaxial test.

次に、図15に示すように、上部側(図面上側)から型枠120の内部にランマー128(突き固め用の機械)を挿入する。このランマー128を矢印Dで示す鉛直方向に何度も動かして試料Qを上部側から何度も突くことにより、試料Qの突き固めを行う(図13のS3工程)。なお、突き固め時に試料Qに加わる圧力を均一にするために、型枠120の内部に移した試料は、移した都度突き固める。つまり、供試体の作製に使用する試料Qの全てを型枠120の内部に移してからこの試料Qを突き固めるのではなく、一定量の試料Qを型枠120の内部に移す毎にこの試料Qの突き固めを行う。上記の工程により、図16に示すように、未飽和の供試体R(以下、散点模様で示す)を作製することができる。なお、供試体Rにおいて、突き固めを行った段階の境界線を点線で示し、後の図17および図18においても同様とする。   Next, as shown in FIG. 15, a rammer 128 (a tamping machine) is inserted into the mold 120 from the upper side (upper side in the drawing). The sample Q is rammed by moving the rammer 128 many times in the vertical direction indicated by the arrow D and pushing the sample Q many times from the upper side (step S3 in FIG. 13). In addition, in order to make the pressure applied to the sample Q uniform at the time of tamping, the sample moved to the inside of the mold 120 is tamped every time it is moved. That is, every time a certain amount of sample Q is moved into the mold 120, this sample Q is not hardened after all of the sample Q used to manufacture the specimen is moved into the mold 120. Q is tamped. By the above steps, as shown in FIG. 16, an unsaturated specimen R (hereinafter, indicated by a dotted pattern) can be produced. In the specimen R, the boundary line at the stage of tamping is indicated by a dotted line, and the same applies to FIGS. 17 and 18 later.

図16に示す工程を経て作製した供試体R(未飽和状態)は、図17に示すように、三軸試験装置130に設置する(図13のS4工程)。この三軸試験装置130は、上盤141と、台座142と、ペデスタル133と、キャップ134と、支柱132とで主要部が構成されている。ペデスタル133は台座142に固定されており、キャップ134は、上盤141の中心部を貫通して載荷装置(図示省略)に連結されている。   The specimen R (unsaturated state) produced through the process shown in FIG. 16 is installed in the triaxial testing apparatus 130 as shown in FIG. 17 (step S4 in FIG. 13). The three-axis test apparatus 130 includes an upper panel 141, a pedestal 142, a pedestal 133, a cap 134, and a support column 132, and main parts thereof are configured. The pedestal 133 is fixed to the pedestal 142, and the cap 134 passes through the center portion of the upper panel 141 and is connected to a loading device (not shown).

台座142からペデスタル133に亘って脱気水供給孔135および二酸化炭素(CO2)供給孔136が形成され、上盤142には二つの吸引孔137、138が形成されている。また、キャップ134には、吸引孔139が形成されている。この吸引孔139と上盤141の吸引孔138は連結部材140(チューブなど)で連通されている。 A deaerated water supply hole 135 and a carbon dioxide (CO 2 ) supply hole 136 are formed from the pedestal 142 to the pedestal 133, and two suction holes 137 and 138 are formed in the upper panel 142. Further, a suction hole 139 is formed in the cap 134. The suction hole 139 and the suction hole 138 of the upper board 141 are communicated with each other by a connecting member 140 (tube or the like).

上述したように、図16に示す工程で完成した供試体Rは、三軸試験装置130へ設置する。この設置は、供試体Rを型枠120ごと三軸試験装置130に移動させてペデスタル133に固定した後、型枠120を取り外すことにより行う。なお、供試体Rをペデスタル133に固定した後、上盤141と台座142との間の空間は、鋼製の円筒カプセル131で密封する。   As described above, the specimen R completed in the process shown in FIG. 16 is installed in the triaxial testing apparatus 130. This installation is performed by removing the mold 120 after moving the specimen R together with the mold 120 to the triaxial testing apparatus 130 and fixing it to the pedestal 133. After the specimen R is fixed to the pedestal 133, the space between the upper board 141 and the pedestal 142 is sealed with a steel cylindrical capsule 131.

上記のようにして三軸試験装置130に設置した供試体Rには、台座142の二酸化炭素供給孔136から二酸化炭素を供給して、供試体Rの内部の空隙に存在する空気を二酸化炭素に置換する(図13のS5工程)。次いで、台座142の脱気水供給孔135から脱気水を供給して、供試体内部の二酸化炭素を脱気水に溶解させることで供試体Rを水で飽和させる(特許文献1参照)。   Carbon dioxide is supplied from the carbon dioxide supply hole 136 of the pedestal 142 to the specimen R installed in the triaxial test apparatus 130 as described above, and the air present in the void inside the specimen R is converted into carbon dioxide. Replace (step S5 in FIG. 13). Next, the deaerated water is supplied from the deaerated water supply hole 135 of the pedestal 142, and the specimen R is saturated with water by dissolving carbon dioxide inside the specimen in the deaerated water (see Patent Document 1).

上記工程は、常圧下で行う場合、供試体Rの内部の空隙に脱気水が浸入しにくく、この結果、供試体Rを脱気水で飽和させるのに必要な時間が長くなることが懸念される。そのため、上記工程は、特許文献2に開示された供試体の作製方法のように、真空ポンプPを用いて、吸引孔137、138、139から供試体Rの内部およびセル内部(円筒カバー131で密封された空間)の空気を吸引して、供試体Rに負圧(吸引力)を作用させながら行う(図13のS5工程)。これにより、脱気水による供試体Rの飽和速度(飽和が進行する速さ)を向上させる。   When the above step is performed under normal pressure, deaerated water is less likely to enter the voids inside the specimen R, and as a result, there is a concern that the time required to saturate the specimen R with the deaerated water may increase. Is done. Therefore, the above steps are performed by using the vacuum pump P from the suction holes 137, 138, and 139 to the inside of the specimen R and the inside of the cell (with the cylindrical cover 131), as in the specimen manufacturing method disclosed in Patent Document 2. The process is performed while sucking air in a sealed space and applying a negative pressure (suction force) to the specimen R (step S5 in FIG. 13). Thereby, the saturation speed (speed at which saturation proceeds) of the specimen R with deaerated water is improved.

上記の工程において、連結部材140で連結された吸引孔138、139を介して供試体Rの内部の空気を吸引する際の負圧は、例えば−90kN/m2とする。また、吸引孔137を介してセル内部の空気を吸引する際の負圧は、例えば−70kN/m2とする。以上のようにして作製した供試体Rを用いて三軸試験を行う(図13のS6工程)。なお、負圧は上述のようにマイナス値で示され、マイナス値の絶対値が大きいほど、負圧が高いことを意味する。 In the above process, the negative pressure when the air inside the specimen R is sucked through the suction holes 138 and 139 connected by the connecting member 140 is, for example, −90 kN / m 2 . Further, the negative pressure when the air inside the cell is sucked through the suction hole 137 is set to, for example, −70 kN / m 2 . A triaxial test is performed using the specimen R produced as described above (step S6 in FIG. 13). The negative pressure is indicated by a negative value as described above, and the larger the absolute value of the negative value, the higher the negative pressure.

特開2006− 8455号公報JP 2006-8455 A 特開2003−121433号公報JP 2003-121433 A

上記した従来の三軸試験用供試体の作製方法では、供試体Rに真空ポンプPで高い負圧を作用させながら脱気水を供給して飽和させる。そのため、上記した負圧の作用時に、供試体Rを構成する細かい粒子が供試体Rの外部へ吸引されて、供試体Rの粒度が変化してしまうおそれがある。これは、供試体Rの強度の低下に繋がる。   In the above-described conventional method for producing a specimen for a triaxial test, deaerated water is supplied to the specimen R with a vacuum pump P while applying a high negative pressure to saturate the specimen R. Therefore, when the negative pressure described above is applied, fine particles constituting the specimen R may be sucked out of the specimen R, and the particle size of the specimen R may change. This leads to a decrease in strength of the specimen R.

上記課題を解決する手段としては、図18に示すように、吸引孔137からセル内部の空気を吸引せず、吸引孔138、139から−20kN/m2の低い負圧で供試体Rの内部の空隙に存在する空気を吸引する方法が考えられる。 As a means for solving the above-mentioned problem, as shown in FIG. 18, the air inside the cell is not sucked from the suction hole 137, and the inside of the specimen R is drawn at a negative pressure of −20 kN / m 2 from the suction holes 138 and 139. A method of sucking air existing in the air gap is conceivable.

しかし、この方法であると、吸引する際の負圧が低いため、供試体Rを脱気水で飽和させるのに必要な時間が長くなるという問題がある。   However, this method has a problem in that the time required to saturate the specimen R with deaerated water becomes long because the negative pressure during suction is low.

また、前記した従来の技術では、供試体Rに大きい粒子が多く含まれている場合、供試体Rの内部の空隙が大きくなって空隙に存在する空気が吸引されやすくなるため、供試体Rは飽和されやすい。しかし、供試体Rに小さい粒子が多く含まれている場合、供試体Rの内部の空隙が小さくなって空隙に存在する空気が吸引されにくくなるため、供試体Rは飽和されにくい。つまり、前記した従来の技術であると、供試体Rの粒度の違いにより、供試体Rの飽和速度に差が生じやすくなる。   Further, in the above-described conventional technique, when the specimen R contains a large number of large particles, the void inside the specimen R becomes large and the air present in the gap is easily sucked. Saturated easily. However, when the specimen R contains a large number of small particles, the void inside the specimen R becomes small and the air present in the gap becomes difficult to be sucked, so that the specimen R is hardly saturated. That is, in the above-described conventional technique, a difference in the saturation rate of the specimen R is likely to occur due to the difference in the particle size of the specimen R.

本発明は、上記の事情に鑑みてなされたものであり、粒度を変化させることなく供試体を水で確実に飽和させることができると共に、供試体の粒度差により供試体の飽和速度に差が生じることがない三軸試験用供試体を作製する方法を提供するものである。   The present invention has been made in view of the above circumstances, and can reliably saturate the specimen with water without changing the particle size, and there is a difference in the saturation rate of the specimen due to the difference in the grain size of the specimen. A method for producing a specimen for triaxial testing that does not occur is provided.

上記の課題を解決するための本発明は、土の強度を測定する三軸試験に使用する供試体を作製する方法であって、粒度を調整した試料を複数の脱気用容器に設けた収容部に分けて入れると共に、この試料を水に浸した状態にする工程と、各々の前記収容部に負圧を作用させる工程と、各々の前記収容部から供試体作製用の型枠の内部に前記試料を順次移して前記型枠の内部に積み重ねる工程と、前記型枠の内部に移した試料を突き固める工程とから成ることを特徴とする。ここで、「脱気用容器の収容部に負圧を作用させる」とは、脱気用容器の収容部に存在する空気を真空ポンプ(脱気用ポンプ)などで吸引して、吸引力を作用させることを指す。   The present invention for solving the above-mentioned problems is a method for producing a specimen used for a triaxial test for measuring the strength of soil, in which a plurality of degassing containers are provided with samples having adjusted particle sizes. The step of placing the sample in water, the step of applying a negative pressure to each of the storage units, and the inside of the mold for preparing a specimen from each of the storage units The method includes a step of sequentially transferring the samples and stacking them inside the mold, and a step of solidifying the samples transferred to the inside of the mold. Here, “acting a negative pressure on the housing part of the degassing container” means that the air present in the housing part of the degassing container is sucked with a vacuum pump (degassing pump) or the like, and the suction force is increased. Refers to acting.

この場合、供試体を作製するための試料を、脱気用容器を用いて水で飽和させるため、突き固めて作製した供試体は、水で飽和された状態になる。そのため、突き固めにより作製した供試体は、三軸試験装置に設置した後、従来のように、負圧を作用させながら脱気水を加えて飽和させる工程が不要になる。そのため、この従来の方法を適用することにより、供試体の粒度が変化することがない。なお、複数の脱気用容器の収容部に分けて入れた試料は、水で浸した状態にするため、脱気用容器の収容部に負圧を作用させた際にも、水圧の作用で、負圧の影響を受けにくい。そのため、試料を構成する細かい粒子が収容部に存在する空気と共に収容部の外部へ吸引されて、試料の粒度が変化することがない。   In this case, since the sample for preparing the specimen is saturated with water using a degassing container, the specimen prepared by tamping is in a state saturated with water. Therefore, after the specimen prepared by tamping is installed in the triaxial test apparatus, a process of adding deaerated water and saturating it while applying a negative pressure as in the prior art becomes unnecessary. Therefore, the particle size of the specimen is not changed by applying this conventional method. In addition, in order to make the sample put separately in the accommodating parts of the plurality of degassing containers to be immersed in water, even when negative pressure is applied to the accommodating part of the degassing container, Insensitive to negative pressure. Therefore, the fine particles constituting the sample are not sucked out of the storage unit together with the air present in the storage unit, and the particle size of the sample does not change.

前記試料を型枠の内部に移した試料は、移した都度突き固めるのが望ましい。これは、複数の脱気用容器の収容部に入れた試料を全て枠型に移した後に試料の突き固めを行うと、突き固め時に試料に加わる圧力が、積み重ねた試料の下層側まで行き届かず、試料を均一に突き固めするのが困難になるためである。   It is desirable that the sample obtained by transferring the sample to the inside of the mold is solidified every time it is transferred. This is because if the sample is rammed after all the samples placed in the container of multiple degassing containers are transferred to the frame mold, the pressure applied to the sample at the time of tamping reaches the lower layer side of the stacked samples. This is because it becomes difficult to uniformly squeeze the sample.

前記脱気用容器の収容部に作用させる負圧は、−90kN/m2〜−100kN/m2とするのが望ましい。ここで、負圧は上述のようにマイナス値で示され、マイナス値の絶対値が大きいほど、負圧が高いことを意味し、以下も同様とする。負圧が−90kN/m2よりも低いと、負圧が低すぎて、試料を脱気水で飽和させるのに必要な時間が長くなるおそれがある。一方、負圧が−100kN/m2よりも高いと、負圧が高すぎて、脱気用容器の収容部に存在する水が、収容部に存在する空気と共に収容部の外部へ吸引されて、試料を水で飽和させるのが困難になるおそれがある。 Negative pressure to act on the accommodating portion of the degassing vessel, it is desirable to -90kN / m 2 ~-100kN / m 2. Here, the negative pressure is indicated by a negative value as described above. The larger the absolute value of the negative value, the higher the negative pressure, and the same shall apply hereinafter. If the negative pressure is lower than −90 kN / m 2 , the negative pressure is too low, and the time required for saturating the sample with deaerated water may increase. On the other hand, if the negative pressure is higher than −100 kN / m 2 , the negative pressure is too high, and the water present in the accommodating portion of the degassing container is sucked out of the accommodating portion together with the air present in the accommodating portion. The sample may become difficult to saturate with water.

前記脱気用容器の収容部に入れる試料の層厚は、試料の最大粒径の2倍〜2.5倍とするのが望ましい。ここで、「試料の最大粒径」とは、試料を構成する粒子のうち最も大きい粒子の直径を指す。脱気用容器の収容部に入れる試料の層厚が試料の最大粒径の2.0倍よりも小さいと、層厚が薄すぎて、試料を水に浸した状態にするのが困難になるおそれがある。一方、脱気用容器の収容部に入れる試料の層厚が試料の最大粒径の2.5倍よりも大きいと、層厚が厚すぎて、試料全体を飽和させるのに必要な時間が長くなるおそれがある。   The layer thickness of the sample placed in the container of the deaeration container is preferably 2 to 2.5 times the maximum particle size of the sample. Here, the “maximum particle diameter of the sample” refers to the diameter of the largest particle among the particles constituting the sample. If the layer thickness of the sample placed in the container of the degassing container is smaller than 2.0 times the maximum particle size of the sample, the layer thickness is too thin and it is difficult to make the sample immersed in water. There is a fear. On the other hand, if the layer thickness of the sample placed in the container of the degassing container is larger than 2.5 times the maximum particle size of the sample, the layer thickness is too thick and the time required to saturate the entire sample is long. There is a risk.

前記型枠は、円筒状とし、前記脱気用容器の収容部に入れる試料の分量は、この試料により作製する前記供試体の直径が試料の最大粒径の4倍〜5倍となるようにするのが望ましい。試料により作製する供試体の直径が試料の最大粒径の4倍よりも小さい場合、供試体が小さすぎて、三軸試験時に供試体に鉛直荷重を加えた際、供試体が型崩れすることが懸念される。一方、試料により作製する供試体の直径が試料の最大粒径の5倍よりも大きい場合、供試体が大きくなりすぎて、三軸試験時に供試体に鉛直荷重を加えた際、供試体全体に圧力を均等に加えるのが困難になることが懸念される。   The mold is cylindrical, and the amount of the sample placed in the container of the degassing container is such that the diameter of the specimen prepared from this sample is 4 to 5 times the maximum particle size of the sample. It is desirable to do. If the diameter of the specimen made from the sample is smaller than 4 times the maximum particle size of the specimen, the specimen will be too small, and the specimen will lose its shape when a vertical load is applied to the specimen during the triaxial test. Is concerned. On the other hand, when the diameter of the specimen prepared from the sample is larger than 5 times the maximum particle diameter of the specimen, the specimen becomes too large, and when a vertical load is applied to the specimen during the triaxial test, There is concern that it will be difficult to apply pressure evenly.

これまでに述べた発明において、前記負圧は、複数の前記脱気用容器の収容部に同時に作用させるのが望ましい。この場合、複数の脱気用容器の収容部に入れた試料を同時に飽和させることができるため、試料を飽和させるのに必要な時間を削減することができる。   In the inventions described so far, it is desirable that the negative pressure is simultaneously applied to the accommodating portions of the plurality of degassing containers. In this case, since the sample put in the accommodating part of the several deaeration container can be saturated simultaneously, the time required to saturate a sample can be reduced.

前記突き固めにより作製した前記供試体は、三軸試験装置に設置した後、脱気水を供給するのが望ましい。この場合、供試体Yを確実に飽和させることができるため、三軸試験の測定値の信頼性を向上させることができる。   It is desirable to supply deaerated water after the specimen prepared by tamping is installed in a triaxial test apparatus. In this case, since the specimen Y can be reliably saturated, the reliability of the measured value of the triaxial test can be improved.

上記した本発明において、脱気水の供給は、前記供試体に二酸化炭素を供給した後に行うのが望ましい。この場合、二酸化炭素の供給後に供試体に供給される脱気水は、二酸化炭素と容易に置換するため、三軸試験装置に設置した供試体を脱気水で飽和させやすくなる。   In the present invention described above, it is desirable that the deaerated water is supplied after carbon dioxide is supplied to the specimen. In this case, the deaerated water supplied to the specimen after the supply of carbon dioxide is easily replaced with carbon dioxide, so that the specimen installed in the triaxial test apparatus is easily saturated with the deaerated water.

さらに、三軸試験装置に設置した供試体に脱気水を供給する前記した本発明において、脱気水の供給は、供試体に負圧を作用させた状態で行うのが望ましい。ここで、「供試体に負圧を作用させる」とは、供試体内部に残存する空気を真空ポンプなどで吸引して、供試体に吸引力を作用させることを指す。   Furthermore, in the above-described present invention in which deaerated water is supplied to the specimen installed in the triaxial test apparatus, the deaerated water is preferably supplied in a state where a negative pressure is applied to the specimen. Here, “to apply a negative pressure to the specimen” refers to sucking air remaining inside the specimen with a vacuum pump or the like and applying a suction force to the specimen.

この場合、供試体内部の空隙に万が一空気が残存していても、この空気は、供試体外部へ吸引される。そのため、供試体内部の空隙に残存した空気と水が置換されやすくなる。この結果、三軸試験装置に設置した供試体を脱気水で飽和させるのが極めて容易になる。   In this case, even if air remains in the gap inside the specimen, this air is sucked out of the specimen. Therefore, the air and water remaining in the voids inside the specimen are easily replaced. As a result, it becomes extremely easy to saturate the specimen installed in the triaxial test apparatus with deaerated water.

上記発明において、前記負圧は、供試体に断続的に作用させるのが望ましい。この場合、供試体を構成する細かい粒子が、負圧作用時に、供試体内部の空隙に残存する空気や供試体に供給される脱気水と共に供試体外部へ吸引されにくくなるため、供試体の粒度が変化するのを防止することができる。これにより、供試体の強度を確保することができる。   In the above invention, the negative pressure is desirably applied intermittently to the specimen. In this case, the fine particles constituting the specimen are less likely to be sucked out of the specimen together with the air remaining in the voids inside the specimen and the deaerated water supplied to the specimen during the negative pressure action. It is possible to prevent the particle size from changing. Thereby, the intensity | strength of a test body is securable.

さらに、前記した本発明において、供試体に作用させる負圧は、−20kN/m2〜−30kN/m2とするのが望ましい。負圧が−20kN/m2よりも低いと、負圧が低すぎて、脱気水で供試体を飽和させるのに必要な時間が長くなるおそれがある。一方、負圧が−30kN/m2よりも高いと、負圧が高すぎて、供試体を構成する細かい粒子が、供試体内部の空隙に残存する空気や供試体に供給される脱気水と共に供試体外部へ吸引されやすくなるため、供試体の粒度を変化させてしまうおそれがある。これは、供試体の強度の低下に繋がる。 Further, in the present invention described above, the negative pressure to be applied to the specimen, it is desirable to -20kN / m 2 ~-30kN / m 2. If the negative pressure is lower than −20 kN / m 2 , the negative pressure is too low and the time required for saturating the specimen with degassed water may be increased. On the other hand, if the negative pressure is higher than −30 kN / m 2 , the negative pressure is too high, and fine particles constituting the specimen are left in the voids inside the specimen and deaerated water supplied to the specimen. At the same time, since it is easily sucked to the outside of the specimen, there is a possibility that the particle size of the specimen is changed. This leads to a decrease in the strength of the specimen.

本発明に係る三軸試験用供試体の作製方法は、供試体を作製するための試料を、脱気用容器を用いて水で飽和させるため、試料を突き固めて作製する供試体は、水で飽和された状態になる。そのため、本発明により作製した供試体は、三軸試験装置に設置後、従来のように、供試体に負圧を作用させながら脱気水を供給して飽和させる工程が不要になる。このため、上述した従来の方法により、供試体を構成する細かい粒子が、供試体内部の空隙に存在する空気や供試体に供給される脱気水と共に供試体外部へ吸引されて、供試体の粒度が変化する問題が生じることがない。この結果、供試体の強度を確保することができる。   In the method for producing a specimen for triaxial testing according to the present invention, a sample for producing a specimen is saturated with water using a degassing container. Will be saturated. Therefore, the specimen prepared according to the present invention does not require a process of supplying deaerated water and saturating the specimen while applying a negative pressure to the specimen after being installed in the triaxial testing apparatus. For this reason, by the conventional method described above, the fine particles constituting the specimen are sucked out of the specimen together with the air present in the voids inside the specimen and the deaerated water supplied to the specimen, There is no problem of changing the particle size. As a result, the strength of the specimen can be ensured.

このように、本発明では、三軸試験装置に設置する供試体を飽和させる必要がないため、供試体の粒度の違いにより、供試体の飽和速度に差が生じるという従来の問題が生じることがない。また、本発明では、試料を水で浸した状態で飽和させるため、試料の粒度の違いによる飽和速度の差が生じにくい。   Thus, in the present invention, since it is not necessary to saturate the specimen installed in the triaxial test apparatus, the conventional problem that a difference in the saturation speed of the specimen occurs due to the difference in the grain size of the specimen. Absent. Further, in the present invention, since the sample is saturated in a state immersed in water, a difference in saturation speed due to a difference in the particle size of the sample is unlikely to occur.

さらに、脱気用容器に分けて入れた試料は、水で浸した状態にするため、脱気用容器の収容部に負圧を作用させた際、試料から細かい粒子が空気と共に吸引されて、試料の粒度が変化することがない。   Furthermore, the sample put separately in the degassing container is immersed in water, so that when negative pressure is applied to the container of the degassing container, fine particles are sucked together with air, The particle size of the sample does not change.

なお、脱気用容器の収容部に入れた試料は、水で浸した状態にするため、収容部に負圧を作用させた際にも、水圧の作用により、負圧の影響を受けにくい。そのため、収容部に作用させる負圧は高め(−100kN/m2程度)に設定することができる。この結果、試料を飽和させるのに必要な時間を削減することができる。 In addition, since the sample put in the storage part of the deaeration container is immersed in water, even when a negative pressure is applied to the storage part, the sample is not easily affected by the negative pressure due to the action of the water pressure. Therefore, the negative pressure applied to the housing portion can be set high (about −100 kN / m 2 ). As a result, the time required to saturate the sample can be reduced.

本発明の実施形態を示すもので、三軸試験用供試体の作製方法を示すフロー図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, showing an embodiment of the present invention, is a flow diagram illustrating a method for producing a triaxial test specimen. 図1の示す作製方法に使用する脱気用容器を示す斜視図である。It is a perspective view which shows the container for deaeration used for the preparation method shown in FIG. 図2の本体部の平面図である。It is a top view of the main-body part of FIG. 脱気用容器の収容部に試料を入れる工程を説明する断面図である。It is sectional drawing explaining the process of putting a sample in the accommodating part of the container for deaeration. 図4に示す本体部の開口部を蓋体で覆った状態を示す断面図である。It is sectional drawing which shows the state which covered the opening part of the main-body part shown in FIG. 4 with the cover body. 図5に示す脱気用容器を真空ポンプに取り付けた連結部材に並列接続して、その脱気用容器の収容部に負圧を作用させる工程を説明する断面図である。FIG. 6 is a cross-sectional view for explaining a process of connecting the degassing container shown in FIG. 5 in parallel to a connecting member attached to a vacuum pump and applying a negative pressure to the housing part of the degassing container. 供試体を作製する型枠を固定した状態を説明する斜視図である。It is a perspective view explaining the state which fixed the formwork which produces a specimen. 図7の固定方法を説明する斜視図である。It is a perspective view explaining the fixing method of FIG. 供試体を作製する型枠の内部に脱気用容器の収容部で飽和させた試料を移す工程を説明する断面図である。It is sectional drawing explaining the process of transferring the sample saturated by the accommodating part of the container for deaeration to the inside of the formwork which produces a test body. 供試体を作製する型枠の内部に移した試料を突き固めする工程を説明する断面図である。It is sectional drawing explaining the process of tamping the sample moved to the inside of the mold which produces a test body. 図10の工程により、型枠の内部に供試体を作製した状態を示す断面図である。It is sectional drawing which shows the state which produced the test body inside the mold by the process of FIG. 図11で作製した供試体を三軸試験装置に設置して、さらに脱気水で飽和させる工程を説明する断面図である。It is sectional drawing explaining the process which installs the test body produced in FIG. 11 in a triaxial test apparatus, and is further saturated with deaeration water. 従来の三軸試験用供試体の作製方法を示すフロー図である。It is a flowchart which shows the preparation methods of the conventional specimen for a triaxial test. 図13に示す従来の供試体の作製方法において、供試体を作製する型枠に試料を入れる工程を説明する断面図である。FIG. 14 is a cross-sectional view illustrating a process of putting a sample in a mold for producing a specimen in the conventional specimen production method shown in FIG. 13. 図14に示す工程の後、試料を突き固めする工程を説明する断面図である。FIG. 15 is a cross-sectional view illustrating a step of tamping the sample after the step illustrated in FIG. 14. 図15の工程により、型枠の内部に供試体を作製した状態を示す断面図である。It is sectional drawing which shows the state which produced the test body inside the mold by the process of FIG. 図16で作製した供試体を三軸試験装置に設置して、供試体に高負圧を作用させながら脱気水を供給して供試体を飽和させる工程を説明する断面図である。FIG. 17 is a cross-sectional view for explaining a process in which the specimen prepared in FIG. 16 is installed in a triaxial test apparatus and deaerated water is supplied while high negative pressure is applied to the specimen to saturate the specimen. 図16で作製した供試体を三軸試験装置に設置して、供試体に低負圧を作用させながら脱気水を供給して供試体を飽和させる工程を説明する断面図である。FIG. 17 is a cross-sectional view for explaining a step of saturating a specimen by installing the specimen prepared in FIG. 16 in a triaxial testing apparatus and supplying deaerated water while applying a low negative pressure to the specimen.

以下に本発明の実施の形態について、添付の図面(図1〜図12)を参照して説明する。なお、本実施形態に係る三軸試験用供試体の作製方法を図1にフロー図で示した。   Embodiments of the present invention will be described below with reference to the accompanying drawings (FIGS. 1 to 12). In addition, the manufacturing method of the specimen for a triaxial test which concerns on this embodiment was shown with the flowchart in FIG.

まず、粒度を調整した試料(以下、試料Xとする)と、5つの図2に示す脱気用容器1を用意する(図1の工程S1)。   First, a sample with adjusted particle size (hereinafter referred to as sample X) and five degassing containers 1 shown in FIG. 2 are prepared (step S1 in FIG. 1).

脱気用容器1は、図2に示すように、上端に開口部を有する有底円筒状の本体部2と、底板5と、蓋体3とを主要部とする。本体部2は、内部に凹所4を有し、この凹所4には、試料Xを収容する収容部7として、上端に開口部を有する有底円筒状のプラスチック製バケツを本体部2から取り外し可能に嵌合する。収容部7の底面7aと本体部2の凹所4の底面4aは接触させた状態とする。   As shown in FIG. 2, the deaeration container 1 includes a bottomed cylindrical main body 2 having an opening at the upper end, a bottom plate 5, and a lid 3 as main parts. The main body 2 has a recess 4 therein, and a cylindrical plastic bucket with a bottom having an opening at the upper end is provided from the main body 2 as an accommodating portion 7 for accommodating the sample X. Mates removably. The bottom surface 7a of the housing part 7 and the bottom surface 4a of the recess 4 of the main body part 2 are in contact with each other.

また、本体部2は、開口部を蓋体3で覆い、反開口部側の端部を底板5に固定する。底板5には本体部2を移動させるための移動用キャスタ6を取り付ける。蓋体3の中心部には、底板5側とは反対側に突出する凸状の突起3aを設け、この突起3aには、T字状のコネクタ9を取り付ける。このコネクタ9から突起3aを介して蓋体3まで、コネクタ9と本体部2の凹所4を連通させる吸引孔8を形成する。また、コネクタ9には、このコネクタ9と他部材(真空ポンプや他の脱気用容器など)とを連結する連結部材10(チューブなど)が取り付けられている。なお、図3に本体部2を開口部側から見た平面図を示す。   The main body 2 covers the opening with the lid 3 and fixes the end on the side opposite to the opening to the bottom plate 5. A movement caster 6 for moving the main body 2 is attached to the bottom plate 5. At the center of the lid 3, a convex protrusion 3 a that protrudes on the side opposite to the bottom plate 5 side is provided, and a T-shaped connector 9 is attached to the protrusion 3 a. From the connector 9 to the lid 3 through the protrusion 3a, a suction hole 8 is formed for communicating the connector 9 with the recess 4 of the main body 2. The connector 9 is attached with a connecting member 10 (such as a tube) that connects the connector 9 and another member (such as a vacuum pump or other degassing container). FIG. 3 shows a plan view of the main body 2 viewed from the opening side.

次に、図4〜図6に示すように、5つの脱気用容器1の収容部7に水を張り、その後、各脱気用容器1の収容部7に柄杓11を用いて前記した試料X(以下、散点模様で示す)を分けて入れ、この試料Xを水で浸した状態にする(図1の工程S2)。なお、5つの脱気用容器1の収容部7に入れる試料Xは、本実施形態では等しくする。上記の工程の後、図5に示すように、本体部2の開口部を蓋体3で覆い、この蓋体3に取り付けられたコネクタ9と真空ポンプP(脱気ポンプ)を連結部材10で連結する。なお、本実施形態では、図6に示すように、真空ポンプPに取り付けられた連結部材10に、コネクタ9を介して5つの脱気用容器1を並列接続する。   Next, as shown in FIGS. 4 to 6, water is applied to the accommodating portions 7 of the five degassing containers 1, and then the sample described above using the handle 11 in the accommodating portions 7 of the degassing containers 1. X (hereinafter referred to as a dotted pattern) is put separately, and this sample X is immersed in water (step S2 in FIG. 1). In addition, the sample X put into the accommodating part 7 of the five deaeration containers 1 is made equal in this embodiment. After the above steps, as shown in FIG. 5, the opening of the main body 2 is covered with the lid 3, and the connector 9 attached to the lid 3 and the vacuum pump P (deaeration pump) are connected by the connecting member 10. Link. In the present embodiment, as shown in FIG. 6, five degassing containers 1 are connected in parallel to the connecting member 10 attached to the vacuum pump P via a connector 9.

上記の状態で真空ポンプPを作動させて、5つの脱気用容器1の収容部7に存在する空気を同時に吸引して、図6に示すように、各脱気用容器1の収容部7に−100kN/m2の負圧(吸引力)を作用させる(図1の工程S2)。これにより、収容部7に存在する空気が吸引されるため、試料Xの内部の空隙に存在する空気が、収容部7の水に置換されて、試料Xが水で飽和される。なお、収容部7に張る水の種類は、特に限定されるものではないが、脱気水を利用すると、収容部7に存在する空気が少なくなるため、上記飽和に要する時間を削減することができる。 The vacuum pump P is operated in the above state, and the air present in the accommodating portions 7 of the five degassing containers 1 is sucked at the same time, and as shown in FIG. A negative pressure (suction force) of −100 kN / m 2 is applied to (step S2 in FIG. 1). Thereby, since the air which exists in the accommodating part 7 is attracted | sucked, the air which exists in the space | gap inside the sample X is substituted by the water of the accommodating part 7, and the sample X is saturated with water. The type of water stretched in the storage unit 7 is not particularly limited. However, when deaerated water is used, the amount of air present in the storage unit 7 is reduced, so that the time required for the saturation can be reduced. it can.

次に、図7に示すように、板状部材26に形成された型枠設置部24に三軸試験用供試体を作製するための円筒状の型枠20を嵌合して固定し、この後、型枠20の内壁をゴム製メンブレン21で覆う。この型枠20は、鉛直方向と直交する方向(図面左右側)で二つに等割が可能である。上述した型枠20の型枠設置部24への固定は、図8に示すように、板状部材26の型枠設置部24の中心部に形成された凹部24aに、2つの型枠構成部材20a、20bを矢印Aおよび矢印Bで示すように嵌合して、環状に連結させることにより行う。   Next, as shown in FIG. 7, a cylindrical mold 20 for producing a specimen for triaxial testing is fitted and fixed to the mold installation part 24 formed on the plate-like member 26. Thereafter, the inner wall of the mold 20 is covered with a rubber membrane 21. The mold 20 can be equally divided into two in a direction (left and right sides in the drawing) perpendicular to the vertical direction. As shown in FIG. 8, the above-described fixing of the mold 20 to the mold setting portion 24 is performed by two mold frame constituting members in the recess 24 a formed at the center of the mold setting portion 24 of the plate-like member 26. As shown by arrows A and B, 20a and 20b are fitted and connected in an annular shape.

型枠構成部材20bの端部には、ボルト固定部22bを設けられ、このボルト固定部22bにはボルト23が固定されている。また、型枠構成部材20aの端部には、ボルト挿通孔25が形成されたボルト固定部22aが設けられている。型枠構成部材20a、20bを型枠設置部24の凹部24aに嵌合した後、型枠構成部材20bのボルト23の端部を型枠構成部材20aのボルト挿通孔25に挿通して、その端部を図7に示すようにナット12で締め付ける。これにより、型枠構成部材20aと型枠構成部材20bを密着させると共に、互いに分離するのを防止することができる。   A bolt fixing portion 22b is provided at an end portion of the mold constituting member 20b, and a bolt 23 is fixed to the bolt fixing portion 22b. Moreover, the bolt fixing | fixed part 22a in which the bolt penetration hole 25 was formed is provided in the edge part of the mold structural member 20a. After fitting the formwork component members 20a and 20b into the recess 24a of the formwork installation part 24, the end of the bolt 23 of the formwork structure member 20b is inserted into the bolt insertion hole 25 of the formwork structure member 20a. The end is tightened with a nut 12 as shown in FIG. Thereby, it is possible to prevent the formwork constituent member 20a and the formwork constituent member 20b from coming into close contact with each other and to be separated from each other.

次に、図9に示すように、円筒状をなす型枠20の内部に、5つの脱気用容器1のうち一つにいれた試料Xと同程度の量の水を張り、脱気用容器1の収容部7に入れた試料X(水で飽和済み:図6参照)を、空気が混入しないように柄杓27を用いて静かに型枠20の内部に移す。これにより、試料Xを、型枠20の内部に下側(図面下側)から層状に積み重ねていく(図1の工程S3)。なお、型枠20の内部に試料Xを静かに移す方法としては、試料Xを、柄杓27を用いて型枠20の内部に張った水につけ、その後、試料Xを水中で自然落下させる方法がある。また、上述の作業の際、型枠20の上部から水が溢れ出ないように、適宜水を排出しながら行う。さらに、型枠20の内部に張る水は、脱気水を使用する。これにより、型枠20の内部に移す試料X(水で飽和済み)に空気が混入するのを防止することができる。   Next, as shown in FIG. 9, an amount of water equivalent to that of the sample X placed in one of the five degassing containers 1 is placed inside a cylindrical mold 20 for degassing. The sample X (saturated with water: see FIG. 6) placed in the container 7 of the container 1 is gently moved into the mold 20 using the handle 27 so that air does not enter. Thus, the sample X is stacked in layers from the lower side (lower side in the drawing) inside the mold 20 (step S3 in FIG. 1). As a method for gently moving the sample X into the mold 20, there is a method in which the sample X is put on water stretched inside the mold 20 using the handle 27, and then the sample X is naturally dropped in water. is there. Further, during the above-described operation, the water is appropriately discharged so that the water does not overflow from the upper part of the mold 20. Further, deaerated water is used as the water stretched inside the mold 20. Thereby, it can prevent that air mixes in the sample X (saturated with water) moved to the inside of the mold 20.

5つの脱気用容器1のうち、1つの脱気用容器1の試料を型枠20に移し終えた後、図10に示すように、上部側(図面上側)から型枠20の内部にランマー28を挿入する。このランマー28を矢印Cで示す鉛直方向に何度も動かして試料Xを上部側から何度も突くことにより、この試料Xの突き固めを行う(図1の工程S4)。さらに、5つの脱気用容器1の収納部7に分けて入れた試料Xは、型枠20の内部に全て移すと共に、全て突き固めを行う必要がある。そのため、本実施形態では、脱気用容器1の試料Xを型枠20に移す工程と、前記突き固めの工程とを交互(計5回)に行うことで、型枠20の内部に試料Xを積み重ねる。このように突き固めを行うことにより、試料Xを均等に突き固めることができる。上記突き固めにより、図11に示すように、三軸試験用供試体Y(以下、散点模様で示す)を完成させる。なお、供試体Yにおいて、突き固めを行った段階の境界線、つまり、1つの脱気用容器1の試料Xを型枠20に移し終えた段階の境界線を点線で示し、後の図12においても同様とする。   After the transfer of the sample from one of the five degassing containers 1 to the mold 20, as shown in FIG. 10, the rammer is moved from the upper side (upper side of the drawing) to the inside of the mold 20. 28 is inserted. The sampler X is tamped by moving the rammer 28 many times in the vertical direction indicated by the arrow C and poking the sample X from the upper side many times (step S4 in FIG. 1). Furthermore, it is necessary to transfer all the samples X put in the storage portions 7 of the five degassing containers 1 into the mold 20 and to tamify them all. Therefore, in this embodiment, the process of transferring the sample X of the degassing container 1 to the mold 20 and the tamping process are alternately performed (total 5 times), so that the sample X is placed inside the mold 20. Stack up. By performing tamping in this way, the sample X can be rammed evenly. As shown in FIG. 11, a triaxial test specimen Y (hereinafter, indicated by a dotted pattern) is completed by the tamping. In the specimen Y, the boundary line at the stage of tamping, that is, the boundary line at the stage where the sample X of one deaeration container 1 has been transferred to the mold 20 is indicated by a dotted line, and FIG. The same applies to.

次に、完成した供試体Yを型枠20ごと三軸試験装置に移動させて、図12に示すように、供試体Yを三軸試験装置に設置する(図1の工程S5)。   Next, the completed specimen Y is moved to the triaxial testing apparatus together with the mold 20, and the specimen Y is installed in the triaxial testing apparatus as shown in FIG. 12 (step S5 in FIG. 1).

三軸試験装置30は、上盤41と、台座42と、ペデスタル33と、キャップ34と、支柱32とで主要部が構成される。ペデスタル33は台座42に固定されており、キャップ34は、上盤41を貫通して載荷装置(図示省略)に連結されている。   The triaxial testing apparatus 30 includes a top board 41, a pedestal 42, a pedestal 33, a cap 34, and a support column 32, and the main part. The pedestal 33 is fixed to a pedestal 42, and the cap 34 penetrates the upper board 41 and is connected to a loading device (not shown).

また、台座42からペデスタル33に亘って脱気水供給孔35および二酸化炭素(CO2)供給孔36が形成され、上盤42には二つの吸引孔37、38が形成されている。また、キャップ34には、吸引孔39が形成されている。なお、この吸引孔39と上盤41の吸引孔38は連結部材40(チューブなど)で連結されている。 A deaerated water supply hole 35 and a carbon dioxide (CO 2 ) supply hole 36 are formed from the base 42 to the pedestal 33, and two suction holes 37 and 38 are formed in the upper panel 42. Further, a suction hole 39 is formed in the cap 34. The suction hole 39 and the suction hole 38 of the upper board 41 are connected by a connecting member 40 (tube or the like).

上述した供試体Yの三軸試験装置30への設置は、突き固めして作製した供試体Y(図11参照)を型枠20ごと三軸試験装置30に移動させてペデスタル33に固定した後、型枠20を取り外すことにより行う。供試体Yをペデスタル33に固定した後、上盤41と台座42との間の空間は、鋼製の円筒カプセル31で密封する。   The above-described specimen Y is installed on the triaxial testing apparatus 30 after the specimen Y (see FIG. 11) produced by tamping is moved together with the mold 20 to the triaxial testing apparatus 30 and fixed to the pedestal 33. This is done by removing the formwork 20. After fixing the specimen Y to the pedestal 33, the space between the upper board 41 and the base 42 is sealed with a steel cylindrical capsule 31.

上記のようにして三軸試験装置に設置した供試体Yには、台座42の二酸化炭素供給孔36から二酸化炭素を供給して、供試体Yの内部の空隙に残存する空気を二酸化炭素に置換する。次いで、台座42の脱気水供給孔35から脱気水を供給して、供試体Yの内部の空隙に存在する二酸化炭素を脱気水に溶解させる。また、上記操作は、連結部材40で連結された吸引孔38、39から供試体Yの内部の空気を吸引することで、供試体Yに負圧(吸引力)を作用させた状態で行う。この負圧は、−20kN/m2〜−30kN/m2とする。 Carbon dioxide is supplied from the carbon dioxide supply hole 36 of the base 42 to the specimen Y installed in the triaxial test apparatus as described above, and the air remaining in the void inside the specimen Y is replaced with carbon dioxide. To do. Next, deaerated water is supplied from the deaerated water supply hole 35 of the pedestal 42 to dissolve carbon dioxide present in the voids inside the specimen Y in the deaerated water. The above operation is performed in a state where negative pressure (suction force) is applied to the specimen Y by sucking air inside the specimen Y from the suction holes 38 and 39 connected by the connecting member 40. This negative pressure, and -20kN / m 2 ~-30kN / m 2.

以上の工程を経て作製した供試体Yを用いて三軸試験を行う(図1の工程S6)。なお、図1に示すフロー図では、三軸試験装置30に設置した後の供試体Yに脱気水や二酸化炭素を供給する工程は、本実施形態においては必ずしも必要ではないので、省略している。   A triaxial test is performed using the specimen Y produced through the above steps (step S6 in FIG. 1). In addition, in the flowchart shown in FIG. 1, since the process of supplying deaerated water and carbon dioxide to the test body Y after installing in the triaxial test apparatus 30 is not necessarily required in this embodiment, it is omitted. Yes.

本実施形態の場合、供試体Yを作製するための試料Xを、複数の脱気用容器1(図6参照)を用いて水で飽和させるため、この飽和した試料Xを突き固めて作製した供試体Yは、三軸試験装置に設置した後、従来のように、負圧を作用させながら脱気水を供給する工程が不要になる。そのため、供試体に負圧を作用させることで、供試体Yを構成する細かい粒子が、供試体Yの内部の空隙に存在する空気や供試体Yに供給される脱気水と共に供試体Yの外部へ吸引されて、供試体Yの粒度が変化することがない。この結果、供試体Yの強度を確保することができる。   In the case of this embodiment, since the sample X for producing the specimen Y is saturated with water using a plurality of degassing containers 1 (see FIG. 6), the saturated sample X is made by tamping. After the specimen Y is installed in the triaxial testing apparatus, a process of supplying deaerated water while applying a negative pressure as in the prior art becomes unnecessary. Therefore, by applying a negative pressure to the specimen, the fine particles constituting the specimen Y are mixed with the air existing in the voids inside the specimen Y and the deaerated water supplied to the specimen Y. The particle size of the specimen Y is not changed by being sucked to the outside. As a result, the strength of the specimen Y can be ensured.

上記のように、三軸試験装置に設置する供試体Yは、既に水で飽和された状態であるため、必ずしもこの供試体Yを脱気水で飽和させる必要がない。そのため、供試体Yの粒度の違いにより、供試体Yの飽和速度に差が生じるという従来の問題が生じることがない。また、供試体Yを作製するための試料Xは、水で浸した状態で飽和させるため、試料Xの粒度の違いによる飽和速度の差が生じにくい。   As described above, since the specimen Y installed in the triaxial test apparatus is already saturated with water, it is not always necessary to saturate the specimen Y with deaerated water. Therefore, the conventional problem that a difference occurs in the saturation speed of the specimen Y due to the difference in particle size of the specimen Y does not occur. Moreover, since the sample X for producing the specimen Y is saturated in a state immersed in water, a difference in saturation speed due to a difference in the particle size of the sample X hardly occurs.

さらに、脱気用容器1の収容部7に入れた試料Xは、水で浸した状態にするため、水圧の作用を受けて、収容部7に作用させる負圧の影響を受けにくい。そのため、試料Xが脱気用容器1の収容部7の外部へ吸引されて、試料Xの粒度が変化することがない。   Furthermore, since the sample X placed in the housing part 7 of the degassing container 1 is immersed in water, it is less susceptible to the negative pressure that acts on the housing part 7 due to the action of water pressure. Therefore, the sample X is not sucked to the outside of the container 7 of the degassing container 1 and the particle size of the sample X does not change.

なお、脱気用容器1の収容部7に入れた試料Xは、水で浸した状態にするため、収容部7に負圧を作用させた際にも、水圧の作用により、負圧の影響を受けにくい。そのため、収容部に作用させる負圧は高め(−100kN/m2程度)に設定することができる。この結果、試料Xを飽和させるのに必要な時間を削減することができる。 In addition, since the sample X put in the container 7 of the degassing container 1 is immersed in water, even when a negative pressure is applied to the container 7, the influence of the negative pressure is caused by the action of the water pressure. It is hard to receive. Therefore, the negative pressure applied to the housing portion can be set high (about −100 kN / m 2 ). As a result, the time required for saturating the sample X can be reduced.

脱気用容器1の収容部7に作用させる負圧は、本実施形態の場合、−90kN/m2〜−100kN/m2にするため、適度な時間で試料Xを水で飽和させることができる。負圧が−90kN/m2よりも低い(マイナス値で表される負圧の絶対値が小さい)と、負圧が低すぎて、試料Xを水で飽和させるのに必要な時間が長くなるおそれがある。一方、負圧が−100kN/m2よりも高い(マイナス値で表される負圧の絶対値が大きい)と、負圧が高すぎて、脱気用容器1の収容部7に存在する水が、収容部7の空気と共に収容部7の外部へ吸引されて、試料Xを水で飽和させるのが困難になるおそれがある。 Negative pressure to act on the accommodating portion 7 of the degassing container 1, in this embodiment, in order to -90kN / m 2 ~-100kN / m 2, the sample X be saturated with water in a reasonable time it can. If the negative pressure is lower than −90 kN / m 2 (the absolute value of the negative pressure expressed as a negative value is small), the negative pressure is too low and the time required to saturate the sample X with water becomes longer. There is a fear. On the other hand, if the negative pressure is higher than −100 kN / m 2 (the absolute value of the negative pressure represented by a negative value is large), the negative pressure is too high, and the water present in the container 7 of the degassing container 1 is present. However, there is a possibility that it will be difficult to saturate the sample X with water by being sucked out together with the air in the container 7 to the outside of the container 7.

また、本実施形態では、脱気用容器1の収容部7に入れる試料Xの層厚は、試料の最大粒径(試料を構成する粒子のうち最も大きい粒子の直径)の2倍〜2.5倍にする。そのため、試料Xを効率よく水で飽和させることができる。脱気用容器1の収容部7に入れる試料Xの層厚が試料Xの最大粒径の2.0倍よりも小さいと、層厚が薄すぎて、試料Xを水で浸した際、試料Xを構成する細かい粒子が水中に浮遊するおそれがある。これは、試料Xを水で浸すのが困難になる原因となる。一方、脱気用容器1の収容部7に入れる試料Xの層厚が試料Xの最大粒径の2.5倍よりも大きいと、層厚が厚すぎて、試料Xの全体を水で飽和させるのに必要な時間が長くなるおそれがある。   Moreover, in this embodiment, the layer thickness of the sample X put in the accommodating part 7 of the container 1 for deaeration is 2 times the maximum particle diameter (diameter of the largest particle among the particles which comprise a sample) -2. 5 times. Therefore, the sample X can be efficiently saturated with water. When the layer thickness of the sample X put in the container 7 of the degassing container 1 is smaller than 2.0 times the maximum particle size of the sample X, the layer thickness is too thin, and when the sample X is immersed in water, There is a risk that fine particles constituting X will float in water. This causes a difficulty in soaking sample X with water. On the other hand, if the layer thickness of the sample X placed in the container 7 of the degassing container 1 is larger than 2.5 times the maximum particle size of the sample X, the layer thickness is too thick and the entire sample X is saturated with water. There is a risk that the time required to do this will increase.

さらに、本実施形態、型枠20は円筒状とし(図7参照)、脱気用容器1の収容部7に入れる試料Xの分量は、この試料Xにより作製する供試体Yの直径が試料Xの最大粒径の4倍〜5倍となるようにする。このため、三軸試験時に型崩れしにくく、かつ、三軸試験で信頼性の高い測定値を得ることができる供試体Yを作製することができる。試料Xにより作製する供試体Yの直径が試料Xの最大粒径の4倍よりも小さい場合、供試体Yが小さすぎて、三軸試験時に供試体Yに鉛直荷重を加えた際、供試体Yが型崩れすることが懸念される。一方、試料Xにより作製する供試体Yの直径が試料Xの最大粒径の5倍よりも大きい場合、供試体Yが大きくなりすぎて、三軸試験時に供試体Yに鉛直荷重を加えた際、供試体Yの全体に圧力を均等に加えるのが困難になることが懸念される。   Further, in this embodiment, the mold 20 has a cylindrical shape (see FIG. 7), and the amount of the sample X put into the housing portion 7 of the degassing container 1 is such that the diameter of the specimen Y produced from the sample X is the sample X. 4 times to 5 times the maximum particle size. For this reason, it is possible to produce a specimen Y that is not easily deformed during the triaxial test and that can obtain a highly reliable measurement value in the triaxial test. When the diameter of the specimen Y produced from the sample X is smaller than 4 times the maximum particle diameter of the specimen X, the specimen Y is too small, and when a vertical load is applied to the specimen Y during the triaxial test, the specimen There is a concern that Y may lose its shape. On the other hand, when the diameter of the specimen Y produced by the sample X is larger than 5 times the maximum particle diameter of the specimen X, the specimen Y becomes too large, and a vertical load is applied to the specimen Y during the triaxial test. There is a concern that it is difficult to apply pressure evenly to the entire specimen Y.

複数の脱気用容器1の収容部7に負圧を作用させる方法としては、真空ポンプを1つの脱気用容器1のみに連結して負圧を作用させ、作業が終了すると、真空ポンプPを別の脱気用容器1に連結して負圧を作用させ、これを脱気用容器1の数だけ(本実施形態であれば、5回)繰り返す方法がある。しかし、本実施形態のように、真空ポンプPに取り付けられた連結部材10に、コネクタ9を介して5つの脱気用容器1を並列接続すると、真空ポンプPの作動により、全ての脱気用容器1の収容部7に同時に負圧を作用させることができる。そのため、5つの脱気用容器1に入れた試料Xを水で飽和させるのに必要な時間を削減することができる。また、この場合、5つの脱気用容器1の収容部7に均等負圧(本実施形態では−100kN/m2)を作用させることができる。 As a method of applying a negative pressure to the accommodating portions 7 of the plurality of degassing containers 1, a vacuum pump is connected to only one degassing container 1 to apply a negative pressure, and when the operation is completed, the vacuum pump P Is connected to another deaeration container 1 to apply a negative pressure, and this is repeated by the number of deaeration containers 1 (in this embodiment, 5 times). However, when five degassing containers 1 are connected in parallel to the connecting member 10 attached to the vacuum pump P via the connector 9 as in the present embodiment, all the degassing is performed by the operation of the vacuum pump P. A negative pressure can be applied simultaneously to the container 7 of the container 1. Therefore, the time required for saturating the sample X put in the five degassing containers 1 with water can be reduced. In this case, a uniform negative pressure (in this embodiment, −100 kN / m 2 ) can be applied to the accommodating portions 7 of the five degassing containers 1.

このように、5つの脱気用容器1の収容部7に均等負圧を作用させる場合、本実施形態のように、各脱気用容器1の収容部7に入れる試料Xを等しくすると、試料Xを飽和させるのに必要な時間を等しくすることができる。また、各脱気用容器1に入れた試料Xの飽和状態を等しくすることができる。   As described above, when the uniform negative pressure is applied to the accommodating portions 7 of the five degassing containers 1, the samples X placed in the accommodating portions 7 of the degassing containers 1 are equalized as in this embodiment. The time required to saturate X can be made equal. Moreover, the saturation state of the sample X put into each deaeration container 1 can be made equal.

なお、本実施形態の場合、三軸試験装置30に設置した供試体Yは、水で飽和された状態であるため、従来のように脱気水を供給する必要がない。しかし、本実施形態のように、三軸試験装置30に設置した後の供試体Yにも脱気水を供給することにより、万が一、供試体Yの内部の空隙に空気が残存していたとしても、供試体Yの内部の空気を脱気水と置換できる。そのため、供試体Yを水で確実に飽和させることができる。この結果、三軸試験の測定値の信頼性を向上させることができる。   In the case of the present embodiment, the specimen Y installed in the triaxial test apparatus 30 is in a state saturated with water, and thus it is not necessary to supply deaerated water as in the conventional case. However, as in the present embodiment, by supplying deaerated water to the specimen Y after being installed in the triaxial test apparatus 30, it is assumed that air remains in the void inside the specimen Y. Also, the air inside the specimen Y can be replaced with deaerated water. Therefore, the specimen Y can be surely saturated with water. As a result, the reliability of the measured value of the triaxial test can be improved.

また、本実施形態では、三軸試験装置に設置した供試体Yに二酸化炭素を供給した後に供試体Yへ脱気水を供給するため、供試体Yを飽和させるのに必要な時間を削減することができる。これは、供試体Yに二酸化炭素を供給すると、供試体Yの内部の空隙に残存する空気が二酸化炭素に置換され、この状態で脱気水を供給することにより、二酸化炭素が脱気水に溶けて、二酸化炭素と脱気水を容易に置換することができるためである。   Moreover, in this embodiment, since deaerated water is supplied to the specimen Y after supplying carbon dioxide to the specimen Y installed in the triaxial test apparatus, the time required to saturate the specimen Y is reduced. be able to. This is because when carbon dioxide is supplied to the specimen Y, the air remaining in the voids inside the specimen Y is replaced with carbon dioxide, and by supplying deaerated water in this state, the carbon dioxide is converted into deaerated water. This is because it can dissolve and easily replace carbon dioxide and degassed water.

また、供試体Yへの脱気水を供給は、供試体Yに負圧を作用させた状態、つまり、真空ポンプPを用いて吸引孔38、39から供試体Yの内部の空隙に存在する空気を吸引した状態で行う。この場合、供試体Yの内部の空隙に万が一空気が残存していても、この空気は、吸引孔38、39を介して供試体Yの外部へ吸引されるため、供試体Yの内部の空隙に残存した空気と脱気水が置換されやすくなる。この結果、供試体Yを脱気水で飽和させるのが極めて容易になる。   Further, the supply of the deaerated water to the specimen Y exists in a state where a negative pressure is applied to the specimen Y, that is, in the space inside the specimen Y from the suction holes 38 and 39 using the vacuum pump P. Perform with air sucked. In this case, even if air remains in the void inside the specimen Y, this air is sucked out of the specimen Y through the suction holes 38 and 39, so the void inside the specimen Y The remaining air and deaerated water are easily replaced. As a result, it becomes extremely easy to saturate the specimen Y with deaerated water.

三軸試験装置30に設置した供試体Yに真空ポンプPで負圧を作用させる際、この負圧は、供試体Yに断続的に作用させる。この場合、負圧作用時に、供試体Yを構成する細かい粒子が、供試体Yの内部の空隙に存在する空気や供試体Yに供給される脱気水と共に吸引孔38、39を介して供試体Yの外部へ吸引されることがない。この結果、供試体Yの粒度が変化するのを防止して、供試体Yの強度を向上させることができる。   When a negative pressure is applied to the specimen Y installed in the triaxial test apparatus 30 by the vacuum pump P, this negative pressure is applied to the specimen Y intermittently. In this case, during the negative pressure action, the fine particles constituting the specimen Y are supplied through the suction holes 38 and 39 together with the air present in the voids inside the specimen Y and the deaerated water supplied to the specimen Y. It is not sucked out of the specimen Y. As a result, the particle size of the specimen Y can be prevented from changing, and the strength of the specimen Y can be improved.

さらに、供試体Yに作用させる負圧は、−20kN/m2〜−30kN/m2とするため、強度に優れ、かつ、三軸試験で信頼性の高い測定値を得ることができる供試体Yを作製することができる。負圧が−20kN/m2よりも低いと、負圧が低すぎて、脱気水で供試体Yを飽和させるのに必要な時間が長くなるおそれがある。一方、負圧が−30kN/m2よりも高いと、負圧が高すぎて、供試体Yの内部の空隙に残存する空気や供試体Yに供給される脱気水と共に、供試体Yの細かい粒子が吸引孔38、39を介して供試体Yの外部へ吸引されて、供試体Yの粒度を変化させてしまうおそれがある。これは、供試体Yの強度の低下に繋がる。 Furthermore, since the negative pressure applied to the specimen Y is -20 kN / m 2 to -30 kN / m 2 , the specimen is excellent in strength and can obtain highly reliable measurement values in a triaxial test. Y can be produced. If the negative pressure is lower than −20 kN / m 2 , the negative pressure is too low, and the time required for saturating the specimen Y with degassed water may be increased. On the other hand, if the negative pressure is higher than −30 kN / m 2 , the negative pressure is too high, and the remaining of the specimen Y together with the air remaining in the void inside the specimen Y and the deaerated water supplied to the specimen Y. Fine particles may be sucked out of the specimen Y through the suction holes 38 and 39, and the particle size of the specimen Y may be changed. This leads to a decrease in strength of the specimen Y.

以上、本発明の実施の形態について説明したが、これはあくまで例示であり、特許請求の範囲に記載の技術的思想を逸脱しないのであれば、適宜変更が可能である。   The embodiment of the present invention has been described above. However, this is merely an example, and modifications can be made as appropriate without departing from the technical idea described in the claims.

例えば、本実施形態では、図2に示すように、脱気用容器1の本体部2に形成した凹所4に、試料Xを入れるための収容部7としてプラスチック製のバケツを使用した。この場合、水で飽和させた試料Xを型枠20に移す際、収納部7を本体部2の凹所4から取り外して行うことができるため、供試体Yを作成する際の作業性(作業のしやすさ、作業効率)が向上する。しかし、本体部2の凹所4の材質を適宜選択するなどして、凹所4を、試料Xを入れる収容部とすることもできる。   For example, in the present embodiment, as shown in FIG. 2, a plastic bucket is used as the accommodating portion 7 for containing the sample X in the recess 4 formed in the main body portion 2 of the deaeration container 1. In this case, when the sample X saturated with water is transferred to the mold 20, it is possible to remove the storage portion 7 from the recess 4 of the main body portion 2, so that workability when creating the specimen Y (work) Ease of operation and work efficiency). However, the recess 4 can also be used as a housing portion into which the sample X is placed by appropriately selecting the material of the recess 4 of the main body 2.

また、型枠20は、本実施形態のような組立て式のものに限らず、本発明の目的を達成することができるのであれば、組立て式でない型枠など、特に限定されるものではない。さらに、試料Xを突き固めする手段は、ランマーのような突き固め用の機械を使用する方法に限られず、試験条件によっては、先端が円盤状の突き棒を用いて、人手で突き固めをするようにしてもよい。   The formwork 20 is not limited to an assembly type as in the present embodiment, and is not particularly limited as long as the object of the present invention can be achieved. Furthermore, the means for tamping the sample X is not limited to a method using a ramming machine such as a rammer. Depending on the test conditions, the tip is rammed manually using a disk-shaped thrust bar. You may do it.

そして、脱気用容器1は、本実施形態のような形状に限られず、既に述べた本発明の作用および効果を得ることができるのであれば、特に限定されるものではない。   The deaeration container 1 is not limited to a shape as in the present embodiment, and is not particularly limited as long as the actions and effects of the present invention described above can be obtained.

1 脱気用容器
4 凹所
7 収容部
20 型枠(供試体作製用)
30 三軸試験装置
X 試料
Y 供試体
1 Deaeration container 4 Recess 7 Storage part 20 Formwork (for specimen preparation)
30 Triaxial Test Equipment X Sample Y Specimen

Claims (11)

土の強度を測定する三軸試験に使用する供試体を作製する方法であって、
粒度を調整した試料を複数の脱気用容器に設けた収容部に分けて入れると共に、この試料を水に浸した状態にする工程と、各々の前記収容部に負圧を作用させる工程と、各々の前記収容部から供試体作製用の型枠の内部に前記試料を順次移して前記型枠の内部に積み重ねる工程と、前記型枠の内部に移した試料を突き固める工程とから成ることを特徴とする三軸試験用供試体の作製方法。
A method for producing a specimen used in a triaxial test for measuring soil strength,
Steps to put the sample with adjusted particle size separately into storage units provided in a plurality of degassing containers, and to make the sample immersed in water, and to apply a negative pressure to each of the storage units, The method includes a step of sequentially transferring the sample from each of the housing parts into a mold for preparing a specimen and stacking the sample in the mold, and a step of tamping the sample transferred to the inside of the mold. A method for producing a characteristic specimen for triaxial testing.
前記型枠の内部に移した試料を移した都度突き固める請求項1に記載の三軸試験用供試体の作製方法。   The method for producing a specimen for a triaxial test according to claim 1, wherein the sample transferred to the inside of the mold is solidified each time it is transferred. 前記負圧は、−90kN/m2〜−100kN/m2とする請求項1又は2に記載の三軸試験用供試体の作製方法。 The negative pressure, -90kN / m 2 ~-100kN / method for manufacturing a three-for-Axial specimen according to claim 1 or 2 m 2 to. 前記脱気用容器の収容部に入れる試料の層厚は、試料の最大粒径の2倍〜2.5倍とする請求項1〜3のいずれか一項に記載の三軸試験用供試体の作製方法。   The specimen for a triaxial test according to any one of claims 1 to 3, wherein the layer thickness of the sample placed in the container of the deaeration container is set to be 2 to 2.5 times the maximum particle size of the sample. Manufacturing method. 前記型枠は、円筒状とし、前記脱気用容器の収容部に入れる試料の分量は、この試料により作製する前記供試体の直径が試料の最大粒径の4倍〜5倍となるようにする請求項1〜4のいずれか一項に記載の三軸試験用供試体の作製方法。   The mold is cylindrical, and the amount of the sample placed in the container of the degassing container is such that the diameter of the specimen prepared from this sample is 4 to 5 times the maximum particle size of the sample. The manufacturing method of the specimen for a triaxial test as described in any one of Claims 1-4. 前記負圧は、複数の前記脱気用容器の収容部に同時に作用させる請求項1〜5のいずれか一項に記載の三軸試験用供試体の作製方法。   The method for producing a specimen for a triaxial test according to any one of claims 1 to 5, wherein the negative pressure is applied simultaneously to the housing portions of the plurality of degassing containers. 前記突き固めにより作製した供試体は、三軸試験装置に設置した後、脱気水を供給する請求項1〜6のいずれか一項に記載の三軸試験用供試体の作製方法。   The specimen prepared by tamping is a method for producing a specimen for triaxial testing according to any one of claims 1 to 6, wherein deaerated water is supplied after the specimen is installed in a triaxial testing apparatus. 前記脱気水の供給は、前記供試体に二酸化炭素を供給した後に行う請求項7に記載の三軸試験用供試体の作製方法。   The method for producing a triaxial test specimen according to claim 7, wherein the deaerated water is supplied after carbon dioxide is supplied to the specimen. 前記脱気水の供給は、前記供試体に負圧を作用させた状態で行う請求項7又は8に記載の三軸試験用供試体の作製方法   The method for producing a specimen for triaxial testing according to claim 7 or 8, wherein the deaerated water is supplied in a state where a negative pressure is applied to the specimen. 前記負圧は、前記供試体に断続的に作用させる請求項9に記載の三軸試験用供試体の作製方法。   The method for producing a triaxial test specimen according to claim 9, wherein the negative pressure is intermittently applied to the specimen. 前記負圧は、−20kN/m2〜−30kN/m2とする請求項9又は10に記載の三軸試験用供試体の作製方法。 The method for producing a specimen for triaxial testing according to claim 9 or 10, wherein the negative pressure is -20 kN / m 2 to -30 kN / m 2 .
JP2009023921A 2009-02-04 2009-02-04 Method of preparing test sample for triaxial test Pending JP2010181232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023921A JP2010181232A (en) 2009-02-04 2009-02-04 Method of preparing test sample for triaxial test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023921A JP2010181232A (en) 2009-02-04 2009-02-04 Method of preparing test sample for triaxial test

Publications (1)

Publication Number Publication Date
JP2010181232A true JP2010181232A (en) 2010-08-19

Family

ID=42762893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023921A Pending JP2010181232A (en) 2009-02-04 2009-02-04 Method of preparing test sample for triaxial test

Country Status (1)

Country Link
JP (1) JP2010181232A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706711A (en) * 2012-06-13 2012-10-03 中国水利水电科学研究院 Geotechnical-engineering centrifugal model saturation device
CN103048174A (en) * 2012-12-21 2013-04-17 大连理工大学 Triaxial sample preparation device for low-liquid limit silty soil and sample preparation method
CN103123306A (en) * 2012-10-16 2013-05-29 三峡大学 Method and device for preparing triaxial test sample capable of accelerating suction force balance
CN103323315A (en) * 2013-06-24 2013-09-25 太原理工大学 Undisturbed soil vacuum soaking device and method for preparing sheet for SEM analysis
CN103837385A (en) * 2014-02-28 2014-06-04 河海大学 Coarse-grained soil polymer slip casting triaxial test sample kit and using method thereof
CN104006992A (en) * 2014-05-22 2014-08-27 西南交通大学 Symmetrical layered sample pressing device for triaxial test sample preparation and sample preparation method
CN105115794A (en) * 2015-07-02 2015-12-02 河海大学 Sample production apparatus and sample production method of layered rock-soil body sample
CN105181416A (en) * 2015-10-12 2015-12-23 北京工业大学 High-visualization geotechnical triaxial test sample device and manufacturing method
CN105258995A (en) * 2015-10-23 2016-01-20 中国科学院力学研究所 Soft soil sample loading device in triaxial apparatus experiments
CN106383046A (en) * 2016-10-27 2017-02-08 三峡大学 Method for accurately preparing bentonite compaction sample with predetermined water content and dry density
CN106769334A (en) * 2017-02-23 2017-05-31 西安长庆科技工程有限责任公司 A kind of triaxial test soil sample saturation device and method
CN106930268A (en) * 2017-03-21 2017-07-07 中国矿业大学 A kind of combination vacuum preloading prepares the double drainage consolidation device and consolidation technique of manipulated soil
CN107255586A (en) * 2017-07-01 2017-10-17 华北理工大学 Obturation and country rock Composite rockmass routine test test sample-producing die and preparation method
CN107687977A (en) * 2017-07-24 2018-02-13 中国科学院力学研究所 A kind of ground sample ammonia saturation experiments method
CN108398316A (en) * 2018-03-12 2018-08-14 中交天津港湾工程研究院有限公司 Fixing device and its application method for sample to be connect with triaxial apparatus pedestal
CN108663249A (en) * 2018-07-28 2018-10-16 浙江大学城市学院 A kind of preparation facilities and preparation method thereof of soil test cohesiveless soil sample
CN111103185A (en) * 2020-01-13 2020-05-05 石河子大学 Spinning type coarse-grained soil triaxial experiment sample preparation device and sample preparation method
CN112945735A (en) * 2021-04-12 2021-06-11 昆明理工大学 Layered triaxial experiment tailing sample loading device
CN113790982A (en) * 2021-07-30 2021-12-14 南华大学 Pile-unsaturated soil interface friction visualization test device and method
DE102021134241A1 (en) 2021-12-22 2023-06-22 Gmb Gmbh Unconsolidated rock specimens and method for producing the unconsolidated rock specimens

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706711A (en) * 2012-06-13 2012-10-03 中国水利水电科学研究院 Geotechnical-engineering centrifugal model saturation device
CN102706711B (en) * 2012-06-13 2014-04-02 中国水利水电科学研究院 Geotechnical-engineering centrifugal model saturation device
CN103123306A (en) * 2012-10-16 2013-05-29 三峡大学 Method and device for preparing triaxial test sample capable of accelerating suction force balance
CN103048174A (en) * 2012-12-21 2013-04-17 大连理工大学 Triaxial sample preparation device for low-liquid limit silty soil and sample preparation method
CN103323315A (en) * 2013-06-24 2013-09-25 太原理工大学 Undisturbed soil vacuum soaking device and method for preparing sheet for SEM analysis
CN103323315B (en) * 2013-06-24 2015-07-15 太原理工大学 Undisturbed soil vacuum soaking device and method for preparing sheet for SEM analysis
CN103837385A (en) * 2014-02-28 2014-06-04 河海大学 Coarse-grained soil polymer slip casting triaxial test sample kit and using method thereof
CN104006992A (en) * 2014-05-22 2014-08-27 西南交通大学 Symmetrical layered sample pressing device for triaxial test sample preparation and sample preparation method
CN105115794A (en) * 2015-07-02 2015-12-02 河海大学 Sample production apparatus and sample production method of layered rock-soil body sample
CN105115794B (en) * 2015-07-02 2017-11-14 河海大学 A kind of sample preparation device and method for making sample of bedded rock soil body sample
CN105181416A (en) * 2015-10-12 2015-12-23 北京工业大学 High-visualization geotechnical triaxial test sample device and manufacturing method
CN105258995A (en) * 2015-10-23 2016-01-20 中国科学院力学研究所 Soft soil sample loading device in triaxial apparatus experiments
CN106383046A (en) * 2016-10-27 2017-02-08 三峡大学 Method for accurately preparing bentonite compaction sample with predetermined water content and dry density
CN106769334A (en) * 2017-02-23 2017-05-31 西安长庆科技工程有限责任公司 A kind of triaxial test soil sample saturation device and method
CN106769334B (en) * 2017-02-23 2023-11-14 西安长庆科技工程有限责任公司 Triaxial test soil sample saturation device and method
CN106930268A (en) * 2017-03-21 2017-07-07 中国矿业大学 A kind of combination vacuum preloading prepares the double drainage consolidation device and consolidation technique of manipulated soil
CN107255586A (en) * 2017-07-01 2017-10-17 华北理工大学 Obturation and country rock Composite rockmass routine test test sample-producing die and preparation method
CN107255586B (en) * 2017-07-01 2019-12-03 华北理工大学 Obturation and country rock Composite rockmass routine test test sample-producing die and production method
CN107687977A (en) * 2017-07-24 2018-02-13 中国科学院力学研究所 A kind of ground sample ammonia saturation experiments method
CN107687977B (en) * 2017-07-24 2020-03-31 中国科学院力学研究所 Rock soil sample ammonia saturation experimental method
CN108398316A (en) * 2018-03-12 2018-08-14 中交天津港湾工程研究院有限公司 Fixing device and its application method for sample to be connect with triaxial apparatus pedestal
CN108663249A (en) * 2018-07-28 2018-10-16 浙江大学城市学院 A kind of preparation facilities and preparation method thereof of soil test cohesiveless soil sample
CN108663249B (en) * 2018-07-28 2023-08-18 浙江大学城市学院 Preparation device and preparation method of non-cohesive soil sample for geotechnical test
CN111103185A (en) * 2020-01-13 2020-05-05 石河子大学 Spinning type coarse-grained soil triaxial experiment sample preparation device and sample preparation method
CN111103185B (en) * 2020-01-13 2023-11-21 石河子大学 Spinning coarse-grained soil triaxial experiment sample preparation device and sample preparation method
CN112945735A (en) * 2021-04-12 2021-06-11 昆明理工大学 Layered triaxial experiment tailing sample loading device
CN112945735B (en) * 2021-04-12 2024-03-01 昆明理工大学 Layering triaxial experimental tailing material sample loading device
CN113790982A (en) * 2021-07-30 2021-12-14 南华大学 Pile-unsaturated soil interface friction visualization test device and method
CN113790982B (en) * 2021-07-30 2024-03-29 南华大学 Pile-unsaturated soil interface friction visualization test device and method
DE102021134241A1 (en) 2021-12-22 2023-06-22 Gmb Gmbh Unconsolidated rock specimens and method for producing the unconsolidated rock specimens

Similar Documents

Publication Publication Date Title
JP2010181232A (en) Method of preparing test sample for triaxial test
CN107063808A (en) A kind of compaction apparatus and drawing method for making rocks sample
JP4841610B2 (en) Apparatus and method for producing chemical injection specimen
CN111678754B (en) Static pressure and hammering combined sample preparation method and triaxial test device
JP2011047792A (en) Device and method for measuring tensile strength of soil
Kim et al. Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity
JP5826928B2 (en) Wafer via solder injection apparatus provided with pressure unit and wafer via solder injection method using the same
CN113155575A (en) Coarse-grained soil triaxial sample preparation device with sample saturation and transfer functions and sample preparation method
CN104062218B (en) A kind of geotechnical model test is rapidly saturated device
Rawal et al. A critical review on the absorptive glass mat (AGM) separators synergistically designed via fiber and structural parameters
CN112985948A (en) Mounting method, dismounting method and using method of hollow cylindrical sample
CN104677704A (en) Large-diameter test block molding mould capable of prefabricating, and operating method of large-diameter test block molding mould
JP2938946B2 (en) Anti-gravity casting method using powder-filled vacuum chamber
CN207664186U (en) A kind of battery vibration-testing apparatus
CN107144454B (en) A kind of joint property geotechnical centrifuge model method for making sample
CN206531712U (en) A kind of detachable concrete test mould
CN101435209B (en) Pile-forming equipment and method of control modulus pile
JP2851317B2 (en) Vacuum antigravity casting apparatus and method for casting thin parts
CN103123306B (en) Device for preparing triaxial test sample capable of accelerating suction force balance
KR101048489B1 (en) Through-hole electrode and formation method thereof
TWI410628B (en) Method and apparatus for making heavy soil sample
CN214236177U (en) A high frequency vibrator for 3D prints sand storage tank
CN1936483A (en) Heat-pipe mfg. method
CN215180218U (en) Landslide degree testing arrangement of civil engineering
CN212372387U (en) Simple concrete prefabricated modular mold