JP2010181211A - 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法 - Google Patents

電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法 Download PDF

Info

Publication number
JP2010181211A
JP2010181211A JP2009023289A JP2009023289A JP2010181211A JP 2010181211 A JP2010181211 A JP 2010181211A JP 2009023289 A JP2009023289 A JP 2009023289A JP 2009023289 A JP2009023289 A JP 2009023289A JP 2010181211 A JP2010181211 A JP 2010181211A
Authority
JP
Japan
Prior art keywords
resistor
voltage
trimming
resistors
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009023289A
Other languages
English (en)
Inventor
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009023289A priority Critical patent/JP2010181211A/ja
Publication of JP2010181211A publication Critical patent/JP2010181211A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】回路を構成した後であっても温度補償値を調節可能とすることにより、ホール素子等の磁気検出素子の温度特性バラツキに対して柔軟に対応することができる電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法を提供する。
【解決手段】分圧回路24は、電源端子12と接地端子14との間に直列に接続された可変抵抗器VR1,VR2及び正温度係数抵抗器RXを有し、可変抵抗器VR1及びVR2の接続点の電圧(分圧電圧VX)を定電流回路18に出力する。分圧電圧VXは、可変抵抗器VR1の抵抗値と、可変抵抗器VR2及び正温度係数抵抗器RXの合成抵抗値との比で電源電圧VCCを分圧したものである。
【選択図】図1

Description

本発明は、例えばハイブリッドカーや電気自動車のバッテリー電流やモータ駆動電流をホール素子等の磁気検出素子を用いて測定する電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法に関する。
ホール素子等の磁気検出素子を用いてバスバー等に流れる電流(被測定電流)を非接触状態で検出する電流センサとして、以下に示す磁気比例式や磁気平衡式のものが従来から知られている。
磁気比例式電流センサは、図11(A)に例示のように、ギャップGを有するリング状の磁気コア20(高透磁率で残留磁気が少ない珪素鋼板やパーマロイコア等)と、ギャップGに配置されたホール素子16(磁気検出素子の例示)とを有する。磁気コア20は、被測定電流Iinの流れるバスバー10が貫通する配置である。したがって、被測定電流IinによってギャップG内に磁界が発生し、これがホール素子16の感磁面に印加される。磁界の強さは被測定電流Iinに比例するので、ホール素子16の出力電圧から被測定電流Iinが求められる。
一方、磁気平衡式電流センサは、図11(B)に例示のように、磁気比例式電流センサの構成に加え、磁気コア20に巻線を設けてなる負帰還用コイルLFBを有する。この構成においては、被測定電流IinによってギャップG内に第1の磁界が発生してこれがホール素子16の感磁面に印加される一方、ホール素子16の感磁面に印加される前記第1の磁界を相殺する(ゼロにする)第2の磁界を発生するように負帰還用コイルLFBに電流が供給される。この供給した電流から被測定電流Iinが求められる(例えば、負帰還用コイルLFBへの供給電流を検出抵抗で電圧に変換して出力する)。
また、近年では装置小型化の要求のため、図12(A),(B)に示されるような、リング状の磁気コアを用いないコアレス構造の磁気比例式電流センサも採用されている。コアレス構造の場合も、被測定電流Iinによって発生する磁界がホール素子16の感磁面に印加され、ホール素子16の出力電圧から被測定電流Iinが求められる。
ハイブリッドカーやEV(電気自動車)のバッテリに流れる充放電電流をモニタする電流センサや、インバータ用の三相モータ駆動電流をモニタする電流センサ等は、バスバーに流れる電流(被測定電流)が例えば200A〜600Aあるいはそれ以上と非常に大きい。このため、バスバーが100℃以上の高温になることもあり、電流センサの動作温度も相当高温となる。また、自動車の使用される環境は過酷なものがあり、電流センサの動作温度範囲は例えば−40℃〜110℃程度と広範囲に渡る。したがって、ホール素子等の磁気検出素子の温度特性の影響による電流センサ出力の温度特性の悪化が問題となっている。
このような問題に関し、下記特許文献1は、「ホール素子の温度特性を補償することにより、温度変化に影響されることなく、正確な磁束の検出が行なわれるようにした、ホール素子の駆動回路を提供する」([要約]の[目的])としている。
下記特許文献1のホール素子の駆動回路は、「ホール素子11の入力端子に対して直列に接続されたFET12及び電流検出抵抗RYとを含んでおり、可変抵抗VR及び分圧抵抗RXにより分圧された定電圧が上記FETのゲートに対して接続されてい」て、「上記分圧抵抗RXとして、ホール素子の温度係数と逆の温度係数を有する抵抗を使用」している([要約]の[構成]及び図1)。また、別の例では、「抵抗RXに対して並列に極めて小さな温度特性を有する抵抗R′が接続されてい」て、「抵抗R′の抵抗値を適宜に選定することにより、所望の温度特性が得られる」としている(段落[0018],[0019])。
特開平6−289111号公報
上記特許文献1のホール素子の駆動回路では、可変抵抗VRの抵抗値と、分圧抵抗RXの抵抗値(又は分圧抵抗RXと抵抗R′との並列接続の合成抵抗値)との比で定まる分圧電圧が温度に対して変化することによりホール素子の温度特性が補償されるが、分圧電圧の温度変化量(すなわち駆動回路による温度補償値)は回路を構成した後に調節することができない。一方、ホール素子の温度特性は素子ごとバラツキがある。そのため、上記特許文献1の技術では、ホール素子の温度特性と駆動回路による温度補償値とがちょうどマッチングしたときしか正確に温度補償できず、ホール素子の温度特性バラツキに対して柔軟に対応できないという問題がある。以下、より具体的に説明する。
図13は、3つのホール素子#1〜3の出力電圧(ゲイン)の温度特性の素子ごとのバラツキを示す例示的な温度特性図である。図14は、同3つのホール素子#1〜3の温度特性を上記特許文献1の技術を用いて(つまり単一の温度補償値で)補償した場合のセンサ出力電圧Voutの特性図である。
図13に示されるように、いずれのホール素子も温度上昇に伴って出力電圧が低下する(ゲインが低下する)ものの、一定の温度上昇に対する低下量は異なる。したがって、単一の温度補償値で全てのホール素子の出力電圧(ゲイン)の温度特性を適切に補償することはできない。例えば、被測定電流Iinの−300A〜+300Aのレンジに対して0.5V〜4.5Vのレンジで直線的に変化するセンサ出力電圧Voutを目標とする場合、図14に示されるように、#2のホール素子に関しては温度特性と温度補償値とがちょうどマッチングして理想的な出力電圧となっている。しかし、#1のホール素子に関しては、#2のホール素子と比較して温度特性の傾斜が小さいために、#2のホール素子と同じ温度補償値では大きすぎて過補償となっている(理想的な出力電圧の場合よりもゲインが大きくなってしまっている)。また、#3のホール素子に関しては、#2のホール素子と比較して温度特性の傾斜が大きいために、#2のホール素子と同じ温度補償値では小さすぎて補償不足となっている(理想的な出力電圧の場合よりもゲインが依然として小さい状態となっている)。
なお、こうした問題は、ホール素子の出力電圧(ゲイン)の温度特性を補償する場合のみならず、ホール素子のオフセット電圧の温度特性を補償する場合にも存在する。図15は、3つのホール素子#1〜3のオフセット電圧の温度特性の素子ごとのバラツキを示す例示的な温度特性図である。いずれのホール素子も温度上昇に伴ってオフセット電圧が低下するものの、一定の温度上昇に対する低下量は異なる。したがって、単一の温度補償値で全てのホール素子のオフセット電圧の温度特性を適切に補償することはできない。
本発明はこうした状況を認識してなされたものであり、その目的は、回路を構成した後であっても温度補償値を調節可能とすることにより、ホール素子等の磁気検出素子の温度特性バラツキに対して柔軟に対応することができる電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法を提供することにある。
本発明の第1の態様は、磁気比例式電流センサである。この磁気比例式電流センサは、
被測定電流によって発生する磁界が印加される磁気検出素子と、
前記磁気検出素子を定電流駆動する定電流回路と、
電源電圧を所定の比率で分圧し、分圧電圧を前記定電流回路に供給する分圧回路とを備え、
前記定電流回路から前記磁気検出素子に供給される電流値は、前記分圧回路からの前記分圧電圧との間に所定の相関関係を有し、前記分圧回路は、
第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記分圧電圧を前記定電流回路に供給するものである。
第1の態様の磁気比例式電流センサにおいて、前記分圧回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器と前記温度係数抵抗器とが直列に接続されたものであるとよい。
第1の態様の磁気比例式電流センサにおいて、前記分圧回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器とが直列に接続されるとともに、前記温度係数抵抗器が前記第2のトリミング抵抗器又は可変抵抗器の両端子間に設けられたものであるとよい。
第1の態様の磁気比例式電流センサにおいて、
電源に接続される高電圧端子と低電圧端子との間に、前記磁気検出素子が前記高電圧端子側となるように前記磁気検出素子と前記定電流回路とが直列に接続され、
前記定電流回路は、Nチャンネル又はNPN型トランジスタと、電流設定用抵抗器と、誤差増幅器とを有し、
前記磁気検出素子と前記低電圧端子との間に、前記Nチャンネル又はNPN型トランジスタが前記磁気検出素子側となるように前記Nチャンネル又はNPN型トランジスタと前記電流設定用抵抗器とが直列に接続され、
前記誤差増幅器は、前記分圧回路からの前記分圧電圧が非反転入力端子に入力され、前記Nチャンネル又はNPN型トランジスタと前記電流設定用抵抗器との接続点に反転入力端子が接続され、出力端子が前記Nチャンネル又はNPN型トランジスタの制御端子に接続されているとよい。
第1の態様の磁気比例式電流センサにおいて、
電源に接続される高電圧端子と低電圧端子との間に、前記定電流回路が前記高電圧端子側となるように前記定電流回路と前記磁気検出素子とが直列に接続され、
前記定電流回路は、Pチャンネル又はPNP型トランジスタと、電流設定用抵抗器と、誤差増幅器とを有し、
前記磁気検出素子と前記高電圧端子との間に、前記Pチャンネル又はPNP型トランジスタが前記磁気検出素子側となるように前記Pチャンネル又はPNP型トランジスタと前記電流設定用抵抗器とが直列に接続され、
前記誤差増幅器は、前記分圧回路からの分圧電圧が非反転入力端子に入力され、前記Pチャンネル又はPNP型トランジスタと前記電流設定用抵抗器との接続点に反転入力端子が接続され、出力端子が前記Pチャンネル又はPNP型トランジスタの制御端子に接続されているとよい。
第1の態様の磁気比例式電流センサにおいて、
前記磁気検出素子の出力電圧を増幅する差動増幅器と、
電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とをさらに備え、
前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
第3のトリミング抵抗器又は可変抵抗器と、第4のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有するもう1つの温度係数抵抗器とを含み、
前記第3のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第4のトリミング抵抗器又は可変抵抗器及び前記もう1つの温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものであるとよい。
この場合、前記差動増幅器は、演算増幅器と、第1ないし第6の固定抵抗器と、第5のトリミング抵抗器又は可変抵抗器とを有し、
前記磁気検出素子の一方の出力端子と前記演算増幅器の反転入力端子とを接続する経路に前記第1の固定抵抗器が設けられ、前記磁気検出素子の他方の出力端子と前記演算増幅器の非反転入力端子とを接続する経路に前記第2の固定抵抗器が設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する経路に前記第3及び第4の固定抵抗器が直列に接続され、前記非反転入力端子と前記中間電圧生成回路の出力端子とを接続する経路に前記第5及び第6の固定抵抗器が直列に接続され、前記第3及び第4の固定抵抗器の接続点と前記第5及び第6の固定抵抗器の接続点とを接続する経路に前記第5のトリミング抵抗器又は可変抵抗器が設けられ、前記第1及び第2の固定抵抗器が同抵抗値であり、前記第3ないし第6の固定抵抗器が同抵抗値であるとよい。
本発明の第2の態様は、電流センサである。この電流センサは、
被測定電流によって発生する磁界が印加される磁気検出素子を有する電流検出部と、
前記電流検出部の出力電圧を増幅する差動増幅器と、
電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とを備え、
前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものである。
第2の態様の電流センサにおいて、前記中間電圧生成回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器と前記温度係数抵抗器とが直列に接続されたものであるとよい。
第2の態様の電流センサにおいて、前記中間電圧生成回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器とが直列に接続されるとともに、前記温度係数抵抗器が前記第2のトリミング抵抗器又は可変抵抗器の両端子間に設けられたものであるとよい。
本発明の第3の態様は、磁気検出素子の温度特性補償方法である。この方法は、
磁気比例式電流センサに用いられる磁気検出素子の温度特性を補償する、磁気検出素子の温度特性補償方法であって、
前記磁気比例式電流センサは、
被測定電流によって発生する磁界が印加される磁気検出素子と、
前記磁気検出素子を定電流駆動する定電流回路と、
電源電圧を所定の比率で分圧し、分圧電圧を前記定電流回路に供給する分圧回路とを備え、
前記定電流回路から前記磁気検出素子に供給される電流値は、前記分圧回路からの前記分圧電圧との間に所定の相関関係を有し、前記分圧回路は、
第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記分圧電圧を前記定電流回路に供給するものであり、
この温度特性補償方法は、
第1の所定温度において前記磁気検出素子に第1の磁界が印加されているときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記磁気検出素子からの出力電圧が第1の所定値となるように前記分圧回路からの第1の分圧電圧を設定する第1ステップと、
前記第1の所定温度と異なる第2の所定温度において前記磁気検出素子に第2の磁界が印加されているときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記磁気検出素子からの出力電圧が第2の所定値となるように前記分圧回路からの第2の分圧電圧を設定する第2ステップと、
前記第1ステップで設定された前記第1の分圧電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第1の関係式と、前記第2ステップで設定された前記第2の分圧電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第2の関係式とに基づいて、未知数とした前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を既知数として求める第3ステップと、
前記第3ステップで求めた前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を有するように前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節する第4ステップとを有するものである。
本発明の第4の態様も、磁気検出素子の温度特性補償方法である。この方法は、
電流センサに用いられる磁気検出素子の温度特性を補償する、磁気検出素子の温度特性補償方法であって、
前記電流センサは、
被測定電流によって発生する磁界が印加される磁気検出素子を有する電流検出部と、
前記電流検出部の出力電圧を増幅する差動増幅器と、
電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とを備え、
前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものであり、
この温度特性補償方法は、
第1の所定温度において前記磁気検出素子に磁界が印加されていないときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記差動増幅器からの出力電圧が所定値となるように前記中間電圧生成回路からの第1の中間電圧を設定する第1ステップと、
前記第1の所定温度と異なる第2の所定温度において前記磁気検出素子に磁界が印加されていないときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記差動増幅器からの出力電圧が前記所定値となるように前記中間電圧生成回路からの第2の中間電圧を設定する第2ステップと、
前記第1ステップで設定された前記第1の中間電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第1の関係式と、前記第2ステップで設定された前記第2の中間電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第2の関係式とに基づいて、未知数とした前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を既知数として求める第3ステップと、
前記第3ステップで求めた前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を有するように前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節する第4ステップとを有するものである。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、第1のトリミング抵抗器又は可変抵抗器の抵抗値と、第2のトリミング抵抗器又は可変抵抗器及び温度係数抵抗器の合成抵抗値との比に応じて温度補償値が定まるため、回路を構成した後であっても温度補償値の調節が可能となり、ホール素子等の磁気検出素子の温度特性バラツキに対して柔軟に対応することができる。
本発明の第1の実施の形態に係る磁気比例式電流センサの例示的な回路図。 同磁気比例式電流センサにおける、分圧電圧とホール素子駆動電流との関係を示す例示的な特性図。 同磁気比例式電流センサにおける、ホール素子のオフセット電圧の温度特性の補償前のセンサ出力電圧及び理想的なセンサ出力電圧の例示的な特性図。 同磁気比例式電流センサにおける、中間電圧生成回路の可変抵抗器の抵抗値の決定に用いる抵抗値導出図。 同磁気比例式電流センサにおける、ホール素子の出力電圧(ゲイン)の温度特性の補償前のセンサ出力電圧及び理想的なセンサ出力電圧の例示的な特性図。 同磁気比例式電流センサにおける、分圧回路の可変抵抗器の抵抗値の決定に用いる抵抗値導出図。 本発明の第2の実施の形態に係る磁気比例式電流センサの部分的な回路図。 定電流回路の変形例を示す回路図。 分圧回路の変形例を示す回路図。 分圧回路の別の変形例を示す回路図。 (A)は磁気比例式電流センサの基本的構成を示す概略斜視図。(B)は磁気平衡式電流センサの基本的構成を示す概略斜視図。 リング状の磁気コアを用いないコアレス構造の磁気比例式電流センサの構成を示す、(A)は平面図、(B)は断面図。 3つのホール素子#1〜3の出力電圧(ゲイン)の温度特性の素子ごとのバラツキを示す例示的な温度特性図。 同3つのホール素子#1〜3の温度特性を特許文献1の技術を用いて(つまり単一の温度補償値で)補償した場合のセンサ出力電圧の特性図。 3つのホール素子#1〜3のオフセット電圧の温度特性の素子ごとのバラツキを示す例示的な温度特性図。
以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る磁気比例式電流センサ100の例示的な回路図である。磁気比例式電流センサ100は、高電圧端子としての電源端子12と、低電圧端子としての接地端子14と、センサ出力端子15と、磁気検出素子としてのホール素子16と、定電流回路18と、差動増幅器22と、分圧回路24と、中間電圧生成回路26とを備える。
電源端子12及び接地端子14は直流電圧源(例えば電源電圧VCC=5V)に接続され、電源端子12が高電圧側であり、接地端子14が低電圧側で接地される。ホール素子16は、例えばInAs系であり、図11(A)に例示のように磁気コア20のギャップ部G(すなわち被測定電流Iinによって発生する磁界が印加される位置)に固定配置される。
図1においてホール素子16は等価的に4つの抵抗のブリッジ接続で表される。ホール素子16の電流供給端子a,b間に一定の駆動電流ICを流しておくことにより、ホール素子16に印加された磁界に比例した(換言すれば被測定電流Iinに比例した)電圧VHが出力端子c,d間に得られる。
定電流回路18は、ホール素子16を定電流駆動する。分圧回路24は、電源電圧VCCを所定の比率で分圧する。この分圧電圧VXは定電流回路18の駆動電圧となり、図1の回路構成例では後述のように分圧電圧VXと定電流回路18の供給電流(ホール素子16の駆動電流IC)とが正比例の関係となる。差動増幅器22は、ホール素子16の出力電圧VHを増幅し、これをセンサ出力端子15から出力する(センサ出力電圧Vout)。中間電圧生成回路26は、電源電圧VCCを所定の比率で分圧して出力する。中間電圧生成回路26の出力電圧VYは、差動増幅器22の基準電圧(入力端子間の電圧が0Vのときの出力電圧)となる。
以下、磁気比例式電流センサ100の回路構成をより具体的に説明する。
ホール素子16及び定電流回路18は、電源端子12と接地端子14との間に、ホール素子16が電源端子12側となるように直列に接続される。すなわち、ホール素子16の電流供給端子aが電源端子12に接続され、ホール素子16の電流供給端子bと接地端子14との間に定電流回路18が設けられる。
分圧回路24は、電源端子12と接地端子14との間に直列に接続された可変抵抗器VR1,VR2及び正温度係数抵抗器RXを有し、可変抵抗器VR1及びVR2の接続点の電圧(分圧電圧VX)を定電流回路18に出力する。分圧電圧VXは、可変抵抗器VR1の抵抗値と、可変抵抗器VR2及び正温度係数抵抗器RXの合成抵抗値との比で電源電圧VCCを分圧したものであり、次の式(1)
X={(VR2+RX)/(VR1+VR2+RX)}×VCC …式(1)
で表される。なお、正温度係数抵抗器RXの抵抗温度係数(T.C.R:Temperature Coefficient of Resistance)は例えば4200ppm/K(1℃あたりの抵抗値変化率が0.42%)であり、25℃における抵抗値が例えばRX(25℃)=180Ωのとき、125℃における抵抗値はRX(125℃)=255.6Ωとなる。上記式(1)より次の2つのことが理解される。
1.分圧電圧VXは温度によって変化する。
2.ある温度(例えば25℃)における分圧電圧VXを所定値(例えば1V)とする場合において、可変抵抗器VR1及びVR2の抵抗値を調節することで分圧電圧VXの温度に対する変化量を調節可能である(つまり後述のように温度補償値を調節可能である)。
上記1.は、正温度係数抵抗器RXの抵抗値が温度によって変化する(温度が高いほど高抵抗値となる)ためである。上記2.は、可変抵抗器VR2を設けたことによる効果であり、上記特許文献1の技術では実現できないものである。すなわち、上記特許文献1のように可変抵抗器が1つしかない(本実施の形態における可変抵抗器VR2に相当するものがない)場合、分圧電圧VXは上記式(1)でVR2をゼロにした次式
X={RX/(VR1+RX)}×VCC (比較例)
となり、ある温度(例えば25℃)における分圧電圧VXを所定値(例えば1V)とする場合の可変抵抗器VR1の抵抗値は1通りしかないため、分圧電圧VXの温度に対する変化量を調節できない。これに対し、本実施の形態では分圧電圧VXは上記式(1)に表されるとおりであり、ある温度(例えば25℃)における分圧電圧VXを所定値(例えば1V)とする場合の可変抵抗器VR1及びVR2の抵抗値の組合せは複数通りあるため、どのような抵抗値の組合せとするかによって分圧電圧VXの温度に対する変化量を調節可能である。具体的には、分圧電圧VXの温度に対する変化量を小さくしたい場合は可変抵抗器VR1及びVR2を高抵抗値の組合せにすればよく、逆に分圧電圧VXの温度に対する変化量を大きくしたい場合は可変抵抗器VR1及びVR2を低抵抗値の組合せにすればよい。可変抵抗器VR1及びVR2の抵抗値のより詳細な調節については後述する。
定電流回路18は、NPN型バイポーラトランジスタQと、電流設定用抵抗器R1と、オペアンプ32(誤差増幅器としての演算増幅器)とを有する。NPN型バイポーラトランジスタQ及び電流設定用抵抗器R1は、ホール素子16の電流供給端子bと接地端子14との間に、NPN型バイポーラトランジスタQが電流供給端子b側となるように直列に接続される。すなわち、NPN型バイポーラトランジスタQのコレクタがホール素子16の電流供給端子bに接続され、NPN型バイポーラトランジスタQのエミッタと接地端子14との間に電流設定用抵抗器R1が設けられる。オペアンプ32は、分圧回路24からの分圧電圧VXが非反転入力端子に入力され、NPN型バイポーラトランジスタQと電流設定用抵抗器R1との接続点に反転入力端子が接続され、出力端子がNPN型バイポーラトランジスタQの制御端子(ベース端子)に接続される。
このような接続とすることで、オペアンプ32の非反転入力端子と反転入力端子との間の電圧は負帰還により常にゼロとなる(イマジナリーショートが成立する)。つまり、オペアンプ32の反転入力端子の電圧(NPN型バイポーラトランジスタQのエミッタの電圧)はオペアンプ32の非反転入力端子の電圧(分圧回路24からの分圧電圧VX)と等しくなる。したがって、電流設定用抵抗器R1に流れる電流すなわちホール素子駆動電流ICは、
C=VX/R1[A] …式(2)
となる。図2は、分圧電圧VXとホール素子16の駆動電流ICとの関係を示す例示的な特性図である。本図に示されるように、図1の回路構成例ではホール素子駆動電流ICは分圧電圧VXと正比例の関係にある。例えば、温度125℃における分圧電圧VXが1Vでゲインが大きすぎた場合、可変抵抗器VR1及びVR2の抵抗値の組合せを変更して同温度における分圧電圧VXを0.9Vに調節し、ゲインを適正にすることが本実施の形態では可能となる。なお、ホール素子駆動電流ICは例えば25℃において5mAに設定する。
中間電圧生成回路26は、電源端子12と接地端子14との間に直列に接続された可変抵抗器VR3,VR4及び正温度係数抵抗器RYを有し、可変抵抗器VR3及びVR4の接続点の電圧(中間電圧VY)を差動増幅器22に出力する。中間電圧VYは、
Y={(VR4+RY)/(VR3+VR4+RY)}×VCC …式(3)
と表される。なお、正温度係数抵抗器RYは、正温度係数抵抗器RXと同様のものを用いることができる。上記式(3)より次の2つのことが理解される。
1.中間電圧VYは温度によって変化する。
2.ある温度(例えば25℃)における中間電圧VYを所定値(例えば2.5V)とする場合において、可変抵抗器VR3及びVR4の抵抗値を調節することで中間電圧VYの温度に対する変化量を調節可能である(つまり後述のように温度補償値を調節可能である)。
上記1.は、正温度係数抵抗器RYの抵抗値が温度によって変化する(温度が高いほど高抵抗値となる)ためである。上記2.は、可変抵抗器VR4を設けたことによる効果である。可変抵抗器が1つしかない(本実施の形態における可変抵抗器VR4に相当するものがない)場合、中間電圧VYは上記式(3)でVR4をゼロにした次式
Y={RY/(VR3+RY)}×VCC (比較例)
となり、ある温度(例えば25℃)における中間電圧VYを所定値(例えば2.5V)とする場合の可変抵抗器VR3の抵抗値は1通りしかないため、中間電圧VYの温度に対する変化量を調節できない。これに対し、本実施の形態では中間電圧VYは上記式(3)に表されるとおりであり、ある温度(例えば25℃)における中間電圧VYを所定値(例えば2.5V)とする場合の可変抵抗器VR3及びVR4の抵抗値の組合せは複数通りあるため、どのような抵抗値の組合せとするかによって中間電圧VYの温度に対する変化量を調節可能である。具体的には、中間電圧VYの温度に対する変化量を小さくしたい場合は可変抵抗器VR3及びVR4を高抵抗値の組合せにすればよく、逆に中間電圧VYの温度に対する変化量を大きくしたい場合は可変抵抗器VR3及びVR4を低抵抗値の組合せにすればよい。可変抵抗器VR3及びVR4の抵抗値のより詳細な調節については後述する。
差動増幅器22は、オペアンプ38(演算増幅器)と、第1ないし第6固定抵抗器としての固定抵抗器R6〜R11と、トリミング抵抗器VR5とを有する。トリミング抵抗器VR5としては例えばレーザトリミング抵抗器が用いられる。
ホール素子16の出力端子dとオペアンプ38の反転入力端子とを接続する経路に固定抵抗器R6が設けられ、ホール素子16の出力端子cとオペアンプ38の非反転入力端子とを接続する経路に固定抵抗器R7が設けられ、オペアンプ38の出力端子と前記反転入力端子とを接続する経路に固定抵抗器R8及びR9が直列に接続され、前記非反転入力端子と基準電圧端子(中間電圧生成回路26の出力端子)とを接続する経路に固定抵抗器R10及びR11が直列に接続され、固定抵抗器R8及びR9の接続点と固定抵抗器R10及びR11の接続点とを接続する経路にトリミング抵抗器VR5が設けられる。
固定抵抗器R6及びR7は同抵抗値であり、固定抵抗器R8〜R11は同抵抗値である(R6=R7,R8=R9=R10=R11)。ここで、トリミング抵抗器VR5の抵抗値をK×R12(但し、Kは任意の正の実数で、R12=R8=R9=R10=R11)とすれば、差動増幅器22の出力電圧Vout(センサ出力電圧)は、
out=VY+2(1+1/K)×(R12/R6)×VH[V] …式(4)
で示される。したがって、トリミング抵抗器VR5の抵抗値(=K×R12)を調節することで差動増幅器22の増幅度を調節することができる。
以下、可変抵抗器VR1ないしVR5の抵抗値の調節について説明する。ここでは例として、図14の#2に示すように、被測定電流Iinの−300A〜+300Aのレンジに対して磁気比例式電流センサ100の出力電圧Voutが0.5V〜4.5Vのレンジで直線的に変化するように各抵抗値を調節するものとする。
1.可変抵抗器VR5の抵抗値の調節
この作業は、磁気比例式電流センサ100のゲイン調整に相当する。
まず、所定温度(例えば25℃)において、分圧回路24の可変抵抗器VR1及びVR2の抵抗値を調節し、ホール素子16の駆動電流ICが所定値(例えば5mA)となるように分圧電圧VXを設定する。なお、可変抵抗器VR1及びVR2の抵抗値の組合せは複数存在するが、この段階ではどのような組合せでも構わない。
次に、中間電圧生成回路26の可変抵抗器VR3及びVR4の抵抗値を調節し、被測定電流Iinが0Aの時の差動増幅器22の出力電圧Voutが所定値(例えば2.5V)となるように中間電圧VYを設定する。なお、可変抵抗器VR3及びVR4の抵抗値の組合せは複数存在するが、この段階ではどのような組合せでも構わない。ここまでの手順(オフセット調整)は、ホール素子16のオフセット電圧(被測定電流が0A時の出力電圧)の影響に配慮したものである。
その後、トリミング抵抗器VR5の抵抗値(=K×R12)を調節し、被測定電流Iinのフルスケール時(±300A時)の差動増幅器22の出力電圧Voutが2.5V±2Vとなるように差動増幅器22の増幅度を調節する。増幅度は例えば、ホール素子16の出力電圧VH(例えば数10mV)に対して数10倍である。
なお、ここまでの手順で調節した可変抵抗器VR1ないしVR4の抵抗値は暫定的なものであり、可変抵抗器VR1ないしVR4の抵抗値は最終的には後述の手順で決定される。
2.可変抵抗器VR3及びVR4の抵抗値の調節
この作業は、ホール素子16の温度特性の補償その1(ホール素子16のオフセット電圧の温度特性の補償)に相当する。
第1ステップ:第1の所定温度(例えば25℃)で被測定電流Iinが0A(ホール素子16への印加磁界がゼロ)かつホール素子16の駆動電流ICが所定値(例えば5mA)の状態で、可変抵抗器VR3及びVR4の抵抗値を調節し、差動増幅器22の出力電圧Voutが所定値(例えば2.5V)となるように中間電圧生成回路26からの中間電圧VYを設定する。ここで設定した中間電圧VYを、第1の中間電圧VY(25℃)とする。
第2ステップ:第1の所定温度と異なる第2の所定温度(例えば125℃)とした状態で、可変抵抗器VR3及びVR4の抵抗値を調節し、差動増幅器22の出力電圧Voutが前記所定値となるように中間電圧生成回路26からの中間電圧VYを設定する。ここで設定した中間電圧VYを、第2の中間電圧VY(125℃)とする。
第3ステップ:第1の中間電圧VY(25℃)を既知数とし、可変抵抗器VR3及びVR4の抵抗値を未知数とする第1の関係式(下記式(5))と、第2の中間電圧VY(125℃)を既知数とし、可変抵抗器VR3及びVR4の抵抗値を未知数とする第2の関係式(下記式(6))とに基づいて、未知数とした可変抵抗器VR3及びVR4の抵抗値を既知数として求める。つまり、第1及び第2の関係式(下記式(5)及び(6))を連立方程式として例えばコンピュータプラグラムを利用して解くことで可変抵抗器VR3及びVR4の抵抗値を求める。
Figure 2010181211
Figure 2010181211
第4ステップ:求められた抵抗値を有するように可変抵抗器VR3及びVR4の抵抗値を調節する。これにより、第1及び第2の所定の温度の双方において、被測定電流Iinが0A(ホール素子16への印加磁界がゼロ)かつホール素子16の駆動電流ICが所定値(例えば5mA)の場合の差動増幅器22の出力電圧Voutが所定値(例えば2.5V)となる。ここで、ホール素子16のオフセット電圧は温度に対して直線的な特性であるため、第1及び第2の所定の温度に限らず、他の温度範囲においても、差動増幅器22の出力電圧Voutは前記所定値となる。
図3は、ホール素子16のオフセット電圧の温度特性の補償前、すなわち可変抵抗器VR3及びVR4の抵抗値の調節前におけるセンサ出力電圧(差動増幅器22の出力電圧Vout)、及び理想的なセンサ出力電圧の例示的な特性図である。本図の例では、可変抵抗器VR3及びVR4の抵抗値の調節前においては被測定電流Iinの−300A〜+300Aのレンジに対してセンサ出力電圧Voutが1V〜5Vのレンジで直線的に変化している。これを、上記のようにして可変抵抗器VR3及びVR4の抵抗値の調節することで、被測定電流Iinの−300A〜+300Aのレンジに対してセンサ出力電圧Voutが0.5V〜4.5Vのレンジで直線的に変化する理想的な特性を実現することができる。
以下、第3ステップにおいて可変抵抗器VR3及びVR4の抵抗値を求める具体的方法の一つを説明する。この方法は、第1の関係式(上記式(5))の可変抵抗器VR3の抵抗値に任意の値を代入して可変抵抗器VR4の抵抗値(VR4(25℃))を導出し、第2の関係式(上記式(6))の可変抵抗器VR3の抵抗値にも同じ値を代入して可変抵抗器VR4の抵抗値(VR4(125℃))を導出し、VR4(125℃)−VR4(25℃)=0となる場合の可変抵抗器VR3及びVR4の抵抗値を求めるものである。例えば、図4のようにVR3を横軸にとり、{VR4(125℃)−VR4(25℃)}を縦軸にとって計算値をプロットし、縦軸のゼロと重なる点(すなわち差=0)が求められるべき抵抗値である。
3.可変抵抗器VR1及びVR2の抵抗値の調節
この作業は、ホール素子16の温度特性の補償その2(ホール素子16の出力電圧(ゲイン)の温度特性の補償)に相当する。
第1ステップ:第1の所定温度(例えば25℃)においてホール素子16に第1の磁界(例えば50mT、被測定電流300Aに対応)が印加されているときに、可変抵抗器VR1及びVR2の抵抗値を調節し、ホール素子16の出力電圧VHが第1の所定値(差動増幅器22の出力電圧Voutの例えば4.5Vに対応した値)となるように分圧回路24からの分圧電圧VXを設定する。ここで設定した分圧電圧VXを、第1の分圧電圧VX(25℃)とする。
第2ステップ:第1の所定温度と異なる第2の所定温度(例えば125℃)においてホール素子16に第2の磁界(ここでは第1の磁界と同じ)が印加されているときに、可変抵抗器VR1及びVR2の抵抗値を調節し、ホール素子16の出力電圧VHが第2の所定値(ここでは第1の所定値と同じ)となるように分圧回路24からの分圧電圧VXを設定する。ここで設定した分圧電圧VXを、第2の分圧電圧VX(125℃)とする。なお、前記第1及び第2の磁界並びに前記第1及び第2の所定値は異なっていてもよい(例えば、第2の磁界は−50mT、第2の所定値は差動増幅器22の出力電圧Voutの0.5Vに対応した値であってもよい)。
第3ステップ:第1の分圧電圧VX(25℃)を既知数とし、可変抵抗器VR1及びVR2の抵抗値を未知数とする第1の関係式(下記式(7))と、第2の分圧電圧VX(125℃)を既知数とし、可変抵抗器VR1及びVR2の抵抗値を未知数とする第2の関係式(下記式(8))とに基づいて、未知数とした可変抵抗器VR1及びVR2の抵抗値を既知数として求める。つまり、第1及び第2の関係式(下記式(7)及び(8))を連立方程式として例えばコンピュータプラグラムを利用して解くことで可変抵抗器VR1及びVR2の抵抗値を求める。
Figure 2010181211
Figure 2010181211
第4ステップ:求められた抵抗値を有するように可変抵抗器VR1及びVR2の抵抗値を調節する。これにより、第1及び第2の所定の温度の双方において、被測定電流Iinの−300A〜+300Aのレンジに対して磁気比例式電流センサ100の出力電圧Voutが0.5V〜4.5Vのレンジで直線的に変化するようになる。ここで、ホール素子16のゲインは温度に対して直線的な特性であるため、第1及び第2の所定の温度に限らず、他の温度範囲においても、磁気比例式電流センサ100の出力電圧Voutは同様に変化するようになる。
図5は、ホール素子16の出力電圧(ゲイン)の温度特性の補償前、すなわち可変抵抗器VR1及びVR2の抵抗値の調節前におけるセンサ出力電圧(差動増幅器22の出力電圧Vout)、及び理想的なセンサ出力電圧の例示的な特性図である。本図の例では、可変抵抗器VR1及びVR2の抵抗値の調節前においてはゲインが大きすぎて理想的な特性と比較して傾きが大きくなっている。これを、上記のようにして可変抵抗器VR1及びVR2の抵抗値の調節することで、被測定電流Iinの−300A〜+300Aのレンジに対してセンサ出力電圧Voutが0.5V〜4.5Vのレンジで直線的に変化する理想的な特性を実現することができる。
なお、第3ステップにおいて可変抵抗器VR1及びVR2の抵抗値を求める具体的方法の一つは、可変抵抗器VR3及びVR4の抵抗値を求める場合と同様である。すなわち、第1の関係式(上記式(7))の可変抵抗器VR1の抵抗値に任意の値を代入して可変抵抗器VR2の抵抗値(VR2(25℃))を導出し、第2の関係式(上記式(8))の可変抵抗器VR1の抵抗値にも同じ値を代入して可変抵抗器VR2の抵抗値(VR2(125℃))を導出し、VR2(125℃)−VR2(25℃)=0となる場合の可変抵抗器VR1及びVR2の抵抗値を求める。例えば、図6のようにVR1を横軸にとり、{VR2(125℃)−VR2(25℃)}を縦軸にとって計算値をプロットし、縦軸のゼロと重なる点(すなわち差=0)が求められるべき抵抗値である。
本実施の形態によれば、下記の効果を奏することができる。
(1) ホール素子16の出力電圧VHは図13に例示のようにホール素子駆動電流ICが一定であれば温度上昇(低下)に伴って低下(上昇)するところ、本実施の形態の磁気比例式電流センサ100では温度上昇(低下)に伴ってホール素子駆動電流ICを大きく(小さく)してホール素子16の感度を高める(低める)ことで、温度上昇(低下)に伴うホール素子16の出力電圧VHの低下(上昇)を防止できる(つまりホール素子16の温度特性を補償できる)。ここで、可変抵抗器VR1の抵抗値と、可変抵抗器VR2及び正温度係数抵抗器RXの合成抵抗値との比に応じて温度に対するホール素子駆動電流ICの変化量(つまり温度補償値)が定まるため、回路を構成した後であっても温度補償値の調節が可能となり、ホール素子16の温度特性バラツキに対して柔軟に対応することができる。より具体的には、式(1)のところで既述のとおり、本実施の形態の磁気比例式電流センサ100では可変抵抗器VR1及びVR2の抵抗値を調節することで温度に対する分圧電圧VXの変化量を調節可能としているため、回路を構成した後であっても温度に対するホール素子駆動電流ICの変化量(温度補償値)が調節可能である。このため、ホール素子の出力電圧(ゲイン)の温度特性は素子ごとバラツキがあるところ、温度に対するホール素子駆動電流ICの変化量(温度補償値)が調節可能なため、温度特性の異なる各ホール素子に対して適切に温度補償することが可能となる。
(2) ホール素子16のオフセット電圧は図15に例示のようにホール素子駆動電流ICが一定であれば温度上昇(低下)に伴って低下(上昇)するところ、本実施の形態の磁気比例式電流センサ100では温度上昇(低下)に伴って中間電圧VY(差動増幅器22の基準電圧)を上昇(低下)させることで、温度上昇(低下)に伴うホール素子16のオフセット電圧の低下(上昇)の影響を防止できる(つまりホール素子16の温度特性を補償できる)。ここで、可変抵抗器VR3の抵抗値と、可変抵抗器VR4及び正温度係数抵抗器RYの合成抵抗値との比に応じて温度に対する中間電圧VYの変化量(つまり温度補償値)が定まるため、回路を構成した後であっても温度補償値の調節が可能となり、ホール素子16の温度特性バラツキに対して柔軟に対応することができる。より具体的には、式(3)のところで既述のとおり、本実施の形態の磁気比例式電流センサ100では可変抵抗器VR3及びVR4の抵抗値を調節することで温度に対する中間電圧VYの変化量(温度補償値)を調節可能としているため、回路を構成した後であっても温度に対する中間電圧VYの変化量(温度補償値)が調節可能である。このため、ホール素子のオフセット電圧の温度特性は素子ごとバラツキがあるところ、温度に対する中間電圧VYの変化量(温度補償値)が調節可能なため、温度特性の異なる各ホール素子に対して適切に温度補償することが可能となる。
(3) トリミング抵抗器VR5の抵抗値(=K×R12)を調節して差動増幅器22の増幅度を調整することで磁気比例式電流センサ100のゲイン調整を可能として差動増幅器22の他の抵抗器R6〜R11(ゲイン調節の際に抵抗値調整不要)には高精度な固定抵抗器を用いているため、増幅度の調整のために差動増幅器22のCMR(Common Mode Rejection)が低下する不都合も防止できる。以下、これについて説明する。
差動増幅器22は、反転増幅器と非反転増幅器の両方を重ねて作った増幅器と考えられるため、固定抵抗器R6〜R11の抵抗値の関係(R6=R7,R8=R9=R10=R11)が崩れた場合は、差動増幅器22に反転入力端子及び非反転入力端子に同相成分が入ってきたときのCMRが低下し、理想的な差動増幅器から離れてしまい、不具合が発生しやすくなる。理想的な差動増幅器の場合は、例えば同相のノイズが入っても出力はゼロとなる(差動電圧だけを正確に増幅する)。
ここで、抵抗器R8〜R11(又は、抵抗器R6及びR7)を半固定抵抗器やレーザトリミング抵抗器としてその抵抗値を調整することでゲイン調整する場合を考えると、調整後の抵抗値が等しくなるようにする(R8=R9=R10=R11(又はR6=R7)を満たすようにする)ことは至難の業であり、抵抗値の上記関係が崩れてCMRが低下し、理想的な差動増幅器から遠ざかってしまう。
一方、本実施の形態によれば上述のとおりトリミング抵抗器VR5の抵抗値(=K×R12)を調整することで差動増幅器22の増幅度を調整でき、他の抵抗器R6〜R11の抵抗値は調整不要なため、抵抗器R6〜R11として高精度の固定抵抗器を用いている。このため差動増幅器22の増幅度の調整(すなわち磁気比例式電流センサ100のゲイン調整)のために抵抗器R6〜R11の抵抗値の関係(R6=R7,R8=R9=R10=R11)が崩れることはなく、理想的な差動増幅器に近い状態を維持することができる。
(第2の実施の形態)
上記実施の形態では、ホール素子を駆動する定電流回路に用いるトランジスタをNPN型バイポーラトランジスタとしたが、本実施の形態ではそれをPNP型バイポーラトランジスタとする。
図7は、本発明の第2の実施の形態に係る磁気比例式電流センサ200の部分的な回路図である。本実施の形態の磁気比例式電流センサ200は、第1の実施の形態の磁気比例式電流センサ100と比較して、定電流回路18の構成と、ホール素子16及び定電流回路18の位置関係とにおいて相違し、その他の点で一致する。以下、相違点を中心に説明する。
定電流回路18及びホール素子16は、電源端子12と接地端子14との間に、定電流回路18が電源端子12側となるように直列に接続される。すなわち、電源端子12とホール素子16の電流供給端子aとの間に定電流回路18が設けられ、ホール素子16の電流供給端子bが接地端子14に接続される。
定電流回路18は、PNP型バイポーラトランジスタQと、電流設定用抵抗器R1と、演算増幅器32とを有する。電流設定用抵抗器R1及びPNP型バイポーラトランジスタQは、電源端子12とホール素子16の電流供給端子aとの間に、電流設定用抵抗器R1が電源端子12側となるように直列に接続される。すなわち、電源端子12とPNP型バイポーラトランジスタQのエミッタとの間に電流設定用抵抗器R1が設けられ、PNP型バイポーラトランジスタQのコレクタがホール素子16の電流供給端子aに接続される。演算増幅器32は、分圧回路24からの分圧電圧VXが非反転入力端子に入力され、PNP型バイポーラトランジスタQと電流設定用抵抗器R1との接続点に反転入力端子が接続され、出力端子がPNP型バイポーラトランジスタQの制御端子(ベース端子)に接続される。電流設定用抵抗器R1に流れる電流すなわちホール素子駆動電流ICは、
C=(VCC−VX)/R1[A] …式(9)
となる。
本実施の形態も、第1の実施の形態と同様の効果を奏することができる。
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。
実施の形態では定電流回路に用いるトランジスタをバイポーラトランジスタとする場合を説明したが、変形例では電界効果トランジスタとしてもよい。この場合の定電流回路の構成を図8(A)及び(B)に示す。図8(A)ではNチャンネルMOS型の電界効果トランジスタ(MOS:Metal-Oxide Semiconductor)を用いており、これは図1の定電流回路18の変形である。同図(B)ではPチャンネルMOS型の電界効果トランジスタを用いており、これは図7の定電流回路18の変形である。
実施の形態では分圧回路24は電源端子12と接地端子14との間に可変抵抗器VR1,VR2及び正温度係数抵抗器RXを直列に接続したものとした。変形例ではこれに替えて、分圧回路24は、図9に示すように、電源端子12と接地端子14との間に可変抵抗器VR1,VR2が直列に接続されるとともに、正温度係数抵抗器RXが可変抵抗器VR2の両端子間に設けられたものであってもよい。要するに分圧回路24は、可変抵抗器VR1の抵抗値と、可変抵抗器VR2及び正温度係数抵抗器RXの合成抵抗値との比で電源電圧VCCを分圧して出力するものであればよい。さらに、分圧回路24は図10(A),(B)のように負温度係数抵抗器RX'を用いた構成であってもよい。これは、図1又は図9の分圧回路24において、正温度係数抵抗器RXに替えて負温度係数抵抗器RX'を用い、可変抵抗器VR1を接地端子14側とし、可変抵抗器VR2及び負温度係数抵抗器RX'の合成抵抗(直列又は並列接続)を電源端子12側としたものである。以上のことは中間電圧生成回路26についても同様である。
実施の形態では磁気比例式電流センサを単電源駆動する場合を説明したが、変形例では両電源駆動としてもよい。
実施の形態では、ホール素子16の出力電圧(ゲイン)の温度特性と、ホール素子16のオフセット電圧の温度特性との双方を補償する構成を説明した。変形例では、出力電圧(ゲイン)及びオフセット電圧の温度特性のいずれか一方のみを構成してもよい。どのような構成を採用するかは用途や設計上の要請によって適宜決定される。
実施の形態では図1に示される構成の差動増幅器22を用いてゲイン調整に伴うCMR低下を防止したが、CMR低下への配慮を重要視しない場合は他の公知の差動増幅器を用いてもよい。
実施の形態では図11(A)に示すようにホール素子16が磁気コア20のギャップ部Gに配置される場合を説明したが、変形例では図12に例示のようなコアレス構成を採用してもよい。
実施の形態で用いた可変抵抗器VR1ないしVR4の一部又は全部は、変形例ではトリミング抵抗器(例えばレーザトリミング抵抗器)に替えてもよい。また、実施の形態で用いたトリミング抵抗器VR5は、変形例では可変抵抗器に替えてもよい。
実施の形態では電流センサが磁気比例式である場合を説明したが、ホール素子16のオフセット電圧の温度特性の補償に関していえば、電流センサが図11(B)に例示のような磁気平衡式である場合も有効である。
12 電源端子
14 接地端子
15 センサ出力端子
16 ホール素子
18 定電流回路
22 差動増幅器
24 分圧回路
26 中間電圧生成回路
100,200 磁気比例式電流センサ
VR1〜VR4 可変抵抗器
VR5 トリミング抵抗器
X,RY 正温度係数抵抗器

Claims (12)

  1. 被測定電流によって発生する磁界が印加される磁気検出素子と、
    前記磁気検出素子を定電流駆動する定電流回路と、
    電源電圧を所定の比率で分圧し、分圧電圧を前記定電流回路に供給する分圧回路とを備え、
    前記定電流回路から前記磁気検出素子に供給される電流値は、前記分圧回路からの前記分圧電圧との間に所定の相関関係を有し、前記分圧回路は、
    第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
    前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記分圧電圧を前記定電流回路に供給するものである、磁気比例式電流センサ。
  2. 請求項1に記載の磁気比例式電流センサにおいて、前記分圧回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器と前記温度係数抵抗器とが直列に接続されたものである、磁気比例式電流センサ。
  3. 請求項1に記載の磁気比例式電流センサにおいて、前記分圧回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器とが直列に接続されるとともに、前記温度係数抵抗器が前記第2のトリミング抵抗器又は可変抵抗器の両端子間に設けられたものである、磁気比例式電流センサ。
  4. 請求項1から3のいずれかに記載の磁気比例式電流センサにおいて、
    電源に接続される高電圧端子と低電圧端子との間に、前記磁気検出素子が前記高電圧端子側となるように前記磁気検出素子と前記定電流回路とが直列に接続され、
    前記定電流回路は、Nチャンネル又はNPN型トランジスタと、電流設定用抵抗器と、誤差増幅器とを有し、
    前記磁気検出素子と前記低電圧端子との間に、前記Nチャンネル又はNPN型トランジスタが前記磁気検出素子側となるように前記Nチャンネル又はNPN型トランジスタと前記電流設定用抵抗器とが直列に接続され、
    前記誤差増幅器は、前記分圧回路からの前記分圧電圧が非反転入力端子に入力され、前記Nチャンネル又はNPN型トランジスタと前記電流設定用抵抗器との接続点に反転入力端子が接続され、出力端子が前記Nチャンネル又はNPN型トランジスタの制御端子に接続されている、磁気比例式電流センサ。
  5. 請求項1から3のいずれかに記載の磁気比例式電流センサにおいて、
    電源に接続される高電圧端子と低電圧端子との間に、前記定電流回路が前記高電圧端子側となるように前記定電流回路と前記磁気検出素子とが直列に接続され、
    前記定電流回路は、Pチャンネル又はPNP型トランジスタと、電流設定用抵抗器と、誤差増幅器とを有し、
    前記磁気検出素子と前記高電圧端子との間に、前記Pチャンネル又はPNP型トランジスタが前記磁気検出素子側となるように前記Pチャンネル又はPNP型トランジスタと前記電流設定用抵抗器とが直列に接続され、
    前記誤差増幅器は、前記分圧回路からの分圧電圧が非反転入力端子に入力され、前記Pチャンネル又はPNP型トランジスタと前記電流設定用抵抗器との接続点に反転入力端子が接続され、出力端子が前記Pチャンネル又はPNP型トランジスタの制御端子に接続されている、磁気比例式電流センサ。
  6. 請求項1から5のいずれかに記載の磁気比例式電流センサにおいて、
    前記磁気検出素子の出力電圧を増幅する差動増幅器と、
    電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とをさらに備え、
    前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
    第3のトリミング抵抗器又は可変抵抗器と、第4のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有するもう1つの温度係数抵抗器とを含み、
    前記第3のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第4のトリミング抵抗器又は可変抵抗器及び前記もう1つの温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものである、磁気比例式電流センサ。
  7. 請求項6に記載の磁気比例式電流センサにおいて、前記差動増幅器は、演算増幅器と、第1ないし第6の固定抵抗器と、第5のトリミング抵抗器又は可変抵抗器とを有し、
    前記磁気検出素子の一方の出力端子と前記演算増幅器の反転入力端子とを接続する経路に前記第1の固定抵抗器が設けられ、前記磁気検出素子の他方の出力端子と前記演算増幅器の非反転入力端子とを接続する経路に前記第2の固定抵抗器が設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する経路に前記第3及び第4の固定抵抗器が直列に接続され、前記非反転入力端子と前記中間電圧生成回路の出力端子とを接続する経路に前記第5及び第6の固定抵抗器が直列に接続され、前記第3及び第4の固定抵抗器の接続点と前記第5及び第6の固定抵抗器の接続点とを接続する経路に前記第5のトリミング抵抗器又は可変抵抗器が設けられ、前記第1及び第2の固定抵抗器が同抵抗値であり、前記第3ないし第6の固定抵抗器が同抵抗値である、磁気比例式電流センサ。
  8. 被測定電流によって発生する磁界が印加される磁気検出素子を有する電流検出部と、
    前記電流検出部の出力電圧を増幅する差動増幅器と、
    電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とを備え、
    前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
    第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
    前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものである、電流センサ。
  9. 請求項8に記載の電流センサにおいて、前記中間電圧生成回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器と前記温度係数抵抗器とが直列に接続されたものである、電流センサ。
  10. 請求項8に記載の電流センサにおいて、前記中間電圧生成回路は、電源に接続される高電圧端子と低電圧端子との間に前記第1のトリミング抵抗器又は可変抵抗器と前記第2のトリミング抵抗器又は可変抵抗器とが直列に接続されるとともに、前記温度係数抵抗器が前記第2のトリミング抵抗器又は可変抵抗器の両端子間に設けられたものである、電流センサ。
  11. 磁気比例式電流センサに用いられる磁気検出素子の温度特性を補償する、磁気検出素子の温度特性補償方法であって、
    前記磁気比例式電流センサは、
    被測定電流によって発生する磁界が印加される磁気検出素子と、
    前記磁気検出素子を定電流駆動する定電流回路と、
    電源電圧を所定の比率で分圧し、分圧電圧を前記定電流回路に供給する分圧回路とを備え、
    前記定電流回路から前記磁気検出素子に供給される電流値は、前記分圧回路からの前記分圧電圧との間に所定の相関関係を有し、前記分圧回路は、
    第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
    前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記分圧電圧を前記定電流回路に供給するものであり、
    この温度特性補償方法は、
    第1の所定温度において前記磁気検出素子に第1の磁界が印加されているときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記磁気検出素子からの出力電圧が第1の所定値となるように前記分圧回路からの第1の分圧電圧を設定する第1ステップと、
    前記第1の所定温度と異なる第2の所定温度において前記磁気検出素子に第2の磁界が印加されているときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記磁気検出素子からの出力電圧が第2の所定値となるように前記分圧回路からの第2の分圧電圧を設定する第2ステップと、
    前記第1ステップで設定された前記第1の分圧電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第1の関係式と、前記第2ステップで設定された前記第2の分圧電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第2の関係式とに基づいて、未知数とした前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を既知数として求める第3ステップと、
    前記第3ステップで求めた前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を有するように前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節する第4ステップとを有するものである、磁気検出素子の温度特性補償方法。
  12. 電流センサに用いられる磁気検出素子の温度特性を補償する、磁気検出素子の温度特性補償方法であって、
    前記電流センサは、
    被測定電流によって発生する磁界が印加される磁気検出素子を有する電流検出部と、
    前記電流検出部の出力電圧を増幅する差動増幅器と、
    電源電圧を所定の比率で分圧した中間電圧を前記差動増幅器に供給する中間電圧生成回路とを備え、
    前記差動増幅器は前記中間電圧生成回路からの前記中間電圧を基準電圧とし、前記中間電圧生成回路は、
    第1のトリミング抵抗器又は可変抵抗器と、第2のトリミング抵抗器又は可変抵抗器と、所定の温度係数を有する温度係数抵抗器とを含み、
    前記第1のトリミング抵抗器又は可変抵抗器の抵抗値と、前記第2のトリミング抵抗器又は可変抵抗器及び前記温度係数抵抗器の合成抵抗値との比に応じて定まる前記中間電圧を前記差動増幅器に供給するものであり、
    この温度特性補償方法は、
    第1の所定温度において前記磁気検出素子に磁界が印加されていないときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記差動増幅器からの出力電圧が所定値となるように前記中間電圧生成回路からの第1の中間電圧を設定する第1ステップと、
    前記第1の所定温度と異なる第2の所定温度において前記磁気検出素子に磁界が印加されていないときに、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節し、前記差動増幅器からの出力電圧が前記所定値となるように前記中間電圧生成回路からの第2の中間電圧を設定する第2ステップと、
    前記第1ステップで設定された前記第1の中間電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第1の関係式と、前記第2ステップで設定された前記第2の中間電圧を既知数とし、前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を未知数とする第2の関係式とに基づいて、未知数とした前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を既知数として求める第3ステップと、
    前記第3ステップで求めた前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を有するように前記第1及び第2のトリミング抵抗器又は可変抵抗器の抵抗値を調節する第4ステップとを有するものである、磁気検出素子の温度特性補償方法。
JP2009023289A 2009-02-04 2009-02-04 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法 Withdrawn JP2010181211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023289A JP2010181211A (ja) 2009-02-04 2009-02-04 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023289A JP2010181211A (ja) 2009-02-04 2009-02-04 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法

Publications (1)

Publication Number Publication Date
JP2010181211A true JP2010181211A (ja) 2010-08-19

Family

ID=42762874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023289A Withdrawn JP2010181211A (ja) 2009-02-04 2009-02-04 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法

Country Status (1)

Country Link
JP (1) JP2010181211A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247341A (ja) * 2011-05-30 2012-12-13 Tokai Rika Co Ltd 検出装置および電流センサ
JP2014512542A (ja) * 2011-04-27 2014-05-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ センサ装置および方法
KR20140102603A (ko) 2013-02-14 2014-08-22 세이코 인스트루 가부시키가이샤 센서 회로
EP2560300A3 (de) * 2011-08-16 2017-04-26 Siemens Convergence Creators GmbH Satelliten-Testsystem
JP2017161475A (ja) * 2016-03-11 2017-09-14 株式会社東芝 半導体装置および磁気センサ
JP2018036149A (ja) * 2016-08-31 2018-03-08 旭化成エレクトロニクス株式会社 磁気センサ、電流センサおよび磁気センサの駆動方法
WO2019049410A1 (ja) * 2017-09-06 2019-03-14 株式会社村田製作所 電流センサ及び電流センサの製造方法
JP2019068640A (ja) * 2017-10-02 2019-04-25 日産自動車株式会社 放電装置
JP2019211396A (ja) * 2018-06-07 2019-12-12 日本セラミック株式会社 電流センサ
CN114295885A (zh) * 2021-12-29 2022-04-08 东莞市长工微电子有限公司 电流检测电路及驱动装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423482B2 (en) 2011-04-27 2016-08-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Sensor arrangement and method
JP2014512542A (ja) * 2011-04-27 2014-05-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ センサ装置および方法
JP2012247341A (ja) * 2011-05-30 2012-12-13 Tokai Rika Co Ltd 検出装置および電流センサ
US9291666B2 (en) 2011-05-30 2016-03-22 Kabushiki Kaisha Tokai Rika Denki Seisakusho Detecting device and current sensor
EP2560300A3 (de) * 2011-08-16 2017-04-26 Siemens Convergence Creators GmbH Satelliten-Testsystem
US8901966B2 (en) 2013-02-14 2014-12-02 Seiko Instruments Inc. Sensor circuit
KR20140102603A (ko) 2013-02-14 2014-08-22 세이코 인스트루 가부시키가이샤 센서 회로
JP2017161475A (ja) * 2016-03-11 2017-09-14 株式会社東芝 半導体装置および磁気センサ
JP2018036149A (ja) * 2016-08-31 2018-03-08 旭化成エレクトロニクス株式会社 磁気センサ、電流センサおよび磁気センサの駆動方法
WO2019049410A1 (ja) * 2017-09-06 2019-03-14 株式会社村田製作所 電流センサ及び電流センサの製造方法
US11204374B2 (en) 2017-09-06 2021-12-21 Murata Manufacturing Co., Ltd. Current sensor, and manufacturing method for current sensor
JP2019068640A (ja) * 2017-10-02 2019-04-25 日産自動車株式会社 放電装置
JP2019211396A (ja) * 2018-06-07 2019-12-12 日本セラミック株式会社 電流センサ
CN114295885A (zh) * 2021-12-29 2022-04-08 东莞市长工微电子有限公司 电流检测电路及驱动装置
CN114295885B (zh) * 2021-12-29 2023-10-13 东莞市长工微电子有限公司 电流检测电路及驱动装置

Similar Documents

Publication Publication Date Title
JP2010181211A (ja) 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法
US20090259418A1 (en) Current-voltage conversion circuit and power consumption detection circuit and electronic device using the same
JP6143752B2 (ja) 電流センサの製造方法及び電流センサ
US11402456B2 (en) High voltage current sensing circuit with adaptive calibration
JPWO2008050550A1 (ja) 回転角度検出装置
JP2010002388A (ja) 磁気比例式電流センサ
TW201643442A (zh) 溫度補償電路以及感測裝置
JP4623289B2 (ja) 電流センサ
JP5126536B2 (ja) 磁気比例式電流センサのゲイン調整方法
JP4761080B2 (ja) 電流センサと電子制御ユニットとの間の断線検知システム
JP4325811B2 (ja) 電流センサ
CN112630501A (zh) 任意偏置电流输出的直流电流传感器电路
JP5891516B2 (ja) 電流センサ
WO2005116672A1 (ja) 電源電流測定装置、及び試験装置
JP6586853B2 (ja) 電流源回路及び検出回路
JP3516644B2 (ja) 磁気センサ装置および電流センサ装置
JP2011169833A (ja) 電流センサ
RU2457493C1 (ru) Датчик угловой скорости
JP4748676B2 (ja) 電流検出装置
JP2006003209A (ja) 電流検出器
US6703822B2 (en) Circuit for detecting a current passing through a consumer
CN114646790B (zh) 一种基于巨磁电阻效应的电流测量装置
CN213903641U (zh) 任意偏置电流输出的直流电流传感器电路
JP3684691B2 (ja) 温度特性補償回路及び該温度特性補償回路を用いた磁電変換素子の駆動装置
JP2007033270A (ja) センサ回路及び回路ユニット

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501