JP2010159228A - Self-organizing metal complex, method for producing the same, and catalyst material - Google Patents

Self-organizing metal complex, method for producing the same, and catalyst material Download PDF

Info

Publication number
JP2010159228A
JP2010159228A JP2009002370A JP2009002370A JP2010159228A JP 2010159228 A JP2010159228 A JP 2010159228A JP 2009002370 A JP2009002370 A JP 2009002370A JP 2009002370 A JP2009002370 A JP 2009002370A JP 2010159228 A JP2010159228 A JP 2010159228A
Authority
JP
Japan
Prior art keywords
metal
self
metal complex
assembled
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009002370A
Other languages
Japanese (ja)
Other versions
JP5403505B2 (en
Inventor
Ami Ikura
亜美 伊倉
Hitoshi Ito
仁 伊藤
Izumi Hirasawa
泉 平沢
Mizuki Kamishiro
瑞希 神代
Kohei Mizukami
耕平 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nissan Motor Co Ltd
Original Assignee
Waseda University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nissan Motor Co Ltd filed Critical Waseda University
Priority to JP2009002370A priority Critical patent/JP5403505B2/en
Publication of JP2010159228A publication Critical patent/JP2010159228A/en
Application granted granted Critical
Publication of JP5403505B2 publication Critical patent/JP5403505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a self-organizing metal complex efficiently producing the same having high purity and a large surface area, at a low cost. <P>SOLUTION: The method of producing a self-organizing metal complex including a three dimensional skeleton structure of a metal complex comprising a center metal and an organic ligand comprising a carboxylate group and coordinating to the center metal, includes a reaction process of mixing and reacting a first solution comprising a first solvent and a salt of the center metal dissolved therein with a second solution comprising a second solvent and a compound dissolved therein to form the organic ligand, wherein a metal complex comprising an organic ligand is added. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、自己集積型金属錯体、自己集積型金属錯体の製造方法及び触媒材に関する。   The present invention relates to a self-assembled metal complex, a method for producing a self-assembled metal complex, and a catalyst material.

金属イオンと有機配位子からなる二次元格子構造を単位モチーフとして3次元的に積層した骨格構造を有する、自己集積型の有機金属錯体が提案され(特許文献1参照)、メタン、窒素、水素等のガス吸着材として注目されている。特に、フマル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等のジカルボン酸を有機配位子として用いた多孔性の自己集積型金属錯体が、ガス吸蔵材として好適であることが見出されている(特許文献2、特許文献3、非特許文献1及び非特許文献2参照。)。また、この自己集積型金属錯体は、均一な細孔を持ち、周期的に分散状態で金属が存在しているため、触媒材として期待されている(非特許文献3参照)。   A self-assembled organometallic complex having a skeletal structure in which a two-dimensional lattice structure composed of a metal ion and an organic ligand is three-dimensionally stacked as a unit motif has been proposed (see Patent Document 1), methane, nitrogen, hydrogen It is attracting attention as a gas adsorbent. In particular, porous self-assembled metal complexes using dicarboxylic acids such as fumaric acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid as organic ligands have been found to be suitable as gas storage materials. (See Patent Document 2, Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2.) In addition, this self-assembled metal complex is expected as a catalyst material because it has uniform pores and periodically contains metal in a dispersed state (see Non-Patent Document 3).

特開2001−348361号公報JP 2001-348361 A 米国特許出願公開第2003/0004364号明細書US Patent Application Publication No. 2003/0004364 特開2003−342260号公報JP 2003-342260 A

森和亮、大村哲賜、佐藤智彦,「カルボン酸金属錯体の気体吸蔵とその応用」,ペトロテック(PETROTECH),「社団法人石油学会」,2003年,第26巻,第2号,p.105−112Mori Kazuaki, Omura Tetsuki, Sato Tomohiko, “Gas Occlusion and Application of Carboxylic Acid Metal Complexes”, PETROTECH, “Japan Petroleum Institute”, 2003, Vol. 26, No. 2, p. 105-112 エム・エダウディ(M.Eddaoudi),エイチ・リー(H.Li), オウ・エム・ヤギ(O.M.Yaghi)著,「ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサエティ(J.Am.Chem.Soc.)」,2000年,第122号,p.1391−1397By M. Eddaoudi, H.Li, OMYaghi, “J.Am.Chem.Soc. ) ", 2000, No. 122, p. 1391-1397 Shuichi Naito, Tomonori Tanibe, Emiko Saito, Toshihiro Miyao and Wasuke Mori著、「Chemistry Letters」、Vol. 30 (2001) , No. 11 p.1178‐1179Shuichi Naito, Tomonori Tanibe, Emiko Saito, Toshihiro Miyao and Wasuke Mori, "Chemistry Letters", Vol. 30 (2001), No. 11 p.1178-1179

このような自己集積型金属錯体は、金属塩及び有機配位子となる化合物を、それぞれアルコール等の有機溶媒に溶解し、得られた溶液を混合することで合成される。この合成において、反応は有機配位子であるカルボン酸の脱プロトン化と金属塩の金属イオン化により進行し、自己集積により目的構造が構築される。   Such a self-assembling metal complex is synthesized by dissolving a metal salt and a compound that becomes an organic ligand in an organic solvent such as alcohol, and mixing the resulting solution. In this synthesis, the reaction proceeds by deprotonation of a carboxylic acid that is an organic ligand and metal ionization of a metal salt, and a target structure is constructed by self-assembly.

反応は自己集積によるため、結晶析出までに時間を要する。自己集積が進行している間に温度等の結晶化環境が変化すると、自己集積に乱れが生じる。結晶化環境を完全に一定に保つことは難しく、自己集積の乱れは結晶化環境の変化が僅かであっても生じるため、結晶構造に歪みができやすく、均一な目的構造を得にくい。高純度の自己集積型金属錯体を得るためには、時間をかけて結晶析出させる必要があることから、工業的に純度の高い目的物を生産することは難しい。また、特に触媒能が期待される金属種の中には反応が進みにくいものがあり、反応性を上げるため高温にしたり、反応時間を長くしたりすると、金属の遊離や副反応が起こりやすく、目的物の生産性が低い。   Since the reaction is self-assembled, it takes time to crystallize. If the crystallization environment such as temperature changes while self-assembly is in progress, the self-assembly is disturbed. It is difficult to keep the crystallization environment completely constant, and disorder of self-assembly occurs even if the change of the crystallization environment is slight, so that the crystal structure is easily distorted, and it is difficult to obtain a uniform target structure. In order to obtain a high-purity self-assembled metal complex, it is necessary to crystallize it over time, so it is difficult to produce an object with high industrial purity. In addition, some of the metal species that are expected to have a catalytic activity are difficult to proceed. If the temperature is increased to increase the reactivity or the reaction time is increased, the liberation of metals and side reactions are likely to occur. Product productivity is low.

本発明は、上記課題を解決するためになされたものであり、本発明に係る自己集積型金属錯体の製造方法は、中心金属と、中心金属に配位し、カルボキシレート基を有する有機配位子とを備える金属錯体の三次元的骨格構造を含む自己集積型金属錯体の製造方法であって、中心金属の塩を第1の溶媒に溶解した第1の溶液と、有機配位子となる化合物を第2の溶媒に溶解した第2の溶液とを混合して反応させる反応工程を含み、反応工程において、有機配位子を有する金属錯体を添加することを特徴とする。   The present invention has been made to solve the above problems, and a method for producing a self-assembling metal complex according to the present invention includes a central metal and an organic coordination having a carboxylate group coordinated to the central metal. A method for producing a self-assembling metal complex including a three-dimensional skeleton structure of a metal complex comprising a child, wherein a first solution in which a salt of a central metal is dissolved in a first solvent and an organic ligand Including a reaction step of mixing and reacting a second solution in which a compound is dissolved in a second solvent, and adding a metal complex having an organic ligand in the reaction step.

本発明に係る自己集積型金属錯体は、上記本発明に係る多孔性金属錯体の製造方法により得られ、中心金属と、有機配位子とを備える金属錯体の三次元的骨格構造を含むことを特徴とする。   The self-assembled metal complex according to the present invention is obtained by the method for producing a porous metal complex according to the present invention, and includes a three-dimensional skeleton structure of a metal complex including a central metal and an organic ligand. Features.

本発明に係る触媒材は、上記本発明に係る自己集積型金属錯体を含むことを特徴とする。   The catalyst material according to the present invention includes the self-integrated metal complex according to the present invention.

本発明によれば、純度の高い自己集積型金属錯体が高効率で、安価に大量に得られる。また、本発明によれば、本発明に係る自己集積型金属錯体を用いるので、高効率な吸着材が安価に大量に得られる。   According to the present invention, a high-purity self-assembled metal complex can be obtained in large quantities at a low cost with high efficiency. Further, according to the present invention, since the self-assembled metal complex according to the present invention is used, a highly efficient adsorbent can be obtained in large quantities at a low cost.

(a)自己集積型金属錯体を製造する際に添加する他の自己集積型金属錯体の結晶構造を示す図である。(b)本発明の実施の形態に係る自己集積型金属錯体の結晶構造を示す図である。(A) It is a figure which shows the crystal structure of the other self-assembled metal complex added when manufacturing a self-assembled metal complex. (B) It is a figure which shows the crystal structure of the self-assembly type | mold metal complex which concerns on embodiment of this invention. 本発明の実施の形態に係る反応の一例を示す図である。It is a figure which shows an example of reaction which concerns on embodiment of this invention. 自己集積型金属錯体のXRDパターンを示す図である。It is a figure which shows the XRD pattern of a self-assembly type | mold metal complex. (a)実施例1の表面形態を示す図である。(b)比較例1の表面形態を示す図である。(A) It is a figure which shows the surface form of Example 1. FIG. (B) It is a figure which shows the surface form of the comparative example 1. FIG.

以下、本発明の実施の形態に係る自己集積型金属錯体、自己集積型金属錯体の製造方法及び触媒材を説明する。   Hereinafter, a self-assembled metal complex, a method for producing the self-assembled metal complex, and a catalyst material according to embodiments of the present invention will be described.

図1(a)に、本発明の実施の形態に係る自己集積型金属錯体の原料の一つである他の自己集積型金属錯体(この例では、テレフタル酸Cu(銅)。)の結晶構造1を、図1(b)に本発明の実施の形態に係る自己集積型金属錯体(この例では、テレフタル酸Rh(ロジウム)の結晶構造11を模式的に示す。結晶構造1を有する自己集積型金属錯体は、2個のCuイオンを中心金属2とした二核錯体であり、中心金属2の周りにはカルボン酸イオンが有機配位子として配位されて配位結合部3を形成している。各カルボン酸イオンはカルボキシレート基を有し、このカルボキシレート基の2つの酸素原子を介して中心金属2であるCuイオンに配位することにより、2つのCuイオンを4つの格子点とする環(空隙)が縮合した格子状の二次元格子構造(芳香族カルボン酸金属錯体)M1が形成される。この二次元格子構造M1を単位モチーフ、つまり、基本的繰り返しパターンとして中心金属2とカルボキシレート基の酸素間との結合による集積により積層することにより、自己集合による三次元的多孔性骨格構造が形成されている。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成している。   FIG. 1A shows a crystal structure of another self-assembled metal complex (in this example, Cu (copper) terephthalate) that is one of the raw materials of the self-assembled metal complex according to the embodiment of the present invention. 1B schematically shows a crystal structure 11 of a self-assembled metal complex (in this example, Rh (rhodium) terephthalate) according to an embodiment of the present invention. FIG. The type metal complex is a binuclear complex having two Cu ions as a central metal 2, and a carboxylate ion is coordinated as an organic ligand around the central metal 2 to form a coordination bond 3. Each carboxylate ion has a carboxylate group, and the two Cu ions are coordinated to four lattice points by coordinating to the Cu ion that is the central metal 2 through the two oxygen atoms of the carboxylate group. A lattice-shaped two-ring condensed ring (void) The original lattice structure (aromatic carboxylic acid metal complex) M1 is formed by integrating the two-dimensional lattice structure M1 as a unit motif, that is, as a basic repetitive pattern, by bonding between the central metal 2 and oxygen of the carboxylate group. By stacking, a self-assembled three-dimensional porous skeleton structure is formed, in which each void row of a plurality of two-dimensional structures is aligned in a row, so that a plurality of one-dimensional channels are formed. Yes.

同様に、結晶構造11を有する自己集積型金属錯体は、2個のRhイオンを中心金属12とした二核錯体であり、中心金属12の周りにはカルボン酸イオンが有機配位子として配位されて配位結合部13を形成している。各カルボン酸イオンはカルボキシレート基を有し、このカルボキシレート基の2つの酸素原子を介して中心金属12であるRhイオンに配位することにより、2つのRhイオンを4つの格子点とする環(空隙)が縮合した格子状の二次元格子構造(カルボン酸金属錯体)M2が形成される。この二次元格子構造M2を単位モチーフ、つまり、基本的繰り返しパターンとして中心金属12とカルボキシレート基の酸素間との結合による集積により積層することにより、自己集合による三次元的多孔性骨格構造が形成されている。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成している。   Similarly, the self-assembled metal complex having the crystal structure 11 is a binuclear complex having two Rh ions as a central metal 12, and a carboxylate ion is coordinated around the central metal 12 as an organic ligand. Thus, the coordination bond portion 13 is formed. Each carboxylate ion has a carboxylate group, and is coordinated to the Rh ion, which is the central metal 12, via two oxygen atoms of the carboxylate group, thereby forming a ring having two Rh ions as four lattice points. A lattice-like two-dimensional lattice structure (carboxylic acid metal complex) M2 in which (voids) are condensed is formed. By laminating this two-dimensional lattice structure M2 as a unit motif, that is, a basic repeating pattern by accumulation of bonds between the central metal 12 and the oxygen of the carboxylate group, a three-dimensional porous skeleton structure is formed by self-assembly. Has been. In this structure, a plurality of one-dimensional channels are formed because each gap row of a plurality of two-dimensional structures is aligned in a row.

このような構造を有する自己集積型金属錯体は、中心金属の塩を第1の溶媒に溶解した第1の溶液と、有機配位子となる化合物を第2の溶媒に溶解した第2の溶液とを混合して反応させる反応工程を含み、反応工程において、有機配位子を有する金属錯体を添加する方法により製造する。例えば、図2に示すように、中心金属の塩である酢酸銅一水和物を第1の溶媒であるエタノールに溶解して第1の溶液と、有機配位子となるテレフタル酸を第2の溶媒であるメタノールに溶解した第2の溶液とを混合して、カルボン酸金属塩と有機配位子とを直接反応させる。反応の際、有機配位子を有する金属錯体としてテレフタル酸Cuを添加して自己集積型金属錯体である目的のテレフタル酸Cuを得る。   A self-assembling metal complex having such a structure includes a first solution in which a salt of a central metal is dissolved in a first solvent, and a second solution in which a compound to be an organic ligand is dissolved in a second solvent. In the reaction step, and in the reaction step, a metal complex having an organic ligand is added. For example, as shown in FIG. 2, copper acetate monohydrate, which is a salt of a central metal, is dissolved in ethanol, which is a first solvent, and a first solution and terephthalic acid, which is an organic ligand, are secondly added. The carboxylic acid metal salt and the organic ligand are directly reacted with each other by mixing with a second solution dissolved in methanol, which is the solvent. In the reaction, Cu terephthalate is added as a metal complex having an organic ligand to obtain the target Cu terephthalate which is a self-assembled metal complex.

目的の自己集積型金属錯体を得るために、中心金属の塩と有機配位子となる化合物を、それぞれアルコール等の有機溶媒に溶解し、その溶液を混合することで合成する。この合成において、反応は有機配位子であるカルボン酸の脱プロトン化と中心金属の塩の金属イオン化により進行する。反応の際、触媒能が期待される金属種、例えばRh等は反応が進みにくい。このため、反応性を上げるために、高温、高圧下で反応を行う。反応時間が長くなると、金属の遊離や副反応が多く起こり、収率が下がって不純物が多くなり、得られた自己集積型金属錯体の表面積も下がる。また、反応は自己集積によるため、カルボン酸の脱プロトン化と中心金属の塩の金属イオン化が比較的起こりやすいCu等を含む金属塩を用いた場合であっても、結晶析出までに時間を要する。自己集積が進行している間に温度等の結晶化環境が変化すると、自己集積に乱れが生じ、結晶構造に歪みができやすく、均一な目的構造を得にくい。   In order to obtain the target self-assembling metal complex, the salt of the central metal and the compound that becomes the organic ligand are each dissolved in an organic solvent such as alcohol, and the solutions are mixed. In this synthesis, the reaction proceeds by deprotonation of a carboxylic acid, which is an organic ligand, and metal ionization of a central metal salt. In the reaction, the metal species expected to have catalytic ability, such as Rh, does not easily proceed. For this reason, in order to raise the reactivity, it reacts under high temperature and a high pressure. As the reaction time becomes longer, liberation of metals and side reactions occur frequently, the yield decreases, the impurities increase, and the surface area of the resulting self-assembled metal complex also decreases. In addition, since the reaction is self-assembled, it takes time to crystallize even when a metal salt containing Cu or the like, which is relatively easy to deprotonate a carboxylic acid and ionize a central metal salt, is used. . If the crystallization environment such as temperature changes while self-assembly is in progress, the self-assembly is disturbed, the crystal structure is easily distorted, and it is difficult to obtain a uniform target structure.

これに対し、本発明の実施の形態に係る方法では、図2に示すように、中心金属の塩と有機配位子となる化合物とを反応させる際に、目的物である自己集積型金属錯体と同じ配位子を有する他の自己集積型金属錯体を添加する。目的物と同じ配位子を有する錯体を添加することで、この錯体が種晶となって核形成が不要となる。このため、結晶析出時間が短縮され、さらに種晶上へ自己集積が行われるため、自己集積の乱れも減少する。そして、結果として従来法により合成した種晶上に、均一な目的構造を持つ高純度結晶が形成され、目的の自己集積型金属錯体が得られる。このように、本発明の実施の形態に係る製造方法では、従来法に比べて、短時間に、純度の高い自己集積型金属錯体が得られる。また、単位時間当たりの生産性及び収率が増加し、製造コストを削減できる。   On the other hand, in the method according to the embodiment of the present invention, as shown in FIG. 2, when the salt of the central metal and the compound that becomes the organic ligand are reacted, the self-assembled metal complex that is the target product Add another self-assembling metal complex with the same ligand. By adding a complex having the same ligand as the target product, the complex becomes a seed crystal and nucleation is not necessary. For this reason, the crystal precipitation time is shortened, and further self-accumulation is performed on the seed crystal, so that the disturbance of self-aggregation is also reduced. As a result, a high-purity crystal having a uniform target structure is formed on the seed crystal synthesized by the conventional method, and the target self-assembled metal complex is obtained. Thus, in the manufacturing method according to the embodiment of the present invention, a self-assembled metal complex having a high purity can be obtained in a shorter time than the conventional method. Further, productivity and yield per unit time can be increased, and manufacturing costs can be reduced.

中心金属の塩は、2〜4価の金属を含む金属群から選択された第1の金属を含む。特に、第1の金属は、2価又は3価の金属を含むことが好ましく、第1の金属は、Mg、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rh、Ru、Mo、Re、Al、Pd、Cd、Tb、W及びPtを含む金属群から選択される金属を含むことが好ましい。添加する錯体は、目的物を構成する金属を含む錯体に限られず、目的物と同じ配位子を持つ金属錯体であれば核となり、目的物の核形成が省略されるため、自己集積の乱れが減少する。このため、Rh等の反応が進みにくい金属を含む場合であっても、目的の自己集積型金属錯体が効率良く得られる。また、目的物に含まれる金属と異なる金属の塩を用いることで、得られる自己集積型金属錯体に含まれる金属の組成を調節することができる。これにより、対象化合物に対する吸着・分離・触媒としての機能を変化させることができる。   The salt of the central metal includes a first metal selected from the group of metals including divalent to tetravalent metals. In particular, the first metal preferably contains a divalent or trivalent metal, and the first metal is Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Ru, Mo, Re, Preferably, it includes a metal selected from the group of metals including Al, Pd, Cd, Tb, W and Pt. The complex to be added is not limited to the complex containing the metal that constitutes the target product. If the metal complex has the same ligand as the target product, it becomes a nucleus, and nucleation of the target product is omitted. Decrease. For this reason, the target self-integrated metal complex can be obtained efficiently even when it contains a metal such as Rh that is difficult to proceed with the reaction. Moreover, the composition of the metal contained in the obtained self-assembled metal complex can be adjusted by using a metal salt different from the metal contained in the target product. Thereby, the function as adsorption / separation / catalyst for the target compound can be changed.

有機配位子は、次の一般式(I)
(HOOC)n1−R1−(COOH)n2 ・・・(I)
(ただし、R1はアルキレン基、アルキニレン基、アルケニレン基又はアリーレン基を示し、前記R1は置換基を含んでもよく、n1及びn2は整数を示し、1≦n1≦8、0≦n2≦8である。)で表されるカルボン酸を含むことが好ましい。この場合、
2≦n1+n2≦4であることがより好ましく、R1は、次の一般式(II)〜(XI)
The organic ligand has the following general formula (I)
(HOOC) n1-R1- (COOH) n2 (I)
(However, R1 represents an alkylene group, an alkynylene group, an alkenylene group or an arylene group, the R1 may include a substituent, n1 and n2 represent integers, and 1 ≦ n1 ≦ 8 and 0 ≦ n2 ≦ 8. It is preferable that the carboxylic acid represented by this is included. in this case,
It is more preferable that 2 ≦ n1 + n2 ≦ 4, and R1 represents the following general formulas (II) to (XI)

のいずれか一つで表される置換基を含むことが好ましい。このように、異なるカルボン酸を有機配位子として用いることができるため、水素とのアフィニティや細孔の形、径を変化させた高純度なカルボン酸金属錯体を大量合成することができる。 It is preferable that the substituent represented by any one of these is included. In this way, since different carboxylic acids can be used as the organic ligand, a high-purity carboxylic acid metal complex in which the affinity with hydrogen and the shape and diameter of the pores are changed can be synthesized in large quantities.

また、R1は、炭素原子をヘテロ元素に置換した複素環を含むことが好ましい。また、R1は、環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことが好ましい。特に、R1は、次の一般式(XII)〜(XXVII)
R1 preferably includes a heterocycle in which a carbon atom is substituted with a heteroelement. R1 preferably contains an element selected from an element group including N, O, S, P, B, As, Si, Sb, and Hg in the ring skeleton. In particular, R1 represents the following general formulas (XII) to (XXVII)

のいずれか一つで表される置換基を含むことが好ましい。異なる複素環カルボン酸を有機配位子として用いることで、水素とのアフィニティや細孔の形、径を変化させた高純度な複素環カルボン酸金属錯体を大量合成することができる。 It is preferable that the substituent represented by any one of these is included. By using different heterocyclic carboxylic acids as organic ligands, it is possible to synthesize a large amount of high-purity heterocyclic carboxylic acid metal complexes with varying affinity for hydrogen, pore shape, and diameter.

金属錯体は、2〜4価の金属を含む金属群から選択された第2の金属を含むことが好ましく、第2の金属は、2価又は3価の金属を含むことが好ましい。中でも、第2の金属は、Cuを含むことがより好ましい。目的物の金属によらず、目的物と同じ配位子を持つ金属錯体は種晶として用いることができるため、安価な金属種を含む金属錯体を種晶として用いることで、安価に高純度な目的物を合成することができる。   It is preferable that a metal complex contains the 2nd metal selected from the metal group containing a 2-4 tetravalent metal, and it is preferable that a 2nd metal contains a bivalent or trivalent metal. Among these, it is more preferable that the second metal contains Cu. Regardless of the target metal, a metal complex having the same ligand as the target can be used as a seed crystal. Therefore, by using a metal complex containing an inexpensive metal species as a seed crystal, it is inexpensive and highly pure. The target product can be synthesized.

反応に用いる溶媒は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、アセトン及びアセトニトリルを含む溶媒群から選択された溶媒を含むことが好ましい。また、中でも、溶媒として、アルコール類又はアセトンを含む溶媒を用いることが好ましい。この場合には、原料の溶解度の高い溶媒を選択できるため、純度の高い自己集積型金属錯体の大量合成が可能となる。   The solvent used in the reaction is a solvent selected from a solvent group including N, N′-dimethylformamide, N, N′-diethylformamide, water, alcohols, diethylene glycol dimethyl ether, tetrahydrofuran, benzene, toluene, hexane, acetone and acetonitrile. It is preferable to contain. Moreover, among these, it is preferable to use a solvent containing alcohols or acetone as the solvent. In this case, a solvent with high raw material solubility can be selected, so that mass synthesis of a highly purified self-assembled metal complex becomes possible.

この自己集積型金属錯体の製造方法により、特に、加熱・加圧を行うことなく、溶媒を除去するだけで従来に比べて高純度で表面積の高い自己集積型金属錯体が得られる。生成した自己集積型金属錯体は、中心金属とカルボキシレート基を有する有機配位子とを備え、中心金属の周りに有機配位子が配位される。各有機配位子は1つのカルボキシレート基を有し、各カルボキシレート基がそれぞれ2つの酸素原子を介して異なる中心金属に配位することにより、中心金属を格子点とする環(空隙)が縮合した格子状の二次元構造が形成される。各有機配位子はπ−π相互作用、水素結合などの比較的弱い結合により結合され、この二次元格子構造を単位モチーフ、つまり、基本的繰り返しパターンとして積層することにより三次元的多孔性骨格構造が形成される。この自己集積型金属錯体において、二次元格子構造の単位モチーフを積層した三次元的多孔性骨格構造は空隙を画成する骨格部であり、各空隙の細孔径は0.3〜2.0nmの大きさである。そして、この細孔径より小さな気体又は液体分子を骨格構造に取り込むことが可能である。また、有機配位子が比較的弱い結合により結合されているため、圧力、熱などの外部環境に応じてその結合がずれることにより骨格構造は可撓性を有した柔軟な構造を形成する。外部からの熱又は圧力によって骨格構造を変形させることにより、空隙は変形可能である。なお、この自己集積型金属錯体は上記したカルボン酸を残留物として含む。この場合には、原料としてカルボン酸を用いたことが示される。また、この自己集積型金属錯体において、BET比表面積が100m/g以上であることが好ましく、BET比表面積が700m/g以上であることがより好ましい。この場合には、高い水素吸蔵能を有する。なお、上記したように、目的物と異なる金属や有機配位子を含む金属錯体を種晶として用いることで、得られる自己集積型金属錯体が2種類以上の結晶構造を含む場合もある。 By this method for producing a self-assembled metal complex, a self-assembled metal complex having a higher purity and a higher surface area can be obtained by simply removing the solvent without performing heating / pressurization. The generated self-assembled metal complex includes a central metal and an organic ligand having a carboxylate group, and the organic ligand is coordinated around the central metal. Each organic ligand has one carboxylate group, and each carboxylate group is coordinated to a different central metal via two oxygen atoms, thereby forming a ring (void) having the central metal as a lattice point. A condensed lattice-like two-dimensional structure is formed. Each organic ligand is bonded by a relatively weak bond such as π-π interaction or hydrogen bond, and this two-dimensional lattice structure is laminated as a unit motif, that is, a basic repeating pattern, to create a three-dimensional porous skeleton. A structure is formed. In this self-assembled metal complex, a three-dimensional porous skeleton structure in which unit motifs of a two-dimensional lattice structure are stacked is a skeleton part that defines voids, and the pore diameter of each void is 0.3 to 2.0 nm. It is a size. A gas or liquid molecule smaller than the pore diameter can be taken into the skeleton structure. In addition, since the organic ligand is bonded by a relatively weak bond, the bond is shifted according to an external environment such as pressure and heat, so that the skeleton structure forms a flexible structure having flexibility. The void can be deformed by deforming the skeletal structure by heat or pressure from the outside. This self-assembled metal complex contains the above carboxylic acid as a residue. In this case, it is shown that carboxylic acid was used as a raw material. In this self-assembled metal complex, the BET specific surface area is preferably 100 m 2 / g or more, more preferably 700 m 2 / g or more. In this case, it has a high hydrogen storage capacity. Note that, as described above, when a metal complex containing a metal or organic ligand different from the target product is used as a seed crystal, the resulting self-assembled metal complex may contain two or more types of crystal structures.

以上説明したように、本発明の実施の形態に係る自己集積型金属錯体の製造方法では、純度及び表面積の高い自己集積型金属錯体の製造が可能となり、更には安価に大量に得られる。また、この製造方法により、純度及び表面積の高い自己集積型金属錯体が安価に大量に得られ、この自己集積型金属錯体を用いて吸着材、分離材、ガス吸着材及び水素吸着材を製造した場合には、従来に比べて高効率な吸着材、分離材、ガス吸着材及び水素吸着材が安価に大量に得られる。   As described above, in the method for producing a self-assembled metal complex according to the embodiment of the present invention, it is possible to produce a self-assembled metal complex having a high purity and surface area, and further, it can be obtained in large quantities at a low cost. In addition, by this production method, a large amount of self-assembling metal complexes with high purity and surface area can be obtained in a large amount at low cost, and adsorbents, separation materials, gas adsorbents and hydrogen adsorbents were produced using the self-assembled metal complexes. In this case, a large amount of adsorbents, separation materials, gas adsorbents and hydrogen adsorbents that are more efficient than conventional ones can be obtained at low cost.

以下、実施例1及び比較例1により本発明の実施の形態に係る自己集積型金属錯体の製造方法について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, although the manufacturing method of the self-assembly type metal complex which concerns on embodiment of this invention is demonstrated more concretely by Example 1 and Comparative Example 1, the scope of the present invention is not limited to these.

1.試料の調製
実施例1 {Cu(OOC−C−COO)}の合成
図2に示すように、有機配位子としてテレフタル酸を、金属塩として酢酸銅一水和物を用いた。酢酸銅一水和物0.30gをエタノール45mLに溶解・攪拌して得られた溶液と、テレフタル酸0.25gを触媒である蟻酸3mL存在下で1−メチル−2−ピロリジノン20mLに溶解・攪拌して得られた溶液とを混合し、室温でさらに攪拌した。24時間後、比較例1に従い調製した{Cu(OOC−C−COO)}を種晶として添加した。析出した固体を回収し、脱水メタノールで洗浄した。その後、常温で真空乾燥を行い、目的物である{Cu(OOC−C−COO)}を得た。
1. Sample Preparation Example 1 Synthesis of {Cu (OOC-C 6 H 4 —COO)} n As shown in FIG. 2, terephthalic acid was used as the organic ligand and copper acetate monohydrate was used as the metal salt. . A solution obtained by dissolving and stirring 0.30 g of copper acetate monohydrate in 45 mL of ethanol and 0.25 g of terephthalic acid dissolved in 20 mL of 1-methyl-2-pyrrolidinone in the presence of 3 mL of formic acid as a catalyst The resulting solution was mixed and further stirred at room temperature. After 24 hours, {Cu (OOC—C 6 H 4 —COO)} n prepared according to Comparative Example 1 was added as a seed crystal. The precipitated solid was collected and washed with dehydrated methanol. Thereafter, vacuum-dried at room temperature to give the desired product {Cu (OOC-C 6 H 4 -COO)} n.

比較例1 {Cu(OOC−C−COO)}の合成
有機配位子としてテレフタル酸を、金属塩として酢酸銅一水和物を用いた。酢酸銅一水和物0.30gをエタノール45mLに溶解・攪拌して得られた溶液と、テレフタル酸0.25gを、触媒である蟻酸3mL存在下で1−メチル−2−ピロリジノン20mLに溶解・攪拌して得られた溶液とを混合し、室温でさらに攪拌した。析出した固体を回収し、脱水メタノールで洗浄した。その後、常温で真空乾燥を行い、目的物である{Cu(OOC−C−COO)}を得た。
Comparative Example 1 {Cu (OOC-C 6 H 4 -COO)} terephthalic acid as n synthetic organic ligand, using a copper acetate monohydrate as a metal salt. A solution obtained by dissolving and stirring 0.30 g of copper acetate monohydrate in 45 mL of ethanol and 0.25 g of terephthalic acid were dissolved in 20 mL of 1-methyl-2-pyrrolidinone in the presence of 3 mL of formic acid as a catalyst. The solution obtained by stirring was mixed and further stirred at room temperature. The precipitated solid was collected and washed with dehydrated methanol. Thereafter, vacuum-dried at room temperature to give the desired product {Cu (OOC-C 6 H 4 -COO)} n.

2.結晶構造の確認
合成した試料を、マックスサイエンス社製X線回折装置(MXP 18VAHF)を用い、電圧40kV、電流300mA、X線波長CuKαで測定した。
2. Confirmation of Crystal Structure The synthesized sample was measured using a Max Science X-ray diffractometer (MXP 18VAHF) at a voltage of 40 kV, a current of 300 mA, and an X-ray wavelength of CuKα.

3.表面形態の確認
合成した試料を、カールツァイス社製電子線表面イメージング顕微鏡(ULTRA55)を用い、加速電圧3.0kV(二次電子像:SE2モード)で観察した。
3. Confirmation of surface morphology The synthesized sample was observed with an acceleration voltage of 3.0 kV (secondary electron image: SE2 mode) using an electron beam surface imaging microscope (ULTRA55) manufactured by Carl Zeiss.

4.BET比表面積の確認
合成した試料を、マイクロメリティックス社製、比表面積・細孔分布測定装置(ASAP−2020)を用い、窒素吸着BET多点法にて評価した。測定前に60℃で15時間の減圧脱ガス処理を行った。
4). Confirmation of BET specific surface area The synthesized samples were evaluated by a nitrogen adsorption BET multipoint method using a specific surface area / pore distribution measuring device (ASAP-2020) manufactured by Micromeritics. Before the measurement, vacuum degassing treatment was performed at 60 ° C. for 15 hours.

実施例1で得られた結晶のXRDパターンを図3に示す。図3において、3Aは実施例1で得られたテレフタル酸銅を、3Bは比較例1で得られたテレフタル酸銅を示す。3Bで示す比較例1で得られたテレフタル酸銅は、3bで示す回折角2θ=8°のピークがブロードである。これに対し、3Aで示す実施例1で得られたテレフタル酸銅は、3aで示す回折角2θ=8°のピークがシャープになっている。このことから、種晶としてテレフタル酸銅を添加して結晶析出を行った場合には、純度の高い結晶が得られることがわかった。   The XRD pattern of the crystal obtained in Example 1 is shown in FIG. In FIG. 3, 3A shows the copper terephthalate obtained in Example 1, and 3B shows the copper terephthalate obtained in Comparative Example 1. The copper terephthalate obtained in Comparative Example 1 indicated by 3B has a broad peak at a diffraction angle 2θ = 8 ° indicated by 3b. In contrast, the copper terephthalate obtained in Example 1 indicated by 3A has a sharp peak at a diffraction angle 2θ = 8 ° indicated by 3a. From this, it was found that, when crystal precipitation was performed by adding copper terephthalate as a seed crystal, a crystal with high purity was obtained.

次に、実施例1及び比較例1で得られたれた試料のBET比表面積を表1に示す。
Next, Table 1 shows the BET specific surface areas of the samples obtained in Example 1 and Comparative Example 1.

また、図4(a)、(b)に、実施例1及び比較例1で得られた試料の表面形態を示す。実施例1で得られた試料は、図4(a)の4Aに示すように結晶面が多く見られた。これに対し、比較例1で得られた試料は、図4(b)の4Bに示すように結晶面が少なかった。BET比表面積は、実施例1では740m/gであるのに対し、比較例1では480m/gであり、種晶を添加して結晶析出させると、種晶よりもBET比表面積が高くなり、結晶面も多くなることがわかった。このように、実施例1及び比較例1では、同じテレフタル酸銅を得ることを目的としているが、比較例1で得られたテレフタル酸銅を種晶として用いることで、実施例1ではBET比表面積が高くなったため、結果として水素吸蔵能も高くなるものと考えられる。また、図3より実施例1では純度も上がったことことから、種晶を加えることで、効率良く純度の高い結晶が得られることがわかった。 4A and 4B show the surface forms of the samples obtained in Example 1 and Comparative Example 1. FIG. The sample obtained in Example 1 had many crystal planes as shown in 4A of FIG. On the other hand, the sample obtained in Comparative Example 1 had few crystal faces as shown in 4B of FIG. The BET specific surface area is 740 m 2 / g in Example 1, whereas it is 480 m 2 / g in Comparative Example 1. When a seed crystal is added and crystallized, the BET specific surface area is higher than that of the seed crystal. As a result, it was found that the number of crystal planes increased. Thus, in Example 1 and Comparative Example 1, the purpose is to obtain the same copper terephthalate, but by using the copper terephthalate obtained in Comparative Example 1 as a seed crystal, in Example 1, the BET ratio is As the surface area is increased, it is considered that the hydrogen storage capacity is increased as a result. In addition, from FIG. 3, the purity in Example 1 also increased, so it was found that crystals with high purity can be obtained efficiently by adding seed crystals.

なお、今回は種晶と同じ種類の金属を含む金属錯体を用いたが、同じ配位子であれば得られる金属錯体は同じ骨格を有するため、含まれる金属の種類によらず種晶として用いることができる。このため、特に安価で合成しやすい、Cu等の金属を中心金属として含む金属錯体を種晶とすることで、これまで合成が難しかったRh等を中心金属とする金属錯体を、短時間で高純度に合成できる。このように、本実施例では、種晶を用いることで、純度の高い自己集積型金属錯体の大量合成が可能となり、高効率で安価に得ることができた。   In addition, although the metal complex containing the same type of metal as the seed crystal was used this time, the metal complex obtained with the same ligand has the same skeleton, so it is used as a seed crystal regardless of the type of metal included. be able to. For this reason, by using a metal complex containing a metal such as Cu as a central metal, which is particularly inexpensive and easy to synthesize, as a seed crystal, a metal complex having Rh or the like as a central metal, which has been difficult to synthesize until now, can be increased in a short time. Can be synthesized to purity. Thus, in this example, by using seed crystals, it was possible to synthesize a large amount of highly purified self-assembled metal complex, and it was possible to obtain it with high efficiency and at low cost.

以上、本実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the present embodiment has been described above, it should not be understood that the description and the drawings, which form part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

1、11 自己集積型金属錯体の結晶構造
2、12 中心金属
3、13 配位結合部
M1、M2 二次元格子構造
1, 11 Crystal structure of self-assembled metal complex 2, 12 Central metal 3, 13 Coordination bond M1, M2 Two-dimensional lattice structure

Claims (20)

中心金属と、前記中心金属に配位し、カルボキシレート基を有する有機配位子とを備える金属錯体の三次元的骨格構造を含む自己集積型金属錯体の製造方法であって、
前記中心金属の塩を第1の溶媒に溶解した第1の溶液と、前記有機配位子となる化合物を第2の溶媒に溶解した第2の溶液とを混合して反応させる反応工程を含み、前記反応工程において、前記有機配位子を有する金属錯体を添加することを特徴とする自己集積型金属錯体の製造方法。
A method for producing a self-assembling metal complex comprising a three-dimensional skeleton structure of a metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a carboxylate group,
A reaction step of mixing and reacting a first solution in which the salt of the central metal is dissolved in a first solvent and a second solution in which the compound to be the organic ligand is dissolved in a second solvent. In the reaction step, a metal complex having the organic ligand is added. A method for producing a self-assembled metal complex.
前記中心金属の塩は、2〜4価の金属を含む金属群から選択された第1の金属を含むことを特徴とする請求項1に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to claim 1, wherein the salt of the central metal includes a first metal selected from a metal group including a divalent to tetravalent metal. 前記第1の金属は、2価又は3価の金属を含むことを特徴とする請求項2に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to claim 2, wherein the first metal includes a divalent or trivalent metal. 前記第1の金属は、Mg、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rh、Ru、Mo、Re、Al、Pd、Cd、Tb、W及びPtを含む金属群から選択される金属を含むことを特徴とする請求項3に記載の自己集積型金属錯体の製造方法。   The first metal is selected from a metal group including Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Ru, Mo, Re, Al, Pd, Cd, Tb, W, and Pt. The method for producing a self-assembled metal complex according to claim 3, comprising a metal. 前記中心金属の塩は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩を含むことを特徴とする請求項2乃至請求項4のいずれか一項に記載の自己集積型金属錯体の製造方法。   The salt of the central metal includes a metal salt selected from a metal salt group including nitrate, sulfate, acetate, carbonate, and formate. A process for producing a self-assembled metal complex according to claim 1. 前記有機配位子は、次の一般式(I)
(HOOC)n1−R1−(COOH)n2 ・・・(I)
(ただし、R1はアルキレン基、アルキニレン基、アルケニレン基又はアリーレン基を示し、前記R1は置換基を含んでもよく、n1及びn2は整数を示し、1≦n1≦8、0≦n2≦8である。)で表されるカルボン酸を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載の自己集積型金属錯体の製造方法。
The organic ligand has the following general formula (I)
(HOOC) n1-R1- (COOH) n2 (I)
(However, R1 represents an alkylene group, an alkynylene group, an alkenylene group or an arylene group, the R1 may include a substituent, n1 and n2 represent integers, and 1 ≦ n1 ≦ 8 and 0 ≦ n2 ≦ 8. The method for producing a self-assembled metal complex according to any one of claims 1 to 5, further comprising a carboxylic acid represented by:
2≦n1+n2≦4であることを特徴とする請求項6に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to claim 6, wherein 2 ≦ n1 + n2 ≦ 4. 前記R1は、次の一般式(II)〜(XI)
のいずれか一つで表される置換基を含むことを特徴とする請求項6又は請求項7に記載の自己集積型金属錯体の製造方法。
R1 represents the following general formulas (II) to (XI)
The manufacturing method of the self-assembly type | mold metal complex of Claim 6 or 7 characterized by including the substituent represented by any one of these.
前記R1は、炭素原子をヘテロ元素に置換した複素環を含むことを特徴とする請求項6乃至請求項8のいずれか一項に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to any one of claims 6 to 8, wherein R1 includes a heterocycle in which a carbon atom is substituted with a heteroelement. 前記R1は、環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことを特徴とする請求項9に記載の自己集積型金属錯体の製造方法。   The self-integrated type according to claim 9, wherein R1 includes an element selected from an element group including N, O, S, P, B, As, Si, Sb, and Hg in the ring skeleton. A method for producing a metal complex. 前記R1は、次の一般式(XII)〜(XXVII)
のいずれか一つで表される置換基を含むことを特徴とする請求項10に記載の自己集積型金属錯体の製造方法。
R1 represents the following general formulas (XII) to (XXVII)
The method for producing a self-assembled metal complex according to claim 10, comprising a substituent represented by any one of the following:
前記金属錯体は、2〜4価の金属を含む金属群から選択された第2の金属を含むことを特徴とする請求項1に記載の自己集積型金属錯体の製造方法。   2. The method for producing a self-assembled metal complex according to claim 1, wherein the metal complex includes a second metal selected from a metal group including a divalent to tetravalent metal. 前記第2の金属は、2価又は3価の金属を含むことを特徴とする請求項12に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to claim 12, wherein the second metal includes a divalent or trivalent metal. 前記第2の金属は、Cuを含むことを特徴とする請求項13に記載の自己集積型金属錯体の製造方法。   The method for producing a self-assembled metal complex according to claim 13, wherein the second metal contains Cu. 請求項1乃至請求項14のいずれか一項に記載の自己集積型金属錯体の製造方法により得られ、中心金属と、有機配位子とを備える金属錯体の三次元的骨格構造を含むことを特徴とする自己集積型金属錯体。   It is obtained by the method for producing a self-assembled metal complex according to any one of claims 1 to 14, and includes a three-dimensional skeleton structure of a metal complex comprising a central metal and an organic ligand. Characteristic self-assembled metal complex. 前記中心金属は、Cuと、Mg、Cr、Mn、Fe、Co、Ni、Zn、Rh、Ru、Mo、Re、Al、Pd、Cd、Tb、W及びPtを含む金属群から選択される金属とを含むことを特徴とする請求項15に記載の自己集積型金属錯体。   The central metal is a metal selected from a metal group including Cu, Mg, Cr, Mn, Fe, Co, Ni, Zn, Rh, Ru, Mo, Re, Al, Pd, Cd, Tb, W, and Pt. The self-assembled metal complex according to claim 15, comprising: 2種類以上の結晶構造を含むことを特徴とする請求項15又は請求項16に記載の自己集積型金属錯体。   The self-assembled metal complex according to claim 15 or 16, comprising two or more kinds of crystal structures. BET比表面積が700m/g以上であることを特徴とする請求項15乃至請求項17のいずれか一項に記載の自己集積型金属錯体。 The self-assembled metal complex according to any one of claims 15 to 17, wherein a BET specific surface area is 700 m 2 / g or more. 前記骨格構造内に取り込まれた気体又は液体を有することを特徴とする請求項15乃至請求項18のいずれか一項に記載の自己集積型金属錯体。   The self-assembled metal complex according to any one of claims 15 to 18, comprising a gas or a liquid taken into the skeleton structure. 請求項15乃至請求項19のいずれか一項に記載の自己集積型金属錯体を含むことを特徴とする触媒材。   A catalyst material comprising the self-assembled metal complex according to any one of claims 15 to 19.
JP2009002370A 2009-01-08 2009-01-08 Method for producing self-assembled metal complex crystals Active JP5403505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002370A JP5403505B2 (en) 2009-01-08 2009-01-08 Method for producing self-assembled metal complex crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002370A JP5403505B2 (en) 2009-01-08 2009-01-08 Method for producing self-assembled metal complex crystals

Publications (2)

Publication Number Publication Date
JP2010159228A true JP2010159228A (en) 2010-07-22
JP5403505B2 JP5403505B2 (en) 2014-01-29

Family

ID=42576692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002370A Active JP5403505B2 (en) 2009-01-08 2009-01-08 Method for producing self-assembled metal complex crystals

Country Status (1)

Country Link
JP (1) JP5403505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123091A1 (en) * 2013-02-08 2014-08-14 国立大学法人京都大学 Porous metal complex, method for producing polymer using same, and vinyl ester copolymer
WO2014126238A1 (en) * 2013-02-18 2014-08-21 株式会社クラレ Metal complex, and adsorbent, absorbent and separator, each of which is formed of metal complex
WO2014129569A1 (en) * 2013-02-22 2014-08-28 株式会社クラレ Method for producing metal complex

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JPH10316684A (en) * 1997-05-13 1998-12-02 Osaka Gas Co Ltd New dicarboxylic acid metal complex and gas absorptive material
JP2000063385A (en) * 1998-08-13 2000-02-29 Osaka Gas Co Ltd New dicarboxylic acid metal complex and gas-storage material
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2008133261A (en) * 2006-10-26 2008-06-12 Sumitomo Chemical Co Ltd Process for producing asymmetric copper complex crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JPH10316684A (en) * 1997-05-13 1998-12-02 Osaka Gas Co Ltd New dicarboxylic acid metal complex and gas absorptive material
JP2000063385A (en) * 1998-08-13 2000-02-29 Osaka Gas Co Ltd New dicarboxylic acid metal complex and gas-storage material
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2008133261A (en) * 2006-10-26 2008-06-12 Sumitomo Chemical Co Ltd Process for producing asymmetric copper complex crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123091A1 (en) * 2013-02-08 2014-08-14 国立大学法人京都大学 Porous metal complex, method for producing polymer using same, and vinyl ester copolymer
WO2014126238A1 (en) * 2013-02-18 2014-08-21 株式会社クラレ Metal complex, and adsorbent, absorbent and separator, each of which is formed of metal complex
WO2014129569A1 (en) * 2013-02-22 2014-08-28 株式会社クラレ Method for producing metal complex

Also Published As

Publication number Publication date
JP5403505B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5305278B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5689903B2 (en) Method for producing porous organic-inorganic hybrid body
US20190217270A1 (en) Metal organic frameworks and methods of making and using same
EP2376504B1 (en) Method for preparing metal-organic framework crystallised and porous aluminium aromatic azocarboxylates
JP5176286B2 (en) Method for producing porous metal complex
US20160185806A1 (en) PROCESS FOR OBTAINING METAL-ORGANIC MATERIALS WITH STRUCTURE TYPE MIL-101 (Cr) AND MIL-101-Cr-Mx+
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
EP3932540A2 (en) Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5044815B2 (en) Method for producing metal complex
JP5403505B2 (en) Method for producing self-assembled metal complex crystals
JP5213242B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, and hydrogen adsorbent
Rowland et al. Novel syntheses of carbazole-3, 6-dicarboxylate ligands and their utilization for porous coordination cages
JP5245208B2 (en) Method for producing porous metal complex
KR101091875B1 (en) A purification method of porous metal-organic framework materials
JP2005232109A (en) Method for producing polycarboxylic acid metal complex
CN113292581A (en) Novel coordination circular polarization luminescent crystalline compound and preparation method and application thereof
JP5292679B2 (en) Method for producing porous metal complex as hydrogen storage material
JP2016196417A (en) Porous polymer metal complex, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
JP3760255B2 (en) Novel dicarboxylic acid metal complex and gas storage material
JP5759175B2 (en) Gas adsorption material, precursor thereof, and method for producing gas adsorption material
JP5257973B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor
JP2010082545A (en) Gas adsorbent
Ayyavu et al. The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5403505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150