JP2016196417A - Porous polymer metal complex, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same - Google Patents

Porous polymer metal complex, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same Download PDF

Info

Publication number
JP2016196417A
JP2016196417A JP2015076280A JP2015076280A JP2016196417A JP 2016196417 A JP2016196417 A JP 2016196417A JP 2015076280 A JP2015076280 A JP 2015076280A JP 2015076280 A JP2015076280 A JP 2015076280A JP 2016196417 A JP2016196417 A JP 2016196417A
Authority
JP
Japan
Prior art keywords
metal complex
isophthalic acid
porous polymer
gas
polymer metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015076280A
Other languages
Japanese (ja)
Other versions
JP6525686B2 (en
Inventor
上代 洋
Hiroshi Kajiro
洋 上代
徳丸 慎司
Shinji Tokumaru
慎司 徳丸
進 北川
Susumu Kitagawa
進 北川
亮太郎 松田
Ryotaro Matsuda
亮太郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kyoto University NUC
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Kyoto University NUC filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015076280A priority Critical patent/JP6525686B2/en
Publication of JP2016196417A publication Critical patent/JP2016196417A/en
Application granted granted Critical
Publication of JP6525686B2 publication Critical patent/JP6525686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous polymer metal complex utilizable as a gas adsorbent capable of adsorbing oxygen and carbon monoxide selectively in a wide temperature region, and to provide a gas separation apparatus and a gas storage apparatus using the same.SOLUTION: A porous polymer metal complex has an aggregate structure expressed by [CuX](i). (In formula (i), X is a ligand of copper ion, and an isophthalic acid derivative having a functional group containing halogen other than fluorine on 5-position, and n shows an aggregation number of a metal complex comprising CuX, and n is not limited.)SELECTED DRAWING: Figure 4

Description

本発明は多孔性高分子金属錯体及びガス吸着材としての利用ならびにこれを用いたガス分離装置およびガス貯蔵装置に関する。   The present invention relates to use as a porous polymer metal complex and a gas adsorbing material, and a gas separation device and a gas storage device using the same.

ガス吸着材は、加圧貯蔵や液化貯蔵に比べて、低圧で大量のガスを貯蔵しうる特性を有する。このため、近年、ガス吸着材を用いたガス貯蔵装置およびガス分離装置の開発が盛んである。ガス吸着材としては、活性炭、ゼオライトなどが知られている。このようなガス吸着材を用いて、分離または貯蔵することが求められているガスとしては、たとえば、酸素および一酸化炭素が例示される。   The gas adsorbent has a characteristic of storing a large amount of gas at a low pressure as compared with pressurized storage and liquefied storage. For this reason, in recent years, development of a gas storage device and a gas separation device using a gas adsorbent has been active. As the gas adsorbent, activated carbon, zeolite and the like are known. Examples of the gas that is required to be separated or stored using such a gas adsorbent include oxygen and carbon monoxide.

酸素は、産業ガスとして、鉄鋼他の産業に膨大な量が使用されているため、酸素分離法の開発は非常に重要である。このような目的のためには、多数の小さな細孔を有する所謂多孔体がガス吸着材として利用されるが、酸素を吸着する吸着材の多くは、酸素以外のガス、すなわち窒素等も吸着する事が多い。特に、低温では、細孔と種々のガスとの相互作用が強くなるため、原理的に多くの多孔体は種々のガスを吸着するようになる。したがって、どのようにすれば幅広い温度域で酸素だけを選択的に吸着する(分離する)吸着材を製造出来るかはよくわかっていない。分子篩炭素とPSA(圧力スイング吸着)装置とを利用した酸素分離は実用化されているが、小型化、高効率化のニーズは大きく、これに対応するための高性能の酸素分離材の開発は重要である。   Since oxygen is used as an industrial gas in enormous amounts in steel and other industries, the development of an oxygen separation method is very important. For this purpose, so-called porous bodies having a large number of small pores are used as gas adsorbents, but most adsorbents that adsorb oxygen also adsorb gases other than oxygen, that is, nitrogen and the like. There are many things. In particular, since the interaction between the pores and various gases becomes strong at low temperatures, in principle, many porous bodies adsorb various gases. Therefore, it is not well understood how an adsorbent that selectively adsorbs (separates) only oxygen in a wide temperature range can be produced. Although oxygen separation using molecular sieve carbon and PSA (pressure swing adsorption) equipment has been put into practical use, there is a great need for miniaturization and high efficiency, and the development of a high-performance oxygen separator to meet this demand is important.

一酸化炭素は、燃料、酢酸、ポリカーボネート等の化成品原料として有用である。鉄鋼業からは転炉等の操業の際に、多量の一酸化炭素が発生しているが、これは窒素との混合ガスとして得られる。しかしながら、一酸化炭素と窒素とは、物理特性および化学特性がきわめて類似しており、既存のゼオライト、活性炭などの多孔体を利用したガス吸着材による一酸化炭素と窒素との分離効率は低い。そのため、本技術は一般普及しておらず、一酸化炭素を高効率で選択的に吸着できるガス吸着材の開発が望まれている。   Carbon monoxide is useful as a raw material for chemical products such as fuel, acetic acid and polycarbonate. A large amount of carbon monoxide is generated from the iron and steel industry during operations such as converters, and this is obtained as a mixed gas with nitrogen. However, carbon monoxide and nitrogen are very similar in physical properties and chemical properties, and the separation efficiency of carbon monoxide and nitrogen by a gas adsorbent using a porous material such as existing zeolite and activated carbon is low. For this reason, this technology is not widely used, and development of a gas adsorbent capable of selectively adsorbing carbon monoxide with high efficiency is desired.

ところで、多孔性高分子金属錯体は、金属イオンと有機配位子から得られる結晶性固体であり、ゼオライトおよび活性炭と同様に、ナノスケールの微細な孔を有しており、ガスの吸着、分離が行えることが知られている。そこで、多孔性高分子金属錯体にガスを吸蔵させる方法も提案されている(特許文献1、非特許文献1参照)。   By the way, a porous polymer metal complex is a crystalline solid obtained from a metal ion and an organic ligand, and, like zeolite and activated carbon, has nano-scale fine pores to adsorb and separate gases. It is known that In view of this, a method in which a gas is occluded in a porous polymer metal complex has also been proposed (see Patent Document 1 and Non-Patent Document 1).

しかしながら、これらの多孔性高分子金属錯体を用いて従来提案されてきたガス吸着材は、ガス吸着量や作業性などの点で充分に満足できるものとはいえず、より優れた特性を有するガス吸着材の開発が所望されている。種々の金属イオン、有機配位子の組み合わせが可能であることおよび骨格構造の多様性から、特許文献1等に開示されている多孔性高分子金属錯体以外にも、様々なガス吸着特性を発現する可能性を秘めている。   However, the gas adsorbents conventionally proposed using these porous polymer metal complexes are not sufficiently satisfactory in terms of the amount of gas adsorption and workability, and have more excellent characteristics. Development of adsorbents is desired. Because of the combination of various metal ions and organic ligands and the diversity of skeletal structures, various gas adsorption characteristics are exhibited in addition to the porous polymer metal complexes disclosed in Patent Document 1 There is a possibility to do.

多孔性高分子金属錯体として、イソフタル酸を原料として得られるカゴメネットワーク構造を有するものが知られている。これらの多くはガス吸着性を発現し、イソフタル酸の5位の置換基がガス吸着性に影響を及ぼす事は知られている。たとえば、特許文献2には、カゴメネットワーク構造を有する多孔性高分子金属錯体が、二酸化炭素を選択的に吸着することが記載されている(特許文献2参照)。しかしながら、どのような置換基がどのようなガス吸着性を発現するかは未だ検討が不十分であった(特許文献3、非特許文献6〜11参照)。   A porous polymer metal complex having a kagome network structure obtained from isophthalic acid as a raw material is known. Many of these exhibit gas-adsorbing properties, and it is known that the substituent at the 5-position of isophthalic acid affects the gas-adsorbing properties. For example, Patent Document 2 describes that a porous polymer metal complex having a kagome network structure selectively adsorbs carbon dioxide (see Patent Document 2). However, what kind of substituents express what kind of gas-adsorbing property has not yet been examined sufficiently (see Patent Document 3 and Non-Patent Documents 6 to 11).

特開2000−109493号公報JP 2000-109493 A 特許第5646789号公報Japanese Patent No. 5646789 米国特許出願公開第2002/0120165号明細書US Patent Application Publication No. 2002/0120165

北川進、集積型金属錯体、講談社サイエンティフィク、2001年214-218頁Susumu Kitagawa, Integrated Metal Complex, Kodansha Scientific, 2001, pages 214-218 Long他、Angew. Chem. Int. Ed. 2010, 49, 2 - 27Long et al., Angew. Chem. Int. Ed. 2010, 49, 2-27 Suh 他 Inorganic Chemistry, Vol. 45, No. 21, 2006Suh et al. Inorganic Chemistry, Vol. 45, No. 21, 2006 Zhou他、Inorganic Chemistry, Vol. 46, No. 4, 2007 1233Zhou et al., Inorganic Chemistry, Vol. 46, No. 4, 2007 1233 Rosi他、J. AM. CHEM. SOC. 2010, 132, 38-39Rosi et al., J. AM. CHEM. SOC. 2010, 132, 38-39 Morris他、Nature Commun., 2011, 304Morris et al., Nature Commun., 2011, 304 Zaworotko他、Chem. Commun., 2004, 2534Zaworotko et al., Chem. Commun., 2004, 2534 Zaworotko他、Angew. Chem. Int. Ed. 2001, 2111Zaworotko et al., Angew. Chem. Int. Ed. 2001, 2111 Zaworotko他、Cryst. Growth Des. 2003, 513Zaworotko et al., Cryst. Growth Des. 2003, 513 Burrows他、Dalton Trans., 2008, 6788Burrows et al., Dalton Trans., 2008, 6788 佐藤他、Science, 2014, 343, 167Sato et al., Science, 2014, 343, 167

本発明は、幅広い温度域において、酸素および一酸化炭素を選択的に吸着可能な多孔性高分子金属錯体及びこれを用いた優れた特性を有するガス吸着材を提供することを目的とする。また本発明は、前記特性を有するガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置を併せて提供することを目的とする。   An object of the present invention is to provide a porous polymer metal complex capable of selectively adsorbing oxygen and carbon monoxide in a wide temperature range, and a gas adsorbent having excellent characteristics using the same. Another object of the present invention is to provide a gas storage device and a gas separation device that contain a gas adsorbent having the above-mentioned characteristics.

本発明者らは、前述のような問題点を解決すべく、鋭意研究を積み重ねた結果、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と銅イオンとの反応により得られる、いわゆるカゴメ構造を有する多孔性高分子金属錯体が、幅広い温度域で酸素および一酸化炭素を選択的に吸着する事を見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can obtain the reaction by reacting an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position with copper ions. The inventors have found that a porous polymer metal complex having a so-called kagome structure selectively adsorbs oxygen and carbon monoxide in a wide temperature range, and has completed the present invention.

すなわち、本発明は、カゴメ構造の基本骨格を有し、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を銅イオンの配位子として含有する多孔性高分子金属錯体に関し、さらに、本材料のガス吸着材としての利用及び本ガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置に関する。   That is, the present invention relates to a porous polymer metal complex having an isophthalic acid derivative having a basic skeleton of a kagome structure and having a functional group containing a halogen element other than fluorine at the 5-position as a ligand of a copper ion, Furthermore, the present invention relates to the use of the present material as a gas adsorbent and a gas storage device and a gas separation device each containing the present gas adsorbent.

すなわち本発明の態様は以下の通りである。
(1) [CuX] (i)
(式(i)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは限定されない。)
で表される集合体構造を有する多孔性高分子金属錯体。
(2) 前記集合体構造は、銅イオンが前記イソフタル酸誘導体中の4個のカルボキシル基と配位結合したユニットが上下に二つ配位したパドルホイール構造を有し、前記パドルホイール構造が前記イソフタル酸誘導体により連結されて形成される六員環と三員環とから構成されるカゴメ構造が積層された結晶構造を有する上記(1)に記載の多孔性高分子金属錯体。
(3) 前記ふっ素以外のハロゲン元素を含む官能基のハロゲン元素が塩素、臭素、よう素からなる群から選ばれる1つまたは2つ以上である上記(1)又は(2)に記載の多孔性高分子金属錯体。
(4) 前記ふっ素以外のハロゲン元素を含む官能基のハロゲン元素がよう素である上記(3)に記載の多孔性高分子金属錯体。
(5) 前記ふっ素以外のハロゲン元素を含む官能基が、ハロゲン元素が水素を置換した直鎖または分岐鎖を有するアルキル基またはアルコキシ基である上記(1)〜(4)のいずれかに記載の多孔性高分子金属錯体。
(6) 前記アルキル基またはアルコキシ基中の炭素原子数が1から10の範囲内である上記(5)に記載の多孔性高分子金属錯体。
(7) 前記ふっ素以外のハロゲン元素を含む官能基が含有するハロゲン原子数が1から21の範囲内である上記(1)〜(6)のいずれかに記載の多孔性高分子金属錯体。
(8) [CuX] (iv)
(式(iv)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と、イソフタル酸および5位に置換基を有するイソフタル酸誘導体からなる群から選ばれる1種類または2種類以上と、を含み、Xの合計モル数を100モル%とした場合に、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体の割合が5モル%以上である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは限定されない。)
で表される集合体構造を有することを特徴とする多孔性高分子金属錯体。
(9) 前記5位に置換基を有するイソフタル酸誘導体が、5位にアルキル基を有するイソフタル酸誘導体、5位にアルコキシ基を有するイソフタル酸誘導体およびアミノ基を有するイソフタル酸誘導体から選ばれる1種類または2種類以上である上記(8)に記載の多孔性高分子金属錯体。
(10) 上記(1)〜(9)のいずれかに記載の多孔性高分子金属錯体を含むガス吸着材。
(11) 上記(10)に記載の吸着材を用いたガス分離装置。
(12) 上記(10)に記載の吸着材を用いたガス貯蔵装置。
That is, the embodiments of the present invention are as follows.
(1) [CuX] n (i)
(In formula (i), X is a copper ion ligand and is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. N is a constituent unit of a metal complex composed of CuX. Indicates the number of sets, and n is not limited.)
A porous polymer metal complex having an aggregate structure represented by:
(2) The aggregate structure has a paddle wheel structure in which copper ions are coordinated with four carboxyl groups in the isophthalic acid derivative, and two units are coordinated up and down. The porous polymer metal complex according to the above (1), which has a crystal structure in which a kagome structure composed of a six-membered ring and a three-membered ring formed by connecting with an isophthalic acid derivative is laminated.
(3) The porosity as described in (1) or (2) above, wherein the halogen element of the functional group containing a halogen element other than fluorine is one or more selected from the group consisting of chlorine, bromine and iodine Polymer metal complex.
(4) The porous polymer metal complex according to the above (3), wherein the halogen element of the functional group containing a halogen element other than fluorine is iodine.
(5) The functional group containing a halogen element other than fluorine is a linear or branched alkyl group or alkoxy group in which the halogen element is substituted with hydrogen, or any one of (1) to (4) above Porous polymer metal complex.
(6) The porous polymer metal complex according to (5) above, wherein the number of carbon atoms in the alkyl group or alkoxy group is in the range of 1 to 10.
(7) The porous polymer metal complex according to any one of (1) to (6), wherein the functional group containing a halogen element other than fluorine contains 1 to 21 halogen atoms.
(8) [CuX] n (iv)
(In the formula (iv), X is a copper ion ligand, and an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position, and isophthalic acid and an isophthalic acid derivative having a substituent at the 5-position The proportion of isophthalic acid derivatives having a functional group containing a halogen element other than fluorine at the 5-position when the total number of moles of X is 100 mol%, including one or more selected from the group consisting of Is 5 mol% or more, n represents the number of aggregates of structural units of the metal complex composed of CuX, and n is not limited.)
A porous polymer metal complex having an aggregate structure represented by:
(9) The isophthalic acid derivative having a substituent at the 5-position is selected from an isophthalic acid derivative having an alkyl group at the 5-position, an isophthalic acid derivative having an alkoxy group at the 5-position, and an isophthalic acid derivative having an amino group Or the porous polymeric metal complex as described in said (8) which is 2 or more types.
(10) A gas adsorbent comprising the porous polymer metal complex according to any one of (1) to (9).
(11) A gas separation device using the adsorbent according to (10).
(12) A gas storage device using the adsorbent according to (10).

本発明の多孔性高分子金属錯体は、酸素および一酸化炭素に関して、多量のガスを吸蔵、放出し、かつ、ガスの選択的吸着を行うことが可能である。また本発明の多孔性高分子金属錯体からなるガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置を製造することが可能になる。   The porous polymer metal complex of the present invention can store and release a large amount of gas with respect to oxygen and carbon monoxide, and can perform selective gas adsorption. In addition, it is possible to manufacture a gas storage device and a gas separation device in which the gas adsorbent comprising the porous polymer metal complex of the present invention is housed.

本発明の多孔性高分子金属錯体は、また例えば、圧力スイング吸着方式(以下「PSA方式」と略記)のガス分離装置として使用すれば、非常に効率良いガス分離が可能である。また、圧力変化に要する時間を短縮でき、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与しうるため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   When the porous polymer metal complex of the present invention is used, for example, as a gas separation device of a pressure swing adsorption method (hereinafter abbreviated as “PSA method”), very efficient gas separation is possible. In addition, the time required for pressure change can be shortened, contributing to energy saving. Furthermore, since it can contribute to the miniaturization of the gas separation device, it is possible to increase the cost competitiveness when selling high-purity gas as a product. Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.

本発明の多孔性高分子金属錯体の他の用途としては、ガス貯蔵装置が挙げられる。本発明のガス吸着材をガス貯蔵装置(業務用ガスタンク、民生用ガスタンク、車両用燃料タンクなど)に適用した場合には、搬送中および保存中の圧力を劇的に低減させることが可能である。搬送時および保存中のガス圧力を減少させ得ることに起因する効果としては、形状自由度の向上がまず挙げられる。従来のガス貯蔵装置においては、保存中の圧力を維持しなくてはガス吸着量を高く維持できない。しかしながら、本発明のガス貯蔵装置においては、圧力を低下させても充分なガス吸着量を維持できる。   Another application of the porous polymer metal complex of the present invention is a gas storage device. When the gas adsorbent of the present invention is applied to a gas storage device (business gas tank, consumer gas tank, vehicle fuel tank, etc.), it is possible to dramatically reduce the pressure during transportation and storage. . As an effect resulting from the fact that the gas pressure during transportation and storage can be reduced, an improvement in the degree of freedom in shape is first mentioned. In the conventional gas storage device, the gas adsorption amount cannot be maintained high unless the pressure during storage is maintained. However, in the gas storage device of the present invention, a sufficient gas adsorption amount can be maintained even if the pressure is lowered.

ガス分離装置あるいはガス貯蔵装置に適用する場合における、容器形状、容器材質、ガスバルブの種類などに関しては、特に特別の装置を用いなくてもよく、ガス分離装置あるいはガス貯蔵装置に用いられているものを用いることが可能である。ただし、各種装置の改良を排除するものではなく、いかなる装置を用いたとしても、本発明の多孔性高分子金属錯体を用いている限りにおいて、本発明の技術的範囲に包含されるものである。   When applied to a gas separation device or a gas storage device, the container shape, the material of the container, the type of the gas valve, etc. need not be specially used, and are used in the gas separation device or the gas storage device. Can be used. However, the improvement of various devices is not excluded, and any device is included in the technical scope of the present invention as long as the porous polymer metal complex of the present invention is used. .

本実施形態に係る多孔性高分子金属錯体が有するカゴメ構造の基本骨格の一層のみを切り抜いた上面図を示す。図1において、銅イオンを黒色で示し、炭素原子を灰色で示し、酸素原子を白色で示す。なお、水素原子の図示は省略した。The top view which cut out only one layer of the basic skeleton of the kagome structure which the porous polymer metal complex which concerns on this embodiment has is shown. In FIG. 1, copper ions are shown in black, carbon atoms are shown in gray, and oxygen atoms are shown in white. The illustration of hydrogen atoms is omitted. 図1において、銅イオンが、イソフタル酸誘導体中の4個のカルボキシル基と配位結合したユニットが上下に二つ配位するいわゆるパドルホイール構造を拡大して示す。図1と同様に、銅イオンを黒色で示し、炭素原子を灰色で示し、酸素原子を白色で示す。なお、水素原子の図示は省略した。FIG. 1 shows an enlarged view of a so-called paddle wheel structure in which two units in which copper ions are coordinated with four carboxyl groups in an isophthalic acid derivative are coordinated up and down. As in FIG. 1, copper ions are shown in black, carbon atoms are shown in gray, and oxygen atoms are shown in white. The illustration of hydrogen atoms is omitted. 図1に示す多孔性高分子金属錯体が有するカゴメ構造の基本骨格の二層のみを切り抜いた側面図を示す。図3において、銅イオンを黒で示し、炭素原子を灰色で示し、酸素原子および水素原子を白色で示す。The side view which cut out only two layers of the basic skeleton of the kagome structure which the porous polymer metal complex shown in FIG. 1 has is shown. In FIG. 3, copper ions are shown in black, carbon atoms are shown in gray, and oxygen atoms and hydrogen atoms are shown in white. 実施例1で得た単結晶を分析して得られた多孔性高分子金属錯体のカゴメ構造(一層のみ)を示す。図4において、丸で囲んだ原子がよう素である。The kagome structure (only one layer) of the porous polymer metal complex obtained by analyzing the single crystal obtained in Example 1 is shown. In FIG. 4, the circled atoms are iodine. 実施例1で得た粉末を粉末X線装置により測定して得られた回折パターンを示す。The diffraction pattern obtained by measuring the powder obtained in Example 1 with a powder X-ray apparatus is shown.

本実施形態に係る多孔性高分子金属錯体は、下記式(i)で表され、かつ図1で示されるいわゆるカゴメ構造の基本骨格を有する化合物である。すなわち、銅イオンに配位しているイソフタル酸誘導体の全てがハロゲンを含む官能基を有している。
[CuX] (i)
(式(i)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは特に限定されないが、1以上の整数である。多孔性高分子金属錯体からなる材料の安定性の観点から、nは50以上であることが好ましく、優れた吸着特性の観点から、nは100以上であることが好ましい。)
The porous polymer metal complex according to this embodiment is a compound represented by the following formula (i) and having a basic skeleton having a so-called kagome structure shown in FIG. That is, all of the isophthalic acid derivatives coordinated to the copper ion have a functional group containing halogen.
[CuX] n (i)
(In formula (i), X is a copper ion ligand and is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. N is a constituent unit of a metal complex composed of CuX. Indicating the number of aggregates, n is not particularly limited, but is an integer greater than or equal to 1. From the viewpoint of the stability of the material comprising the porous polymer metal complex, n is preferably greater than or equal to 50 and excellent adsorption From the viewpoint of characteristics, n is preferably 100 or more.)

図1に、本実施形態に係る多孔性高分子金属錯体が有するカゴメ構造の基本骨格の一層のみを切り抜いた上面図を示す。銅イオンが、イソフタル酸誘導体中の4個のカルボキシル基と配位結合したユニットが上下に二つ配位するいわゆるパドルホイール構造(図2参照)を有し、そのパドルホイール構造がイソフタル酸誘導体により連結されてパドルホイール構造を頂点とする六角形(六員環)と三角形(三員環)から成る、所謂カゴメ構造を形成している。本図は、イソフタル酸誘導体の5位がアルキル基を有しているカゴメ構造を示しているが、5位がふっ素以外のハロゲン元素を含む官能基を有していても、パドルホイール構造がイソフタル酸誘導体により連結されることにより形成されるカゴメ構造の基本骨格は変わらない。   In FIG. 1, the top view which cut out only one layer of the basic skeleton of the kagome structure which the porous polymer metal complex which concerns on this embodiment has is shown. The copper ion has a so-called paddle wheel structure (see FIG. 2) in which two units coordinated with four carboxyl groups in the isophthalic acid derivative are coordinated up and down, and the paddle wheel structure is formed by an isophthalic acid derivative. A so-called kagome structure is formed which is connected to form a hexagon (six-membered ring) and a triangle (three-membered ring) having a paddle wheel structure as a vertex. This figure shows a kagome structure in which the 5-position of the isophthalic acid derivative has an alkyl group, but even if the 5-position has a functional group containing a halogen element other than fluorine, the paddle wheel structure has an isophthalic structure. The basic skeleton of the kagome structure formed by linking with an acid derivative is not changed.

図2に、図1に示すパドルホイール構造を拡大して示す。本図では、パドルホイール構造を形成する1個の銅イオンに対し、カルボキシル基の酸素が4個配位するとともに、水が1分子配位している。このパドルホイール構造がイソフタル酸誘導体により連結されて、図1に示すように、カゴメ構造が形成される。   FIG. 2 shows an enlarged view of the paddle wheel structure shown in FIG. In this figure, four oxygen atoms of the carboxyl group are coordinated to one copper ion forming the paddle wheel structure, and one molecule of water is coordinated. This paddle wheel structure is connected by an isophthalic acid derivative to form a kagome structure as shown in FIG.

図3に、図1の多孔性高分子金属錯体のカゴメ構造の二層のみを切り抜いた側面図を示す。カゴメ構造は二次元平面構造であり、本多孔性高分子金属錯体はこの二次元平面構造体が積層してなる構成を有している。図3において、六員環の間または三員環の間が空間であり、多孔性高分子金属錯体における細孔となる。この細孔に種々のガスが吸着することになる。なお、図1〜3は、いずれも分子ネットワーク構造の一部を切り抜いた物であり、実際は無限格子である。   FIG. 3 shows a side view in which only two layers of the kagome structure of the porous polymer metal complex of FIG. 1 are cut out. The kagome structure is a two-dimensional planar structure, and the porous polymer metal complex has a structure in which the two-dimensional planar structure is laminated. In FIG. 3, the space between the six-membered ring or the three-membered ring is a space, which is a pore in the porous polymer metal complex. Various gases are adsorbed in the pores. 1 to 3 are all cut out of a part of the molecular network structure, and are actually infinite lattices.

本実施形態に係る多孔性高分子金属錯体は、銅イオンと、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と、から形成される図1に示す上記の所謂カゴメネットワーク構造を有している。ここで重要なのはネットワークのトポロジーであり、個々の結合角は、本多孔性高分子金属錯体が柔軟性を有するが故に、必ずしも常に図と同一の結合角を有するとは限らない。また図3の積層状態に於いても、二次元のカゴメネットワーク構造が水素結合、ファンデルワールス力等の弱い相互作用のみで積層しているため、積層状態がずれる可能性はあるが、これらも同一の機能を有する同一の化合物と見なされる。   The porous polymer metal complex according to the present embodiment includes the so-called kagome network structure shown in FIG. 1 formed from a copper ion and an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. have. What is important here is the topology of the network, and the individual bond angles do not always have the same bond angles as in the figure because the porous polymer metal complex has flexibility. Also in the laminated state of FIG. 3, the two-dimensional kagome network structure is laminated only by weak interactions such as hydrogen bonds and van der Waals forces. It is regarded as the same compound having the same function.

本実施形態に係る多孔性高分子金属錯体は多孔体であるため、水またはアルコール、エーテルなどの有機分子にふれると孔内に水や有機溶媒を含有し、たとえば下記式(ii)で表される複合錯体に変化する場合がある。
[CuX](G) (ii)
(式(ii)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは特に限定されないが、1以上の整数である。多孔性高分子金属錯体からなる材料の安定性の観点から、nは50以上であることが好ましく、優れた吸着特性の観点から、nは100以上であることが好ましい。Gは孔内に吸着された水やアルコールやエーテルなどの有機分子で、mは任意の数である。)
Since the porous polymer metal complex according to the present embodiment is a porous body, water or an organic solvent is contained in the pores when contacted with organic molecules such as water, alcohol or ether, and is represented by the following formula (ii), for example. May change to a complex complex.
[CuX] n (G) m (ii)
(In the formula (ii), X is a copper ion ligand and is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. N is a constituent unit of a metal complex composed of CuX. Indicating the number of aggregates, n is not particularly limited, but is an integer greater than or equal to 1. From the viewpoint of the stability of the material comprising the porous polymer metal complex, n is preferably greater than or equal to 50 and excellent adsorption From the viewpoint of characteristics, n is preferably 100 or more, G is an organic molecule such as water, alcohol or ether adsorbed in the pores, and m is an arbitrary number.)

しかしながら、これらの複合錯体中の水またはアルコール、エーテルなどの有機分子は、多孔性高分子金属錯体に弱く結合しているだけであり、ガス吸着材として利用する際の減圧乾燥などの前処理によって除かれ、元の式(i)で表される錯体に戻る。そのため、式(ii)で表されるような錯体であっても、本質的には本実施形態に係る多孔性高分子金属錯体と同一物と見なすことができる。   However, organic molecules such as water, alcohol, and ether in these complex complexes are only weakly bonded to the porous polymer metal complex, and are pretreated by drying under reduced pressure when used as a gas adsorbent. It is removed and it returns to the complex represented by the original formula (i). Therefore, even a complex represented by the formula (ii) can be regarded as essentially the same as the porous polymer metal complex according to the present embodiment.

また本実施形態に係る多孔性高分子金属錯体中の銅イオンは、イソフタル酸誘導体中のカルボキシル基の酸素4個が配位した、いわゆるパドルホイールと呼ばれる構造を有している。銅イオンは6配位構造をとることも多く、すなわち、本パドルホイール構造は、カルボキシル基の酸素4個以外にさらに二個の配位を受けることが可能であり、たとえば下記式(iii)で表される複合錯体に変化する場合がある。
[CuXQ] (iii)
(式(iii)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは特に限定されないが、1以上の整数である。多孔性高分子金属錯体からなる材料の安定性の観点から、nは50以上であることが好ましく、優れた吸着特性の観点から、nは100以上であることが好ましい。Qはパドルホイール構造を形成する銅イオンに配位する分子などで、zは1または2である。)
Moreover, the copper ion in the porous polymer metal complex according to the present embodiment has a structure called a so-called paddle wheel in which four oxygen atoms of the carboxyl group in the isophthalic acid derivative are coordinated. Copper ions often have a six-coordinate structure, that is, the paddle wheel structure can receive two more coordinations in addition to the four oxygen atoms of the carboxyl group. For example, in the following formula (iii) It may change to the complex complex represented.
[CuXQ z ] n (iii)
(In the formula (iii), X is a copper ion ligand and is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. N is a structural unit of a metal complex composed of CuX. Indicating the number of aggregates, n is not particularly limited, but is an integer greater than or equal to 1. From the viewpoint of the stability of the material comprising the porous polymer metal complex, n is preferably greater than or equal to 50 and excellent adsorption (From the viewpoint of characteristics, n is preferably 100 or more. Q is a molecule coordinated to a copper ion forming a paddle wheel structure, and z is 1 or 2.)

しかしながら、これらの複合錯体中のQは、銅イオンに弱く結合しているだけであり、ガス吸着材として利用する際の減圧乾燥などの前処理によって除かれ、元の式(i)で表される錯体に戻る。そのため、式(iii)で表されるような錯体であっても、本質的には本実施形態に係る多孔性高分子金属錯体と同一物と見なすことができる。   However, Q in these complex complexes is only weakly bonded to copper ions, and is removed by pretreatment such as drying under reduced pressure when used as a gas adsorbent and represented by the original formula (i). Return to the complex. Therefore, even a complex represented by the formula (iii) can be regarded as essentially the same as the porous polymer metal complex according to the present embodiment.

以下、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を説明する。   Hereinafter, an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position will be described.

ハロゲンを含む官能基としては、本実施形態では、ふっ素以外のハロゲン元素が水素を置換した直鎖または分岐鎖を有するアルキル基およびアルコキシ基が挙げられる。これらの基における炭素原子数は1〜10の範囲内であると、カゴメ構造が出来やすいという点で好ましく、ガス吸着性が優れるという点で3〜8の範囲内が特に好ましい。   In the present embodiment, examples of the functional group containing halogen include a linear or branched alkyl group and an alkoxy group in which a halogen element other than fluorine is substituted for hydrogen. The number of carbon atoms in these groups is preferably in the range of 1 to 10 in terms of easy formation of a kagome structure, and in the range of 3 to 8 in terms of excellent gas adsorbability.

ハロゲンの種類としては、塩素、臭素、よう素からなる群から選ばれる1つまたは2つ以上が挙げられ、特にガス選択性が高いという点で、臭素およびよう素から選ばれる1つまたは2つが好ましく、カゴメ構造が出来やすいという点でよう素が特に好ましい。   Examples of the halogen include one or two or more selected from the group consisting of chlorine, bromine, and iodine, and one or two selected from bromine and iodine are particularly high in gas selectivity. Iodine is particularly preferable in that a kagome structure is easily formed.

ハロゲン原子の置換個数としては、すべての炭素上にハロゲンが置換したパーハロゲンアルキル基またはパーハロゲンアルコキシ基や、炭素上にハロゲンが1個だけ置換したモノハロゲンアルキル基またはモノハロゲンアルコキシ基が例示される。本実施形態では、ハロゲンを含む官能基が含有するハロゲン原子数は、1〜21の範囲内であることが好ましい。   Examples of the number of halogen atoms substituted include a perhalogenalkyl group or a perhalogenalkoxy group in which halogen is substituted on all carbons, and a monohalogenalkyl group or a monohalogenalkoxy group in which only one halogen is substituted on carbon. The In the present embodiment, the number of halogen atoms contained in the functional group containing halogen is preferably in the range of 1 to 21.

なお、モノハロゲンアルキルまたはモノハロゲンアルコキシ基の場合は、アルキル基またはアルコキシ基の柔軟性を確保する意味で、末端にハロゲンが置換したモノハロゲンアルキル基またはモノハロゲンアルコキシ基が特に好ましい。   In the case of a monohalogenalkyl or monohalogenalkoxy group, a monohalogenalkyl group or monohalogenalkoxy group in which a halogen is substituted at the terminal is particularly preferred in order to ensure flexibility of the alkyl group or alkoxy group.

上述したカゴメ構造の基本骨格を有し、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を配位子として含有する多孔性高分子金属錯体では、原料として複数種のイソフタル酸またはイソフタル酸誘導体(以降、イソフタル酸類とも言う)を混合使用して、使用した複数種のイソフタル酸類を含有する多孔性高分子金属錯体を合成する、いわゆる固溶体型の多孔性高分子金属錯体を形成することが可能であることが確認されている。この際、混合して使用する複数種のイソフタル酸類の少なくとも一種類は、ふっ素以外のハロゲン元素を含む官能基を5位に有するイソフタル酸誘導体である必要があり、これの含有率は、イソフタル酸類全体に対して5%以上、好ましくは20%以上である。   In the porous polymer metal complex having the basic skeleton having the above-mentioned kagome structure and containing an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position as a ligand, a plurality of types of isophthalic acid are used as raw materials. Alternatively, a so-called solid solution type porous polymer metal complex is formed by synthesizing a porous polymer metal complex containing multiple types of isophthalic acid used by mixing isophthalic acid derivatives (hereinafter also referred to as isophthalic acids). It has been confirmed that it is possible. At this time, at least one of the plural types of isophthalic acids to be used in combination needs to be an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. The total content is 5% or more, preferably 20% or more.

具体的には、この固溶体型の多孔性高分子金属錯体は、下記式(iv)で表され、かつ図1〜3で示されるいわゆるカゴメ構造を有する化合物である。
[CuX] (iv)
(式中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と、イソフタル酸および5位に置換基を有するイソフタル酸誘導体からなる群から選ばれる1種類または2種類以上と、を含み、Xの合計モル数を100モル%とした場合に、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体の割合が5モル%以上、好ましくは20モル%以上である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは特に限定されないが、1以上の整数である。多孔性高分子金属錯体からなる材料の安定性の観点から、nは50以上であることが好ましく、優れた吸着特性の観点から、nは100以上であることが好ましい。)
Specifically, this solid solution type porous polymer metal complex is a compound having a so-called kagome structure represented by the following formula (iv) and shown in FIGS.
[CuX] n (iv)
(In the formula, X is a copper ion ligand, and is composed of an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position, and isophthalic acid and an isophthalic acid derivative having a substituent at the 5-position. When the total number of moles of X is 100 mole%, the proportion of isophthalic acid derivatives having a functional group containing a halogen element other than fluorine at the 5-position is 5 moles % Is not less than 20 mol%, and n is the number of aggregates of constituent units of the metal complex composed of CuX, and n is not particularly limited, but is an integer of 1 or more. N is preferably 50 or more from the viewpoint of the stability of the material comprising the complex, and n is preferably 100 or more from the viewpoint of excellent adsorption characteristics.

銅イオンと、イソフタル酸および5位に置換基を有するイソフタル酸誘導体からなる群から選ばれる2種類以上と、を組み合わせると、図1〜3で示されるいわゆるカゴメ構造を基本骨格として有する固溶体型の多孔性高分子金属錯体を形成することを確認している。本実施形態に係る固溶体型の多孔性高分子金属錯体は、配位子としてのイソフタル酸類の合計モル数を100モル%とした場合に、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を5モル%以上、好ましくは20モル%以上含むことを特徴とするものである。複数種のイソフタル酸類を混合して使用する場合、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体が複数含まれてもよい。このとき、カゴメ構造の相互貫入はない。   Combining copper ions with two or more selected from the group consisting of isophthalic acid and an isophthalic acid derivative having a substituent at the 5-position results in a solid solution type having the so-called kagome structure shown in FIGS. It has been confirmed that a porous polymer metal complex is formed. The solid solution type porous polymer metal complex according to the present embodiment has a functional group containing a halogen element other than fluorine at the 5-position when the total number of moles of isophthalic acids as a ligand is 100 mol%. An isophthalic acid derivative is contained in an amount of 5 mol% or more, preferably 20 mol% or more. When a mixture of a plurality of types of isophthalic acids is used, a plurality of isophthalic acid derivatives having a functional group containing a halogen element other than fluorine at the 5-position may be included. At this time, there is no mutual penetration of the kagome structure.

式(iv)で表される固溶体型の多孔性高分子金属錯体に用いられる5位に置換基を有するイソフタル酸誘導体において、5位の置換基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、アラルキル基、置換又は非置換のアミノ基、ニトロ基、アミド基、ホルミル基、カルボニル基、エステル基、アジド基、カルボキシル基、スルホ基、水酸基などが例示される。
アルキル基としては、メチル基、エチル基など炭素原子数が1〜12であるアルキル基が好ましく、炭素原子数が1〜6であるアルキル基が特に好ましい。置換アルキル基の置換基としては、ヒドロキシ基、アミノ基などが挙げられる。
アルコキシ基としては、炭素原子数が1〜12、特に1〜6であるアルコキシ基が好ましく、特にメトキシ基、エトキシ基、ベンジルオキシ基が好ましい。置換アルコキシ基の置換基としては、ヒドロキシ基、アミノ基、ジメチルアミノ基等が挙げられる。
アリール基としては、フェニル基、パラヒドロキシフェニル基が好ましい。置換アリール基としては、パラヒドロキシフェニル基、パラジメチルアミノフェニル基などが挙げられる。
アラルキル基としては、ベンジル基、o, m,p−のいずれかまたは複数にメチル基およびまたはエチル基が置換したフェニル基が好ましい。非置換官能基は好ましく、具体的には、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、フェニルアミノ基、ジフェニルアミノ基がより好ましい。
In the isophthalic acid derivative having a substituent at the 5-position used in the solid solution type porous polymer metal complex represented by the formula (iv), the substituent at the 5-position may be a substituted or unsubstituted alkyl group, a substituted or Unsubstituted alkoxy group, substituted or unsubstituted aryl group, aralkyl group, substituted or unsubstituted amino group, nitro group, amide group, formyl group, carbonyl group, ester group, azide group, carboxyl group, sulfo group, hydroxyl group Etc. are exemplified.
As the alkyl group, an alkyl group having 1 to 12 carbon atoms such as a methyl group or an ethyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is particularly preferable. Examples of the substituent of the substituted alkyl group include a hydroxy group and an amino group.
As the alkoxy group, an alkoxy group having 1 to 12, particularly 1 to 6 carbon atoms is preferable, and a methoxy group, an ethoxy group, and a benzyloxy group are particularly preferable. Examples of the substituent for the substituted alkoxy group include a hydroxy group, an amino group, and a dimethylamino group.
As the aryl group, a phenyl group and a parahydroxyphenyl group are preferable. Examples of the substituted aryl group include a parahydroxyphenyl group and a paradimethylaminophenyl group.
The aralkyl group is preferably a benzyl group, a phenyl group in which one or more of o, m, and p- are substituted with a methyl group and / or an ethyl group. An unsubstituted functional group is preferable, and specifically, an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, a phenylamino group, and a diphenylamino group are more preferable.

Xとして、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と、イソフタル酸と、5位にアミノ基、アルキル基およびアルコキシ基からなる群から選ばれる1つまたは2つ以上を有するイソフタル酸誘導体と、の組み合わせは、好ましい。   X is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position, isophthalic acid, and one or more selected from the group consisting of an amino group, an alkyl group and an alkoxy group at the 5-position. The combination with the isophthalic acid derivative having is preferable.

この固溶体型の多孔性高分子金属錯体の場合、Xは、2種類以上のイソフタル酸類から構成されるが、たとえば、3種類、4種類であることが可能である。上限はないが、一般的には、確率論的にカゴメネットワークを構成している六員環にそれぞれ1種の置換基が置換し得て、特性が向上しやすい6種類までが好ましい。   In the case of this solid solution type porous polymer metal complex, X is composed of two or more kinds of isophthalic acids, but can be, for example, three kinds or four kinds. Although there is no upper limit, in general, it is preferable to have up to six types in which one type of substituent can be substituted for each of the six-membered rings constituting the Kagome network stochastically and the characteristics are easily improved.

[多孔性高分子金属錯体の製造方法]
上記の式(i)で表される化合物は、銅塩と、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体とを溶媒に溶かして溶液状態で混合して反応させることで製造できる。また、上記の式(vi)で表される化合物は、銅塩と、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を5モル%以上含有するイソフタル酸類と、を溶媒に溶かして溶液状態で混合して反応させることで製造できる。
[Method for producing porous polymer metal complex]
The compound represented by the above formula (i) is obtained by dissolving a copper salt and an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position, and mixing and reacting them in a solution state. Can be manufactured. In addition, the compound represented by the above formula (vi) contains, as a solvent, a copper salt and isophthalic acids containing 5 mol% or more of an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. It can be manufactured by dissolving and mixing in a solution state and reacting.

銅塩を溶かす溶媒としては、水、アルコールなどのプロトン系溶媒を利用すると良好な結果が得られる。プロトン系溶媒は銅塩をよく溶解し、さらに銅イオンまたは対イオンに配位結合や水素結合することで銅塩を安定化し、配位子との急速な反応を抑制することで、副反応を抑制する。アルコールとしてはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールなどの脂肪族系1価アルコール類及びエチレングリコールなどの脂肪族系2価アルコール類を例示できる。安価でかつ銅塩の溶解性が高いという点でメタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコールが好ましい。またこれらのアルコールは単独で用いてもよいし、複数を混合使用してもよい。   As a solvent for dissolving the copper salt, good results can be obtained by using a proton solvent such as water or alcohol. Proton solvent dissolves copper salt well, and also stabilizes copper salt by coordinating bond or hydrogen bond to copper ion or counter ion, thereby suppressing side reaction by suppressing rapid reaction with ligand. Suppress. Examples of the alcohol include aliphatic monohydric alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, and aliphatic dihydric alcohols such as ethylene glycol. Methanol, ethanol, 1-propanol, 2-propanol, and ethylene glycol are preferred because they are inexpensive and have high solubility of copper salts. These alcohols may be used alone or in combination.

溶媒として、前記のアルコール類とアルコール以外の有機溶媒または水とを混合して使用することも好ましい。混合比率は、アルコール類:アルコール以外の有機溶媒または水=1:100〜100:0(体積比)で任意である。アルコール類の混合比率を30%以上にすることが、銅塩および配位子の溶解性を向上させる観点から好ましい。   As the solvent, it is also preferable to use a mixture of the above alcohols and an organic solvent other than alcohol or water. The mixing ratio is arbitrary in the range of alcohols: organic solvent other than alcohol or water = 1: 100 to 100: 0 (volume ratio). The mixing ratio of alcohols is preferably 30% or more from the viewpoint of improving the solubility of the copper salt and the ligand.

用いる有機溶媒としては、極性の高い溶媒が溶解性に優れるという点で好ましく、具体的にはテトラヒドロフラン、アセトニトリル、ジオキサン、アセトン、ジメチルホルムアミド、ジエチルホルムアミドなどのジアルキルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミドなどのジアルキルアセトアミド、ジメチルスルホキシドなどが挙げられる。   As the organic solvent to be used, a highly polar solvent is preferable in terms of excellent solubility. Specifically, dialkylformamide such as tetrahydrofuran, acetonitrile, dioxane, acetone, dimethylformamide, and diethylformamide, and dialkyl such as dimethylacetamide and diethylacetamide are used. Examples include acetamide and dimethyl sulfoxide.

銅塩としては、2価の銅イオンを含有している塩類であればよく、溶媒への溶解性が高いという点で、硝酸銅、ほうふっ化銅、酢酸銅、硫酸銅、ぎ酸銅、フマル酸銅、塩化銅、臭化銅が好ましく、反応性が高いという点で、硝酸銅、ほうふっ化銅、硫酸銅、塩化銅が特に好ましい。   As the copper salt, any salt containing divalent copper ions may be used, and in terms of high solubility in a solvent, copper nitrate, copper borofluoride, copper acetate, copper sulfate, copper formate, Copper fumarate, copper chloride, and copper bromide are preferred, and copper nitrate, copper borofluoride, copper sulfate, and copper chloride are particularly preferred in terms of high reactivity.

また、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体に関して、たとえば、モノハロゲン化アルキルオキシの置換基を有するイソフタル酸誘導体は、αーブロモーωークロロアルカンとフェノールの縮合で、クロロ置換体が得られ、臭素置換体、よう素置換体は、それぞれ、臭化ナトリウム、よう化ナトリウム等と反応させることで得ることが出来る。パーハロゲンアルキル基、パーハロゲンアルコキシ基を有するイソフタル酸誘導体は、N-ブロモスクシンイミド等のハロゲン化剤を、アルキル基、アルコキシ基を有するイソフタル酸誘導体に作用させることで得ることが可能である。   In addition, regarding isophthalic acid derivatives having a functional group containing a halogen element other than fluorine at the 5-position, for example, isophthalic acid derivatives having a monohalogenated alkyloxy substituent are chloro-substituted by condensation of α-bromo-ω-chloroalkane and phenol. The bromine-substituted product and iodine-substituted product can be obtained by reacting with sodium bromide, sodium iodide and the like, respectively. An isophthalic acid derivative having a perhalogenated alkyl group or a perhalogenated alkoxy group can be obtained by allowing a halogenating agent such as N-bromosuccinimide to act on an isophthalic acid derivative having an alkyl group or an alkoxy group.

上記の多孔性高分子金属錯体の製造方法における反応では、反応系中に、微量のハロゲン塩類を共存させることが重要である。ハロゲン塩中のハロゲンの種類としては塩素、臭素、ヨウ素からなる群から選ばれる1つまたは2つ以上が好ましく、微量で有効という点で塩素および臭素から選ばれる1つまたは2つが好ましい。ハロゲンイオンの対イオンとしては、ナトリウムイオン、カリウムイオン、ルビジウムイオン等が好ましいが、微量で有効という点でナトリウムイオン、カリウムイオンが好ましい。ハロゲン塩の添加量は、配位子100モル%に対して、0.0001モル%〜0.01モル%が好ましく、収率が向上する観点から、0.0005モル%〜0.005モル%がより好ましい。このような、微量のハロゲン塩類の共存は、配位子として5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を用いた場合、ふっ素以外のハロゲン元素を含む官能基を有さないイソフタル酸誘導体を使用した場合に生じやすい収率低下を防止する効果を有している。具体的には、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を反応に用いた場合、遷移金属イオンと5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体のハロゲン原子と、が相互作用して、クラスターを作るため反応が阻害されるが、微量のハロゲン塩類が存在すると、これが遷移金属イオンと5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体との相互作用を抑制して、反応を促進させると推定される。ただし、本発明の技術的範囲がこのような推定に基づいて限定されるものではない。   In the reaction in the method for producing the porous polymer metal complex, it is important that a trace amount of halogen salts is allowed to coexist in the reaction system. As the kind of halogen in the halogen salt, one or two or more selected from the group consisting of chlorine, bromine and iodine are preferable, and one or two selected from chlorine and bromine are preferable in that they are effective in a trace amount. As the counter ion of the halogen ion, sodium ion, potassium ion, rubidium ion and the like are preferable, but sodium ion and potassium ion are preferable because they are effective in a small amount. The addition amount of the halogen salt is preferably 0.0001 mol% to 0.01 mol% with respect to 100 mol% of the ligand, and 0.0005 mol% to 0.005 mol% from the viewpoint of improving the yield. Is more preferable. The coexistence of such a trace amount of halogen salts has a functional group containing a halogen element other than fluorine when an isophthalic acid derivative having a functional group containing a halogen element other than fluorine is used as the ligand at the 5-position. This has the effect of preventing the yield loss that is likely to occur when no isophthalic acid derivative is used. Specifically, when an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position is used in the reaction, an isophthalic acid derivative having a transition metal ion and a functional group containing a halogen element other than fluorine at the 5-position The reaction is hindered due to the interaction with the halogen atom of the compound to form a cluster, but when a small amount of halogen salt is present, this is an isophthalate having a transition metal ion and a functional group containing a halogen element other than fluorine at the 5-position. It is presumed that the reaction is promoted by suppressing the interaction with the acid derivative. However, the technical scope of the present invention is not limited based on such estimation.

さらに、本実施形態に係る多孔性高分子金属錯体の製造方法では、上記のハロゲン塩類とは異なる反応促進剤として塩基を添加することも可能である。塩基としてはたとえば無機塩基として水酸化リチウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどが例示できる。有機塩基としては、トリエチルアミン、ジエチルイソプロピルアミン、ピリジン、2,6−ルチジンなどが例示出来る。反応加速性が高いという点で、水酸化リチウム、炭酸ナトリウム、水酸化ナトリウム、およびピリジンが好ましい。添加量としては、使用するイソフタル酸類の総モルを1モルとすると、反応の加速効果が顕著であるという点で好ましくは10〜600モル%、副反応が少ないという点でさらに好ましくは50〜400モル%である。   Furthermore, in the method for producing a porous polymer metal complex according to the present embodiment, it is possible to add a base as a reaction accelerator different from the above halogen salts. Examples of the base include lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like as inorganic bases. Examples of the organic base include triethylamine, diethylisopropylamine, pyridine, 2,6-lutidine and the like. Lithium hydroxide, sodium carbonate, sodium hydroxide, and pyridine are preferred because of their high reaction acceleration. As the addition amount, when the total mole of isophthalic acid to be used is 1 mol, it is preferably 10 to 600 mol% in that the acceleration effect of the reaction is remarkable, and more preferably 50 to 400 in terms of few side reactions. Mol%.

銅塩の溶液と、配位子としてのイソフタル酸類と、を反応させるに当たり、銅塩および配位子を容器に装填した後、溶媒を添加する方法以外に、銅塩、配位子をそれぞれ別個に溶液として調製した後、これらの溶液を混合してもよい。溶液の混合方法は、銅塩溶液に配位子溶液を添加しても、その逆でもよい。また、混合方法としては、必ずしも溶液で行う必要はなく、例えば、銅塩溶液に固体の配位子を投入し、同時に溶媒を入れる方法、反応容器に銅塩を装填した後に、配位子の固体または溶液を注入し、さらに銅塩を溶かすための溶液を注入する方法など、最終的に反応が実質的に溶媒中で起こる方法であれば、種々の方法が可能である。ただし、銅塩の溶液と配位子の溶液を滴下混合する方法が、工業的には最も操作が簡便であり、好ましい。   In the reaction of the copper salt solution and the isophthalic acid as the ligand, the copper salt and the ligand are separately separated from each other in addition to the method of adding the solvent after the copper salt and the ligand are loaded into the container. These solutions may be mixed after preparing as a solution. The solution may be mixed by adding the ligand solution to the copper salt solution or vice versa. The mixing method is not necessarily performed in a solution. For example, a solid ligand is charged into a copper salt solution and a solvent is simultaneously added. Various methods are possible as long as the reaction finally occurs substantially in a solvent, such as a method of injecting a solid or a solution and then injecting a solution for dissolving a copper salt. However, the method of dropping and mixing the copper salt solution and the ligand solution is industrially the most convenient and preferable.

銅塩溶液の濃度は40mmol/L〜4mol/L、好ましくは80mmol/L〜2mol/Lであり、配位子の有機溶液の濃度は40mmol/L〜3mol/L、好ましくは80mmol/L〜1.8mol/Lである。これより低い濃度で反応を行っても目的物は得られるが、製造効率が低下するため好ましくない。また、これより高い濃度では、吸着能が低下するため好ましくない。   The concentration of the copper salt solution is 40 mmol / L to 4 mol / L, preferably 80 mmol / L to 2 mol / L, and the concentration of the organic solution of the ligand is 40 mmol / L to 3 mol / L, preferably 80 mmol / L to 1 0.8 mol / L. Even if the reaction is carried out at a concentration lower than this, the desired product can be obtained, but this is not preferable because the production efficiency is lowered. On the other hand, a concentration higher than this is not preferable because the adsorption ability is lowered.

反応温度は−20〜180℃、好ましくは25〜140℃である。これ以下の低温で行うと、原料の溶解度が下がるため好ましくない。オートクレーブなどを用いて、より高温で反応を行うことも可能であるが、加熱などのエネルギーコストの割には、収率は向上しないため実質的な意味はない。   The reaction temperature is -20 to 180 ° C, preferably 25 to 140 ° C. If it is performed at a lower temperature than this, the solubility of the raw material is lowered, which is not preferable. Although it is possible to carry out the reaction at a higher temperature using an autoclave or the like, there is no substantial meaning because the yield does not improve for the energy cost such as heating.

本発明の反応で用いられる銅塩と有機配位子との混合比率は、モル比で、銅塩:有機配位子=3:1〜1:5、好ましくは1.5:1〜1:3の範囲内である。これ以外の範囲では、目的物の収率が低下し、また、未反応の原料が残留して、目的物の取り出しが困難となる。   The mixing ratio of the copper salt and the organic ligand used in the reaction of the present invention is a molar ratio: copper salt: organic ligand = 3: 1 to 1: 5, preferably 1.5: 1 to 1: Within the range of 3. In other ranges, the yield of the target product decreases, and unreacted raw materials remain, making it difficult to take out the target product.

反応は通常のガラスライニングのSUS製の反応容器および機械式攪拌機を使用して行うことができる。反応終了後は濾過、乾燥を行うことで目的物質と原料の分離を行い、純度の高い目的物質を製造することが可能である。   The reaction can be carried out using an ordinary glass-lined SUS reaction vessel and a mechanical stirrer. After completion of the reaction, the target substance and the raw material can be separated by filtration and drying to produce a target substance with high purity.

上記の製造方法により得られる多孔性高分子金属錯体は、通常、微粉末状である。そのため、粉末の飛散等の問題があり、特性の測定等において、取り扱う上では、成形加工してペレット等にすることが好ましい。ふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を配位子として含有する多孔性高分子金属錯体の場合、粉末を成形加工しやすく、しかも成形後の成形体が壊れにくい。なお、ふっ素を含む官能基を有するイソフタル酸誘導体を配位子として含有する多孔性高分子金属錯体の場合、得られた粉末を成形しても、ふっ素の親和性の低さのためか、成形後の成形体が壊れやすい傾向があるため、好ましくない。   The porous polymer metal complex obtained by the above production method is usually in the form of fine powder. Therefore, there is a problem such as powder scattering, and it is preferable to form a pellet or the like for processing in measuring characteristics or the like. In the case of a porous polymer metal complex containing, as a ligand, an isophthalic acid derivative having a functional group containing a halogen element other than fluorine as a ligand, the powder is easily molded and the molded product after molding is not easily broken. In the case of a porous polymer metal complex containing an isophthalic acid derivative having a functional group containing fluorine as a ligand, the molded powder may be molded due to the low affinity of fluorine. Since the later molded body tends to be fragile, it is not preferable.

上記の反応により得られた多孔性高分子金属錯体がカゴメ構造を有しているかどうかは、単結晶X線結晶解析により得られた反射を解析することで確認することが出来る。また粉末X線解析の反射パターンによっても確認出来る。
上記の反応により得られた多孔性高分子金属錯体が多孔質であるかどうかは、熱重量分析(TG)により確認することが可能である。たとえば、窒素雰囲気下(流量=50mL/分)で、昇温速度=5℃/分の測定で、温度範囲室温〜200℃までの重量減が3〜50%であるかどうかで確認出来る。
上記の反応により得られた式(iv)に示す多孔性高分子金属錯体が、二種類以上の配位子を混合して含有しているかどうかは、赤外分光法、または多孔性高分子金属錯体にEDTA等を溶液中で作用させるか、メタノール−硫酸などでエステルに分解−誘導した後、回収された配位子もしくは配位子のエステルをプロトン核磁気共鳴(NMR)により測定することで確認できる。
上記の反応により得られた多孔性高分子金属錯体のガス吸着能は、市販のガス吸着装置を用いて測定が可能である。
Whether the porous polymer metal complex obtained by the above reaction has a kagome structure can be confirmed by analyzing the reflection obtained by single crystal X-ray crystal analysis. It can also be confirmed by the reflection pattern of powder X-ray analysis.
Whether the porous polymer metal complex obtained by the above reaction is porous can be confirmed by thermogravimetric analysis (TG). For example, in a nitrogen atmosphere (flow rate = 50 mL / min), it can be confirmed whether the weight loss from the temperature range of room temperature to 200 ° C. is 3 to 50% by measuring the heating rate = 5 ° C./min.
Whether or not the porous polymer metal complex represented by the formula (iv) obtained by the above reaction contains a mixture of two or more kinds of ligands is determined by infrared spectroscopy or porous polymer metal. By allowing EDTA or the like to act on the complex in solution or decomposing-inducing to an ester with methanol-sulfuric acid, etc., and then measuring the recovered ligand or ligand ester by proton nuclear magnetic resonance (NMR) I can confirm.
The gas adsorption ability of the porous polymer metal complex obtained by the above reaction can be measured using a commercially available gas adsorption apparatus.

[吸着材の複合化]
本実施形態に係るガス吸着材(以下吸着材(A)とも言う)は単独で吸着材として使用してもよいし、他の吸着材と複合化して使用してもよい。複合化して使用する場合には、他の吸着材として、ガスに関する吸着等温線と脱着等温線とが一致する挙動を示す吸着材(B)と併用することで非常に優れた吸着特性を有するガス吸着材とすることができる。
[Combination of adsorbents]
The gas adsorbent according to this embodiment (hereinafter also referred to as adsorbent (A)) may be used alone as an adsorbent, or may be used in combination with another adsorbent. When combined and used, as another adsorbent, a gas having very excellent adsorption characteristics when used in combination with an adsorbent (B) that exhibits a behavior in which the adsorption isotherm and desorption isotherm relating to gas coincide. It can be an adsorbent.

ここで吸着材(B)は、吸着時のガス圧力−ガス吸着量曲線と、脱着時のガス圧力−ガス吸着量曲線とが実質的に一致する材料である。吸着材(B)は、かような特性を有する材料であれば特に限定されず、物理的吸着材、化学的吸着材、およびこれらが組み合わされてなる物理化学的吸着材を用いることができる。   Here, the adsorbent (B) is a material in which the gas pressure-gas adsorption amount curve during adsorption substantially matches the gas pressure-gas adsorption amount curve during desorption. The adsorbent (B) is not particularly limited as long as it has such characteristics, and a physical adsorbent, a chemical adsorbent, and a physicochemical adsorbent formed by combining these can be used.

物理的吸着材とは、分子と分子との相互作用のような弱い力を用いて、被吸着分子を吸着する吸着材をいう。物理的吸着材としては、活性炭、シリカゲル、活性アルミナ、ゼオライト、クレー、超吸着性繊維、金属錯体が挙げられる。化学的吸着材とは、化学的な強固な結合によって、被吸着分子を吸着する吸着材をいう。化学的吸着材としては、炭酸カルシウム、硫酸カルシウム、過マンガン酸カリウム、炭酸ナトリウム、炭酸カリウム、燐酸ナトリウム、活性化された金属が挙げられる。物理化学的吸着材とは、物理的吸着材および化学的吸着材の双方の吸着機構を備える吸着材をいう。これらの2種以上を組み合わせて用いてもよい。ただし、本発明の技術的範囲がこれらの具体例に限定されるものではない。吸着材(B)の形状は特に限定されないが、一般的には、平均粒径500〜5000μmの粉末状のものを用いる。   A physical adsorbent refers to an adsorbent that adsorbs molecules to be adsorbed using weak force such as interaction between molecules. Examples of the physical adsorbent include activated carbon, silica gel, activated alumina, zeolite, clay, super adsorbent fiber, and metal complex. A chemical adsorbent refers to an adsorbent that adsorbs molecules to be adsorbed by chemical bonds. Examples of the chemical adsorbent include calcium carbonate, calcium sulfate, potassium permanganate, sodium carbonate, potassium carbonate, sodium phosphate, and activated metal. The physicochemical adsorbent refers to an adsorbent that has an adsorption mechanism for both the physical adsorbent and the chemical adsorbent. Two or more of these may be used in combination. However, the technical scope of the present invention is not limited to these specific examples. The shape of the adsorbent (B) is not particularly limited, but generally, a powdery material having an average particle size of 500 to 5000 μm is used.

吸着材(B)としては、製造コストおよびガス吸着性能を考慮すると活性炭が好ましい。活性炭は比較的安価である上、質量当たりのガス吸着量が多い。また、活性炭はガスの吸脱着に関するサイクル特性が悪く、吸脱着を繰り返すとガス吸着量が著しく減少する傾向がある。このため、従来においては、質量当たりのガス吸着量が多いにも拘わらず、ガス貯蔵装置またはガス分離装置に用いることは困難であった。この点、本発明の吸着材(B)として用いた場合においては、活性炭の優れたガス吸着性能を充分に引き出すことができる。また、活性炭は比表面積が大きいほど吸着量が増加する傾向を有するため、活性炭の比表面積は1000m2/g以上であることが好ましい。 As the adsorbent (B), activated carbon is preferable in consideration of production cost and gas adsorption performance. Activated carbon is relatively inexpensive and has a large amount of gas adsorption per mass. In addition, activated carbon has poor cycle characteristics related to gas adsorption and desorption, and when adsorption and desorption is repeated, the amount of gas adsorption tends to be remarkably reduced. For this reason, conventionally, it has been difficult to use the gas storage device or the gas separation device despite the large amount of gas adsorption per mass. In this regard, when used as the adsorbent (B) of the present invention, the excellent gas adsorption performance of the activated carbon can be sufficiently extracted. Moreover, since the activated carbon has a tendency that the amount of adsorption increases as the specific surface area increases, the specific surface area of the activated carbon is preferably 1000 m 2 / g or more.

また、使用する吸着材(B)は、吸着させるガスに応じて適宜構造を制御されることが好ましい。例えば、活性炭に含まれる細孔は、細孔の大きさによって、スーパーミクロポア(〜0.8nm)、ミクロポア(0.8〜2nm)、メソポア(2〜50nm)、マクロポア(50nm〜)に分類できる。細孔の大きさによって吸着しやすいガスが異なり、メタンガスはミクロポアに吸着しやすい。従って、メタンガスを吸着させることを所望する場合には、ミクロポアの割合が大きくなるように活性炭の細孔分布を制御するとよい。   Moreover, it is preferable that the structure of the adsorbent (B) to be used is appropriately controlled according to the gas to be adsorbed. For example, the pores contained in the activated carbon can be classified into super micropores (up to 0.8 nm), micropores (0.8 to 2 nm), mesopores (2 to 50 nm), and macropores (50 nm to) depending on the size of the pores. . Gases that are easily adsorbed differ depending on the size of the pores, and methane gas is easily adsorbed to micropores. Therefore, when it is desired to adsorb methane gas, the pore distribution of the activated carbon may be controlled so that the proportion of micropores is increased.

本実施形態に係る吸着材(A)と吸着材(B)を複合化する場合は、吸着材(A)は、吸着材(B)を被覆することにより複合化する。好ましくはクラックおよび不完全な被覆がなく、吸着材(B)が外気に触れないように完全に被覆することが好ましい。しかしながら、多少のクラック等が存在していても、吸着材(B)の自由なガス吸着を阻害し、吸着材(A)によって被覆されている吸着材(B)がガス吸着に関して、吸着材(A)に類似したガス吸着特性を示すのであれば、本発明の技術的範囲に包含されるものである。好ましくは、吸着材(B)に対して5〜50体積%の吸着材(A)で吸着材(B)を被覆する。また、吸着材(B)を被覆する吸着材(A)の厚みは吸着材(A)の種類に応じて決定する必要があるが、吸着材(A)の厚みが薄すぎると吸着材(B)へのガス吸着特性を充分に制御できない恐れがある。一方、吸着材(A)の厚みが厚すぎると、吸着材(B)へのガス吸着が生じにくくなり、全体としてのガス吸着量が減少する恐れがある。これらを考慮すると、吸着材(A)の平均厚みが10〜100μmであることが好ましい。吸着材(A)の厚みは、吸着材(A)の使用量の調節によって制御できる。なお、吸着材(A)の厚みは電子顕微鏡を用いて撮影された断面写真から算出することができる。   When combining the adsorbent (A) and the adsorbent (B) according to the present embodiment, the adsorbent (A) is combined by covering the adsorbent (B). Preferably, it is preferable to completely cover the adsorbent (B) so that it does not come into contact with outside air without cracks and incomplete coating. However, even if there are some cracks or the like, the adsorbent (B) obstructs free gas adsorption, and the adsorbent (B) covered with the adsorbent (A) is related to gas adsorption. Any gas adsorption characteristic similar to A) is included in the technical scope of the present invention. Preferably, the adsorbent (B) is covered with 5 to 50% by volume of the adsorbent (A) with respect to the adsorbent (B). Further, the thickness of the adsorbent (A) covering the adsorbent (B) needs to be determined according to the type of the adsorbent (A), but if the thickness of the adsorbent (A) is too thin, the adsorbent (B ) May not be able to fully control the gas adsorption characteristics. On the other hand, if the thickness of the adsorbent (A) is too thick, gas adsorption to the adsorbent (B) is difficult to occur, and the gas adsorption amount as a whole may be reduced. Considering these, it is preferable that the average thickness of the adsorbent (A) is 10 to 100 μm. The thickness of the adsorbent (A) can be controlled by adjusting the amount of adsorbent (A) used. The thickness of the adsorbent (A) can be calculated from a cross-sectional photograph taken using an electron microscope.

吸着材(A)と吸着材(B)とを複合化する方法としては、(1)吸着材(A)が溶解している溶液中に、該溶液に溶解しない吸着材(B)を添加し、その後、吸着材(A)を結晶成長させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、(2)吸着材(A)を含むスラリーを準備し、スラリーを吸着材(B)表面にコーティングして乾燥させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、などを用いることができる。   As a method of combining the adsorbent (A) and the adsorbent (B), (1) the adsorbent (B) that does not dissolve in the solution is added to the solution in which the adsorbent (A) is dissolved. Then, the method of adhering the adsorbent (A) to the surface of the adsorbent (B) by crystal growth of the adsorbent (A), (2) preparing the slurry containing the adsorbent (A), and adsorbing the slurry A method of attaching the adsorbent (A) to the surface of the adsorbent (B) by coating the surface of the material (B) and drying can be used.

多孔性高分子金属錯体の調製方法は種々の条件があり、一義的に決定できるものではないが、ここでは一つの条件を例にとり説明する。   The preparation method of the porous polymer metal complex has various conditions and cannot be determined uniquely. Here, one condition will be described as an example.

(実施例1)
銅塩としての塩化銅2水和物0.02ミリモルおよびハロゲン塩としての塩化ナトリウム0.001マイクロモルを溶解した水(2mL)を容器に入れ、その容器内に、配位子としての5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体0.02ミリモルを溶解したメタノール(2mL)溶液を、二液が混合してしまわないように、ゆっくりと加えることで積層し、25℃で一週間静置し、淡青色の六角板状の単結晶を得た。直径約210ミクロンの単結晶を大気に暴露させないようにパラトンにてコーティングした後、(株)リガク製単結晶測定装置(極微小結晶用単結晶構造解析装置VariMax、MoKα線(λ =0.71069Å))にて測定し(照射時間12秒、d=45ミリ、2θ=−20,温度=−180℃)、得られた回折像を解析ソフトウエア「ヤドカリXG2009」を使用して解析し、図4に示すようにカゴメ構造を有していることを確認した(a=18.615, b=18.615, c=15.970; α=90、β=90, γ=120; 空間群=P321))。
Example 1
Water (2 mL) in which 0.02 mmol of copper chloride dihydrate as a copper salt and 0.001 micromol of sodium chloride as a halogen salt were dissolved was placed in a container, and 5- 5- A methanol (2 mL) solution in which 0.03-mmol of (3-iodo-n-propyloxy) isophthalic acid derivative was dissolved was layered by slowly adding it so that the two liquids would not mix. After standing for a week, a light blue hexagonal plate-like single crystal was obtained. After coating a single crystal having a diameter of about 210 microns with Palaton so as not to be exposed to the atmosphere, a single crystal measuring device manufactured by Rigaku Co., Ltd. (single crystal structure analysis device VariMax for ultrafine crystal, MoKα ray (λ = 0.71069Å) )) (Irradiation time 12 seconds, d = 45 mm, 2θ = −20, temperature = −180 ° C.), and the obtained diffraction image was analyzed using analysis software “hermit crab XG2009”. As shown in FIG. 4, it was confirmed that it has a kagome structure (a = 18.615, b = 18.615, c = 15.970; α = 90, β = 90, γ = 120; space group = P321)).

また、銅塩としての塩化銅2水和物1ミリモルと、ハロゲン塩としての塩化ナトリウム0.05マイクロモルと、配位子としての5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体1ミリモルと、をメタノール(20mL)に分散し、さらに反応促進剤としてのピリジン2ミリモルを加え、容器を封じた後に120℃で1時間加熱した。冷却後、濾過し、メタノールで洗浄して、青色の粉末129ミリグラムを得た。本粉末をブルカーAX(株)製粉末X線装置DISCOVER D8 with GADDSにより測定した結果(CuKα(λ =1.54Å)、2θ=4〜40、室温にて測定)、図5に示す反射パターンが得られ、これは、上記の単結晶の粉末シミュレーションパターンと同一であった。すなわち、上記の二種の本方法にて、カゴメ構造を有する多孔性高分子金属錯体が合成出来、それが、単結晶X線回折および粉末X線回折法により解析可能であることを確認した。   Further, 1 mmol of copper chloride dihydrate as a copper salt, 0.05 μmol of sodium chloride as a halogen salt, and 5- (3-iodo-n-propyloxy) isophthalic acid derivative 1 as a ligand Then, 2 mmol of pyridine as a reaction accelerator was added, and the vessel was sealed and heated at 120 ° C. for 1 hour. After cooling, it was filtered and washed with methanol to obtain 129 mg of a blue powder. As a result of measuring this powder with a powder X-ray apparatus DISCOVER D8 with GADDS manufactured by Bruker AX Co., Ltd. (CuKα (λ = 1.54Å), 2θ = 4-40, measured at room temperature), the reflection pattern shown in FIG. This was the same as the single crystal powder simulation pattern described above. That is, it was confirmed that a porous polymer metal complex having a kagome structure can be synthesized by the above two kinds of the present methods and can be analyzed by single crystal X-ray diffraction and powder X-ray diffraction methods.

(比較例1)
実施例1と同様にして、5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体の代わりに、イソフタル酸の5位にハロゲン元素を有さない置換基を有するイソフタル酸誘導体を用いてカゴメ構造を有する多孔性高分子金属錯体を合成した。
(Comparative Example 1)
In the same manner as in Example 1, instead of the 5- (3-iodo-n-propyloxy) isophthalic acid derivative, an isophthalic acid derivative having a substituent not having a halogen element at the 5-position of isophthalic acid was used. A porous polymer metal complex with structure was synthesized.

<ガス吸着の結果>
得られたガス吸着材の種々のガス吸着特性を種々の温度で測定した。BET自動吸着装置(日本ベル株式会社製ベルミニII)を用いた。測定に先立って試料を393Kで6時間真空乾燥して、微量残存している可能性がある溶媒分子などを除去した。
<Results of gas adsorption>
Various gas adsorption characteristics of the obtained gas adsorbent were measured at various temperatures. A BET automatic adsorption device (Bell Mini II manufactured by Nippon Bell Co., Ltd.) was used. Prior to the measurement, the sample was vacuum-dried at 393 K for 6 hours to remove solvent molecules that may remain in a trace amount.

(実施例2〜7)
実施例1と同様にして、表1に示す、イソフタル酸の5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体を用いて、各種カゴメ構造を有する多孔性高分子金属錯体を合成した。いずれに於いても、粉末X線分析した結果、上記と同様の反射パターンを示したことからカゴメ構造を有している事が確認された。
(Examples 2 to 7)
In the same manner as in Example 1, a porous polymer metal complex having various kagome structures was synthesized using an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position of isophthalic acid shown in Table 1. did. In any case, as a result of powder X-ray analysis, a reflection pattern similar to the above was shown, so that it was confirmed to have a kagome structure.

表1〜2に、各種ガスの各種温度での吸着量を示す。なお、表1〜4の全てにおいて、吸着量は、相対圧0.95での吸着量であり、相対圧とは、吸着時の圧力を当該温度での当該ガスの沸点で割った値である。   Tables 1 and 2 show the amounts of adsorption of various gases at various temperatures. In all of Tables 1 to 4, the adsorption amount is an adsorption amount at a relative pressure of 0.95, and the relative pressure is a value obtained by dividing the pressure at the time of adsorption by the boiling point of the gas at the temperature. .

いずれの温度に於いても、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸誘導体を用いて合成した多孔性高分子金属錯体は、酸素ガスの吸着量が他のガスと比較して多い。また、一酸化炭素と窒素との吸着量比(273Kでの一酸化炭素吸着量/窒素吸着量)が大きく、通常分離が困難な一酸化炭素と窒素の分離に有利であることがわかる。比較例1に示す、5位の官能基がハロゲン原子を含まないイソフタル酸を用いて合成した多孔性高分子金属錯体と比べると、その効果が明らかである。   At any temperature, the porous polymer metal complex synthesized using an isophthalic acid derivative having a halogen-containing functional group other than fluorine at the 5-position has a larger amount of adsorption of oxygen gas than other gases. . Further, it can be seen that the adsorption ratio of carbon monoxide and nitrogen (carbon monoxide adsorption amount / nitrogen adsorption amount at 273 K) is large, which is advantageous for the separation of carbon monoxide and nitrogen, which is usually difficult to separate. Compared with the porous polymer metal complex synthesized using isophthalic acid whose functional group at the 5-position does not contain a halogen atom, as shown in Comparative Example 1, the effect is clear.

(実施例8〜11、比較例2〜4)
実施例1と同様にして、5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体(配位子A)に加え、イソフタル酸(配位子B)を原料として混合使用した場合の結果を、実施例8〜11および比較例2〜4に示す。なお、単結晶X線回折および粉末X線回折法による解析から、カゴメ構造は相互貫入状態にないことを確認した。
(Examples 8 to 11 and Comparative Examples 2 to 4)
In the same manner as in Example 1, in addition to the 5- (3-iodo-n-propyloxy) isophthalic acid derivative (ligand A), the results obtained when isophthalic acid (ligand B) was used as a raw material were mixed. Examples 8 to 11 and Comparative Examples 2 to 4 are shown. In addition, from the analysis by single crystal X-ray diffraction and powder X-ray diffraction method, it was confirmed that the kagome structure was not in an interpenetrating state.

5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体を5モル%以上の割合で混合使用した場合にも実施例1と同様の効果が得られた。特に77Kにおける酸素の吸着量については顕著に増加することが確認できた。   The same effect as in Example 1 was obtained when 5- (3-iodo-n-propyloxy) isophthalic acid derivative was mixed and used at a ratio of 5 mol% or more. In particular, it was confirmed that the amount of oxygen adsorbed at 77K was remarkably increased.

(実施例12〜14)
実施例1、3および5において得られた材料(多孔性高分子金属錯体の粉末)を、赤外分光で用いるKBr錠剤形成器に入れ、直径約5ミリ、厚さ約1ミリの板状体に成形した。本材料を二酸化炭素測定(195K)に供したが、測定後も板状体の形状を維持していた。
(Examples 12 to 14)
The material obtained in Examples 1, 3 and 5 (porous polymer metal complex powder) was placed in a KBr tablet former used in infrared spectroscopy, and a plate-like body having a diameter of about 5 mm and a thickness of about 1 mm. Molded into. This material was subjected to carbon dioxide measurement (195K), but the shape of the plate was maintained after the measurement.

(比較例5)
実施例1の5−(3-ヨード-n-プロピルオキシ)イソフタル酸誘導体の代わりに、5−(3-フルオロ-n-プロピルオキシ)イソフタル酸誘導体を用いて合成した材料(多孔性高分子金属錯体の粉末)を、実施例12〜14と同様にして、成形し測定を行った。測定後、本材料は粉末状に崩壊していた。
(Comparative Example 5)
Material synthesized using 5- (3-fluoro-n-propyloxy) isophthalic acid derivative instead of 5- (3-iodo-n-propyloxy) isophthalic acid derivative of Example 1 (porous polymer metal) The complex powder was molded and measured in the same manner as in Examples 12-14. After the measurement, the material was broken into a powder.

本発明の多孔性高分子金属錯体は、配位子の整列によって形成される多数の微細孔が物質内部に存在する。この多孔性を生かして酸素、一酸化炭素の選択的な吸着、分離、貯蔵が可能となる。   In the porous polymer metal complex of the present invention, a large number of micropores formed by alignment of ligands are present in the substance. Utilizing this porosity, oxygen, carbon monoxide can be selectively adsorbed, separated and stored.

Claims (12)

[CuX] (i)
(式(i)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは限定されない。)
で表される集合体構造を有することを特徴とする多孔性高分子金属錯体。
[CuX] n (i)
(In formula (i), X is a copper ion ligand and is an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position. N is a constituent unit of a metal complex composed of CuX. Indicates the number of sets, and n is not limited.)
A porous polymer metal complex having an aggregate structure represented by:
前記集合体構造は、銅イオンが前記イソフタル酸誘導体中の4個のカルボキシル基と配位結合したユニットが上下に二つ配位したパドルホイール構造を有し、前記パドルホイール構造が前記イソフタル酸誘導体により連結されて形成される六員環と三員環とから構成されるカゴメ構造が積層された結晶構造を有することを特徴とする請求項1に記載の多孔性高分子金属錯体。   The aggregate structure has a paddle wheel structure in which a unit in which copper ions are coordinated to four carboxyl groups in the isophthalic acid derivative is coordinated up and down, and the paddle wheel structure is the isophthalic acid derivative. 2. The porous polymer metal complex according to claim 1, wherein the porous polymer metal complex has a crystal structure in which a kagome structure composed of a six-membered ring and a three-membered ring formed by connecting with each other is laminated. 前記ふっ素以外のハロゲン元素を含む官能基のハロゲン元素が塩素、臭素、よう素からなる群から選ばれる1つまたは2つ以上であることを特徴とする請求項1又は2に記載の多孔性高分子金属錯体。   3. The highly porous material according to claim 1, wherein the halogen element of the functional group containing a halogen element other than fluorine is one or more selected from the group consisting of chlorine, bromine and iodine. Molecular metal complex. 前記ふっ素以外のハロゲン元素を含む官能基のハロゲン元素がよう素であることを特徴とする請求項3に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to claim 3, wherein the halogen element of the functional group containing a halogen element other than fluorine is iodine. 前記ふっ素以外のハロゲン元素を含む官能基が、ハロゲン元素が水素を置換した直鎖または分岐鎖を有するアルキル基またはアルコキシ基であることを特徴とする請求項1から4のいずれか1項に記載の多孔性高分子金属錯体。   5. The functional group containing a halogen element other than fluorine is a linear or branched alkyl group or alkoxy group in which the halogen element substitutes hydrogen, 5. Porous polymer metal complex. 前記アルキル基またはアルコキシ基中の炭素原子数が1から10の範囲内であることを特徴とする請求項5に記載の多孔性高分子金属錯体。   6. The porous polymer metal complex according to claim 5, wherein the number of carbon atoms in the alkyl group or alkoxy group is in the range of 1 to 10. 前記ふっ素以外のハロゲン元素を含む官能基が含有するハロゲン原子数が1から21の範囲内であることを特徴とする請求項1から6のいずれか1項に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to any one of claims 1 to 6, wherein the functional group containing a halogen element other than fluorine contains 1 to 21 halogen atoms. [CuX] (iv)
(式(iv)中、Xは銅イオンの配位子であり、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体と、イソフタル酸および5位に置換基を有するイソフタル酸誘導体からなる群から選ばれる1種類または2種類以上と、を含み、Xの合計モル数を100モル%とした場合に、5位にふっ素以外のハロゲン元素を含む官能基を有するイソフタル酸誘導体の割合が5モル%以上である。nは、CuXから成る金属錯体の構成単位の集合数を示すもので、nは限定されない。)
で表される集合体構造を有することを特徴とする多孔性高分子金属錯体。
[CuX] n (iv)
(In the formula (iv), X is a copper ion ligand, and an isophthalic acid derivative having a functional group containing a halogen element other than fluorine at the 5-position, and isophthalic acid and an isophthalic acid derivative having a substituent at the 5-position The proportion of isophthalic acid derivatives having a functional group containing a halogen element other than fluorine at the 5-position when the total number of moles of X is 100 mol%, including one or more selected from the group consisting of Is 5 mol% or more, n represents the number of aggregates of structural units of the metal complex composed of CuX, and n is not limited.)
A porous polymer metal complex having an aggregate structure represented by:
前記5位に置換基を有するイソフタル酸誘導体が、5位にアルキル基を有するイソフタル酸誘導体、5位にアルコキシ基を有するイソフタル酸誘導体および5位にアミノ基を有するイソフタル酸誘導体から選ばれる1種類または2種類以上であることを特徴とする請求項8に記載の多孔性高分子金属錯体。   The isophthalic acid derivative having a substituent at the 5-position is selected from an isophthalic acid derivative having an alkyl group at the 5-position, an isophthalic acid derivative having an alkoxy group at the 5-position, and an isophthalic acid derivative having an amino group at the 5-position Or the porous polymeric metal complex of Claim 8 characterized by the above-mentioned. 請求項1から9のいずれか1項に記載の多孔性高分子金属錯体を含むことを特徴とするガス吸着材。   A gas adsorbent comprising the porous polymer metal complex according to any one of claims 1 to 9. 請求項10に記載のガス吸着材を用いることを特徴とするガス分離装置。   A gas separation apparatus using the gas adsorbent according to claim 10. 請求項10に記載のガス吸着材を用いることを特徴とするガス貯蔵装置。   A gas storage device using the gas adsorbent according to claim 10.
JP2015076280A 2015-04-02 2015-04-02 Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same Expired - Fee Related JP6525686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015076280A JP6525686B2 (en) 2015-04-02 2015-04-02 Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015076280A JP6525686B2 (en) 2015-04-02 2015-04-02 Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same

Publications (2)

Publication Number Publication Date
JP2016196417A true JP2016196417A (en) 2016-11-24
JP6525686B2 JP6525686B2 (en) 2019-06-05

Family

ID=57357529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076280A Expired - Fee Related JP6525686B2 (en) 2015-04-02 2015-04-02 Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same

Country Status (1)

Country Link
JP (1) JP6525686B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149683A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Three-dimensional porous polymer metal complex, and gas absorbent, gas separation device, gas storage device, catalyst, conductive material and sensor using the same
JP2018153740A (en) * 2017-03-16 2018-10-04 新日鐵住金株式会社 Shaped body of porous polymer metal complex
WO2023033035A1 (en) * 2021-08-31 2023-03-09 Eneos株式会社 Carbon dioxide capturing agent, metal-organic framework, and compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202283A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Gas adsorbent and its production
WO2002068430A1 (en) * 2001-02-23 2002-09-06 University Of South Florida Polyhedra
JP2011068631A (en) * 2009-08-24 2011-04-07 Kuraray Co Ltd Metal complex, and material for separation comprising the same
WO2014069574A1 (en) * 2012-11-02 2014-05-08 新日鐵住金株式会社 Porous polymer-metal complex, gas adsorbent, and gas separation device and gas storage device using same
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202283A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Gas adsorbent and its production
WO2002068430A1 (en) * 2001-02-23 2002-09-06 University Of South Florida Polyhedra
JP2011068631A (en) * 2009-08-24 2011-04-07 Kuraray Co Ltd Metal complex, and material for separation comprising the same
WO2014069574A1 (en) * 2012-11-02 2014-05-08 新日鐵住金株式会社 Porous polymer-metal complex, gas adsorbent, and gas separation device and gas storage device using same
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAN-HUA QIN, JIAN-GE WANG, KE-YAN ZHAO, AND YUE HU: "Syntheses and Crystal Structures of Two New Complexes with 5-Bromoisophthalate and Bis(imidazole)Lig", SYNTHESIS AND REACTIVITY IN INORGANIC, METAL-ORGANIC, AND NANO-METAL CHEMISTRY, vol. 41, JPN6018039299, 2011, pages 1358 - 1363, ISSN: 0003893113 *
MING-MING DONG, LU-LU HE, YA-JUAN FAN, SHUANG-QUAN ZANG, HONG-WEI HOU, AND THOMAS C. W. MAK: "Seven Copper Coordination Polymers Based on 5-Iodo-Isophthalic Acid: Halogen-Related Bonding and N-D", CRYSTAL GROWTH & DESIGN, vol. 13, JPN6018039298, 2013, pages 3353 - 3364, ISSN: 0003893112 *
PRAKASH KANOO, RYOTARO MATSUDA, HIROSHI SATO, LIANGCHUN LI, HYUNG JOON JEON, AND SUSUMU KITAGAWA: "In Situ Generation of Functionality in a Reactive Haloalkane-Based Ligand for the Design of New Poro", INORGANIC CHEMISTRY, vol. 52, JPN6018039300, 2013, pages 10735 - 10737, ISSN: 0003893114 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149683A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Three-dimensional porous polymer metal complex, and gas absorbent, gas separation device, gas storage device, catalyst, conductive material and sensor using the same
JP2018153740A (en) * 2017-03-16 2018-10-04 新日鐵住金株式会社 Shaped body of porous polymer metal complex
JP7229654B2 (en) 2017-03-16 2023-02-28 日本製鉄株式会社 Shaped body of porous polymer metal complex
WO2023033035A1 (en) * 2021-08-31 2023-03-09 Eneos株式会社 Carbon dioxide capturing agent, metal-organic framework, and compound

Also Published As

Publication number Publication date
JP6525686B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP5988896B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6021691B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6091256B2 (en) Porous polymer complex containing fluorine atom, gas adsorbent using the same, gas separation device and gas storage device
JP2008208110A (en) Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP2007277105A (en) Method for producing porous metal complex, porous metal complex, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
JP6456076B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
He et al. Two copper-based MOFs constructed from a linear diisophthalate linker: supramolecular isomerism and gas adsorption properties
JP6555861B2 (en) Coordinating complex containing fluorine or salt thereof, gas adsorbent and production method thereof, gas separation device and gas storage device using the same
JP6452357B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6425378B2 (en) Fluorine-containing coordination polymer complex, gas adsorbent, gas separation device and gas storage device using the same
JP6422211B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6671128B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6591728B2 (en) Polymer complex containing bent ligand, gas adsorbent using the same, gas separation device and gas storage device
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor
JP2019181338A (en) Shaped body comprising resilient porous polymer metal complex powder and method for producing same, resilient porous polymer metal complex powder used for shaped body and method for producing same, gas adsorbent comprising shaped body, and gas separation device and gas storage device using same
JP2018154563A (en) Porous polymer complex, gas adsorbent and gas separation device and gas storage device using the same
JP6761257B2 (en) Porous polymer metal complex, gas adsorbent using it, gas separator, gas storage device, catalyst, conductive material, sensor
JP6338476B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP5488532B2 (en) Polymer complex, gas adsorbent and gas separation apparatus using the same
JP2016185534A (en) Gas adsorbent and gas separation device and gas storage device
Song et al. A highly stable hydrogen-bonded organic framework for hydrogen storage
KR20240045576A (en) Metal ORGANIC FRAMEWORK AND METHOD FOR PREPARING SAME
JP2020105115A (en) Porous polymer metal complex, gas adsorbent, and gas separation device and gas storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6525686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees