JP6676406B2 - Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor - Google Patents

Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor Download PDF

Info

Publication number
JP6676406B2
JP6676406B2 JP2016034357A JP2016034357A JP6676406B2 JP 6676406 B2 JP6676406 B2 JP 6676406B2 JP 2016034357 A JP2016034357 A JP 2016034357A JP 2016034357 A JP2016034357 A JP 2016034357A JP 6676406 B2 JP6676406 B2 JP 6676406B2
Authority
JP
Japan
Prior art keywords
porous polymer
metal complex
ion
polymer metal
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016034357A
Other languages
Japanese (ja)
Other versions
JP2017149683A (en
Inventor
上代 洋
洋 上代
徳丸 慎司
慎司 徳丸
進 北川
進 北川
亮太郎 松田
亮太郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Steel Corp
Original Assignee
Kyoto University
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Steel Corp filed Critical Kyoto University
Priority to JP2016034357A priority Critical patent/JP6676406B2/en
Publication of JP2017149683A publication Critical patent/JP2017149683A/en
Application granted granted Critical
Publication of JP6676406B2 publication Critical patent/JP6676406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

本発明は多孔性高分子金属錯体及びガス吸着材としての利用ならびにこれを用いたガス分離装置およびガス貯蔵装置に関する。   The present invention relates to a porous polymer metal complex, its use as a gas adsorbent, and a gas separation device and a gas storage device using the same.

ガス吸着材は、加圧貯蔵や液化貯蔵に比べて、低圧で大量のガスを貯蔵しうる特性を有する。このため、近年、ガス吸着材を用いたガス貯蔵装置やガス分離装置の開発が盛んである。ガス吸着材としては、活性炭やゼオライトなどが知られている。また最近は多孔性高分子金属錯体にガスを吸蔵させる方法も提案されている(特許文献1、非特許文献1参照)。   The gas adsorbent has a characteristic that can store a large amount of gas at a low pressure as compared with pressurized storage or liquefied storage. For this reason, in recent years, the development of a gas storage device and a gas separation device using a gas adsorbent has been active. Activated carbon and zeolite are known as gas adsorbents. Recently, a method of storing a gas in a porous polymer metal complex has also been proposed (see Patent Document 1 and Non-Patent Document 1).

多孔性高分子金属錯体は、金属イオンと有機配位子から構成される結晶性固体で、種々の金属イオン、有機配位子の組み合わせおよび骨格構造の多様性から、様々なガス吸着特性を発現する可能性を秘めている。しかしながら、これらの従来提案されてきたガス吸着材は、ガス吸着量や作業性などの点で充分に満足できるものとはいえず、より優れた特性を有するガス吸着材の開発が所望されている。   Porous polymer metal complexes are crystalline solids composed of metal ions and organic ligands, and exhibit various gas adsorption properties due to the variety of combinations of metal ions and organic ligands and the variety of skeletal structures. Have the potential to do so. However, these conventionally proposed gas adsorbents cannot be said to be sufficiently satisfactory in terms of the amount of gas adsorbed and workability, and the development of gas adsorbents having more excellent properties is desired. .

酸素は、産業ガスとして、鉄鋼等の産業に膨大な量が使用されているため、酸素分離法の開発は非常に重要である。このような目的のためには、多数の小さな細孔を有するいわゆる多孔体が吸着材として利用されるが、酸素を吸着する吸着材の多くは、酸素以外のガス、例えば窒素等も吸着する事が多い。特に、低温にした場合、細孔と種々のガスの相互作用が強くなるため、原理的には多くの多孔体は種々のガスを吸着するようになる。したがって、どのようにすれば幅広い温度域で酸素だけを選択的に吸着する吸着材を製造出来るかはよくわかっていない。分子篩炭素とPSA(Pressure Swing Adsorption)装置を利用した酸素分離は実用化されているが、小型化、高効率化のニーズは大きく、これに対応するための高性能の酸素分離材の開発は重要である。   Since an enormous amount of oxygen is used as industrial gas in industries such as steel, development of an oxygen separation method is very important. For this purpose, a so-called porous body having a large number of small pores is used as an adsorbent, but most adsorbents that adsorb oxygen also adsorb gases other than oxygen, such as nitrogen. There are many. In particular, when the temperature is lowered, the interaction between the pores and various gases becomes strong, and in principle, many porous bodies adsorb various gases. Therefore, it is not well understood how an adsorbent capable of selectively adsorbing only oxygen in a wide temperature range can be produced. Oxygen separation using molecular sieve carbon and PSA (Pressure Swing Adsorption) equipment has been put into practical use, but there is a great need for miniaturization and high efficiency, and the development of high-performance oxygen separation materials to respond to this is important. It is.

一酸化炭素は、燃料や、酢酸やポリカーボネート等の化成品原料として有用である。鉄鋼業からは転炉等の操業の際に、多量の一酸化炭素が発生しているが、これは窒素との混合ガスとして得られる。しかし一酸化炭素と窒素の物理特性、化学特性がきわめて類似しており、既存のゼオライトや活性炭などの多孔体を利用した一酸化炭素と窒素の分離効率は低いので、この窒素分離技術は一般に普及しておらず、高効率の一酸化炭素選択的吸着材の開発が望まれている。   Carbon monoxide is useful as a fuel or a raw material for chemical products such as acetic acid and polycarbonate. A large amount of carbon monoxide is generated from the steel industry when operating a converter or the like, and this is obtained as a mixed gas with nitrogen. However, the physical and chemical properties of carbon monoxide and nitrogen are very similar, and the separation efficiency of carbon monoxide and nitrogen using existing porous materials such as zeolite and activated carbon is low. Therefore, development of a highly efficient carbon monoxide selective adsorbent is desired.

金属イオンと配位子から得られる多孔高分子金属錯体(PCP:Porous Coordination Polymer)は、ゼオライトや活性炭と同様に、ナノスケールの微細な孔を有しており、ガスの吸着、分離が可能であることが知られている。配位子の特性がPCPのガス吸着分離特性に影響を及ぼすことはよく知られている。アミノ基が二酸化炭素吸着性を増大させる例や、ふっ素原子含有の官能基が水素や二酸化炭素や酸素の吸着性を増大させる例などが知られている(非特許文献2〜7、特許文献2〜6)。しかし、ふっ素以外の、塩素、臭素、よう素などのハロゲン原子がガスの吸着、分離特性にどのような影響を及ぼすかはほとんど知られていない(非特許文献3)またPCPのネットワーク構造や金属イオンもPCPのガス吸着分離特性に影響を及ぼすため(非特許文献8)、どのような金属イオンとどのような配位子との間で、どのようなネットワーク構造のPCPを作れば優れたガス吸着分離特性が得られるのかはよくわかっていない。   Porous Coordination Polymer (PCP) obtained from metal ions and ligands, like zeolite and activated carbon, has nanoscale fine pores and can adsorb and separate gases. It is known that there is. It is well known that ligand properties affect the gas adsorption separation properties of PCP. There are known examples in which an amino group increases the carbon dioxide adsorption, and examples in which a fluorine atom-containing functional group increases the adsorption of hydrogen, carbon dioxide, and oxygen (Non-Patent Documents 2 to 7, Patent Document 2). ~ 6). However, it is almost unknown how halogen atoms other than fluorine, such as chlorine, bromine, and iodine, affect gas adsorption and separation characteristics (Non-patent Document 3). Since ions also affect the gas adsorption / separation characteristics of PCP (Non-Patent Document 8), an excellent gas can be produced by forming PCP having any network structure between any metal ion and any ligand. It is not clear whether the adsorption-separation characteristics can be obtained.

特開2000−109493号公報JP 2000-109493 A 国際公開第2014/069574号International Publication No. 2014/069574 特開2014−169248号公報JP 2014-169248 A 特開2014−169262号公報JP 2014-169262 A 特開2014−166969号公報JP 2014-166969 A 特開2014−166970号公報JP 2014-166970A

北川進、集積型金属錯体、講談社サイエンティフィク、2001年214−218頁Susumu Kitagawa, Integrated Metal Complex, Kodansha Scientific, 2001, pp. 214-218 Omaryら、J. Am. Chem. Soc., 2007,129, 15454Omary et al. Am. Chem. Soc. , 2007, 129, 15454 Navarroら、Chem. Eur. J. 2008, 14, 9890−9901Navarro et al., Chem. Eur. J. 2008, 14, 9890-9901 Buら、Scientific Report, DOI: 10.1038/srep03312Bu et al., Scientific Report, DOI: 10.1038 / srep03312. Liら、J. Am. Chem. Soc., 2004, 126, 1308Li et al. Am. Chem. Soc. , 2004, 126, 1308 Fereyら、J. AM. CHEM. SOC. 2010, 132, 1127-1136Ferey et al. AM. CHEM. SOC. 2010, 132, 1127-1136 Jeonら、Chem. Commun., 2014, 50, 10861Jeon et al., Chem. Commun. , 2014, 50, 10861 Rosseinskyら、Microporous and mesoporous Mater.73,(2004),15See Rosseinsky et al., Microporous and mesoporous Mater. 73, (2004), 15

本発明は、多孔性高分子金属錯体及びこれを用いた優れた特性を有するガス吸着材を提供することである。また本発明は、前記特性を有するガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置を併せて提供することを目的とする。   An object of the present invention is to provide a porous polymer metal complex and a gas adsorbent having excellent characteristics using the same. Another object of the present invention is to provide a gas storage device and a gas separation device in which a gas adsorbent having the above characteristics is housed.

本発明者らは、前述のような問題点を解決すべく、鋭意研究を積み重ねた結果、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸型の第一配位子と2価の遷移金属イオンの反応により得られる、三次元のネットワーク構造を有する多孔性高分子金属錯体が、幅広い温度域で、酸素や一酸化炭素を他のガスに比して多くを吸着する事を見いだし、本発明を完成するに至った。本発明では、周期表で第3族元素から第12族元素の間に存在する元素を遷移金属と呼ぶ。   The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, as a result, an isophthalic acid type first ligand having a halogen-containing functional group other than fluorine at the 5-position and a divalent transition We found that a porous polymer metal complex with a three-dimensional network structure obtained by the reaction of metal ions adsorbs more oxygen and carbon monoxide than other gases over a wide temperature range. The invention has been completed. In the present invention, an element existing between a Group 3 element and a Group 12 element in the periodic table is referred to as a transition metal.

すなわち、本発明は、三次元のネットワーク構造を有し、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸型の配位子と2価の遷移金属イオンとを含有する多孔性高分子金属錯体であり、本材料のガス吸蔵材料としての利用及び本ガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置に関する発明である。   That is, the present invention provides a porous polymer metal having an isophthalic acid type ligand having a three-dimensional network structure and having a halogen-containing functional group other than fluorine at the 5-position, and a divalent transition metal ion. The present invention relates to a complex, which is a gas storage device and a gas separation device in which the present material is used as a gas storage material and the present gas adsorbent is housed therein.

すなわち本発明は下記にある。
(1)[AX] (i)
(式中、Aはコバルトイオン、ニッケルイオン、亜鉛イオン、または銅イオンから選ばれる2価の遷移金属イオンを表し、Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを少なくとも1種含む複数種のイソフタル酸イオンを表し、nは、AXから成る構成単位の数を表す)
の構造単位を有する多孔性高分子金属錯体であって、
前記遷移金属イオン2個が、3個のイソフタル酸誘導体それぞれが有する1個のカルボキシル基により架橋されている2核クラスタ構造を有しており、前記2個の遷移金属イオンのそれぞれが、前記架橋しているイソフタル酸誘導体とは異なるイソフタル酸誘導体とさらに結合して、酸素が4個配位した4配位構造を有している、三次元ネットワーク構造を有する多孔性高分子金属錯体。
(2)さらに前記遷移金属イオンの少なくとも1個が溶媒分子の配位を受けた5配位構造を有している上記(1)に記載の多孔性高分子金属錯体。
(3)前記含ハロゲン官能基のハロゲン元素が、塩素、臭素、よう素である上記(1)または(2)に記載の多孔性高分子金属錯体。
(4)前記含ハロゲン官能基のハロゲン元素が、よう素である上記(3)に記載の多孔性高分子金属錯体。
(5)前記含ハロゲン官能基が、ハロゲン元素を含む直鎖もしくは分岐鎖のアルキル基またはアルコキシ基である上記(1)〜(4)のいずれかに記載の多孔性高分子金属錯体。
(6)前記含ハロゲン官能基が、炭素数1〜10の直鎖もしくは分岐鎖のアルキル基またはアルコキシ基である上記(1)〜(5)のいずれかに記載の多孔性高分子金属錯体。
(7)前記含ハロゲン官能基が含有するハロゲン原子が1〜21個のいずれかである上記(1)〜(6)のいずれかに記載の多孔性高分子金属錯体。
(8)前記遷移金属イオンが亜鉛イオンである上記(1)〜(7)のいずれかに記載の多孔性高分子金属錯体。
(9)[AX] (ii)
(式中、Aはコバルトイオン、ニッケルイオン、亜鉛イオン、または銅イオンから選ばれる2価の遷移金属イオンを表し、Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを少なくとも1種含む複数種のイソフタル酸イオンを表し、全イソフタル酸イオン量の5モル%〜95モル%が5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンであり、nは、AXから成る構成単位の数を表す)
の構造単位を有することを特徴とする上記(1)〜(8)のいずれかに記載の多孔性高分子金属錯体。
(10)式(ii)中、Xは、イソフタル酸イオン、5位にアルキル基を有するイソフタル酸イオン、5位にアルコキシ基を有するイソフタル酸イオン、5位にアミノ基を有するイソフタル酸イオン、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンから選ばれる2種類以上のイソフタル酸イオンであって、全イソフタル酸イオン量の5モル%〜95モル%が5位に含ハロゲン官能基を有するイソフタル酸イオンである上記(9)に記載の多孔性高分子金属錯体。
(11)上記(1)〜(10)のいずれかに記載の多孔性高分子金属錯体を含む吸着材。
(12)上記(11)に記載の吸着材を用いたガス分離装置。
(13)上記(11)に記載の吸着材を用いたガス貯蔵装置。
(14)上記(1)〜(10)のいずれかに記載の多孔性高分子金属錯体を含む触媒。
(15)上記(1)〜(10)のいずれかに記載の多孔性高分子金属錯体を含む導電性材料。
(16)上記(1)〜(10)のいずれかに記載の多孔性高分子金属錯体を含むセンサー。
That is, the present invention is as follows.
(1) [AX] n (i)
(In the formula, A represents a divalent transition metal ion selected from a cobalt ion, a nickel ion, a zinc ion, or a copper ion , and X represents at least one isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. Represents a plurality of isophthalate ions including n, and n represents the number of constituent units composed of AX)
A porous polymer metal complex having the structural unit of
The transition metal 2 ions has a binuclear cluster structure being bridged by one carboxyl group, each having three isophthalic acid derivatives, each of the two transition metal ions, the crosslinking A porous polymer metal complex having a three-dimensional network structure, further bonded to an isophthalic acid derivative different from the isophthalic acid derivative, and having a four-coordinate structure in which four oxygen atoms are coordinated.
(2) The porous polymer metal complex according to (1), wherein at least one of the transition metal ions has a pentacoordinate structure in which a solvent molecule is coordinated.
(3) The porous polymer metal complex according to the above (1) or (2), wherein the halogen element of the halogen-containing functional group is chlorine, bromine, or iodine.
(4) The porous polymer metal complex according to (3), wherein the halogen element of the halogen-containing functional group is iodine.
(5) The porous polymer metal complex according to any one of (1) to (4), wherein the halogen-containing functional group is a linear or branched alkyl or alkoxy group containing a halogen element.
(6) The porous polymer metal complex according to any one of (1) to (5), wherein the halogen-containing functional group is a linear or branched alkyl or alkoxy group having 1 to 10 carbon atoms.
(7) The porous polymer metal complex according to any one of (1) to (6), wherein the halogen-containing functional group contains 1 to 21 halogen atoms.
(8) The porous polymer metal complex according to any one of (1) to (7), wherein the transition metal ion is a zinc ion.
(9) [AX] n (ii)
(In the formula, A represents a divalent transition metal ion selected from a cobalt ion, a nickel ion, a zinc ion, or a copper ion , and X represents at least one isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. A plurality of isophthalate ions, wherein 5 mol% to 95 mol% of the total isophthalate ion amount is an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position, and n is AX Represents the number of units)
The porous polymer metal complex according to any one of the above (1) to (8), having a structural unit of
(10) In the formula (ii), X is an isophthalate ion having an alkyl group at the 5-position, an isophthalate ion having an alkoxy group at the 5-position, an isophthalate ion having an amino group at the 5-position, 5 Two or more isophthalate ions selected from isophthalate ions having a halogen-containing functional group other than fluorine at the 5-position, wherein 5 mol% to 95 mol% of the total isophthalate ion amount has a halogen-containing functional group at the 5-position. The porous polymer metal complex according to the above (9), which is an isophthalate ion.
(11) An adsorbent comprising the porous polymer metal complex according to any one of (1) to (10).
(12) A gas separation device using the adsorbent according to (11).
(13) A gas storage device using the adsorbent according to (11).
(14) A catalyst comprising the porous polymer metal complex according to any one of (1) to (10).
(15) A conductive material containing the porous polymer metal complex according to any one of (1) to (10).
(16) A sensor comprising the porous polymer metal complex according to any one of (1) to (10).

本発明の多孔性高分子金属錯体は、多量のガスを吸蔵、放出し、かつ、ガスの選択的吸着を行うことができる。また本発明の多孔性高分子金属錯体からなるガス吸蔵材料を用いて、内部に収容してなるガス貯蔵装置およびガス分離装置を製造することができる。また、本材料を用いて、加水分解、重合反応等を触媒する事ができる。さらに、本材料を用いて、あるいは本材料に導電材料をドープして、導電性材料を形成することができる。さらにまた、本材料を用いて、あるいは本材料に導電材料をドープして、センサーを形成することができる。   The porous polymer metal complex of the present invention can occlude and release a large amount of gas and can selectively adsorb gas. Further, a gas storage device and a gas separation device housed therein can be manufactured by using the gas storage material comprising the porous polymer metal complex of the present invention. In addition, this material can be used to catalyze hydrolysis, polymerization reaction and the like. Further, a conductive material can be formed using the present material or doping the present material with a conductive material. Furthermore, a sensor can be formed using the present material or doping the present material with a conductive material.

本発明の多孔性高分子金属錯体は、また例えば、圧力スイング吸着方式(Pressure Swing Adsorption)(以下、単に「PSA方式」と略記する)のガス分離装置として使用すれば、非常に効率良くガスを分離することができる。また、圧力変化に要する時間を短縮でき、省エネルギーにも寄与することができる。さらに、ガス分離装置の小型化にも寄与しうるため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減でき、結局、最終製品の製造コストを削減する効果を有する。   When the porous polymer metal complex of the present invention is used as a gas separation device of, for example, a pressure swing adsorption system (hereinafter simply abbreviated as “PSA system”), a gas can be very efficiently produced. Can be separated. Further, the time required for the pressure change can be shortened, which can contribute to energy saving. Furthermore, since it can also contribute to downsizing of the gas separation device, it is possible not only to improve cost competitiveness when selling high-purity gas as a product, but also when using high-purity gas inside its own factory. In addition, it is possible to reduce the cost required for equipment that requires high-purity gas, which has the effect of reducing the manufacturing cost of the final product.

本発明の多孔性高分子金属錯体の他の用途としては、ガス貯蔵装置が挙げられる。本発明の多孔性高分子金属錯体を含むガス吸着材をガス貯蔵装置(業務用ガスタンク、民生用ガスタンク、車両用燃料タンクなど)に適用した場合には、搬送中や保存中の圧力を劇的に低減させることが可能である。搬送時や保存中のガス圧力を減少させ得ることに起因する効果としては、ガス貯蔵装置の形状自由度の向上がまず挙げられる。従来のガス貯蔵装置においては、保存中の圧力を維持しなくてはガス吸着量を高く維持できない。しかしながら、本発明のガス貯蔵装置においては、圧力を低下させても充分なガス吸着量を維持できる。   Other uses of the porous polymer metal complex of the present invention include a gas storage device. When the gas adsorbent containing the porous polymer metal complex of the present invention is applied to a gas storage device (a commercial gas tank, a consumer gas tank, a fuel tank for a vehicle, etc.), the pressure during transportation and storage is dramatically increased. It is possible to reduce to. As an effect resulting from the fact that the gas pressure during transportation or storage can be reduced, an improvement in the degree of freedom of the shape of the gas storage device can be mentioned first. In the conventional gas storage device, the gas adsorption amount cannot be maintained high without maintaining the pressure during storage. However, in the gas storage device of the present invention, a sufficient gas adsorption amount can be maintained even when the pressure is reduced.

多孔性高分子金属錯体を含むガス吸着材をガス分離装置やガス貯蔵装置に適用する場合における、容器形状や容器材質、ガスバルブの種類などに関しては、特別の装置を用いなくてもよく、従来、ガス分離装置やガス貯蔵装置に用いられているものを用いることが可能である。ただし、各種装置の改良を排除するものではなく、いかなる装置を用いたとしても、本発明の多孔性高分子金属錯体を用いている限りにおいて、本発明の範囲に包含されるものである。   When a gas adsorbent containing a porous polymer metal complex is applied to a gas separation device or a gas storage device, the container shape, the container material, the type of gas valve, and the like do not require a special device. It is possible to use what is used for a gas separation device and a gas storage device. However, this does not exclude the improvement of various devices, and any device is included in the scope of the present invention as long as the porous polymer metal complex of the present invention is used.

本願発明の多孔性高分子金属錯体を結晶学上の各軸からみた図であって、図1aは、a軸投影図である。FIG. 1A is a view of the porous polymer metal complex of the present invention as viewed from each axis in crystallography, and FIG. 1A is an a-axis projection view. 本願発明の多孔性高分子金属錯体を結晶学上の各軸からみた図であって、図1bは、b軸投影図である。FIG. 1B is a view of the porous polymer metal complex of the present invention viewed from each axis in crystallography, and FIG. 1B is a b-axis projection view. 本願発明の多孔性高分子金属錯体を結晶学上の各軸からみた図であって、図1cは、c軸投影図である。FIG. 1C is a view of the porous polymer metal complex of the present invention viewed from each axis in crystallography, and FIG. 1C is a c-axis projection view. 本願発明の多孔性高分子金属錯体の金属周りの配位構造を表した図である。FIG. 3 is a diagram showing a coordination structure around a metal of the porous polymer metal complex of the present invention. 本願発明の多孔性高分子金属錯体の積層様態およびハロゲン原子の存在位置(丸で囲んだ部分)を表す。Fig. 3 shows the lamination state of the porous polymer metal complex of the present invention and the location of halogen atoms (circled portion).

本発明の多孔性高分子金属錯体は、下記式(i)で表され、かつ図1で示される三次元構造を有する多孔性高分子金属錯体である。   The porous polymer metal complex of the present invention is a porous polymer metal complex represented by the following formula (i) and having a three-dimensional structure shown in FIG.

[AX]n (i)
式中、Aは2価の遷移金属イオンを表す。Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを表す。nは、AXから成る構成単位の数を表し、AXが多数集合していることを示すもので、nは高分子性を示す重合度であり、大きさは特に限定されないが、少なくとも100である。
[AX] n (i)
In the formula, A represents a divalent transition metal ion. X represents an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. n represents the number of constituent units composed of AX, and indicates that a large number of AXs are aggregated. n is a degree of polymerization showing high polymerity, and the size is not particularly limited, but is at least 100. .

図1a〜cに本願発明の多孔性高分子金属錯体の結晶構造を、結晶学上の各軸から見た図を示す。   1a to 1c show the crystal structure of the porous polymer metal complex of the present invention as viewed from each axis in crystallography.

図2に本発明の多孔性高分子金属錯体の金属イオンまわりの配位構造の例を示す。3個のイソフタル酸で架橋された遷移金属2個からなるクラスタ構造を有している。いずれの遷移金属イオンも、1座配位のイソフタル酸が4個配位しており、すなわち、4個の酸素イオンにより配位を受けている。このうち少なくとも1個の遷移金属イオンはさらに溶媒等の配位を受ける事で5配位構造を取りうる。図2中では、1個の遷移金属イオンが水分子の配位を受けて5配位状態となっている。   FIG. 2 shows an example of the coordination structure around the metal ion of the porous polymer metal complex of the present invention. It has a cluster structure composed of two transition metals cross-linked with three isophthalic acids. In all transition metal ions, four monodentate isophthalic acids are coordinated, that is, coordinated by four oxygen ions. At least one of the transition metal ions can take a pentacoordinated structure by further coordinating with a solvent or the like. In FIG. 2, one transition metal ion is coordinated with a water molecule and is in a pentacoordinated state.

図3には細孔とハロゲン原子の存在の位置関係を示している。図1から分かるように、特定の軸方向から見たときにのみ、図3の通り、多数の遷移金属クラスタとそれを架橋するイソフタル酸から形成される約1.7nmの直径を有する円形に近い細孔が存在し、その中に、アルキル鎖末端で置換されたハロゲンイオンが密集している。   FIG. 3 shows the positional relationship between the pores and the presence of halogen atoms. As can be seen from FIG. 1, only when viewed from a particular axial direction, as shown in FIG. 3, a circular shape having a diameter of about 1.7 nm formed from a large number of transition metal clusters and isophthalic acid bridging them. There are pores in which the halogen ions substituted at the alkyl chain terminals are concentrated.

本発明の多孔性高分子金属錯体は、2価の遷移金属イオンと、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸型一配位子とから形成される三次元ネットワーク構造を有している。ここで重要なのはネットワークのトポロジーであり、個々の構造単位の結合角は、多孔性高分子金属錯体が柔軟性を有するが故に、必ずしも常に図1〜3と同一の結合角を有するとは限らない。合成溶媒や乾燥条件などにより、ネットワーク構造のゆがみ、ねじれ等により、同一トポロジーであっても個々の構造単位の結合角、結合距離が異なる物が生じうるが、これらも同一の機能を有する同一の多孔性高分子金属錯体と見なされる。   The porous polymer metal complex of the present invention has a three-dimensional network structure formed from a divalent transition metal ion and an isophthalic acid type ligand having a halogen-containing functional group other than fluorine at the 5-position. ing. What is important here is the topology of the network, and the bonding angles of the individual structural units do not always have the same bonding angles as in FIGS. 1 to 3 because the porous polymer metal complex has flexibility. . Depending on the synthesis solvent and drying conditions, the network structure may be distorted or twisted, resulting in different structural units with different bond angles and bond distances even with the same topology. It is considered a porous polymeric metal complex.

本発明の多孔性高分子金属錯体は多孔体であるため、水やアルコールやエーテルなどの有機分子に触れると孔内に水や有機溶媒を含有し、たとえば式(iii)であるような複合錯体に変化する場合がある。
[AX]n(G) (iii)
式中、Aは2価の遷移金属イオンを表す、Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを表す。nは、AXから成る構成単位が多数集合しているという特性を示すもので、nは高分子性を示す重合度であり、大きさは特に限定されないが、少なくとも100である。Gは孔内に吸着された水やアルコールやエーテルなどの有機分子で、mは任意の数である。
Since the porous polymer metal complex of the present invention is a porous body, when it comes into contact with water, an organic molecule such as alcohol or ether, the complex contains water or an organic solvent in the pores and has, for example, the formula (iii) May change.
[AX] n (G) m (iii)
In the formula, A represents a divalent transition metal ion, and X represents an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. n indicates the characteristic that many constituent units composed of AX are aggregated, and n is the degree of polymerization showing high polymerity, and the size is not particularly limited, but is at least 100. G is an organic molecule such as water, alcohol or ether adsorbed in the pore, and m is an arbitrary number.

しかしこれらの複合錯体中の水やアルコール、エーテルなどの有機分子は、多孔性高分子金属錯体に弱く結合しているだけであり、ガス吸着材として利用する際の減圧乾燥などの前処理によって除かれ、元の式(i)で表される多孔性高分子金属錯体に戻る。そのため、式(iii)で表されるような錯体であっても、本質的には本発明の多孔性高分子金属錯体と同一物と見なすことができる。   However, organic molecules such as water, alcohol, and ether in these complex complexes are only weakly bound to the porous polymer metal complex, and are removed by pretreatment such as drying under reduced pressure when used as a gas adsorbent. This returns to the original porous polymer metal complex represented by the formula (i). Therefore, even the complex represented by the formula (iii) can be regarded as essentially the same as the porous polymer metal complex of the present invention.

また本発明の多孔性高分子金属錯体中の遷移金属イオンは、基本的には4配位構造であるが、遷移金属イオンは6配位構造をとることも多く、すなわち、カルボキシル基の酸素4個以外にさらに溶媒等から二個の配位を受けることが可能であり、たとえば式(iv)であるような複合錯体に変化する場合がある。
[AXQzn (iv)
式中、Aは2価の遷移金属イオンを表す。Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを表す。nは、AXQから成る構成単位が多数集合しているという特性を示すもので、nは高分子性を示す重合度であり、大きさは特に限定されないが、少なくとも100である。Qは遷移金属イオンに配位する分子などで、zは1または2である。
The transition metal ion in the porous polymer metal complex of the present invention basically has a four-coordinated structure, but the transition metal ion often has a six-coordinated structure, that is, the oxygen 4 of the carboxyl group. In addition to the complex, it is possible to receive two coordination from a solvent or the like. For example, the complex may change to a complex complex represented by the formula (iv).
[AXQ z ] n (iv)
In the formula, A represents a divalent transition metal ion. X represents an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. n indicates the characteristic that many constituent units composed of AXQ are aggregated, and n is the degree of polymerization showing high polymerity, and the size is not particularly limited, but is at least 100. Q is a molecule that coordinates to the transition metal ion, and z is 1 or 2.

しかしこれらの複合錯体中のQは、遷移金属イオンに弱く結合しているだけであり、ガス吸着材として利用する際の減圧乾燥などの前処理によって除かれ、元の式(i)で表される錯体に戻る。そのため、式(iv)で表されるような錯体であっても、本質的には本発明の多孔性高分子金属錯体と同一物と見なすことができる。   However, Q in these complex complexes is only weakly bound to the transition metal ion, and is removed by pretreatment such as drying under reduced pressure when used as a gas adsorbent, and represented by the original formula (i). Return to the complex. Therefore, even the complex represented by the formula (iv) can be regarded as essentially the same as the porous polymer metal complex of the present invention.

本発明の式(i)で表される多孔性高分子金属錯体は、遷移金属塩、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸を溶媒に溶かして溶液状態で混合することで製造できる。遷移金属塩を溶かす溶媒としては、水やアルコールなどのプロトン系溶媒を利用すると良好な結果が得られる。水やアルコールなどのプロトン系溶媒は遷移金属塩をよく溶解し、さらに遷移金属イオンや対イオンに配位結合や水素結合することで遷移金属塩を安定化し、配位子と成る化合物(以下、単に「配位子化合物」という)との急速な反応を抑制することで、副反応を抑制する。溶媒となるアルコールの例としてはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールなどの脂肪族系1価アルコール及びエチレングリコールなどの脂肪族系2価アルコール類を例示できる。安価でかつニッケル塩の溶解性が高いという点でメタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコールが好ましい。またこれらのアルコールは単独で用いてもよいし、複数を混合使用してもよい。   The porous polymer metal complex represented by the formula (i) of the present invention is produced by dissolving a transition metal salt, isophthalic acid having a halogen-containing functional group other than fluorine at the 5-position in a solvent, and mixing in a solution. it can. As a solvent for dissolving the transition metal salt, a good result can be obtained by using a protic solvent such as water or alcohol. Protonic solvents such as water and alcohol dissolve the transition metal salt well, and further stabilize the transition metal salt by forming a coordination bond or hydrogen bond with the transition metal ion or counter ion, thereby forming a ligand compound (hereinafter, referred to as a ligand). A side reaction is suppressed by suppressing a rapid reaction with a “ligand compound”. Examples of the alcohol serving as the solvent include aliphatic monohydric alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, and aliphatic dihydric alcohols such as ethylene glycol. . Methanol, ethanol, 1-propanol, 2-propanol, and ethylene glycol are preferred in that they are inexpensive and have high solubility of nickel salts. These alcohols may be used alone or in combination of two or more.

溶媒として前記のアルコール類とアルコール以外の有機溶媒や水を混合して使用することも好ましい。混合比率は1:100〜100:1(体積比)で任意である。アルコール類の混合比率を30%以上にすることが、遷移金属塩および配位子化合物の溶解性を向上させる観点から好ましい。   It is also preferable to use a mixture of the above-mentioned alcohols, an organic solvent other than the alcohol, and water as the solvent. The mixing ratio is arbitrary from 1: 100 to 100: 1 (volume ratio). It is preferable to set the mixing ratio of alcohols to 30% or more from the viewpoint of improving the solubility of the transition metal salt and the ligand compound.

用いる有機溶媒としては、極性の高い溶媒が溶解性に優れるという点で好ましく、具体的にはテトラヒドロフラン、アセトニトリル、ジオキサン、アセトン、ジメチルホルムアミド、ジエチルホルムアミドなどのジアルキルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミドなどのジアルキルアセトアミド、ジメチルスルホキシドなどが挙げられる。   As the organic solvent to be used, a highly polar solvent is preferable in that it has excellent solubility. Acetamide, dimethyl sulfoxide and the like can be mentioned.

本発明の多孔性高分子金属錯体を形成する2価の遷移金属イオンの原料としては、2価の遷移金属塩を用いることができる。2価の遷移金属塩の好ましい例としては、コバルト塩、ニッケル塩、亜鉛塩、銅塩が挙げられる。   As a raw material of the divalent transition metal ion forming the porous polymer metal complex of the present invention, a divalent transition metal salt can be used. Preferred examples of the divalent transition metal salt include a cobalt salt, a nickel salt, a zinc salt, and a copper salt.

本発明の多孔性高分子金属錯体の製造に使用する亜鉛塩としては、2価の亜鉛イオンを含有している塩類であればよく、溶媒への溶解性が高いという点で、硝酸亜鉛、酢酸亜鉛、硫酸亜鉛、ぎ酸亜鉛、塩化亜鉛、臭化亜鉛が好ましく、反応性が高いという点で、硝酸亜鉛、硫酸亜鉛が特に好ましい。   The zinc salt used in the production of the porous polymer metal complex of the present invention may be any salt containing divalent zinc ions, and zinc nitrate and acetic acid are preferred because they have high solubility in a solvent. Zinc, zinc sulfate, zinc formate, zinc chloride and zinc bromide are preferred, and zinc nitrate and zinc sulfate are particularly preferred in that they have high reactivity.

本発明の多孔性高分子金属錯体の製造に使用する銅塩、ニッケル塩、コバルト塩などのその他の2価の遷移金属塩も、2価の遷移金属イオンを含有している塩類であればよく、溶媒への溶解性が高いという点で、硝酸塩、酢酸塩、硫酸塩、ぎ酸塩、塩化塩、臭化塩が好ましく、配位子化合物との反応性が高いという点で、硝酸塩、硫酸塩が特に好ましい。   Other divalent transition metal salts such as copper salts, nickel salts, and cobalt salts used in the production of the porous polymer metal complex of the present invention may be salts containing divalent transition metal ions. In terms of high solubility in solvents, nitrates, acetates, sulfates, formates, chlorides, and bromides are preferred.In terms of high reactivity with ligand compounds, nitrates and sulfates are preferred. Salts are particularly preferred.

以下、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを説明する。
本明細書で、含ハロゲン官能基とは、Hがふっ素以外のハロゲンで置換されている、直鎖または分岐鎖のアルキル基およびアルコキシ基を意味する。これらの官能基の炭素数は、1〜10個が、三次元ネットワーク構造が出来やすいという点で好ましく、ガス吸着性が優れるという点で1〜8個が特に好ましい。
Hereinafter, an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position will be described.
As used herein, the halogen-containing functional group means a linear or branched alkyl group or alkoxy group in which H is substituted with a halogen other than fluorine. The number of carbon atoms of these functional groups is preferably 1 to 10 in that a three-dimensional network structure is easily formed, and particularly preferably 1 to 8 in terms of excellent gas adsorption.

ふっ素以外のハロゲンの種類としては、塩素、臭素、よう素が挙げられ、三次元ネットワーク構造ができやすいという点で、臭素、よう素が好ましく、ガス選択性が高いという点でよう素が特に好ましい。   Examples of the types of halogen other than fluorine include chlorine, bromine, and iodine, and bromine and iodine are preferable in that a three-dimensional network structure is easily formed, and iodine is particularly preferable in that gas selectivity is high. .

ハロゲン原子の置換個数としては、すべての炭素上のHがハロゲンで置換されたパーハロゲンアルキルまたはパーハロゲンアルコキシ基や、炭素上のHがハロゲンで1個だけ置換されたモノハロゲンアルキル基またはモノハロゲンアルコキシ基が例示出来る。モノハロゲンアルキルまたはモノハロゲンアルコキシ基の場合は、アルキル基またはアルコキシ基の柔軟性を確保する意味で、末端にハロゲンが置換したモノハロゲンアルキル基またはモノハロゲンアルコキシ基が特に好ましい。   The number of halogen atoms to be substituted may be a perhalogenalkyl or perhalogenalkoxy group in which H on all carbons is substituted with halogen, a monohalogenalkyl group or monohalogen in which H on carbon is substituted by only one halogen. An alkoxy group can be exemplified. In the case of a monohalogenalkyl or monohalogenalkoxy group, a monohalogenalkyl group or monohalogenalkoxy group in which a halogen is substituted at a terminal is particularly preferable from the viewpoint of securing flexibility of the alkyl group or the alkoxy group.

三次元ネットワーク構造を有し、ベンゼン環の5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸配位子を少なくとも1種含有する本発明の多孔性高分子金属錯体では、原料として複数種のイソフタル酸を混合使用して、それら複数種のイソフタル酸類を含有する多孔性高分子金属錯体である、いわゆる固溶体型の多孔性高分子金属錯体を形成することが可能であることが確認されている。この際、混合して使用する複数種のイソフタル酸類の少なくとも1種類は、ふっ素以外の含ハロゲン官能基を5位に有するイソフタル酸類である必要があり、これの含有率は全イソフタル酸イオン量に対して5モル%〜95モル%、好ましくは20%モル〜80モル%である。   In the porous polymer metal complex of the present invention having a three-dimensional network structure and containing at least one isophthalic acid ligand having a halogen-containing functional group other than fluorine at the 5-position of the benzene ring, a plurality of kinds of raw materials are used as raw materials. It has been confirmed that it is possible to form a so-called solid solution type porous polymer metal complex, which is a porous polymer metal complex containing these plural kinds of isophthalic acids, by mixing and using isophthalic acid. . At this time, at least one of the plurality of types of isophthalic acids used by mixing must be an isophthalic acid having a halogen-containing functional group other than fluorine at the 5-position, and the content of the isophthalic acid is based on the total amount of isophthalic acid ions. It is 5 mol% to 95 mol%, preferably 20 mol% to 80 mol%.

この固溶体型の多孔性高分子金属錯体は、下記式(i)で表され、かつ図1〜3で示される三次元ネットワーク構造を有する多孔性高分子金属錯体である。
[AX]n (i)
式中、Aは2価の遷移金属イオンを表す。Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを少なくとも1種含む複数種のイソフタル酸イオンを表す。nは、AXから成る構成単位が多数集合しているという特性を示すもので、nは高分子性を示す重合度であり、大きさは特に限定されないが、少なくとも100である。
This solid solution type porous polymer metal complex is a porous polymer metal complex represented by the following formula (i) and having a three-dimensional network structure shown in FIGS.
[AX] n (i)
In the formula, A represents a divalent transition metal ion. X represents a plurality of isophthalate ions containing at least one isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. n indicates the characteristic that a large number of constituent units composed of AXs are aggregated, and n is the degree of polymerization indicating high polymerity, and the size is not particularly limited, but is at least 100.

2価の遷移金属イオンと、イソフタル酸イオンおよび5位に置換基を有するイソフタル酸イオンを含む2種類以上のイソフタル酸イオンを組み合わせると、図1〜3で示されるような三次元構造を有する固溶体型の多孔性高分子金属錯体を形成することを確認している。本発明の固溶体型の多孔性高分子金属錯体は、その固溶体型の多孔性高分子金属錯体においてイソフタル酸イオンおよび5位に置換基を有するイソフタル酸イオンを少なくとも含み、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを全イソフタル酸イオン量の5モル%〜95モル%含むことを特徴とするものである。混合して使用する複数種のイソフタル酸類は、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸と別種の5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸同士を含んでもよい。   When a divalent transition metal ion is combined with two or more kinds of isophthalate ions including an isophthalate ion and an isophthalate ion having a substituent at the 5-position, a solid solution having a three-dimensional structure as shown in FIGS. It has been confirmed that a porous polymer metal complex of the type is formed. The solid-solution type porous polymer metal complex of the present invention contains at least an isophthalate ion and an isophthalate ion having a substituent at the 5-position in the solid-solution-type porous polymer metal complex. It is characterized in that it contains isophthalate ions having a halogen functional group in an amount of 5 mol% to 95 mol% of the total amount of isophthalate ions. The plurality of types of isophthalic acids used by mixing may include isophthalic acid having a halogen-containing functional group other than fluorine at the 5-position and another isophthalic acid having another halogen-containing functional group other than fluorine at the 5-position.

本発明の固溶体型の多孔性高分子金属錯体に用いられるイソフタル酸イオンは、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸以外に、ベンゼン環の5位に置換基を有するイソフタル酸イオンを含むことができる。5位の置換基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、アラルキル基、置換又は非置換のアミノ基、ニトロ基、アミド基、ホルミル基、カルボニル基、エステル基、アジド基、カルボキシル基、スルホ基、水酸基などから選ばれる基である。   The isophthalic acid ion used in the solid solution type porous polymer metal complex of the present invention is an isophthalic acid ion having a substituent at the 5-position of the benzene ring in addition to an isophthalic acid having a halogen-containing functional group other than fluorine at the 5-position. Can be included. Examples of the substituent at the 5-position include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, an aralkyl group, a substituted or unsubstituted amino group, a nitro group, an amide group, and formyl. A group selected from a group, a carbonyl group, an ester group, an azide group, a carboxyl group, a sulfo group, a hydroxyl group and the like.

アルキル基としては、メチル基、エチル基など炭素原子1〜12個のアルキル基、特に1〜6個のアルキル基が好ましい。置換アルキル基の置換基としては、ヒドロキシ基、アミノ基などが挙げられる。   As the alkyl group, an alkyl group having 1 to 12 carbon atoms, such as a methyl group and an ethyl group, particularly an alkyl group having 1 to 6 carbon atoms is preferable. Examples of the substituent of the substituted alkyl group include a hydroxy group and an amino group.

アルコキシ基としては、炭素原子1〜12個のアルコキシ基、特に1〜6個のアルコキシ基、特にメトキシ基、エトキシ基、ベンジルオキシ基が好ましい。置換アルコキシ基の置換基としては、ヒドロキシ基、アミノ基、ジメチルアミノ基等が挙げられる。   As the alkoxy group, an alkoxy group having 1 to 12 carbon atoms, particularly an alkoxy group having 1 to 6 carbon atoms, particularly a methoxy group, an ethoxy group, and a benzyloxy group are preferable. Examples of the substituent of the substituted alkoxy group include a hydroxy group, an amino group, and a dimethylamino group.

アリール基としては、フェニル基、パラヒドロキシフェニル基が好ましい。置換アリール基としては、パラヒドロキシフェニル基、パラジメチルアミノフェニル基などが挙げられる。   As the aryl group, a phenyl group and a parahydroxyphenyl group are preferable. Examples of the substituted aryl group include a parahydroxyphenyl group and a paradimethylaminophenyl group.

アラルキル基としては、ベンジル基、またはo−、m−、p−のいずれかもしくは複数にメチル基および/またはエチル基が置換されたフェニル基が好ましい。置換又は非置換のアミノ基は好ましく、具体的には、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、フェニルアミノ基、ジフェニルアミノ基がより好ましい。   As the aralkyl group, a benzyl group or a phenyl group in which any or a plurality of o-, m-, and p- are substituted with a methyl group and / or an ethyl group are preferable. A substituted or unsubstituted amino group is preferable, and specifically, an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, a phenylamino group, and a diphenylamino group are more preferable.

5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオン、イソフタル酸イオン、5位にアミノ基、アルキル基、アルコキシ基を有するイソフタル酸イオンの組み合わせが、好ましい。   A combination of an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position and an isophthalate ion having an amino group, an alkyl group and an alkoxy group at the 5-position is preferred.

この固溶体型の多孔性高分子金属錯体の場合、Xは、2種類以上のイソフタル酸イオンと成るが、たとえば、3種類や、4種類と成ることが可能である。上限はないが、一般的には、多数の異なる種類のイソフタル酸イオンの官能基の相互作用により吸着特性が低下する事を防ぐ意味で、イソフタル酸イオンは4種類までが好ましい。   In the case of this solid solution type porous polymer metal complex, X is two or more kinds of isophthalate ions, but can be, for example, three kinds or four kinds. Although there is no upper limit, generally, up to four types of isophthalate ions are preferable from the viewpoint of preventing the adsorption characteristics from deteriorating due to the interaction of functional groups of many different types of isophthalate ions.

本発明の多孔性高分子金属錯体の製造方法では、反応促進剤として塩基を添加することも可能である。塩基としては、たとえば無機塩基として、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどが例示できる。有機塩基としては、トリエチルアミン、ジエチルイソプロピルアミン、ピリジン、2,6−ルチジンなどが例示出来る。反応加速性が高いという点で、水酸化リチウム、炭酸ナトリウム、水酸化ナトリウム、およびピリジンが好ましい。反応促進剤の添加量としては、反応に使用するイソフタル酸の総モル量に対し、反応の加速効果が顕著であるという点で、好ましくは、0.1〜6.0モル、副反応が少ないという点で、さらに好ましくは、0.5から4.0モルである。   In the method for producing a porous polymer metal complex of the present invention, a base can be added as a reaction accelerator. Examples of the base include, as inorganic bases, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like. Examples of the organic base include triethylamine, diethylisopropylamine, pyridine, 2,6-lutidine and the like. In view of high reaction acceleration, lithium hydroxide, sodium carbonate, sodium hydroxide, and pyridine are preferable. The amount of the reaction accelerator to be added is preferably 0.1 to 6.0 mol, with few side reactions, in that the effect of accelerating the reaction is remarkable with respect to the total molar amount of isophthalic acid used in the reaction. In this regard, the amount is more preferably 0.5 to 4.0 mol.

遷移金属塩の溶液と配位子化合物とを反応させるに当たり、遷移金属塩および配位子化合物を容器に装填した後、溶媒を添加する方法以外に、遷移金属塩、配位子化合物をそれぞれ別個に溶液として調製した後、これらの溶液を混合してもよい。溶液の混合方法は、遷移金属塩溶液に配位子化合物溶液を添加してもよく、その逆でもよい。また、混合法としては、必ずしも溶液同士を混合する必要はなく、例えば、遷移金属塩溶液に固体の配位子化合物を投入し、同時に溶媒を加える方法や、反応容器に固体の遷移金属塩を装填した後に、配位子化合物の固体または溶液を注入し、さらに遷移金属塩を溶解させるための溶媒を注入するなど、最終的に反応が実質的に溶媒中で起こる方法であれば、種々の方法が可能である。ただし、遷移金属塩の溶液と配位子化合物の溶液を滴下混合する方法が、工業的には最も操作が簡便であり、好ましい。   In reacting the transition metal salt solution with the ligand compound, the transition metal salt and the ligand compound are each separately prepared after charging the transition metal salt and the ligand compound into a container and then adding a solvent. , And then these solutions may be mixed. The solution may be mixed by adding the ligand compound solution to the transition metal salt solution or vice versa. In addition, as a mixing method, it is not always necessary to mix the solutions, for example, a method of charging a solid ligand compound to a transition metal salt solution and simultaneously adding a solvent, or a method of adding a solid transition metal salt to a reaction vessel After the loading, a solid or solution of the ligand compound is injected, and further, a solvent for dissolving the transition metal salt is injected. A method is possible. However, the method of drop-mixing the solution of the transition metal salt and the solution of the ligand compound is industrially the simplest operation and is preferred.

混合する溶液の濃度は、遷移金属塩溶液は、40mmol/L〜4mol/L、好ましくは80mmol/L〜2mol/Lである。配位子化合物の有機溶媒溶液は、40mmol/L〜3mol/L、好ましくは80mmol/L〜1.8mol/Lである。上記下限値より低い濃度で反応を行っても目的物は得られるが、製造効率が低下するため好ましくない。また、上限値より高い濃度では、吸着能が低下するため好ましくない。   The concentration of the solution to be mixed is 40 mmol / L to 4 mol / L, preferably 80 mmol / L to 2 mol / L for the transition metal salt solution. The solution of the ligand compound in the organic solvent is 40 mmol / L to 3 mol / L, preferably 80 mmol / L to 1.8 mol / L. If the reaction is carried out at a concentration lower than the above lower limit, the desired product can be obtained, but the production efficiency is lowered, which is not preferable. On the other hand, if the concentration is higher than the upper limit, the adsorptivity is reduced, which is not preferable.

反応温度は−20〜180℃、好ましくは25〜140℃である。−20℃以下の低温で行うと、原料の溶解度が下がるため好ましくない。オートクレーブなどを用いて、180℃より高温で反応を行うことも可能であるが、加熱などのエネルギーコストの割には、収率は向上しないため実質的な意味はない。   The reaction temperature is -20 to 180C, preferably 25 to 140C. It is not preferable to perform the reaction at a low temperature of -20 ° C or lower, because the solubility of the raw material is reduced. Although it is possible to carry out the reaction at a temperature higher than 180 ° C. by using an autoclave or the like, the yield is not improved for energy costs such as heating since the yield is not improved.

本発明の反応で用いられる遷移金属塩と有機配位子化合物の混合比率は、3:1〜1:5のモル比、好ましくは1.5:1〜1:3のモル比の範囲内である。これ以外の範囲では、目的物の収率が低下し、また、未反応の原料が残留して、目的物の取り出しが困難となる。   The mixing ratio between the transition metal salt and the organic ligand compound used in the reaction of the present invention is within a range of a molar ratio of 3: 1 to 1: 5, preferably 1.5: 1 to 1: 3. is there. Outside of this range, the yield of the target product decreases, and unreacted raw materials remain, making it difficult to take out the target product.

遷移金属塩と有機配位子化合物との反応では、反応系中に、微量のジオール類を共存させることが重要である。ジオール類の種類としてはエチレングリコール、プロピレングリコール、ジエチレングリコール類が挙げられる。これらの内、目的とする多孔性高分子金属錯体の収率が高いという点で、エチレングリコール、プロピレングリコールが好ましく、溶液の粘度が上がりにくいという点でエチレングリコールが好ましい。ジオール類の添加量としては、溶媒に対して0.001〜25体積パーセント、収率が高く粘度が上がりにくい点から0.01〜1体積パーセントの添加が、好ましい。この微量のジオール類添加の効果は、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸配位子化合物を反応に用いた場合、遷移金属イオンと5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸配位子のハロゲン原子が相互作用してクラスターを作るため、反応が阻害される。ジオール類が存在すると、これが遷移金属イオンと5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸配位子との相互作用を抑制して、反応を促進させると推定される。ただし、本発明の範囲がこの推定に限定されるものではない。   In the reaction between the transition metal salt and the organic ligand compound, it is important that a trace amount of diols coexist in the reaction system. Examples of the diols include ethylene glycol, propylene glycol, and diethylene glycols. Among them, ethylene glycol and propylene glycol are preferable in that the yield of the target porous polymer metal complex is high, and ethylene glycol is preferable in that the viscosity of the solution is hardly increased. The amount of the diols to be added is preferably 0.001 to 25% by volume relative to the solvent, and 0.01 to 1% by volume because the yield is high and the viscosity is hardly increased. The effect of the addition of a small amount of diols is that when an isophthalic acid ligand compound having a halogen-containing functional group other than fluorine at the 5-position is used in the reaction, a transition metal ion and a halogen-containing functional group other than fluorine at the 5-position are used. The reaction is inhibited because the halogen atoms of the isophthalic acid ligands have an interaction to form a cluster. It is presumed that the presence of a diol suppresses the interaction between the transition metal ion and an isophthalic acid ligand having a halogen-containing functional group other than fluorine at the 5-position, thereby accelerating the reaction. However, the scope of the present invention is not limited to this estimation.

遷移金属塩と有機配位子化合物との反応は、通常のガラスライニングのSUS製の反応容器および機械式攪拌機を使用して行うことができる。反応終了後は濾過、乾燥を行うことで目的物質と原料との分離を行い、純度の高い目的物質を製造することが可能である。   The reaction between the transition metal salt and the organic ligand compound can be carried out using an ordinary glass-lined SUS reaction vessel and a mechanical stirrer. After completion of the reaction, the target substance and the raw material are separated by filtration and drying, whereby a high-purity target substance can be produced.

モノハロゲン化アルキルオキシの置換基を有する配位子化合物は、α−ブロモ−ω−クロロアルカンとフェノールとの縮合で、クロロ置換体が得られる。臭素置換体、よう素置換体は、それぞれ、臭化ナトリウム、よう化ナトリウム等と反応させることで目的とする配位子を得ることが出来る。パーハロゲンアルキル、パーハロゲンアルコキシを有する配位子は、N−ブロモスクシンイミド等のハロゲン化剤を作用することで得ることが可能である。   A ligand compound having a substituent of a monohalogenated alkyloxy can be obtained by condensation of α-bromo-ω-chloroalkane with phenol to obtain a chloro-substituted product. The desired ligand can be obtained by reacting the bromine-substituted product and the iodine-substituted product with sodium bromide, sodium iodide, and the like, respectively. A ligand having perhalogenated alkyl or perhalogenated alkoxy can be obtained by acting a halogenating agent such as N-bromosuccinimide.

上記の反応により得られた多孔性高分子金属錯体が目的の立体構造を有しているかどうかは、単結晶X線結晶解析により得られた反射を解析することで確認することが出来る。また粉末X線解析の反射パターンによっても確認出来る。
上記の反応により得られた多孔性高分子金属錯体が多孔質であるかどうかは、熱重量分析(Thermogravimetric Analysis:TG)により確認することが可能である。たとえば、窒素雰囲気下(流量=50mL/分)で、昇温速度=5℃/分の測定で、温度範囲室温〜200℃までの重量減が3〜50%であるかどうかで確認出来る。上記の反応により得られた多孔性高分子金属錯体のガス吸着能は、市販のガス吸着装置を用いて測定が可能である。
Whether or not the porous polymer metal complex obtained by the above-mentioned reaction has the desired three-dimensional structure can be confirmed by analyzing the reflection obtained by single crystal X-ray crystal analysis. It can also be confirmed by the reflection pattern of the powder X-ray analysis.
Whether or not the porous polymer metal complex obtained by the above reaction is porous can be confirmed by thermogravimetric analysis (TG). For example, in a nitrogen atmosphere (flow rate = 50 mL / min), by measuring the temperature rising rate = 5 ° C./min, it can be confirmed whether the weight loss from the temperature range of room temperature to 200 ° C. is 3 to 50%. The gas adsorption capacity of the porous polymer metal complex obtained by the above reaction can be measured using a commercially available gas adsorption device.

[多孔性高分子金属錯体を含む吸着材の複合化]
本発明の多孔性高分子金属錯体を含むガス吸着材(以下、単に「吸着材(A)」という)は単独で吸着材として使用してもよいし、他の吸着材と複合化して使用してもよい。複合化して使用する場合には、他の吸着材として、吸着等温線と脱着等温線とが一致する挙動を示す吸着材(B)と併用することで非常に優れた吸着特性を有するガス吸着材とすることができる。
[Composite of adsorbent containing porous polymer metal complex]
The gas adsorbent containing the porous polymer metal complex of the present invention (hereinafter, simply referred to as “adsorbent (A)”) may be used alone as an adsorbent, or may be used in combination with another adsorbent. You may. When used in a composite form, a gas adsorbent having extremely excellent adsorption characteristics when used in combination with an adsorbent (B) that exhibits a behavior in which the adsorption isotherm coincides with the desorption isotherm as another adsorbent It can be.

ここで吸着材(B)とは、ガスに関する吸着等温線と脱着等温線とが一致する挙動を示す材料である。即ち、吸着時のガス圧力−ガス吸着量曲線と、脱着時のガス圧力−ガス吸着量曲線とが実質的に一致する材料である。吸着材(B)は、かような特性を有する材料であれば特に限定されず、物理的吸着材、化学的吸着材、およびこれらが組み合わされてなる物理化学的吸着材を吸着材(B)として用いることができる。   Here, the adsorbent (B) is a material that exhibits a behavior in which an adsorption isotherm and a desorption isotherm for a gas match. That is, it is a material in which the gas pressure-gas adsorption amount curve at the time of adsorption and the gas pressure-gas adsorption amount curve at the time of desorption substantially match. The adsorbent (B) is not particularly limited as long as it is a material having such characteristics. The adsorbent (B) is a physical adsorbent, a chemical adsorbent, or a physicochemical adsorbent obtained by combining these. Can be used as

物理的吸着材とは、分子と分子との相互作用のような弱い力を用いて、被吸着分子を吸着する吸着材をいう。物理的吸着材としては、活性炭、シリカゲル、活性アルミナ、ゼオライト、クレー、超吸着性繊維、金属錯体が挙げられる。化学的吸着材とは、化学的な強固な結合によって、被吸着分子を吸着する吸着材をいう。化学的吸着材としては、炭酸カルシウム、硫酸カルシウム、過マンガン酸カリウム、炭酸ナトリウム、炭酸カリウム、燐酸ナトリウム、活性化された金属が挙げられる。物理化学的吸着材とは、物理的吸着材および化学的吸着材の双方の吸着機構を備える吸着材をいう。これらの2種以上を組み合わせて、吸着材(B)として用いてもよい。ただし、本発明の範囲がこれらの具体例に限定されるものではない。吸着材(B)の形状は特に限定されないが、一般的には、平均粒径500〜5000μmの粉末状のものを用いることができる。   The physical adsorbent refers to an adsorbent that adsorbs a molecule to be adsorbed using a weak force such as an interaction between molecules. Examples of the physical adsorbent include activated carbon, silica gel, activated alumina, zeolite, clay, super-adsorbent fiber, and metal complex. The chemical adsorbent refers to an adsorbent that adsorbs a molecule to be adsorbed by a strong chemical bond. Chemical adsorbents include calcium carbonate, calcium sulfate, potassium permanganate, sodium carbonate, potassium carbonate, sodium phosphate, activated metals. The physicochemical adsorbent refers to an adsorbent having both a physical adsorbent and a chemical adsorbent. A combination of two or more of these may be used as the adsorbent (B). However, the scope of the present invention is not limited to these specific examples. The shape of the adsorbent (B) is not particularly limited, but generally, a powder having an average particle diameter of 500 to 5000 μm can be used.

吸着材(B)としては、製造コストやガス吸着性能を考慮すると活性炭が好ましい。活性炭は比較的安価である上、質量当たりのガス吸着量が多い。また、活性炭はガスの吸脱着に関するサイクル特性が悪く、吸脱着を繰り返すとガス吸着量が著しく減少する傾向がある。このため、従来においては、質量当たりのガス吸着量が多いにも拘わらず、ガス貯蔵装置やガス分離装置に用いることは困難であった。この点、本発明の吸着材(A)の複合化における吸着材(B)として用いた場合においては、活性炭の優れたガス吸着性能を充分に引き出すことができる。また、活性炭は比表面積が大きいほど吸着量が増加する傾向を有するため、活性炭の比表面積は1000m2/g以上であることが好ましい。 As the adsorbent (B), activated carbon is preferable in consideration of production cost and gas adsorption performance. Activated carbon is relatively inexpensive and has a large amount of gas adsorbed per mass. Activated carbon also has poor cycle characteristics relating to gas adsorption and desorption, and when adsorption and desorption are repeated, the gas adsorption amount tends to decrease significantly. For this reason, conventionally, it was difficult to use the gas storage device or the gas separation device, despite the large amount of gas adsorption per mass. In this regard, when the adsorbent (A) of the present invention is used as the adsorbent (B) in the compounding, the excellent gas adsorption performance of activated carbon can be sufficiently brought out. In addition, the activated carbon has a tendency that the adsorption amount increases as the specific surface area increases, and therefore, the specific surface area of the activated carbon is preferably 1000 m 2 / g or more.

また、使用する吸着材(B)は、吸着させるガスに応じて適宜構造が制御されることが好ましい。例えば、活性炭に含まれる細孔は、細孔の大きさによって、スーパーミクロポア(〜0.8nm)、ミクロポア(0.8〜2nm)、メソポア(2〜50nm)、マクロポア(50nm〜)に分類できる。細孔の大きさによって吸着しやすいガスが異なり、メタンガスはミクロポアに吸着しやすい。従って、メタンガスを吸着させることを所望する場合には、ミクロポアの割合が大きくなるように活性炭の細孔分布を制御するとよい。   Further, it is preferable that the structure of the adsorbent (B) used is appropriately controlled in accordance with the gas to be adsorbed. For example, pores included in activated carbon can be classified into super micropores (up to 0.8 nm), micropores (0.8 to 2 nm), mesopores (2 to 50 nm), and macropores (up to 50 nm) according to the size of the pores. . The gas that is easily adsorbed differs depending on the size of the pores, and methane gas is easily adsorbed on the micropores. Therefore, when it is desired to adsorb methane gas, the pore distribution of activated carbon should be controlled so that the ratio of micropores is increased.

本発明の吸着材(A)と吸着材(B)とを複合化する場合は、吸着材(A)は、吸着材(B)を被覆するが、クラックや不完全な被覆がなく、吸着材(B)が外気に触れないように、吸着材(A)によって完全に被覆されることが好ましい。しかしながら、吸着材(A)に多少のクラック等が存在していても、吸着材(B)の自由なガス吸着を阻害することができ、吸着材(A)によって被覆されている吸着材(B)がガス吸着に関して、吸着材(A)に類似したガス吸着特性を示すのであれば、本発明の範囲に包含されるものである。好ましくは、吸着材(B)に対して5〜50体積%の吸着材(A)を用いて、吸着材(B)を被覆する。また、吸着材(B)を被覆する吸着材(A)の厚みは吸着材(A)の種類に応じて決定されるが、吸着材(A)が薄すぎると吸着材(B)へのガス吸着特性を充分に制御できない恐れがある。一方、吸着材(A)が厚すぎると、吸着材(B)へのガス吸着が生じにくくなり、全体としてのガス吸着量が減少する恐れがある。これらを考慮すると、吸着材(A)の平均厚みは、10〜100μmであることが好ましい。吸着材(A)の厚みは、吸着材(A)の使用量の調節によって制御できる。なお、吸着材(A)の厚みは電子顕微鏡を用いて撮影された断面写真から算出することができる。   When the adsorbent (A) and the adsorbent (B) of the present invention are combined, the adsorbent (A) covers the adsorbent (B), but has no cracks or incomplete coating. It is preferable that (B) be completely covered with the adsorbent (A) so as not to contact the outside air. However, even if some cracks or the like are present in the adsorbent (A), free gas adsorption of the adsorbent (B) can be inhibited, and the adsorbent (B) covered by the adsorbent (A) can be prevented. ) Is included in the scope of the present invention if it exhibits gas adsorption characteristics similar to those of the adsorbent (A) with respect to gas adsorption. Preferably, the adsorbent (B) is coated with the adsorbent (A) in an amount of 5 to 50% by volume based on the adsorbent (B). The thickness of the adsorbent (A) covering the adsorbent (B) is determined according to the type of the adsorbent (A). There is a possibility that the adsorption characteristics cannot be sufficiently controlled. On the other hand, if the adsorbent (A) is too thick, gas adsorption to the adsorbent (B) is less likely to occur, and the total amount of gas adsorbed may be reduced. Considering these, the average thickness of the adsorbent (A) is preferably 10 to 100 μm. The thickness of the adsorbent (A) can be controlled by adjusting the amount of the adsorbent (A) used. The thickness of the adsorbent (A) can be calculated from a cross-sectional photograph taken with an electron microscope.

吸着材(A)と吸着材(B)との複合化の方法としては、(1)吸着材(A)が溶解している溶液中に、該溶液に溶解しない吸着材(B)を添加し、その後、吸着材(A)を結晶成長させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、(2)吸着材(A)を含むスラリーを準備し、このスラリーを吸着材(B)表面にコーティングして、乾燥させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、などを用いることができる。   The method of compounding the adsorbent (A) and the adsorbent (B) is as follows: (1) To a solution in which the adsorbent (A) is dissolved, add an adsorbent (B) that is not dissolved in the solution. Thereafter, a method of attaching the adsorbent (A) to the surface of the adsorbent (B) by growing the crystal of the adsorbent (A); (2) preparing a slurry containing the adsorbent (A); A method of applying the adsorbent (A) to the surface of the adsorbent (B) by coating and drying the surface of the adsorbent (B) can be used.

本発明の多孔性高分子金属錯体は、物質が出入りできる多孔性を有しており、また電気的に陽性の陽イオン、陰性のカルボキシル基、さらに分極しているハロゲン置換官能基が存在しているため、各種の触媒反応として利用する事が可能である。多孔性高分子金属錯体の細孔はナノのレベルであり、取り込まれた物質は、細孔壁との衝突確率が非常に高くなるため、上記のような触媒活性部位との反応が効率的に行われるため、触媒として利用が可能である。具体的にはエステル等の合成、あるいは分解触媒、合成ガスからのメタノール合成触媒、アルドール反応を代表とする、ルイス酸、塩基等が触媒する各種反応等に利用可能である。   The porous polymer metal complex of the present invention has a porosity that allows a substance to enter and exit, and has an electrically positive cation, a negative carboxyl group, and a polarized halogen-substituted functional group. Therefore, it can be used as various catalytic reactions. The pores of the porous polymer metal complex are at the nanometer level, and the entrapped material has a very high probability of collision with the pore walls, so that the reaction with the catalytically active site as described above is efficient. Since it is performed, it can be used as a catalyst. Specifically, the present invention can be used for synthesis of an ester or the like, a decomposition catalyst, a methanol synthesis catalyst from a synthesis gas, and various reactions catalyzed by a Lewis acid, a base, or the like typified by an aldol reaction.

本発明の多孔性高分子金属錯体は、物質が出入りできる多孔性を有しており、また電気的に陽性の陽イオン、陰性のカルボキシル基、さらに分極しているハロゲン置換官能基が存在しており、また、ナノレベルの細孔を有しているため、種々の物質の存在濃度が低くても効率的にそれらの分子を取り込み、色の変化、導電性の変化、構造の変化等を起こしうるため、一酸化炭素や一酸化窒素等のガスセンサー、芳香族等の有機蒸気センサーとしての利用が可能である。   The porous polymer metal complex of the present invention has a porosity that allows a substance to enter and exit, and has an electrically positive cation, a negative carboxyl group, and a polarized halogen-substituted functional group. In addition, because of the nano-level pores, even if the concentration of various substances is low, they efficiently take in those molecules, causing color change, conductivity change, structural change, etc. Therefore, it can be used as a gas sensor for carbon monoxide and nitric oxide, and an organic vapor sensor for aromatic and the like.

本発明の多孔性高分子金属錯体は、物質が出入りできる多孔性を有している。このため、本細孔内に、イミダゾール等の導電性物質を導入することで、イミダゾール分子同士が接近して存在し、高い導電性を発現しうるため、導電性材料として利用することが可能である。   The porous polymer metal complex of the present invention has porosity so that a substance can enter and exit. For this reason, by introducing a conductive substance such as imidazole into the pores, imidazole molecules are present close to each other and can exhibit high conductivity, and thus can be used as a conductive material. is there.

本発明の多孔性高分子金属錯体の調製方法は種々の条件があり、一義的に決定できるものではないが、ここでは一つの条件を例にとり説明する。   The method for preparing the porous polymer metal complex of the present invention has various conditions and cannot be uniquely determined. However, here, one condition will be described as an example.

実施例1
酢酸亜鉛0.02ミリモルを溶解した水(2mL)と、5−(3−ヨード−n−プロピルオキシ)イソフタル酸0.02ミリモルを溶解したメタノール(2mL)と、エチレングリコール0.02mLとの混合物をゆっくりと積層し、35℃で3週間静置し、無色の針状単結晶を得た。直径約110ミクロンの単結晶を大気に暴露させないようにパラトンにてコーティングした後、(株)リガク社製単結晶測定装置(極微小結晶用単結晶構造解析装置VariMax、MoKα線(λ=0.71069Å))にて測定した(照射時間32秒、d=45ミリ、2θ=−20,温度=−180℃)。得られた回折像を、解析ソフトウエアを使用して解析し、図1〜3に示すような三次元ネットワーク構造を有していることを確認した(a=27.6355(9),b=27.6355(9),c=17.9932(7);α=90、β=90,γ=120;空間群=R−3))。
Example 1
A mixture of water (2 mL) in which 0.02 mmol of zinc acetate is dissolved, methanol (2 mL) in which 0.02 mmol of 5- (3-iodo-n-propyloxy) isophthalic acid is dissolved, and 0.02 mL of ethylene glycol Was slowly laminated and allowed to stand at 35 ° C. for 3 weeks to obtain a colorless needle-like single crystal. After coating a single crystal having a diameter of about 110 microns with paraton so as not to be exposed to the atmosphere, a single crystal measuring device manufactured by Rigaku Corporation (VariMax, a MoKα ray (λ = 0. 71069 °)) (irradiation time 32 seconds, d = 45 mm, 2θ = −20, temperature = −180 ° C.). The obtained diffraction image was analyzed using analysis software, and it was confirmed that it had a three-dimensional network structure as shown in FIGS. 1 to 3 (a = 27.6355 (9), b = 27.6355 (9), c = 17.993 (7); α = 90, β = 90, γ = 120; space group = R-3)).

実施例2〜11
実施例1と同様に、表1に示す原料を用いて合成を行った。
Examples 2 to 11
In the same manner as in Example 1, synthesis was performed using the raw materials shown in Table 1.

実施例12〜15
実施例1と同様に、表2に示す原料を用いて合成を行った。実施例12〜15と実施例1の差異は、実施例1では、イソフタル酸誘導体は1種類であるが、実施例12〜15では、表2に示すとおり、二種類の配位子を混合使用して固溶体を合成している。
Examples 12 to 15
In the same manner as in Example 1, synthesis was performed using the raw materials shown in Table 2. The difference between Examples 12 to 15 and Example 1 is that, in Example 1, only one kind of isophthalic acid derivative is used. In Examples 12 to 15, two kinds of ligands are mixed and used as shown in Table 2. To synthesize a solid solution.

比較例1、2
実施例1と同様にして、イソフタル酸の5位にハロゲン元素を有さない置換基が置換した三次元ネットワーク構造の多孔性高分子金属錯体を合成した(表3)。
Comparative Examples 1 and 2
In the same manner as in Example 1, a porous polymer metal complex having a three-dimensional network structure in which a substituent having no halogen element was substituted at the 5-position of isophthalic acid was synthesized (Table 3).

比較例3〜5
実施例12〜15と同様にして、二種類の配位子(A、B)を混合使用して固溶体を合成した(表4)ただし、ハロゲン元素を有さない配位子Bの比率が、実施例12〜15と比して高くして合成している。
Comparative Examples 3 to 5
In the same manner as in Examples 12 to 15, two types of ligands (A, B) were mixed and used to synthesize a solid solution (Table 4). However, the ratio of the ligand B having no halogen element was: It is synthesized with a higher height than in Examples 12 to 15.

<ガス吸着の結果>
得られたガス吸着材の種々のガス吸着特性を種々の温度で測定した。BET自動吸着装置(日本ベル株式会社製ベルミニII)を用いた。測定に先立って試料を393Kで6時間真空乾燥して、微量残存している可能性がある溶媒分子などを除去した。
<Results of gas adsorption>
Various gas adsorption characteristics of the obtained gas adsorbent were measured at various temperatures. A BET automatic adsorption device (Bell Mini II manufactured by Japan Bell Co., Ltd.) was used. Prior to the measurement, the sample was vacuum-dried at 393K for 6 hours to remove solvent molecules and the like that may be tracely remaining.

表1〜4に、各種ガスの各種温度での吸着量を示す。なお、全ての表において、吸着量は、相対圧0.95での吸着量であり、相対圧とは、吸着時の圧力を当該温度での当該ガスの沸点で割った値である。   Tables 1 to 4 show the adsorption amounts of various gases at various temperatures. In all the tables, the amount of adsorption is the amount of adsorption at a relative pressure of 0.95, and the relative pressure is a value obtained by dividing the pressure at the time of adsorption by the boiling point of the gas at the temperature.

いずれの温度に於いても、本発明の5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸を用いた多孔性高分子金属錯体を含む吸着材は、酸素ガスの吸着量が他のガスと比較して多い。また、一酸化炭素と窒素の吸着量比(273Kでの一酸化炭素吸着量/窒素吸着量)が多く、通常、分離が困難な一酸化炭素と窒素の分離に有利であることがわかる。比較例1、2の5位の官能基がハロゲン原子を含まないイソフタル酸を用いた多孔性高分子金属錯体を含む吸着材と比べると、その効果が明らかである。   At any temperature, the adsorbent of the present invention containing a porous polymer metal complex using isophthalic acid having a halogen-containing functional group other than fluorine at the 5-position has a higher oxygen gas adsorption amount than other gases. Many compared. In addition, the adsorption ratio of carbon monoxide to nitrogen (carbon monoxide adsorption at 273 K / nitrogen adsorption) is large, and it can be seen that it is advantageous for separation of carbon monoxide and nitrogen, which are usually difficult to separate. The effect is clear when compared with the adsorbent containing a porous polymer metal complex using isophthalic acid in which the functional group at the 5-position does not contain a halogen atom in Comparative Examples 1 and 2.

本発明の多孔性高分子金属錯体は、配位子の整列によって形成される多数の微細孔が物質内部に存在する。この多孔性を生かして酸素、一酸化炭素の選択的な吸着、分離、貯蔵が可能となる。   In the porous polymer metal complex of the present invention, a large number of micropores formed by the alignment of ligands exist inside the substance. By making use of this porosity, selective adsorption, separation and storage of oxygen and carbon monoxide become possible.

Claims (16)

[AX] (i)
(式中、Aはコバルトイオン、ニッケルイオン、亜鉛イオン、または銅イオンから選ばれる2価の遷移金属イオンを表し、Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを少なくとも1種含む複数種のイソフタル酸イオンを表し、nは、AXから成る構成単位の数を表す)
の構造単位を有する多孔性高分子金属錯体であって、
前記遷移金属イオン2個が、3個のイソフタル酸誘導体それぞれが有する1個のカルボキシル基により架橋されている2核クラスタ構造を有しており、前記2個の遷移金属イオンのそれぞれが、前記架橋しているイソフタル酸誘導体とは異なるイソフタル酸誘導体とさらに結合して、酸素が4個配位した4配位構造を有している、三次元ネットワーク構造を有する多孔性高分子金属錯体。
[AX] n (i)
(In the formula, A represents a divalent transition metal ion selected from a cobalt ion, a nickel ion, a zinc ion, or a copper ion , and X represents at least one isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. Represents a plurality of isophthalate ions including n, and n represents the number of constituent units composed of AX)
A porous polymer metal complex having the structural unit of
The transition metal 2 ions has a binuclear cluster structure being bridged by one carboxyl group, each having three isophthalic acid derivatives, each of the two transition metal ions, the crosslinking A porous polymer metal complex having a three-dimensional network structure, further bonded to an isophthalic acid derivative different from the isophthalic acid derivative, and having a four-coordinate structure in which four oxygen atoms are coordinated.
さらに前記遷移金属イオンの少なくとも1個が溶媒分子の配位を受けた5配位構造を有している請求項1に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to claim 1, wherein at least one of the transition metal ions has a pentacoordinate structure in which a solvent molecule is coordinated. 前記含ハロゲン官能基のハロゲン元素が、塩素、臭素、よう素である請求項1または2に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to claim 1, wherein the halogen element of the halogen-containing functional group is chlorine, bromine, or iodine. 前記含ハロゲン官能基のハロゲン元素が、よう素である請求項3に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to claim 3, wherein the halogen element of the halogen-containing functional group is iodine. 前記含ハロゲン官能基が、ハロゲン元素を含む直鎖もしくは分岐鎖のアルキル基またはアルコキシ基である請求項1〜4のいずれか一項に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to any one of claims 1 to 4, wherein the halogen-containing functional group is a linear or branched alkyl group or an alkoxy group containing a halogen element. 前記含ハロゲン官能基が、炭素数1〜10の直鎖もしくは分岐鎖のアルキル基またはアルコキシ基である請求項1〜5のいずれか一項に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to any one of claims 1 to 5, wherein the halogen-containing functional group is a linear or branched alkyl group or an alkoxy group having 1 to 10 carbon atoms. 前記含ハロゲン官能基が含有するハロゲン原子が1〜21個のいずれかである請求項1〜6のいずれか一項に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to any one of claims 1 to 6, wherein the halogen-containing functional group contains any one of 1 to 21 halogen atoms. 前記遷移金属イオンが亜鉛イオンである請求項1〜7のいずれか一項に記載の多孔性高分子金属錯体。   The porous polymer metal complex according to any one of claims 1 to 7, wherein the transition metal ion is a zinc ion. [AX] (ii)
(式中、Aはコバルトイオン、ニッケルイオン、亜鉛イオン、または銅イオンから選ばれる2価の遷移金属イオンを表し、Xは5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンを少なくとも1種含む複数種のイソフタル酸イオンを表し、全イソフタル酸イオン量の5モル%〜95モル%が5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンであり、nは、AXから成る構成単位の数を表す)
の構造単位を有することを特徴とする請求項1〜8のいずれか一項に記載の多孔性高分子金属錯体。
[AX] n (ii)
(In the formula, A represents a divalent transition metal ion selected from a cobalt ion, a nickel ion, a zinc ion, or a copper ion , and X represents at least one isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position. A plurality of isophthalate ions, wherein 5 mol% to 95 mol% of the total isophthalate ion amount is an isophthalate ion having a halogen-containing functional group other than fluorine at the 5-position, and n is AX Represents the number of units)
The porous polymer metal complex according to any one of claims 1 to 8, wherein the porous polymer metal complex has the following structural unit.
式(ii)中、Xは、イソフタル酸イオン、5位にアルキル基を有するイソフタル酸イオン、5位にアルコキシ基を有するイソフタル酸イオン、5位にアミノ基を有するイソフタル酸イオン、5位にふっ素以外の含ハロゲン官能基を有するイソフタル酸イオンから選ばれる2種類以上のイソフタル酸イオンであって、全イソフタル酸イオン量の5モル%〜95モル%が5位に含ハロゲン官能基を有するイソフタル酸イオンである請求項9に記載の多孔性高分子金属錯体。   In the formula (ii), X is an isophthalate ion, an isophthalate ion having an alkyl group at the 5-position, an isophthalate ion having an alkoxy group at the 5-position, an isophthalate ion having an amino group at the 5-position, and fluorine at the 5-position. Two or more isophthalate ions selected from isophthalate ions having a halogen-containing functional group other than the above, wherein 5 mol% to 95 mol% of the total isophthalate ion amount has a halogen-containing functional group at the 5-position. The porous polymer metal complex according to claim 9, which is an ion. 上記請求項1〜10のいずれか一項に記載の多孔性高分子金属錯体を含む吸着材。   An adsorbent comprising the porous polymer metal complex according to any one of claims 1 to 10. 上記請求項11に記載の吸着材を用いたガス分離装置。   A gas separation device using the adsorbent according to claim 11. 上記請求項11に記載の吸着材を用いたガス貯蔵装置。   A gas storage device using the adsorbent according to claim 11. 請求項1〜10のいずれか一項に記載の多孔性高分子金属錯体を含む触媒。   A catalyst comprising the porous polymer metal complex according to claim 1. 請求項1〜10のいずれか一項に記載の多孔性高分子金属錯体を含む導電性材料。   A conductive material comprising the porous polymer metal complex according to claim 1. 請求項1〜10のいずれか一項に記載の多孔性高分子金属錯体を含むセンサー。   A sensor comprising the porous polymer metal complex according to claim 1.
JP2016034357A 2016-02-25 2016-02-25 Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor Expired - Fee Related JP6676406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034357A JP6676406B2 (en) 2016-02-25 2016-02-25 Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034357A JP6676406B2 (en) 2016-02-25 2016-02-25 Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor

Publications (2)

Publication Number Publication Date
JP2017149683A JP2017149683A (en) 2017-08-31
JP6676406B2 true JP6676406B2 (en) 2020-04-08

Family

ID=59739590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034357A Expired - Fee Related JP6676406B2 (en) 2016-02-25 2016-02-25 Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor

Country Status (1)

Country Link
JP (1) JP6676406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023060618A (en) * 2021-10-18 2023-04-28 新東工業株式会社 Gas measurement device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072637B2 (en) * 1999-01-14 2008-04-09 株式会社豊田中央研究所 Gas adsorbent and method for producing the same
JP5574669B2 (en) * 2009-08-24 2014-08-20 株式会社クラレ Metal complex and separation material comprising the same
JP2011051949A (en) * 2009-09-03 2011-03-17 Kuraray Co Ltd Metal complex and method for producing the same
WO2014069574A1 (en) * 2012-11-02 2014-05-08 新日鐵住金株式会社 Porous polymer-metal complex, gas adsorbent, and gas separation device and gas storage device using same
JP6021691B2 (en) * 2013-02-28 2016-11-09 新日鐵住金株式会社 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP5988896B2 (en) * 2013-02-28 2016-09-07 新日鐵住金株式会社 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6525686B2 (en) * 2015-04-02 2019-06-05 日本製鉄株式会社 Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same

Also Published As

Publication number Publication date
JP2017149683A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
US6893564B2 (en) Shaped bodies containing metal-organic frameworks
JP5988896B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6021691B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP2006503946A (en) Process for producing polyalkylene carbonate
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
KR102581045B1 (en) Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
JP6091256B2 (en) Porous polymer complex containing fluorine atom, gas adsorbent using the same, gas separation device and gas storage device
JP2008208110A (en) Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2014169262A (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6132596B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
KR101937811B1 (en) Organic-inorganic Hybrid Porous Adsorbent And Method For Preparing The Same
JP6456076B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP2008266269A (en) Porous metal complex, method for producing porous metal complex, adsorbent, separating material, gas adsorbent, and catalyst material
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor
JP6555861B2 (en) Coordinating complex containing fluorine or salt thereof, gas adsorbent and production method thereof, gas separation device and gas storage device using the same
JP6452357B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6422211B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6591728B2 (en) Polymer complex containing bent ligand, gas adsorbent using the same, gas separation device and gas storage device
JP2019181338A (en) Shaped body comprising resilient porous polymer metal complex powder and method for producing same, resilient porous polymer metal complex powder used for shaped body and method for producing same, gas adsorbent comprising shaped body, and gas separation device and gas storage device using same
JP2015117203A (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP6761257B2 (en) Porous polymer metal complex, gas adsorbent using it, gas separator, gas storage device, catalyst, conductive material, sensor
JP6671128B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees