JP2007277106A - Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent - Google Patents

Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent Download PDF

Info

Publication number
JP2007277106A
JP2007277106A JP2006102004A JP2006102004A JP2007277106A JP 2007277106 A JP2007277106 A JP 2007277106A JP 2006102004 A JP2006102004 A JP 2006102004A JP 2006102004 A JP2006102004 A JP 2006102004A JP 2007277106 A JP2007277106 A JP 2007277106A
Authority
JP
Japan
Prior art keywords
metal complex
porous
porous metal
metal
complex according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006102004A
Other languages
Japanese (ja)
Inventor
Ami Ikura
亜美 伊倉
Hitoshi Ito
仁 伊藤
Junji Katamura
淳二 片村
Kazuaki Mori
和亮 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Nissan Motor Co Ltd
Original Assignee
Kanagawa University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University, Nissan Motor Co Ltd filed Critical Kanagawa University
Priority to JP2006102004A priority Critical patent/JP2007277106A/en
Publication of JP2007277106A publication Critical patent/JP2007277106A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous metal complex having higher bulk density, higher hydrogen adsorption capacity, and better effective hydrogen adsorption capacity than a prior art compound. <P>SOLUTION: The porous metal complex 1 comprises a three dimensional porous backbone structure constituted of a metal complex comprised of a central metal 3 and an organic ligand 4 comprising a heterocyclic monocarboxylic acid having a heterocyclic backbone 4a and a carboxylate group 4b coordinating to the central metal 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材に関する。   The present invention relates to a porous metal complex, a method for producing a porous metal complex, an adsorbent, a separating material, a gas adsorbent, and a hydrogen adsorbent.

近年、燃料電池車両に搭載するための固体高分子型燃料電池の開発競争が活発に繰り広げられている。このような燃料電池車両の実用化のために、低コストで、軽量、水素吸蔵密度の高い水素吸蔵材料を用いた効率的な水素吸蔵法の開発が望まれている。   In recent years, development competition for solid polymer fuel cells to be installed in fuel cell vehicles has been actively developed. In order to put such fuel cell vehicles into practical use, development of an efficient hydrogen storage method using a hydrogen storage material that is low in cost, lightweight, and has a high hydrogen storage density is desired.

そこで、金属イオンと有機配位子とからなる二次元格子構造を単位モチーフとして三次元的に積層した骨格構造を有する多孔性の有機金属錯体を用いた水素吸蔵材料が提案され(特許文献1、特許文献2参照)、メタン、窒素、水素などのガス吸着材として注目されている。中でも安息香酸、トルイル酸などの炭素環骨格モノカルボン酸化合物を用いた有機金属錯体は、圧力、温度などの外部環境に応じて柔軟に構造が変化する性質を持つ。このように柔軟な骨格構造を持つ金属錯体は、選択吸着性があり、ガス吸蔵材として好適であることが見出されている(特許文献3、非特許文献1参照)。   Therefore, a hydrogen storage material using a porous organometallic complex having a skeleton structure in which a two-dimensional lattice structure composed of a metal ion and an organic ligand is three-dimensionally stacked as a unit motif has been proposed (Patent Document 1, It is attracting attention as a gas adsorbent such as methane, nitrogen and hydrogen. Among them, an organometallic complex using a carbocyclic skeleton monocarboxylic acid compound such as benzoic acid or toluic acid has a property that its structure changes flexibly according to an external environment such as pressure and temperature. Thus, it has been found that a metal complex having a flexible skeleton structure has a selective adsorption property and is suitable as a gas storage material (see Patent Document 3 and Non-Patent Document 1).

また、有機配位子にテトラジン、トリアジンなどの含窒素複素環骨格を用いた有機金属錯体は水素とのアフィニティが向上するため、水素吸蔵材として好適であることも見出されている(特許文献4参照)。
特開2001−348361号公報 米国特許出願公開第2003/0004364号明細書 特開2003−342260号公報 特開2005−93181号公報 森和亮,大村哲賜,佐藤智彦,「カルボン酸金属錯体の気体吸蔵とその応用」,ペトロテック(PETROTECH),「社団法人石油学会」,2003年,第26巻,第2号,p.105−112
In addition, an organometallic complex using a nitrogen-containing heterocyclic skeleton such as tetrazine or triazine as an organic ligand has been found to be suitable as a hydrogen storage material because of its improved affinity with hydrogen (Patent Document) 4).
JP 2001-348361 A US Patent Application Publication No. 2003/0004364 JP 2003-342260 A JP-A-2005-93181 Mori Kazuaki, Omura Tetsuki, Sato Tomohiko, “Gas Occlusion of Carboxylic Acid Metal Complexes and Their Applications”, PETROTECH, “Japan Petroleum Institute”, 2003, Vol. 26, No. 2, p. 105-112

しかしながら、炭素環骨格モノカルボン酸化合物を用いた有機金属錯体は、有効水素吸蔵能が高いが水素吸蔵能が十分とは言えず、実用に供するためには吸蔵能の向上が不可欠である。また、配位子に複素環骨格カルボン酸及び架橋配位子を用いた金属錯体は、堅固な骨格を有し、水素吸蔵能は他の材料に比べると改善されているものの、水素が金属錯体中に残存する現象が見られ、有効水素吸蔵能については十分とは言えない。   However, an organometallic complex using a carbocyclic skeleton monocarboxylic acid compound has a high effective hydrogen storage capacity, but it cannot be said that the hydrogen storage capacity is sufficient, and improvement of the storage capacity is indispensable for practical use. In addition, metal complexes using heterocyclic skeleton carboxylic acids and bridging ligands as ligands have a solid skeleton and hydrogen storage capacity is improved compared to other materials, but hydrogen is a metal complex. Phenomenon remaining in the interior is seen, and the effective hydrogen storage capacity is not sufficient.

本発明は、上記課題を解決するためになされたものであり、本発明に係る多孔性金属錯体は、中心金属と、この中心金属に配位し、複素環骨格及びカルボキシレート基を有する複素環モノカルボン酸からなる有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含むことを特徴とする。   The present invention has been made to solve the above problems, and a porous metal complex according to the present invention includes a central metal and a heterocyclic ring coordinated to the central metal and having a heterocyclic skeleton and a carboxylate group. It includes a three-dimensional porous skeleton structure of a metal complex including an organic ligand composed of a monocarboxylic acid.

本発明に係る多孔性金属錯体の製造方法は、中心金属と、この中心金属に配位し、複素環骨格及びカルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、複素環モノカルボン酸を第1の溶媒に溶解した第1の溶液と、中心金属の塩を第2の溶媒に溶解した第2の溶液とを混合し、反応させることを含むことを特徴とする。   The method for producing a porous metal complex according to the present invention comprises a three-dimensional porous skeleton of a metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a heterocyclic skeleton and a carboxylate group. A method for producing a porous metal complex having a structure, wherein a first solution in which a heterocyclic monocarboxylic acid is dissolved in a first solvent, and a second solution in which a salt of a central metal is dissolved in a second solvent, Are mixed and reacted.

本発明に係る吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る分離材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The separating material according to the present invention includes the porous metal complex according to the present invention.

本発明に係るガス吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The gas adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る水素吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The hydrogen adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明によれば、有機配位子に複素環骨格を有するものを用いると水素とのアフィニティが高くなり、また、外部環境に応じて構造が変化する柔軟な構造を有することから、従来に比べてかさ密度が増し、水素吸蔵能が高く、有効水素吸蔵能が良好な多孔性金属錯体が得られる。   According to the present invention, when an organic ligand having a heterocyclic skeleton is used, the affinity with hydrogen is increased, and since the structure changes according to the external environment, the structure has a flexible structure. A porous metal complex having an increased bulk density, a high hydrogen storage capacity, and a good effective hydrogen storage capacity can be obtained.

本発明によれば、安価で簡便に、柔軟性を有する多孔性金属錯体が得られる。   According to the present invention, a porous metal complex having flexibility can be obtained inexpensively and easily.

本発明によれば、本発明に係る多孔性金属錯体を用いるので、安価な吸着材、分離材、ガス吸着材及び水素吸着材が効率よく得られる。   According to the present invention, since the porous metal complex according to the present invention is used, an inexpensive adsorbent, separation material, gas adsorbent and hydrogen adsorbent can be obtained efficiently.

以下、本発明の実施の形態に係る多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材を説明する。   Hereinafter, a porous metal complex, a method for producing a porous metal complex, an adsorbent, a separation material, a gas adsorbent, and a hydrogen adsorbent according to embodiments of the present invention will be described.

図1は、多孔性金属錯体1の一例の結晶構造の二次元格子構造(モチーフM)を示す模式図である。図2は、多孔性金属錯体1の三次元構造を示す模式図である。本発明の実施の形態に係る多孔性金属錯体1は、中心金属3と、中心金属3に配位し、複素環骨格4a及びカルボキシレート基4bを有する複素環モノカルボン酸からなる有機配位子4とを備える金属錯体の三次元的多孔性骨格構造を含む。   FIG. 1 is a schematic diagram showing a two-dimensional lattice structure (motif M) of the crystal structure of an example of the porous metal complex 1. FIG. 2 is a schematic diagram showing a three-dimensional structure of the porous metal complex 1. A porous metal complex 1 according to an embodiment of the present invention includes an organic ligand composed of a central metal 3 and a heterocyclic monocarboxylic acid coordinated to the central metal 3 and having a heterocyclic skeleton 4a and a carboxylate group 4b. 4 and a three-dimensional porous skeleton structure of a metal complex.

多孔性金属錯体1の二次元格子構造は、2個の銅イオンを中心金属3とした二核錯体であり、中心金属3の周りに4個の複素環カルボン酸イオンが有機配位子4として配位されている。各複素環カルボン酸イオンは複素環骨格4aと1つのカルボキシレート基4bを有し、このカルボキシレート基4bが有する2つの酸素原子を介して中心金属3である銅イオンに配位することにより、十字形の格子要素2が形成される。各格子要素2はπ−π相互作用、水素結合などの比較的弱い結合により集積した0次元構造をとる。そしてこの格子要素2を井桁に平置した、中心金属3を4つの格子点とする環(空隙)が縮合した格子状の2次元構造が形成される。この二次元格子構造を単位モチーフM、つまり、基本的繰り返しパターンとして、中心金属3とカルボキシレート基4bの酸素間との結合により図2に示すスタッキング方向にモチーフMを平行に離間重層(集積:スタッキング)し、格子要素2が三次元的に自己集合した三次元的多孔性骨格構造が形成される。この結果、図2に示すように、この構造では複数のモチーフMの各空隙5が一列に整列するため、多孔性金属錯体1は、図2の矢印6に沿って一次元のチャネルを複数形成している。   The two-dimensional lattice structure of the porous metal complex 1 is a binuclear complex having two copper ions as a central metal 3, and four heterocyclic carboxylate ions around the central metal 3 as organic ligands 4. It is coordinated. Each heterocyclic carboxylate ion has a heterocyclic skeleton 4a and one carboxylate group 4b, and is coordinated to a copper ion which is the central metal 3 through two oxygen atoms of the carboxylate group 4b. A cross-shaped lattice element 2 is formed. Each lattice element 2 has a zero-dimensional structure integrated by relatively weak bonds such as π-π interaction and hydrogen bond. Then, a lattice-like two-dimensional structure is formed in which rings (voids) having the lattice element 2 placed in parallel on the grid and having the central metal 3 as four lattice points are condensed. This two-dimensional lattice structure is used as a unit motif M, that is, a basic repeating pattern, and the motif M is separated in parallel in the stacking direction shown in FIG. 2 by the bonding between the central metal 3 and the oxygen of the carboxylate group 4b. And a three-dimensional porous skeleton structure in which the lattice elements 2 are self-assembled three-dimensionally is formed. As a result, as shown in FIG. 2, in this structure, the voids 5 of the plurality of motifs M are aligned in a line, so that the porous metal complex 1 forms a plurality of one-dimensional channels along the arrows 6 in FIG. is doing.

本発明の実施の形態に係る多孔性金属錯体は、有機配位子に複素環骨格を有するものを用いると水素とのアフィニティが高くなり、また、外部環境に応じて構造が変化することから、従来に比べて水素吸蔵能が高く、有効水素吸蔵能が良好である。また、この多孔性金属錯体は金属原子及び複素環モノカルボン酸からなる有機配位子のみからなるため、簡便、安価に製造することができる。更に、奥行き方向(スタッキング方向)の結合は、従来のように架橋配位子により結合するのではなく、金属とカルボキシル基中の酸素との間の結合による自己集合(集積)であるため、かさ密度が向上する。   When the porous metal complex according to the embodiment of the present invention has a heterocyclic skeleton as the organic ligand, the affinity with hydrogen increases, and the structure changes depending on the external environment. Compared with the conventional one, the hydrogen storage capacity is high and the effective hydrogen storage capacity is good. Moreover, since this porous metal complex consists only of the organic ligand which consists of a metal atom and heterocyclic monocarboxylic acid, it can be manufactured simply and cheaply. Furthermore, the bond in the depth direction (stacking direction) is not bonded by a bridging ligand as in the prior art, but is self-assembled (accumulated) by the bond between the metal and oxygen in the carboxyl group. The density is improved.

この多孔性金属錯体において、二次元格子構造のモチーフMを積層した三次元的多孔性骨格構造は空隙を画成する骨格部であり、各空隙の細孔径は0.3〜2.0[nm]の大きさである。そして、この細孔径より小さな気体又は液体分子を骨格構造に取り込むことが可能である。また、有機配位子が比較的弱い結合により結合されているため、圧力、熱などの外部環境に応じてその結合がずれることにより骨格構造は可撓性を有した柔軟な構造を形成する。また、熱又は圧力等の外部環境に応じて柔軟に骨格構造が変化する。このためこの多孔性金属錯体の空隙は変形可能であり、ガスの吸着脱着に優れる。   In this porous metal complex, a three-dimensional porous skeleton structure in which a motif M having a two-dimensional lattice structure is laminated is a skeleton portion that defines voids, and the pore diameter of each void is 0.3 to 2.0 [nm. ]. A gas or liquid molecule smaller than the pore diameter can be taken into the skeleton structure. In addition, since the organic ligand is bonded by a relatively weak bond, the bond is shifted according to an external environment such as pressure and heat, so that the skeleton structure forms a flexible structure having flexibility. Further, the skeleton structure changes flexibly according to the external environment such as heat or pressure. For this reason, the space | gap of this porous metal complex is deformable, and is excellent in the adsorption / desorption of gas.

複素環モノカルボン酸は、次の一般式(I)
HOOC−R (I)
(ただし、Rは複素環を含む。)で表される複素環モノカルボン酸を含むことが好ましい。上記の一般式(I)において、Rは複素環環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことが好ましい。
The heterocyclic monocarboxylic acid has the following general formula (I)
HOOC-R (I)
It is preferable that a heterocyclic monocarboxylic acid represented by the formula (wherein R includes a heterocyclic ring) is included. In the above general formula (I), R preferably contains an element selected from an element group containing N, O, S, P, B, As, Si, Sb and Hg in the heterocyclic ring skeleton.

Rは、次の一般式(II)〜(XXVII)

Figure 2007277106
R represents the following general formulas (II) to (XXVII)
Figure 2007277106

のいずれか一つで表される置換基を含むことが好ましい。一般式(II)〜(XXVII)において、カルボキシレート基は環のどの位置に結合していても良く、このカルボキシレート基の2つの酸素原子が中心金属に配位することにより二次元格子構造を形成する。また、異なる複素環モノカルボン酸有機配位子を用いることができるため、水素とのアフィニティや細孔の形、径を変化させた複素環モノカルボン酸金属錯体が、従来に比べ、安価で高効率に得られる。 It is preferable that the substituent represented by any one of these is included. In the general formulas (II) to (XXVII), the carboxylate group may be bonded to any position of the ring, and the two oxygen atoms of the carboxylate group are coordinated to the central metal to form a two-dimensional lattice structure. Form. In addition, since different heterocyclic monocarboxylic acid organic ligands can be used, heterocyclic monocarboxylic acid metal complexes with changed affinity for hydrogen, pore shape, and diameter are cheaper and more expensive than before. Efficiently obtained.

中心金属は、2〜4価の金属を含む金属群から選択された金属を含むことが好ましく、特に、2価の金属を含むことが好ましい。中心金属は、Cu、Zn、Mo、Ru、Ni、Cr及びRhを含む金属群から選択された金属を含むことがより好ましい。また、中心金属は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩から得られることが好ましい。この場合には、金属塩が溶媒中で解離して中心金属となる金属が容易にイオン化するため、多孔性金属錯体の製造時において、複素環モノカルボン酸との反応が促進される。   The central metal preferably includes a metal selected from a metal group including a divalent to tetravalent metal, and particularly preferably includes a divalent metal. More preferably, the central metal includes a metal selected from the group of metals including Cu, Zn, Mo, Ru, Ni, Cr and Rh. The central metal is preferably obtained from a metal salt selected from the group of metal salts including nitrates, sulfates, acetates, carbonates and formates. In this case, the metal salt is dissociated in the solvent and the metal that becomes the central metal is easily ionized, so that the reaction with the heterocyclic monocarboxylic acid is promoted during the production of the porous metal complex.

このような構造を有する多孔性金属錯体は、次のようにして製造する。本発明の実施の形態に係る多孔性金属錯体の製造方法は、中心金属と、この中心金属に配位し、複素環骨格及びカルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、複素環モノカルボン酸を第1の溶媒に溶解した第1の溶液と、中心金属の塩を第2の溶媒に溶解した第2の溶液とを混合し、反応させることを含むことを特徴とする。この製造方法では、多孔性金属錯体は金属原子と、複素環モノカルボン酸からなる有機配位子のみからなるため、簡便、安価に製造することができる。   The porous metal complex having such a structure is produced as follows. A method for producing a porous metal complex according to an embodiment of the present invention includes a three-dimensional metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a heterocyclic skeleton and a carboxylate group. A method for producing a porous metal complex containing a porous skeleton structure, comprising: a first solution in which a heterocyclic monocarboxylic acid is dissolved in a first solvent; and a salt in which a central metal salt is dissolved in a second solvent. It mixes with the solution of 2 and makes it react, It is characterized by the above-mentioned. In this production method, since the porous metal complex consists only of a metal atom and an organic ligand composed of a heterocyclic monocarboxylic acid, it can be produced simply and inexpensively.

溶解、混合及び反応のうちのいずれか一つは、第1又は第2の溶液に超音波を照射することを含むことが好ましい。この場合には、複素環モノカルボン酸と中心金属の塩との反応が促進されるため、反応時間の低下、反応温度の低下及び反応収率の増加が可能となる。   Any one of dissolution, mixing, and reaction preferably includes irradiating the first or second solution with ultrasonic waves. In this case, since the reaction between the heterocyclic monocarboxylic acid and the salt of the central metal is promoted, the reaction time can be reduced, the reaction temperature can be reduced, and the reaction yield can be increased.

第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、アセトン及びアセトニトリルを含む溶媒群から選択された溶媒を含むことが好ましい。アルコールは、例えばメタノール、エタノール、プロパノール等が使用可能である。これらの溶媒は、複素環モノカルボン酸及び中心金属の金属塩を溶解するが、目的物である金属錯体を溶解しないため、効率良く目的物を得ることが可能となる。特に、第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類を含む溶媒群から選択された溶媒を含むことが好ましい。また、第1及び第2の溶媒が同じ溶媒でも構わない。   One of the first and second solvents is selected from the solvent group comprising N, N′-dimethylformamide, N, N′-diethylformamide, water, alcohols, tetrahydrofuran, benzene, toluene, hexane, acetone and acetonitrile. It is preferable to contain a solvent. As the alcohol, for example, methanol, ethanol, propanol or the like can be used. These solvents dissolve the heterocyclic monocarboxylic acid and the metal salt of the central metal, but do not dissolve the target metal complex, so that the target product can be obtained efficiently. In particular, one of the first and second solvents preferably includes a solvent selected from the group of solvents including N, N′-dimethylformamide, N, N′-diethylformamide, water, and alcohols. Further, the first and second solvents may be the same solvent.

以上説明したように、本発明の実施の形態に係る多孔性金属錯体は、有機配位子に複素環骨格を有するものを用いると水素とのアフィニティが高くなり、また、外部環境に応じて構造が変化することから、かさ密度が増し、従来に比べて水素吸蔵能が高く、有効水素吸蔵能が良好な多孔性金属錯体が得られる。また、本発明の実施の形態に係る多孔性金属錯体の製造方法によれば、安価で簡便に、柔軟性を有する多孔性金属錯体が得られる。また、本発明の実施の形態に係る多孔性金属錯体を用いて吸着材、分離材、ガス吸着材及び水素吸着材を製造した場合には、従来に比べて効率良く安価に目的物が得られる。   As described above, when the porous metal complex according to the embodiment of the present invention has a heterocyclic skeleton as the organic ligand, the affinity with hydrogen increases, and the structure depends on the external environment. Changes, the bulk density is increased, and a porous metal complex having a higher hydrogen storage capacity and a better effective hydrogen storage capacity than the conventional one can be obtained. Moreover, according to the method for producing a porous metal complex according to the embodiment of the present invention, a porous metal complex having flexibility can be obtained inexpensively and easily. In addition, when an adsorbent, a separation material, a gas adsorbent and a hydrogen adsorbent are produced using the porous metal complex according to the embodiment of the present invention, the target product can be obtained more efficiently and at a lower cost than in the past. .

以下、実施例1〜実施例4及び比較例1〜比較例2により本発明の実施の形態に係る多孔性金属錯体について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the porous metal complex according to the embodiment of the present invention will be described more specifically with reference to Examples 1 to 4 and Comparative Examples 1 to 2, but the scope of the present invention is limited to these. is not.

1.試料の調製
実施例1 ピコリン酸銅の合成
複素環モノカルボン酸としてピコリン酸を用いた。ピコリン酸4.92[g]を水に溶かしたものと、酢酸銅一水和物1.82[g]を水に溶かしたものとを混合し、一晩攪拌した。反応液を濾過し、濾液を常温常圧下で静置した。析出物を濾過により回収し、乾燥させることにより、目的物を得た。
1. Sample Preparation Example 1 Synthesis of Copper Picolinate Picolinic acid was used as the heterocyclic monocarboxylic acid. A solution prepared by dissolving 4.92 [g] picolinic acid in water and a solution prepared by dissolving 1.82 [g] copper acetate monohydrate in water were mixed and stirred overnight. The reaction solution was filtered, and the filtrate was allowed to stand at normal temperature and pressure. The precipitate was collected by filtration and dried to obtain the desired product.

実施例2 ピラジン酸銅の合成
複素環モノカルボン酸としてピラジン酸4.96[g]を用い、実施例1と同様の処理を施したものを実施例2とした。
Example 2 Synthesis of Copper Pyrazineate Using a pyrazine acid 4.96 [g] as a heterocyclic monocarboxylic acid, the same treatment as in Example 1 was carried out as Example 2.

実施例3 ピコリン酸ロジウムの合成
酢酸銅一水和物の代わりに酢酸ロジウム二量体二水和物を用い、ピコリン酸2.46[g]、酢酸ロジウム2.39[g]、酢酸エチルをオートクレーブ中で混合し、一晩加熱反応させた。冷却後、遠心分離により析出物を回収し、真空乾燥させることで目的物を得た。
Example 3 Synthesis of rhodium picolinate Instead of copper acetate monohydrate, rhodium acetate dimer dihydrate was used, and picolinic acid 2.46 [g], rhodium acetate 2.39 [g], and ethyl acetate were used. The mixture was mixed in an autoclave and heated overnight. After cooling, the precipitate was collected by centrifugation and vacuum dried to obtain the desired product.

実施例4 チオフェンカルボン酸銅の合成
複素環カルボン酸として2−チオフェンカルボン酸5.68[g]を用い、実施例1と同様の処理を施したものを実施例4とした。
Example 4 Synthesis of Copper Thiophenecarboxylate Example 4 was prepared by subjecting 2-thiophenecarboxylic acid 5.68 [g] as a heterocyclic carboxylic acid to the same treatment as in Example 1.

比較例1 テトラジンジカルボン酸銅‐トリエチレンジアミンの合成
複素環カルボン酸として1,2,4,5−テトラジン−3,6−ジカルボンを用いた。まず、テトラジンジカルボン酸0.58[g]と硫酸銅五水和物0.85[g]を無水エタノールに溶解し、反応液を室温〜40[℃]で数[日間]加熱攪拌した。得られた反応混合物にトリエチレンジアミン0.19[g]の無水トルエン溶液を加え、オートクレーブを用いて120[℃]で3[時間]加熱攪拌した。得られた沈殿を濾過、メタノールで洗浄し、100[℃]にて減圧乾燥することによって目的物を得た。
Comparative Example 1 Synthesis of copper tetrazine dicarboxylate-triethylenediamine 1,2,4,5-tetrazine-3,6-dicarboxylic was used as the heterocyclic carboxylic acid. First, tetrazine dicarboxylic acid 0.58 [g] and copper sulfate pentahydrate 0.85 [g] were dissolved in absolute ethanol, and the reaction solution was heated and stirred at room temperature to 40 [° C.] for several [days]. An anhydrous toluene solution of triethylenediamine 0.19 [g] was added to the obtained reaction mixture, and the mixture was heated and stirred at 120 [° C.] for 3 [hour] using an autoclave. The obtained precipitate was filtered, washed with methanol, and dried under reduced pressure at 100 [° C.] to obtain the desired product.

比較例2 p−トルイル酸銅の合成
モノカルボン酸としてp−トルイル酸を用いた。p−トルイル酸5.44[g]、酢酸銅一水和物1.82[g]を酢酸エチルに溶解し、一晩攪拌を行った。反応液を濾過し、濾液を常温常圧下で静置した。析出物を濾過により回収し、乾燥させることにより、目的物を得た。
Comparative Example 2 Synthesis of copper p-toluate p-toluic acid was used as a monocarboxylic acid. p-Toluic acid 5.44 [g] and copper acetate monohydrate 1.82 [g] were dissolved in ethyl acetate and stirred overnight. The reaction solution was filtered, and the filtrate was allowed to stand at normal temperature and pressure. The precipitate was collected by filtration and dried to obtain the desired product.

2.有効水素吸蔵能の測定
実施例1〜実施例4及び比較例1〜比較例2で得られた試料について、有効水素吸蔵能を測定し、水素吸着性能の評価をした。測定方法は、JIS H 7201の水素吸蔵放出測定試験に従った。試料を秤量して測定用耐圧試料管に入れ、200[℃]で3[時間]真空引きして試料管内に残留しているガスを放出させて、水素が吸蔵されていない原点を得た後測定を行った。測定温度は25[℃]とした。その後大気圧まで減圧して水素放出量の確認を行った。
2. Measurement of effective hydrogen storage capacity
For the samples obtained in Examples 1 to 4 and Comparative Examples 1 to 2, the effective hydrogen storage capacity was measured and the hydrogen adsorption performance was evaluated. The measurement method followed the hydrogen storage / release measurement test of JIS H7201. After weighing the sample and placing it in a pressure-resistant sample tube for measurement and evacuating it at 200 [° C.] for 3 [hours] to release the gas remaining in the sample tube and obtaining the origin where hydrogen is not occluded Measurements were made. The measurement temperature was 25 [° C.]. Thereafter, the pressure was reduced to atmospheric pressure, and the amount of hydrogen released was confirmed.

3.結晶構造の確認
合成した試料の結晶構造の確認にはマックスサイエンス社製X線回折装置(MXP 18VAHF)を用い、電圧40[kV]、電流300[mA]、X線波長CuKαで測定を行った。
3. Confirmation of crystal structure To confirm the crystal structure of the synthesized sample, an X-ray diffractometer (MXP 18VAHF) manufactured by Max Science was used, and measurement was performed at a voltage of 40 [kV], a current of 300 [mA], and an X-ray wavelength of CuKα. .

4.組成の確認
合成した試料の組成は、元素分析により確認した。炭素、水素、窒素の確認にはJPI-5S-65-2004に記載の方法を用い、金属元素の確認には誘導結合プラズマ発光分光分析法を用いた。
4). Confirmation of composition The composition of the synthesized sample was confirmed by elemental analysis. The method described in JPI-5S-65-2004 was used for confirmation of carbon, hydrogen, and nitrogen, and inductively coupled plasma emission spectroscopy was used for confirmation of metal elements.

実施例1〜実施例4、比較例1及び比較例2で得られた試料の有効水素吸蔵能を表1に示す。なお、各実施例及び比較例の測定圧力も併せて表1に示す。

Figure 2007277106
Table 1 shows the effective hydrogen storage capacity of the samples obtained in Examples 1 to 4, Comparative Example 1 and Comparative Example 2. Table 1 also shows the measurement pressures of the examples and comparative examples.
Figure 2007277106

比較例1ではテトラジンジカルボン酸銅を単位モチーフとし、単位モチーフに含まれる銅と他の単位モチーフに含まれる銅との間を、架橋配位子であるトリエチレンジアミンで結合して三次元的多孔性骨格構造が形成された。このため、比較例1で得られた試料は堅固な骨格構造を有する。これに対し、実施例1〜実施例4では、各単位モチーフを架橋配位子により結合するのではなく、中心金属とカルボキシル基中の酸素との間の結合による自己集合であるため、かさ密度が向上し、水素吸蔵能が高くなった。比較例2では、有機配位子に複素環骨格を有しないものを使用した。これに対し、実施例1〜実施例4では、有機配位子に複素環骨格を有するものを用いたため、水素とのアフィニティが高くなり、比較例2と比較して水素吸蔵能が高く、有効水素吸蔵能が良好な多孔性金属錯体が得られた。また、実施例1〜実施例4では、比較例1よりも短時間で反応が終了し、特に実施例1、3、4では加熱せずに反応が進んだ。これに対し、比較例1では、架橋配位子となるトリエチレンジアミンを中心金属である銅イオンに配位させるためには、オートクレーブにより温度及び圧力を高くする必要があり、しかも反応時間が長かった。   In Comparative Example 1, tetrazine dicarboxylate copper is used as a unit motif, and the copper contained in the unit motif and the copper contained in the other unit motif are bonded with triethylenediamine as a bridging ligand to form a three-dimensional porosity. A sex skeleton structure was formed. For this reason, the sample obtained in Comparative Example 1 has a firm skeleton structure. On the other hand, in Examples 1 to 4, each unit motif is not bonded by a bridging ligand, but is self-assembled by bonding between the central metal and oxygen in the carboxyl group. Improved and the hydrogen storage capacity increased. In Comparative Example 2, an organic ligand having no heterocyclic skeleton was used. On the other hand, in Examples 1 to 4, since the organic ligand having a heterocyclic skeleton was used, the affinity with hydrogen was increased, and the hydrogen storage capacity was higher than that of Comparative Example 2 and effective. A porous metal complex having a good hydrogen storage capacity was obtained. In Examples 1 to 4, the reaction was completed in a shorter time than Comparative Example 1, and in Examples 1, 3, and 4, the reaction proceeded without heating. On the other hand, in Comparative Example 1, in order to coordinate triethylenediamine serving as a bridging ligand to copper ions as the central metal, it was necessary to increase the temperature and pressure by an autoclave, and the reaction time was long. .

実施例1〜実施例4、比較例1及び比較例2の結果より、本発明の実施の形態に係る多孔性金属錯体は、 従来の多孔性金属錯体と比較してかさ密度が増し、また水素とのアフィニティが高くなったため、従来に比べて水素吸蔵能が高く、有効水素吸蔵能が良好な多孔性金属錯体が得られた。   From the results of Examples 1 to 4, Comparative Example 1 and Comparative Example 2, the porous metal complex according to the embodiment of the present invention has an increased bulk density and hydrogen as compared to the conventional porous metal complex. As a result, a porous metal complex having a higher hydrogen storage capacity and a better effective hydrogen storage capacity was obtained.

以上、本実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the present embodiment has been described above, it should not be understood that the description and the drawings, which form part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

多孔性金属錯体の二次元構造を示す模式図である。It is a schematic diagram which shows the two-dimensional structure of a porous metal complex. 多孔性金属錯体の三次元構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure of a porous metal complex.

符号の説明Explanation of symbols

1 多孔性金属錯体
2 格子要素
3 中心金属
4 有機配位子
4a 複素環骨格
4b カルボキシレート基
M 二次元格子構造
DESCRIPTION OF SYMBOLS 1 Porous metal complex 2 Lattice element 3 Central metal 4 Organic ligand 4a Heterocyclic skeleton 4b Carboxylate group M Two-dimensional lattice structure

Claims (20)

中心金属と、前記中心金属に配位し、複素環骨格及びカルボキシレート基を有する複素環モノカルボン酸からなる有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含むことを特徴とする多孔性金属錯体。   It includes a three-dimensional porous skeleton structure of a metal complex comprising a central metal and an organic ligand composed of a heterocyclic monocarboxylic acid having a heterocyclic skeleton and a carboxylate group coordinated to the central metal. Porous metal complex. 前記三次元的多孔性骨格は、前記中心金属と前記カルボキシレート基中の酸素間の結合による集積からなることを特徴とする請求項1に記載の多孔性金属錯体。   2. The porous metal complex according to claim 1, wherein the three-dimensional porous skeleton is formed by accumulation due to a bond between the central metal and oxygen in the carboxylate group. 前記複素環モノカルボン酸は、次の一般式(I)
HOOC−R (I)
(ただし、Rは複素環を含む。)で表される複素環モノカルボン酸を含むことを特徴とする請求項1又は請求項2に記載の多孔性金属錯体。
The heterocyclic monocarboxylic acid has the following general formula (I)
HOOC-R (I)
The porous metal complex according to claim 1 or 2, wherein the heterocyclic monocarboxylic acid represented by (wherein R includes a heterocyclic ring) is included.
前記Rは前記複素環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことを特徴とする請求項3に記載の多孔性金属錯体。   4. The porosity according to claim 3, wherein R includes an element selected from an element group including N, O, S, P, B, As, Si, Sb, and Hg in the heterocyclic skeleton. Metal complex. 前記Rは、次の一般式(II)〜(XXVII)
Figure 2007277106
のいずれか一つで表される置換基を含むことを特徴とする請求項3又は請求項4に記載の多孔性金属錯体。
R represents the following general formulas (II) to (XXVII)
Figure 2007277106
5. The porous metal complex according to claim 3, comprising a substituent represented by any one of the following: 5.
前記中心金属は、2〜4価の金属を含む金属群から選択された金属を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載の多孔性金属錯体。   The porous metal complex according to any one of claims 1 to 5, wherein the central metal includes a metal selected from a metal group including a divalent to tetravalent metal. 前記中心金属は、2価の金属を含むことを特徴とする請求項6に記載の多孔性金属錯体。   The porous metal complex according to claim 6, wherein the central metal includes a divalent metal. 前記中心金属は、Cu、Zn、Mo、Ru、Ni、Cr及びRhを含む金属群から選択された金属を含むことを特徴とする請求項7に記載の多孔性金属錯体。   The porous metal complex according to claim 7, wherein the central metal includes a metal selected from a metal group including Cu, Zn, Mo, Ru, Ni, Cr, and Rh. 前記中心金属は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩から得られることを特徴とする請求項1乃至請求項8のいずれか一項に記載の多孔性金属錯体。   9. The center metal according to any one of claims 1 to 8, wherein the central metal is obtained from a metal salt selected from a group of metal salts including nitrate, sulfate, acetate, carbonate and formate. The porous metal complex described. 前記三次元的多孔性骨格構造内に取り込まれた気体又は液体を有することを特徴とする請求項1乃至請求項9のいずれか一項に記載の多孔性金属錯体。   The porous metal complex according to any one of claims 1 to 9, wherein the porous metal complex has a gas or a liquid taken into the three-dimensional porous skeleton structure. 前記三次元的多孔性骨格構造は可撓性を有することを特徴とする請求項1乃至請求項10のいずれか一項に記載の多孔性金属錯体。   The porous metal complex according to any one of claims 1 to 10, wherein the three-dimensional porous skeleton structure is flexible. 前記三次元的多孔性骨格構造は、空隙を画成する骨格部を備え、前記骨格部を外部から熱又は圧力により変形させることにより前記空隙を変形可能なことを特徴とする請求項11に記載の多孔性金属錯体。   12. The three-dimensional porous skeleton structure includes a skeleton portion that defines a void, and the void can be deformed by deforming the skeleton portion from the outside by heat or pressure. Porous metal complex. 中心金属と、前記中心金属に配位し、複素環骨格及びカルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、
複素環モノカルボン酸を第1の溶媒に溶解した第1の溶液と、前記中心金属の塩を第2の溶媒に溶解した第2の溶液とを混合し、反応させることを含むことを特徴とする多孔性金属錯体の製造方法。
A method for producing a porous metal complex comprising a three-dimensional porous skeleton structure of a metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a heterocyclic skeleton and a carboxylate group, ,
Including mixing and reacting a first solution in which a heterocyclic monocarboxylic acid is dissolved in a first solvent and a second solution in which the salt of the central metal is dissolved in a second solvent. A method for producing a porous metal complex.
前記溶解、混合及び反応のうちのいずれか一つは、前記第1又は第2の溶液に超音波を照射することを含むことを特徴とする請求項13に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 13, wherein any one of the dissolution, mixing, and reaction includes irradiating the first or second solution with ultrasonic waves. . 前記第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、アセトン及びアセトニトリルを含む溶媒群から選択された溶媒を含むことを特徴とする請求項13又は請求項14に記載の多孔性金属錯体の製造方法。   One of the first and second solvents is selected from the solvent group comprising N, N′-dimethylformamide, N, N′-diethylformamide, water, alcohols, tetrahydrofuran, benzene, toluene, hexane, acetone and acetonitrile. The method for producing a porous metal complex according to claim 13 or 14, comprising a solvent that has been prepared. 前記第1及び第2の溶媒の一方は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、水、アルコール類を含む溶媒群から選択された溶媒を含むことを特徴とする請求項15に記載の多孔性金属錯体の製造方法。   The one of the first and second solvents includes a solvent selected from the group of solvents including N, N'-dimethylformamide, N, N'-diethylformamide, water, and alcohols. 15. A method for producing a porous metal complex according to 15. 請求項1乃至請求項12のいずれか一項に係る多孔性金属錯体を含むことを特徴とする吸着材。   An adsorbent comprising the porous metal complex according to any one of claims 1 to 12. 請求項1乃至請求項12のいずれか一項に係る多孔性金属錯体を含むことを特徴とする分離材。   A separation material comprising the porous metal complex according to any one of claims 1 to 12. 請求項1乃至請求項12のいずれか一項に係る多孔性金属錯体を含むことを特徴とするガス吸着材。   A gas adsorbent comprising the porous metal complex according to any one of claims 1 to 12. 請求項1乃至請求項12のいずれか一項に係る多孔性金属錯体を含むことを特徴とする水素吸着材。   A hydrogen adsorbent comprising the porous metal complex according to any one of claims 1 to 12.
JP2006102004A 2006-04-03 2006-04-03 Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent Pending JP2007277106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102004A JP2007277106A (en) 2006-04-03 2006-04-03 Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102004A JP2007277106A (en) 2006-04-03 2006-04-03 Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent

Publications (1)

Publication Number Publication Date
JP2007277106A true JP2007277106A (en) 2007-10-25

Family

ID=38678942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102004A Pending JP2007277106A (en) 2006-04-03 2006-04-03 Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent

Country Status (1)

Country Link
JP (1) JP2007277106A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035493A (en) * 2007-07-31 2009-02-19 Honda Motor Co Ltd Method for producing metal complex
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
JP2011063648A (en) * 2009-09-15 2011-03-31 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2011178749A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Method for producing organometallic complex
JP2011184355A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Method for producing organic metal complex
JP2011213616A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2012006854A (en) * 2010-06-23 2012-01-12 Jx Nippon Oil & Energy Corp Porous metal complex, method for producing the same, gas adsorption method, and gas separation method
JP2012045533A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Carbon dioxide gas adsorbent and using method of organic metal complex
JP2012046472A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Gaseous methane adsorbent and method for using organometallic complex
CN103613536A (en) * 2013-12-13 2014-03-05 四川生科力科技有限公司 Industrialized preparation method of 2-copper picolinate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930330A (en) * 1973-03-23 1974-03-18
WO1994017077A1 (en) * 1993-01-19 1994-08-04 Shiseido Company, Ltd. Active oxygen inhibitor composition
JP2003010627A (en) * 2001-06-27 2003-01-14 Ueno Seiyaku Oyo Kenkyusho:Kk Oxygen-absorbing agent
JP2005093181A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Three dimensional polymer complex, and porous hydrogen storage material made of same
JP2007277105A (en) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930330A (en) * 1973-03-23 1974-03-18
WO1994017077A1 (en) * 1993-01-19 1994-08-04 Shiseido Company, Ltd. Active oxygen inhibitor composition
JP2003010627A (en) * 2001-06-27 2003-01-14 Ueno Seiyaku Oyo Kenkyusho:Kk Oxygen-absorbing agent
JP2005093181A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Three dimensional polymer complex, and porous hydrogen storage material made of same
JP2007277105A (en) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012014050; 渡辺元子ら: 'モノカルボン酸銅(II)の合成と気体吸蔵' 錯体化学討論会講演要旨集 , 2001, p.494 *
JPN6012014052; 園原里織ら: 'モノカルボン酸ロジウム(II)錯体の合成と気体吸蔵特性' 錯体化学討論会講演要旨集 , 2001, p.493 *
JPN6012014054; KLEIN,C.L. et al.: Inorg. Chem. Vol.21, No.5, 1982, p.1891-7 *
JPN6012014056; ALLRED,G.D. et al.: J. Am. Chem. Soc. Vol.118, No.11, 1996, p.2748-9, Supplementary Material *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035493A (en) * 2007-07-31 2009-02-19 Honda Motor Co Ltd Method for producing metal complex
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
JP2011063648A (en) * 2009-09-15 2011-03-31 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2011178749A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Method for producing organometallic complex
JP2011184355A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Method for producing organic metal complex
JP2011213616A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2012006854A (en) * 2010-06-23 2012-01-12 Jx Nippon Oil & Energy Corp Porous metal complex, method for producing the same, gas adsorption method, and gas separation method
US8915989B2 (en) 2010-06-23 2014-12-23 Jx Nippon Oil & Energy Corporation Porous coordination polymer, process for producing same, gas storage method, and gas separation method
JP2012045533A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Carbon dioxide gas adsorbent and using method of organic metal complex
JP2012046472A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Gaseous methane adsorbent and method for using organometallic complex
CN103613536A (en) * 2013-12-13 2014-03-05 四川生科力科技有限公司 Industrialized preparation method of 2-copper picolinate

Similar Documents

Publication Publication Date Title
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
JP5305278B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
Chen et al. A porous metal–organic cage constructed from dirhodium paddle-wheels: synthesis, structure and catalysis
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP5176286B2 (en) Method for producing porous metal complex
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
JP2013040147A (en) Metal complex and adsorbing material, storing material, separating material comprising the same
JP2008266269A (en) Porous metal complex, method for producing porous metal complex, adsorbent, separating material, gas adsorbent, and catalyst material
JP5044815B2 (en) Method for producing metal complex
JP2000210559A (en) Gas storable organic metal complex, manufacture thereof and gas storage device
JP5245208B2 (en) Method for producing porous metal complex
JP3746321B2 (en) Gas storage organometallic complex, method for producing the same, gas storage device, and automobile equipped with gas storage device
KR101937811B1 (en) Organic-inorganic Hybrid Porous Adsorbent And Method For Preparing The Same
JP2013107826A (en) Metal complex, method for producing the metal complex and separation material
JP5292679B2 (en) Method for producing porous metal complex as hydrogen storage material
JPH09227571A (en) Gas-storing metal complex, its production, gas-storing apparatus and automobile furnished with gas-storing apparatus
JP5213242B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, and hydrogen adsorbent
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP5403505B2 (en) Method for producing self-assembled metal complex crystals
JP2004238347A (en) Organometallic complex and gas-occluding substance using the same complex, catalyst for hydrogenation reaction and method for carrying out hydrogenation reaction
JP5774180B1 (en) Composite catalyst for methanol production, method for producing the same, and method for producing methanol
JP5257973B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
JP5505773B2 (en) Heterometallic polynuclear complex and method for producing catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731