JP5774180B1 - Composite catalyst for methanol production, method for producing the same, and method for producing methanol - Google Patents

Composite catalyst for methanol production, method for producing the same, and method for producing methanol Download PDF

Info

Publication number
JP5774180B1
JP5774180B1 JP2014198898A JP2014198898A JP5774180B1 JP 5774180 B1 JP5774180 B1 JP 5774180B1 JP 2014198898 A JP2014198898 A JP 2014198898A JP 2014198898 A JP2014198898 A JP 2014198898A JP 5774180 B1 JP5774180 B1 JP 5774180B1
Authority
JP
Japan
Prior art keywords
pcp
composite catalyst
methanol
copper
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014198898A
Other languages
Japanese (ja)
Other versions
JP2016067999A (en
Inventor
北川 宏
宏 北川
浩和 小林
浩和 小林
由子 三津家
由子 三津家
マイケル テイラー ジャレド
マイケル テイラー ジャレド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2014198898A priority Critical patent/JP5774180B1/en
Application granted granted Critical
Publication of JP5774180B1 publication Critical patent/JP5774180B1/en
Publication of JP2016067999A publication Critical patent/JP2016067999A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】二酸化炭素からメタノールを効率的に製造するための触媒及び二酸化炭素からメタノールを製造する方法を提供する。【解決手段】銅系微粒子を多孔性配位高分子(PCP)に担持した、メタノール製造用複合触媒。【選択図】図1A catalyst for efficiently producing methanol from carbon dioxide and a method for producing methanol from carbon dioxide are provided. A composite catalyst for methanol production, in which copper-based fine particles are supported on a porous coordination polymer (PCP). [Selection] Figure 1

Description

本発明は、メタノール製造用複合触媒及びその製造方法、並びにメタノールの製造方法に関する。   The present invention relates to a composite catalyst for producing methanol, a method for producing the same, and a method for producing methanol.

本明細書において多孔性配位高分子(Porous Coordination Polymer)を「PCP」と略すことがある。   In the present specification, porous coordination polymer is sometimes abbreviated as “PCP”.

有機配位子と金属イオンの自己集合反応により均一なナノ細孔を持つPCPは様々な物性を持っており、ゼオライト、活性炭などの細孔性材料より精密に設計でき、様々なガスを大量かつ選択的に吸着できる特性をもつことから、ガス貯蔵材、吸着材として注目されている(特許文献1〜3)。   PCP with uniform nanopores due to the self-assembly reaction of organic ligands and metal ions has various physical properties, and can be designed more precisely than porous materials such as zeolite and activated carbon. It has attracted attention as a gas storage material and adsorbent because it has the property of being selectively adsorbed (Patent Documents 1 to 3).

PCPに金属ナノ粒子を担持させた複合触媒は、アルコール酸化反応、CO酸化反応などの触媒として検討されている。   A composite catalyst in which metal nanoparticles are supported on PCP has been studied as a catalyst for alcohol oxidation reaction, CO oxidation reaction and the like.

特開2014-166971JP 2014-166971 特開2014-166970JP 2014-166970 特開2014-166969JP2014-166969

本発明は、二酸化炭素からメタノールを効率的に製造するための触媒及びその製造方法並びに二酸化炭素からメタノールを製造する方法を提供することを目的とする。   An object of this invention is to provide the catalyst for manufacturing methanol efficiently from a carbon dioxide, its manufacturing method, and the method of manufacturing methanol from a carbon dioxide.

本発明は、以下のメタノール製造用複合触媒及びその製造方法、並びにメタノールの製造方法を提供するものである。
項1. 銅系微粒子を多孔性配位高分子(PCP)に担持した、メタノール製造用複合触媒。
項2. 銅系微粒子が酸化亜鉛と銅を含む複合微粒子又は銅ナノ粒子単独である、項1に記載のメタノール製造用複合触媒。
項3. 前記PCPを構成する金属イオンがZr4+、Hf4+、Al3+、Ga3+及びIn3+からなる群から選ばれる少なくとも1種を含む、項1又は2に記載のメタノール製造用複合触媒。
項4. 前記PCPがUiO66型PCPもしくはMIL53型PCPである、項1〜3のいずれかに記載のメタノール製造用複合触媒。
項5. 前記PCPを構成する配位子が下記式(I)
The present invention provides the following composite catalyst for methanol production, a method for producing the same, and a method for producing methanol.
Item 1. A composite catalyst for methanol production in which copper-based fine particles are supported on a porous coordination polymer (PCP).
Item 2. Item 2. The composite catalyst for methanol production according to Item 1, wherein the copper-based fine particles are composite fine particles containing zinc oxide and copper or copper nanoparticles alone.
Item 3. Item 3. The composite catalyst for methanol production according to Item 1 or 2, wherein the metal ion constituting the PCP contains at least one selected from the group consisting of Zr 4+ , Hf 4+ , Al 3+ , Ga 3+ and In 3+ .
Item 4. Item 4. The composite catalyst for methanol production according to any one of Items 1 to 3, wherein the PCP is UiO66 type PCP or MIL53 type PCP.
Item 5. The ligand constituting the PCP is represented by the following formula (I)

(式中、Rは、同一又は異なって水素原子、NH又はCOOHである)。
で表される、項1〜4のいずれかに記載のメタノール製造用複合触媒。
項6. PCPを構成する配位子が下記式(IA)
(Wherein R is the same or different and is a hydrogen atom, NH 2 or COOH).
Item 5. The composite catalyst for methanol production according to any one of Items 1 to 4, which is represented by:
Item 6. The ligand constituting PCP is represented by the following formula (IA)

(式中、Rは、同一又は異なってNH又はCOOHである)。
で表される、項5に記載のメタノール製造用複合触媒。
項7. PCPがUiO66である、項1〜6のいずれかに記載のメタノール製造用複合触媒。
項8. RがCOOHである、項5又は6に記載のメタノール製造用複合触媒。
項9. 銅系微粒子のサイズが1〜200nmである、項1〜8のいずれかに記載のメタノール製造用複合触媒。
項10. 銅系微粒子とPCPの重量比率が、PCP:銅系微粒子=95〜65:5〜35である、項1〜9のいずれかに記載のメタノール製造用複合触媒。
項11. メタノール合成の原料が水素と二酸化炭素を含み、任意成分としてさらに一酸化炭素を含み得る、項1〜10のいずれかに記載のメタノール製造用複合触媒。
項12. 項1〜11のいずれかに記載のメタノール製造用複合触媒についての製造方法であって、PCPを構成する金属イオンとPCPを構成する配位子を含む溶液に酸化銅系微粒子を混合し、噴霧反応を行って酸化銅系微粒子をPCPに担持する工程、酸化銅系微粒子を担持したPCPを水素の存在下で還元して銅系微粒子をPCPに担持した複合触媒を得る工程を含む、メタノール製造用複合触媒の製造方法。
項13. 項1〜11のいずれかに記載のメタノール製造用複合触媒についての製造方法であって、Cu(acac)の有機溶媒溶液にPCPを加えた後、溶媒を蒸発させてCu(acac)をPCPに担持させる工程、Cu(acac)を担持したPCPを加熱してCu(acac)を熱分解し、Cuナノ粒子をPCPに担持した複合触媒を得る工程を含む、メタノール製造用複合触媒の製造方法。
項14. 項1〜11のいずれかに記載のメタノール製造用複合触媒の存在下に水素と二酸化炭素、任意成分としてさらに一酸化炭素を含み得る混合ガスを作用させることを特徴とする、メタノールの製造方法:
(Wherein R is the same or different and is NH 2 or COOH).
Item 6. The composite catalyst for methanol production according to Item 5, represented by:
Item 7. Item 7. The composite catalyst for methanol production according to any one of Items 1 to 6, wherein the PCP is UiO66.
Item 8. Item 7. The composite catalyst for methanol production according to Item 5 or 6, wherein R is COOH.
Item 9. Item 9. The composite catalyst for methanol production according to any one of Items 1 to 8, wherein the size of the copper-based fine particles is 1 to 200 nm.
Item 10. Item 10. The composite catalyst for methanol production according to any one of Items 1 to 9, wherein the weight ratio of the copper-based fine particles to PCP is PCP: copper-based fine particles = 95 to 65: 5-35.
Item 11. Item 11. The composite catalyst for methanol production according to any one of Items 1 to 10, wherein the raw material for methanol synthesis contains hydrogen and carbon dioxide, and may further contain carbon monoxide as an optional component.
Item 12. Item 12. A method for producing a composite catalyst for methanol production according to any one of Items 1 to 11, wherein copper oxide fine particles are mixed in a solution containing a metal ion constituting PCP and a ligand constituting PCP, and sprayed Methanol production comprising a step of carrying out a reaction to carry copper oxide fine particles on PCP, a step of reducing PCP carrying copper oxide fine particles in the presence of hydrogen to obtain a composite catalyst carrying copper fine particles on PCP For producing a composite catalyst.
Item 13. Item 12. A method for producing a composite catalyst for methanol production according to any one of Items 1 to 11, wherein after adding PCP to an organic solvent solution of Cu (acac) 2 , the solvent is evaporated to obtain Cu (acac) 2 . step to be carried on PCP, Cu a (acac) 2 was thermally decomposed by heating the PCP carrying the Cu (acac) 2, comprising the step of obtaining a composite catalyst carrying Cu nanoparticles PCP, composite catalyst for methanol production Manufacturing method.
Item 14. Item 12. A method for producing methanol, comprising reacting hydrogen, carbon dioxide, and a mixed gas that may further contain carbon monoxide as an optional component in the presence of the composite catalyst for methanol production according to any one of Items 1 to 11:

本発明の複合触媒は、気相反応において二酸化炭素と水素からメタノールを効率よく合成することができる。UiO66型PCPまたはMIL−53型PCPの複合触媒の場合にメタノールの製造効率が高く、特に金属イオンがZr4+及び/又はHf4+であり、かつ、一般式(I)の配位子のRがCOOHである複合触媒の場合にメタノールの製造効率がより高くなる。 The composite catalyst of the present invention can efficiently synthesize methanol from carbon dioxide and hydrogen in a gas phase reaction. In the case of a composite catalyst of UiO66 type PCP or MIL-53 type PCP, the production efficiency of methanol is high, in particular, the metal ion is Zr 4+ and / or Hf 4+ , and R of the ligand of the general formula (I) is In the case of a composite catalyst that is COOH, the production efficiency of methanol is higher.

複合触媒(UiO66−Cu、MIL53−Cu、MIL101−Cu又はZIF8−Cu)及びγAl−Cuの粉末X線回折パターンComposite catalyst (UiO66-Cu, MIL53-Cu , MIL101-Cu or ZIF8-Cu) and γAl 2 O 3 -Cu powder X-ray diffraction pattern 複合触媒(UiO66−Cu、MIL53−Cu、MIL101−Cu又はZIF8−Cu)及びγAl−CuのTEM像Composite catalyst (UiO66-Cu, MIL53-Cu , MIL101-Cu or ZIF8-Cu) and γAl 2 O 3 -Cu TEM images of 固定床流通式反応装置Fixed bed flow reactor GCチャート及びメタノール成分GC chart and methanol component 混合ガスのGCチャート及びUiO66−Cu(MeOHの生成量と選択率)GC chart of mixed gas and UiO66-Cu (production amount and selectivity of MeOH) 混合ガスのGCチャート及びUiO66−CuとMOF74(Mg)−Cuによるメタノール生成量の比較GC chart of mixed gas and comparison of methanol production by UiO66-Cu and MOF74 (Mg) -Cu Cu/UiO−66複合触媒のTEM像TEM image of Cu / UiO-66 composite catalyst 混合ガス中のメタノールの生成量を示すGCチャート及びGCチャート内の生成物に対するメタノールの選択率の結果GC chart showing the amount of methanol produced in the mixed gas, and the results of methanol selectivity with respect to the products in the GC chart Cu/UiO−66(Zr)とCu/UiO−66(Hf)の粉末X線パターン、メタノール生成量及びTEM写真Powder X-ray pattern of Cu / UiO-66 (Zr) and Cu / UiO-66 (Hf), methanol production and TEM photograph Cu/ZnOを担持したUiO66の製造法Manufacturing method of UiO66 supporting Cu / ZnO 噴霧反応法により合成したUiO−66−Cu/ZnOの触媒活性測定結果Measurement results of catalytic activity of UiO-66-Cu / ZnO synthesized by spray reaction method

本発明の複合触媒は、PCPに銅系微粒子を担持させたものである。   The composite catalyst of the present invention is obtained by supporting copper fine particles on PCP.

銅系微粒子は、銅微粒子(好ましくは銅ナノ粒子)、NiZn合金微粒子などの銅と同様な機能を有する合金微粒子(好ましくは合金ナノ粒子)などの金属微粒子単独であってもよく、或いは、銅又は銅と同様な機能を有する合金微粒子を担体に担持した微粒子、銅と他の金属酸化物(例えば酸化亜鉛)の複合微粒子が挙げられる。担体としては、酸化亜鉛(ZnO)が好ましく例示される。他の金属酸化物としては、酸化亜鉛(ZnO)などの担体と同様な材料が挙げられる。例えば噴霧反応法などにより酸化銅と酸化亜鉛などの他の金属酸化物の複合酸化物を調製し、水素により酸化銅を選択的に還元した場合、銅は酸化亜鉛などの他の金属酸化物に担持されたというよりは、銅と酸化亜鉛などの他の金属酸化物が混在した複合微粒子として存在する。   The copper-based fine particles may be metal fine particles alone such as copper fine particles (preferably copper nanoparticles), alloy fine particles (preferably alloy nanoparticles) having the same function as copper, such as NiZn alloy fine particles, or copper. Alternatively, fine particles in which alloy fine particles having a function similar to that of copper are supported on a carrier, and composite fine particles of copper and another metal oxide (for example, zinc oxide) can be given. Preferred examples of the carrier include zinc oxide (ZnO). Examples of the other metal oxide include materials similar to those of a carrier such as zinc oxide (ZnO). For example, when a composite oxide of other metal oxides such as copper oxide and zinc oxide is prepared by a spray reaction method, etc., and copper oxide is selectively reduced by hydrogen, copper is converted into other metal oxides such as zinc oxide. Rather than being supported, they exist as composite fine particles in which other metal oxides such as copper and zinc oxide are mixed.

銅を酸化亜鉛に担持した微粒子の場合、銅1モルに対しZnOを0.01〜100モル、好ましくは0.1〜10モル、より好ましくは0.2〜5モル、さらに好ましくは0.5〜2モル含む銅系微粒子が好ましい。   In the case of fine particles in which copper is supported on zinc oxide, ZnO is 0.01 to 100 mol, preferably 0.1 to 10 mol, more preferably 0.2 to 5 mol, and still more preferably 0.5 to 1 mol of copper. Copper-based fine particles containing ˜2 mol are preferred.

銅系微粒子の平均粒径は、0.1〜1000nm程度、好ましくは0.1〜500nm程度、より好ましくは1〜200nm程度、より好ましくは1〜100nm程度、特に好ましくは1〜50nm程度である。銅系微粒子の平均粒径は小さい方が表面積が大きく、メタノールを効率的に合成できるので、好ましい。   The average particle diameter of the copper-based fine particles is about 0.1 to 1000 nm, preferably about 0.1 to 500 nm, more preferably about 1 to 200 nm, more preferably about 1 to 100 nm, and particularly preferably about 1 to 50 nm. . A smaller average particle size of the copper-based fine particles is preferable because the surface area is large and methanol can be efficiently synthesized.

銅系微粒子を担持するPCPは特に限定されず広範なPCPを用いることができ、例えばUiO66型、UiO67型、MIL53型、MIL101型、ZIF8型などのPCPが挙げられる。好ましいPCPはUiO66型、MIL53型である。MIL53型のPCPを構成する金属イオンはAl3+、Ga3+及びIn3+からなる群から選ばれる少なくとも1種であり、MIL53型のPCPを構成する限り他の金属イオンが含まれていてもよい。UiO66型のPCPを構成する金属イオンはHf4+及び/又はZr4+であり、UiO66型のPCPを構成する限り他の金属イオンが含まれていてもよい。 The PCP carrying the copper-based fine particles is not particularly limited, and a wide range of PCPs can be used. Examples thereof include PCPs such as UiO66 type, UiO67 type, MIL53 type, MIL101 type, and ZIF8 type. Preferred PCPs are UiO66 type and MIL53 type. The metal ion constituting the MIL53 type PCP is at least one selected from the group consisting of Al 3+ , Ga 3+ and In 3+ , and may contain other metal ions as long as the MIL53 type PCP is constituted. The metal ions constituting the UiO66 type PCP are Hf 4+ and / or Zr 4+ , and other metal ions may be included as long as the UiO66 type PCP is constituted.

PCPを構成する配位子としては、各種配位子が使用でき、UiO66型、UiO67型、MIL53型、MIL101型、ZIF8型などのPCPの場合には、下記式(I)又は(IA)   As the ligand constituting PCP, various ligands can be used. In the case of PCP such as UiO66 type, UiO67 type, MIL53 type, MIL101 type, ZIF8 type, etc., the following formula (I) or (IA)

(式中、Rは、同一又は異なって水素原子、NH又はCOOHである)で表される配位子が使用できる。 (Wherein R is the same or different and each represents a hydrogen atom, NH 2 or COOH).

例えば金属イオンがZr4+又はHf4+であり、一般式(I)においてR=Hの配位子を用いたPCPはUiO66であり、一般式(I)において一方又は両方のRが水素ではないか、或いはZr4+とHf4+以外の金属イオンが含まれるPCPはUiO66型のPCPに含まれる。 For example, the metal ion is Zr 4+ or Hf 4+ , and the PCP using a ligand of R = H in the general formula (I) is UiO66, and one or both Rs in the general formula (I) are not hydrogen Alternatively, PCP including metal ions other than Zr 4+ and Hf 4+ is included in UiO66 type PCP.

金属イオンがAl3+、Ga3+及びIn3+からなる群から選ばれる少なくとも1種であり、一般式(I)においてR=Hの配位子を用いたPCPはMIL53であり、一般式(I)において一方又は両方のRが水素ではないか、或いはAl3+、Ga3+及びIn3+以外の金属イオンが含まれるPCPはMIL53型のPCPに含まれる。 The metal ion is at least one selected from the group consisting of Al 3+ , Ga 3+ and In 3+ , and in the general formula (I), PCP using a ligand of R = H is MIL53, and the general formula (I) In PCM, one or both Rs are not hydrogen, or PCPs containing metal ions other than Al 3+ , Ga 3+ and In 3+ are included in MIL53 type PCPs.

金属イオンがCr3+、Mo3+及びW3+からなる群から選ばれる少なくとも1種であり、一般式(I)においてR=Hの配位子を用いたPCPはMIL101であり、一般式(I)において一方又は両方のRが水素ではないか、或いはCr3+、Mo3+及びW3+以外の金属イオンが含まれるPCPはMIL101型のPCPに含まれる。 The metal ion is at least one selected from the group consisting of Cr 3+ , Mo 3+ and W 3+ , and in the general formula (I), PCP using a ligand of R = H is MIL101, and the general formula (I) In PCL, one or both Rs are not hydrogen, or PCP containing metal ions other than Cr 3+ , Mo 3+ and W 3+ is included in MIL101 type PCP.

金属イオンがZn2+、Cd2+及びHg2+からなる群から選ばれる少なくとも1種であり、一般式(I)においてR=Hの配位子を用いたPCPはZIF8であり、一般式(I)において一方又は両方のRが水素ではないか、或いはZn2+、Cd2+及びHg2+以外の金属イオンが含まれるPCPはZIF8型のPCPに含まれる。 The metal ion is at least one selected from the group consisting of Zn 2+ , Cd 2+ and Hg 2+ , and in the general formula (I), PCP using a ligand of R = H is ZIF8, and the general formula (I) In PCF, one or both Rs are not hydrogen, or a PCP containing metal ions other than Zn 2+ , Cd 2+ and Hg 2+ is included in the ZIF8 type PCP.

一般式(I)の配位子において、好ましいRはCOOHであり、一方のRが水素原子であり、他方のRがCOOHである配位子(1,2,4-ベンゼントリカルボン酸)がより好ましい。   In the ligand of the general formula (I), a preferable R is COOH, and a ligand (1,2,4-benzenetricarboxylic acid) in which one R is a hydrogen atom and the other R is COOH is more preferable. preferable.

PCPと銅系微粒子の重量比率は、好ましくはPCP:銅系微粒子=95〜65:5〜35であり、より好ましくは90〜70:10〜30であり、さらに好ましくは85〜75:15〜25である。銅系微粒子の割合が低すぎるとメタノールの製造効率が低下し、銅系微粒子の比率が大きすぎると複合錯体の耐熱性が低下する。   The weight ratio of PCP and copper-based fine particles is preferably PCP: copper-based fine particles = 95 to 65: 5-35, more preferably 90 to 70:10 to 30, and still more preferably 85 to 75:15. 25. If the ratio of the copper-based fine particles is too low, the production efficiency of methanol decreases, and if the ratio of the copper-based fine particles is too large, the heat resistance of the composite complex decreases.

PCPは公知であるか、公知の方法に従い容易に製造でき、例えば、ZrCl、HfCl、AlCl、GaCl、InClなどの水溶性の金属化合物1モルに対し一般式(I)の配位子を2モル程度〜過剰量使用し、水溶液中で1〜48時間反応させることでPCPを得ることができる。 PCP is known or can be easily produced according to a known method. For example, a compound of the general formula (I) is added to 1 mol of a water-soluble metal compound such as ZrCl 4 , HfCl 4 , AlCl 3 , GaCl 3 , InCl 3. PCP can be obtained by using a ligand in an amount of about 2 mol to an excess amount and reacting in an aqueous solution for 1 to 48 hours.

銅系微粒子のPCPへの担持は、例えばCu(acac)のアセトン溶液にPCPを加えて撹拌し、減圧乾固した後、250〜500℃、好ましくは350℃で真空下に10分間〜10時間加熱することにより行うことができる。acacはアセチルアセトンである。 For supporting copper fine particles on PCP, for example, PCP is added to an acetone solution of Cu (acac) 2 and stirred and dried under reduced pressure, and then 250 to 500 ° C., preferably 350 ° C. under vacuum for 10 minutes to 10 minutes. This can be done by heating for a period of time. acac is acetylacetone.

或いは、PCPを構成する金属イオンのアセチルアセトン(acac)錯体とPCPを構成する配位子を含む溶液に酸化銅系微粒子を混合し、噴霧反応を行って酸化銅系微粒子をPCPに担持させ、乾燥後、酸化銅を水素の存在下で100〜250℃で10分間〜10時間加熱することにより銅に還元して銅系微粒子をPCPに担持した複合触媒を得ることができる。銅系微粒子が酸化亜鉛に銅を担持した微粒子(Cu/ZnO)の製造方法を図9に示す。   Alternatively, copper oxide fine particles are mixed in a solution containing an acetylacetone (acac) complex of metal ions constituting PCP and a ligand constituting PCP, and a spray reaction is performed to support the copper oxide fine particles on PCP, followed by drying. Then, the copper oxide is reduced to copper by heating at 100 to 250 ° C. for 10 minutes to 10 hours in the presence of hydrogen to obtain a composite catalyst in which copper-based fine particles are supported on PCP. FIG. 9 shows a method for producing fine particles (Cu / ZnO) in which copper fine particles carry copper on zinc oxide.

メタノールの製造は、水素と二酸化炭素を含む混合ガス(さらに一酸化炭素を含んでいてもよい)を本発明の複合触媒と接触させることにより行うことができる。反応温度は150〜300℃程度、好ましくは200〜250℃程度である。圧力は1〜5気圧程度、好ましくは1〜3気圧程度である。混合ガスの流速は、1〜10000ml/min程度、好ましくは1〜1000ml/min程度、より好ましくは1〜200ml/min程度である。   Methanol can be produced by bringing a mixed gas containing hydrogen and carbon dioxide (which may further contain carbon monoxide) into contact with the composite catalyst of the present invention. The reaction temperature is about 150 to 300 ° C, preferably about 200 to 250 ° C. The pressure is about 1 to 5 atmospheres, preferably about 1 to 3 atmospheres. The flow rate of the mixed gas is about 1 to 10000 ml / min, preferably about 1 to 1000 ml / min, more preferably about 1 to 200 ml / min.

以下、本発明を実施例に基づきより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, it cannot be overemphasized that this invention is not limited to these Examples.

実施例で使用したPCPであるMIL101(Cr3+とテレフタル酸),MIL53(Al3+とテレフタル酸),ZIF8(Zn2+と2−メチルイミダゾール)、MOF74及びUiO66は、以下の論文に記載の方法に従って入手した:
MIL101論文名:Science 2005, 309, 2040-2042
MIL53論文名:Chem. Eur. J. 2004, 10, 1373-1382.
ZIF8論文名:PNAS 2006, 103, 10186-10191.
MOF74論文名:J. Am. Chem. Soc. 2008, 130, 10870-10871.
UiO-66論文名:Chem. Eur. J. 2011, 17, 6643-6651、Chem. Commun., 2013, 49, 3634-3636;
Chem. Commun., 2013, 49, 9449-9451;Angew. Chem. Int. Ed. 2013, 52, 10316-10320
MIL101 (Cr 3+ and terephthalic acid), MIL53 (Al 3+ and terephthalic acid), ZIF8 (Zn 2+ and 2-methylimidazole), MOF74 and UiO66 used in the examples are in accordance with the methods described in the following papers. obtained:
MIL101 paper title: Science 2005, 309, 2040-2042
MIL53 paper title: Chem. Eur. J. 2004, 10, 1373-1382.
ZIF8 paper title: PNAS 2006, 103, 10186-10191.
MOF74 paper title: J. Am. Chem. Soc. 2008, 130, 10870-10871.
UiO-66 title: Chem. Eur. J. 2011, 17, 6643-6651, Chem. Commun., 2013, 49, 3634-3636;
Chem. Commun., 2013, 49, 9449-9451; Angew. Chem. Int. Ed. 2013, 52, 10316-10320

実施例1−2及び比較例1−3
0.82gのCu(acac)のアセトン(100ml)溶液にPCP(UiO66(Zr)、MIL53、MIL101又はZIF8)1gを加えて室温で撹拌し、その後アセトンを蒸発乾固により除いた。得られた残渣を350℃で1時間加熱することによりCu(acac)を熱分解し、PCPにCuナノ粒子が担持した複合触媒(UiO66(Zr)−Cu、MIL53−Cu、MIL101−Cu又はZIF8−Cu)を得た。PCPに代えてγAlを使用した以外は上記と同様にしてγAl−Cuを得た。Cuは複合触媒に約20質量%含まれていた。
Example 1-2 and Comparative Example 1-3
1 g of PCP (UiO66 (Zr), MIL53, MIL101 or ZIF8) was added to 0.82 g of a solution of Cu (acac) 2 in acetone (100 ml) and stirred at room temperature, and then acetone was removed by evaporation to dryness. The obtained residue was heated at 350 ° C. for 1 hour to thermally decompose Cu (acac) 2 , and a composite catalyst (UiO66 (Zr) -Cu, MIL53-Cu, MIL101-Cu or ZIF8-Cu) was obtained. Except using γAl 2 O 3 in place of the PCP got γAl 2 O 3 -Cu in the same manner as described above. Cu was contained in the composite catalyst in an amount of about 20% by mass.

Cuの結晶子サイズを以下に示し、粉末X線回折パターンを図1に示す。
UiO66(Zr)−Cu(実施例1):30(1)nm、表面原子数割合:5%
MIL53−Cu(実施例2):32(1)nm、表面原子数割合:4.7%
MIL101−Cu(比較例1):35.9(4)nm、表面原子数割合:4.2%
ZIF8−Cu(比較例2) :28(3)nm、表面原子数割合:5.4%
γAl2O−Cu(比較例3):29(1)nm、表面原子数割合:5.2%
The crystallite size of Cu is shown below, and the powder X-ray diffraction pattern is shown in FIG.
UiO66 (Zr) -Cu (Example 1): 30 (1) nm, surface atom number ratio: 5%
MIL53-Cu (Example 2): 32 (1) nm, surface atom number ratio: 4.7%
MIL101-Cu (Comparative Example 1): 35.9 (4) nm, surface atom number ratio: 4.2%
ZIF8-Cu (Comparative Example 2): 28 (3) nm, surface atom number ratio: 5.4%
γAl 2 O 3 —Cu (Comparative Example 3): 29 (1) nm, surface atom number ratio: 5.2%

図1により複合触媒(UiO66(Zr)−Cu、MIL53−Cu、MIL101−Cu又はZIF8−Cu)はPCPの構造が保持されていることが確認された。   From FIG. 1, it was confirmed that the composite catalyst (UiO66 (Zr) -Cu, MIL53-Cu, MIL101-Cu or ZIF8-Cu) retained the PCP structure.

また、複合触媒(UiO66(Zr)−Cu、MIL53−Cu、MIL101−Cu又はZIF8−Cu)及びγAl−CuのTEM像を図2に示す。 A TEM image of the composite catalyst (UiO66 (Zr) -Cu, MIL53-Cu, MIL101-Cu or ZIF8-Cu) and γAl 2 O 3 -Cu is shown in FIG.

試験例1
実施例1−2、比較例1−3で得られた複合触媒(UiO66(Zr)−Cu、MIL53−Cu、MIL101−Cu、ZIF8−Cu及びγAl2O−Cu)と図3に示す固定床流通式反応装置を用い、以下の反応条件でメタノールの製造を行った。
サンプル(触媒)量:0.7g〜1g
混合ガス:CO/CO/H/He
反応条件:220℃、2atm、10ml/min
Test example 1
Example 1-2, the resulting composite catalyst in Comparative Example 1-3 a fixed bed flow shown in (UiO66 (Zr) -Cu, MIL53 -Cu, MIL101-Cu, ZIF8-Cu and γAl2O 3 -Cu) and 3 Methanol was produced under the following reaction conditions using a chemical reactor.
Sample (catalyst) amount: 0.7 g to 1 g
Mixed gas: CO 2 / CO / H 2 / He
Reaction conditions: 220 ° C., 2 atm, 10 ml / min

得られた混合ガスのGCチャート及び保持時間5.9〜6分のメタノール成分の結果を図4に示す。図4の結果から、PCP成分により銅ナノ粒子の触媒活性は大きく異なり、UiO66(Zr)−CuとMIL53−Cuが好ましく、UiO66(Zr)−Cuが特に好ましいことが明らかになった。   FIG. 4 shows a GC chart of the obtained mixed gas and a methanol component result having a retention time of 5.9 to 6 minutes. From the results of FIG. 4, it was found that the catalytic activity of the copper nanoparticles varies greatly depending on the PCP component, UiO66 (Zr) -Cu and MIL53-Cu are preferable, and UiO66 (Zr) -Cu is particularly preferable.

なお、上記のメタノール製造触媒反応後、PCPの骨格が維持されていることを粉末X線パターンで確認した。また、TEM観察によりメタノール製造触媒反応前後で粒径が変化していないことを確認した。   After the above methanol production catalyst reaction, it was confirmed by a powder X-ray pattern that the skeleton of PCP was maintained. Moreover, it was confirmed by TEM observation that the particle size did not change before and after the methanol production catalyst reaction.

試験例2
実施例1、比較例2−3で得られた複合触媒(UiO66(Zr)−Cu、ZIF8−Cu及びγAl2O−Cu)と図3に示す固定床流通式反応装置を用い、以下の反応条件でメタノールの製造を行った。
サンプル(触媒)量:0.5g
混合ガス:CO/H/He
反応条件:220℃、2atm、14、49、98又は140ml/min
Test example 2
Example 1, the composite catalyst obtained in Comparative Example 2-3 (UiO66 (Zr) -Cu, ZIF8-Cu and γAl2O 3 -Cu) using a fixed bed flow reaction apparatus shown in FIG. 3, the following reaction conditions The methanol was produced.
Sample (catalyst) amount: 0.5 g
Mixed gas: CO 2 / H 2 / He
Reaction conditions: 220 ° C., 2 atm, 14, 49, 98 or 140 ml / min

得られた混合ガスのGCチャート及びUiO66(Zr)−Cu(MeOHの生成量とGCチャート内の生成物に対する選択率)を図5に示す。図5に示すように、UiO66(Zr)−Cuがメタノール製造用複合触媒として高い活性を有し、流速を高くすることでMTO反応の進行を抑制し、MeOHの高い生成量と選択率を達成できることが考えられる。   FIG. 5 shows a GC chart of the obtained mixed gas and UiO66 (Zr) -Cu (the amount of MeOH produced and the selectivity with respect to the product in the GC chart). As shown in FIG. 5, UiO66 (Zr) -Cu has high activity as a composite catalyst for methanol production, and by increasing the flow rate, the progress of the MTO reaction is suppressed, and a high production amount and selectivity of MeOH are achieved. It is possible to do it.

比較例4
MOF-74(Mg2(DOBDC)、H2DOBDC=2,5-ジヒドロキシテレフタル酸)とCu(acac)のアセトン溶液を用い、実施例1と同様にしてMOF74(Mg)−Cu複合触媒を得た。Cuは複合触媒に約20質量%含まれていた。
Comparative Example 4
MOF-74 (Mg 2 (DOBDC), H 2 DOBDC = 2,5-dihydroxyterephthalic acid) and an acetone solution of Cu (acac) 2 were used in the same manner as in Example 1 to prepare a MOF 74 (Mg) -Cu composite catalyst. Obtained. Cu was contained in the composite catalyst in an amount of about 20% by mass.

試験例3
UiO66−Cu、ZIF8−Cu及びMOF74(Mg)−Cuを用い、以下の反応条件でメタノールの製造を行った。
サンプル(触媒)量:0.5g
混合ガス:CO/H/He
反応条件:220℃、2atm、14、49、98、140ml/min
Test example 3
Using UiO66-Cu, ZIF8-Cu and MOF74 (Mg) -Cu, methanol was produced under the following reaction conditions.
Sample (catalyst) amount: 0.5 g
Mixed gas: CO 2 / H 2 / He
Reaction conditions: 220 ° C., 2 atm, 14, 49, 98, 140 ml / min

得られた混合ガスのGCチャート及びUiO66(Zr)−CuとMOF74(Mg)−Cuによるメタノール生成量の比較を図6に示す。   FIG. 6 shows a GC chart of the obtained mixed gas and a comparison of the amount of methanol produced by UiO66 (Zr) -Cu and MOF74 (Mg) -Cu.

MOF74(Mg)は二酸化炭素を多量に吸着する触媒であるがメタノールの生成量は非常に少なく、二酸化炭素の吸着量と触媒活性の相関はほとんどないことが確認された。   Although MOF74 (Mg) is a catalyst that adsorbs a large amount of carbon dioxide, the amount of methanol produced was very small, and it was confirmed that there was almost no correlation between the amount of carbon dioxide adsorbed and the catalytic activity.

実施例3−4及び比較例5
一般式(I)で表される配位子として、R=NH(実施例3)、R=COOH(実施例4)、R=OH(比較例5)の化合物を用い、実施例1と同様にしてUiO66(NH)−Cu、UiO66(COOH)−Cu、UiO66(OH)−Cuを得た。得られた複合触媒のTEM像を図7に示す。なお、UiO66はUiO66(Zr)である。
Example 3-4 and Comparative Example 5
As the ligand represented by the general formula (I), compounds of R = NH 2 (Example 3), R = COOH (Example 4), R = OH (Comparative Example 5) were used. Similarly UiO66 (NH 2) -Cu, UiO66 (COOH) -Cu, was obtained UiO66 (OH) -Cu. A TEM image of the obtained composite catalyst is shown in FIG. UiO66 is UiO66 (Zr).

試験例4
UiO66(H)−Cu、UiO66(NH)−Cu、UiO66(COOH)−Cu、UiO66(OH)−Cuを用い、以下の反応条件でメタノールの製造を行った。なお、UiO66はUiO66(Zr)である。
サンプル(触媒)量:0.5g
混合ガス:CO/H/He
反応条件:220℃、2atm、14、49、98、140ml/min
Test example 4
UiO66 (H) -Cu, UiO66 ( NH 2) -Cu, UiO66 (COOH) -Cu, using UiO66 (OH) -Cu, was produced methanol the following reaction conditions. UiO66 is UiO66 (Zr).
Sample (catalyst) amount: 0.5 g
Mixed gas: CO 2 / H 2 / He
Reaction conditions: 220 ° C., 2 atm, 14, 49, 98, 140 ml / min

得られた混合ガス中のメタノールの生成量を示すGCチャート及びメタノールの選択率の結果を図8に示す。   FIG. 8 shows the GC chart showing the amount of methanol produced in the obtained mixed gas and the result of methanol selectivity.

図8の結果から、UiO66(COOH)−Cuがメタノール製造用触媒として特に優れていることが明らかになった。   From the results of FIG. 8, it was revealed that UiO66 (COOH) -Cu is particularly excellent as a catalyst for methanol production.

なお、上記のメタノール製造触媒反応後、PCPの骨格が維持されていることを粉末X線パターンで確認した。   After the above methanol production catalyst reaction, it was confirmed by a powder X-ray pattern that the skeleton of PCP was maintained.

実施例6
UiO66(Zr)に代えてUiO66(Hf)を用いる以外は実施例1と同様にしてUiO66(Hf)−Cuを得た。
Example 6
UiO66 (Hf) -Cu was obtained in the same manner as in Example 1 except that UiO66 (Hf) was used instead of UiO66 (Zr).

試験例5
実施例1のUiO66(Zr)と実施例6のUiO66(Hf)を用い、試験例2と同様にしてメタノールを製造した。結果を図9に示す。図9に示されるように、UiO66(Hf)はUiO66(Zr)よりもメタノールを約3倍多く生成することが明らかになった。
Test Example 5
Using UiO66 (Zr) of Example 1 and UiO66 (Hf) of Example 6, methanol was produced in the same manner as in Test Example 2. The results are shown in FIG. As shown in FIG. 9, it was revealed that UiO66 (Hf) produces about three times more methanol than UiO66 (Zr).

実施例6及び比較例6
二元系触媒Cu/ZnOとPCP(UiO−66)との噴霧反応法による複合化を行った。
Example 6 and Comparative Example 6
The binary catalyst Cu / ZnO and PCP (UiO-66) were combined by a spray reaction method.

図10に示されるように、Zr(acac)(1.22g)と1,4−ベンゼンジカルボン酸(1,4-bdc)(0.42g)の水溶液にCuO/ZnO複合酸化物のスラリー(1.35g)を加え、噴霧反応(220℃、空気中)を行い、減圧乾燥してCuO/ZnO複合酸化物を担持したUiO66を得た。これを水素存在下で200℃で加熱することによりCuOをCuに還元してCu/ZnOからなる銅系微粒子を担持したUiO66複合触媒を得た。 As shown in FIG. 10, a CuO / ZnO composite oxide slurry (1.35 g) in an aqueous solution of Zr (acac) 2 (1.22 g) and 1,4-benzenedicarboxylic acid (1,4-bdc) (0.42 g) was used. ) Was added, a spray reaction (220 ° C., in air) was performed, and dried under reduced pressure to obtain UiO66 carrying a CuO / ZnO composite oxide. By heating this at 200 ° C. in the presence of hydrogen, CuO was reduced to Cu to obtain a UiO66 composite catalyst carrying copper-based fine particles made of Cu / ZnO.

CuO/ZnO複合酸化物は、Cu(NOとZn(NOをCu:Zn=22:18,23:18、5:32,20:5,5:33になるような比率で配合し、噴霧熱分解(850℃、空気中)を行うことで得た。CuO/ZnO複合酸化物の平均粒径は約20-30nmであった。 The CuO / ZnO composite oxide has a ratio of Cu (NO 3 ) 2 and Zn (NO 3 ) 2 such that Cu: Zn = 22: 18, 23:18, 5:32, 20: 5, 5:33. And spray pyrolysis (850 ° C., in air). The average particle size of the CuO / ZnO composite oxide was about 20-30 nm.

CuO/ZnO複合酸化物をγ−Alに担持した複合触媒を得た(比較例6)。 A composite catalyst in which a CuO / ZnO composite oxide was supported on γ-Al 2 O 3 was obtained (Comparative Example 6).

試験例6
実施例6及び比較例6で得られた複合触媒を用いて試験例1と同様にメタノールの製造を行った。結果を図11に示す。
Test Example 6
Methanol was produced in the same manner as in Test Example 1 using the composite catalyst obtained in Example 6 and Comparative Example 6. The results are shown in FIG.

Claims (9)

銅系微粒子を多孔性配位高分子(PCP)に担持した、メタノール製造用複合触媒であって、前記PCPがUiO66型PCPもしくはMIL53型PCPであり、前記PCPを構成する金属イオンがZr4+、Hf4+、Al3+、Ga3+及びIn3+からなる群から選ばれる少なくとも1種を含み、前記PCPを構成する配位子が下記式(I)
(式中、Rは、同一又は異なって水素原子、NH2又はCOOHである。)
で表される、メタノール製造用複合触媒。
A composite catalyst for methanol production in which copper-based fine particles are supported on a porous coordination polymer (PCP), wherein the PCP is a UiO66 type PCP or a MIL53 type PCP, and a metal ion constituting the PCP is Zr 4+ Including at least one selected from the group consisting of Hf 4+ , Al 3+ , Ga 3+ and In 3+, the ligand constituting the PCP is represented by the following formula (I)
(Wherein R is the same or different and is a hydrogen atom, NH 2 or COOH.)
The composite catalyst for methanol manufacture represented by these.
銅系微粒子が酸化亜鉛と銅を含む複合微粒子又は銅ナノ粒子単独である、請求項1に記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to claim 1, wherein the copper-based fine particles are composite fine particles containing zinc oxide and copper or copper nanoparticles alone. PCPを構成する配位子が下記式(IA)
(式中、Rは、同一又は異なってNH2又はCOOHである。)
で表される、請求項1又は2に記載のメタノール製造用複合触媒。
The ligand constituting PCP is represented by the following formula (IA)
(In the formula, R is the same or different and is NH 2 or COOH.)
The composite catalyst for methanol production of Claim 1 or 2 represented by these.
PCPがUiO66である、請求項1〜3のいずれか1項に記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to any one of claims 1 to 3, wherein the PCP is UiO66. RがCOOHである、請求項1〜4のいずれか1項に記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to any one of claims 1 to 4, wherein R is COOH. 銅系微粒子のサイズが1〜200nmである、請求項1〜5のいずれか1項に記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to any one of claims 1 to 5, wherein the size of the copper-based fine particles is 1 to 200 nm. 銅系微粒子とPCPの重量比率が、PCP:銅系微粒子=95〜65:5〜35である、請求項1〜6のいずれかに記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to any one of claims 1 to 6, wherein a weight ratio of the copper-based fine particles to PCP is PCP: copper-based fine particles = 95 to 65: 5-35. メタノール合成の原料が水素と二酸化炭素を含み、任意成分としてさらに一酸化炭素を含み得る、請求項1〜7のいずれかに記載のメタノール製造用複合触媒。 The composite catalyst for methanol production according to any one of claims 1 to 7, wherein the raw material for methanol synthesis contains hydrogen and carbon dioxide, and may further contain carbon monoxide as an optional component. 請求項1〜8のいずれか1項に記載のメタノール製造用複合触媒の存在下に水素と二酸化炭素、任意成分としてさらに一酸化炭素を含み得る混合ガスを作用させることを特徴とする、メタノールの製造方法:
A mixed gas capable of containing hydrogen and carbon dioxide, and optionally further containing carbon monoxide as an optional component is allowed to act in the presence of the composite catalyst for methanol production according to any one of claims 1 to 8. Production method:
JP2014198898A 2014-09-29 2014-09-29 Composite catalyst for methanol production, method for producing the same, and method for producing methanol Expired - Fee Related JP5774180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198898A JP5774180B1 (en) 2014-09-29 2014-09-29 Composite catalyst for methanol production, method for producing the same, and method for producing methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198898A JP5774180B1 (en) 2014-09-29 2014-09-29 Composite catalyst for methanol production, method for producing the same, and method for producing methanol

Publications (2)

Publication Number Publication Date
JP5774180B1 true JP5774180B1 (en) 2015-09-09
JP2016067999A JP2016067999A (en) 2016-05-09

Family

ID=54192518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198898A Expired - Fee Related JP5774180B1 (en) 2014-09-29 2014-09-29 Composite catalyst for methanol production, method for producing the same, and method for producing methanol

Country Status (1)

Country Link
JP (1) JP5774180B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382114A (en) * 2017-08-28 2019-10-25 Lg化学株式会社 The method for preparing organozinc catalyst, the organozinc catalyst prepared by this method and the method using the catalyst preparation polyalkylene carbonate resin
US10933403B1 (en) 2020-08-27 2021-03-02 King Abdulaziz University Methods for the decoration of carbon nanoparticles with hafnium promethium oxide nanowires for energy applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382114A (en) * 2017-08-28 2019-10-25 Lg化学株式会社 The method for preparing organozinc catalyst, the organozinc catalyst prepared by this method and the method using the catalyst preparation polyalkylene carbonate resin
US10933403B1 (en) 2020-08-27 2021-03-02 King Abdulaziz University Methods for the decoration of carbon nanoparticles with hafnium promethium oxide nanowires for energy applications

Also Published As

Publication number Publication date
JP2016067999A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
Zorainy et al. Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications
JP6675619B2 (en) Method for producing ammonia synthesis catalyst and method for producing ammonia
JP5813946B2 (en) Hybrid porous material and method for producing the same
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
CN112218716A (en) Method for preparing limited nano catalyst in mesoporous material and application thereof
EP2915799B1 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using same
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
WO2017111028A1 (en) Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
EP2899223A1 (en) Metal nanoparticle complex and method for producing same
JPWO2017082265A1 (en) Metal support, supported metal catalyst, and ammonia synthesis method using the catalyst
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
KR20110041381A (en) The preparation method of scaffold materials-transition metal hydride complexes and intermediates therefor
WO2018164182A1 (en) Ammonia synthesis catalyst, and use thereof
Xu et al. Spherical sandwich Au@ Pd@ UIO-67/Pt@ UIO-n (n= 66, 67, 69) core–shell catalysts: Zr-based metal–organic frameworks for effectively regulating the reverse water–gas shift reaction
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
KR101759774B1 (en) A method for preparing core-shell copper nanoparticlesimmobilized on activated carbonandthe preparation of chalcogenide compoundusing them as a catalyst
US20200276564A1 (en) Methods of preparing metal / metal oxide materials from nanostructured substrates and uses thereof
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
Deng et al. Pseudomorphic generation of supported catalysts for glycerol oxidation
JP5774180B1 (en) Composite catalyst for methanol production, method for producing the same, and method for producing methanol
JP2016155123A (en) Ammonia synthesis catalyst and production method thereof
Zhao et al. Synthesis, structure and catalytic properties of faceted oxide crystals
US9440850B2 (en) Carbon material for hydrogen storage
WO2016133213A1 (en) Ammonia synthesis catalyst and method for producing same
JP7023457B2 (en) Ammonia synthesis catalyst and ammonia synthesis method using the catalyst

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5774180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees