WO2014123091A1 - Porous metal complex, method for producing polymer using same, and vinyl ester copolymer - Google Patents

Porous metal complex, method for producing polymer using same, and vinyl ester copolymer Download PDF

Info

Publication number
WO2014123091A1
WO2014123091A1 PCT/JP2014/052468 JP2014052468W WO2014123091A1 WO 2014123091 A1 WO2014123091 A1 WO 2014123091A1 JP 2014052468 W JP2014052468 W JP 2014052468W WO 2014123091 A1 WO2014123091 A1 WO 2014123091A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal complex
polymer
acid compound
porous metal
Prior art date
Application number
PCT/JP2014/052468
Other languages
French (fr)
Japanese (ja)
Inventor
卓史 植村
進 北川
啓之 小西
康貴 犬伏
隆司 福本
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013023408A external-priority patent/JP2014152258A/en
Priority claimed from JP2013023432A external-priority patent/JP2014152259A/en
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2014123091A1 publication Critical patent/WO2014123091A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • C07C63/28Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/32Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups
    • C07C65/38Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups having unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to a polymer production method in which a monomer is adsorbed in the pores of a porous metal complex and copolymerized with a ligand constituting the metal complex.
  • the present invention also relates to a porous metal complex that can be used in the production method.
  • the present invention also relates to a vinyl ester copolymer. More specifically, the present invention relates to a vinyl ester copolymer obtained by copolymerizing a vinyl ester monomer adsorbed in the pores of a porous metal complex with a ligand of the porous metal complex.
  • Polymers are materials that have an excellent balance of performance such as lightness and strength, and are often used as molded products because they can be molded at low temperatures compared to metals.
  • injection molding As one of general-purpose molding methods.
  • internal stress residual strain or the like
  • Deformed, cracked, cracked, etc. are likely to occur in molded products with remaining internal stress, especially when exposed to organic solvents such as alcohols, fuel oils, wax removers, etc. It becomes easy. From this point, the polymer is required to have high solvent resistance.
  • an ionomer resin is disclosed (see Patent Document 1).
  • Patent Documents 2 to 5, non-patent documents a method is known in which a monomer is polymerized by adsorbing a low-molecular compound in the pores using a porous metal complex composed of an organic ligand and a metal ion.
  • Patent Documents 2 to 5, non-patent documents a method is known in which a monomer is polymerized by adsorbing a low-molecular compound in the pores using a porous metal complex composed of an organic ligand and a metal ion.
  • Patent Documents 2 to 5, non-patent documents Non-patent documents.
  • Reference 1 a method is known in which a monomer is polymerized by adsorbing a low-molecular compound in the pores using a porous metal complex composed of an organic ligand and a metal ion
  • Polyvinyl acetate which is a general-purpose polyvinyl ester, is widely used as an intermediate raw material for polyvinyl alcohol.
  • Polyvinyl acetate emulsions containing polyvinyl alcohol as a protective colloid are various adhesives for paper, woodworking and plastics, various binders for impregnated paper and non-woven products, admixtures, surface treatment agents, It is used for applications such as splicing materials, paints, paper processing and textile processing, and wallpaper. In these applications, it is necessary to improve water resistance, solvent resistance, etc., and various methods have been proposed so far in order to improve the water resistance, solvent resistance, etc. of polyvinyl esters.
  • polyvinyl esters or polyvinyl alcohols are known in which water resistance is improved by adding a crosslinkable functional group such as a carboxyl group to polyvinyl ester or saponified polyvinyl alcohol (see Patent Documents 6 and 7). ). It is also known that the solvent resistance is improved by using a paint obtained by adding a small amount of a surfactant to a polyvinyl acetate emulsion as a back surface treatment agent such as an adhesive tape (see Patent Document 8).
  • a method for producing a regular polymer having a side chain containing a reactive group a method of polymerizing a monomer within the pores of a porous metal complex is known (see Patent Document 3).
  • a polymer having structure regularity can be obtained from a monomer having a plurality of reactive groups by using a porous metal complex having pores as one-dimensional regular nanochannels.
  • functional molecules having a reactive group include styrene and vinyl acetate.
  • the polymer obtained by the method of Patent Document 3 has rather improved solubility in a solvent because the polymer chain has a one-dimensional chain structure.
  • the problem to be solved by the present invention is to provide a completely new method for producing a polymer having high solvent resistance and to provide a vinyl ester copolymer having high solvent resistance.
  • a polymer having a high solvent resistance is obtained by polymerizing a monomer using a porous metal complex having a specific aromatic polyvalent carboxylic acid compound having at least two terminal alkenyl groups. It has been found that it can be manufactured and the above problems can be solved, and the present invention has been achieved.
  • the present invention mainly relates to the following [1] to [23].
  • An aromatic polycarboxylic acid compound (L1) having at least two substituents having a terminal alkenyl group, and at least one metal ion selected from ions of metals belonging to Groups 1 to 14 of the periodic table; Characterized in that a monomer (V) having an unsaturated double bond is polymerized in the pores of a porous metal complex containing a polymer to obtain a polymer containing the aromatic polyvalent carboxylic acid compound (L1) as a constituent unit.
  • a 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
  • Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] is Y 1 and a is the same or different from each other in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5.
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxycarbonyl group. is there)
  • the substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent.
  • an alkyl group Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent.
  • the content of the aromatic polyvalent carboxylic acid compound (L1) in the porous metal complex is 100 mol% in total of the aromatic polyvalent carboxylic acid compound (L1) and the polyvalent carboxylic acid compound (D).
  • [10] A method for producing a carbon material, wherein the polymer obtained by the method according to any one of [1] to [8] is heat-treated at a temperature of 400 ° C. to 600 ° C.
  • X is a hydrogen atom or an alkali metal atom.
  • B 1 to B 4 are substituents having the same or different terminal alkenyl groups, and the others are hydrogen atom, halogen atom, alkyl group, alkoxy group, thioalkyl group, formyl group, acyloxy group, alkoxycarbonyl
  • Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] are the same or Y 1 and a is in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5.
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or alkoxycarbonyl Base
  • a porous metal complex comprising at least one metal ion selected from the ions of:
  • a 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
  • Y 1 and Y 2 are the same or different and are an oxygen atom, a sulfur atom, or —O—CO—, and [Y 1 — (CH 2 ) a ] represents Y 1 and a for each repeating unit. May be the same or different, a is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5.
  • R is a hydrogen atom, an alkyl having 1 to 5 carbon atoms Group or alkoxycarbonyl group
  • the substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent.
  • an alkyl group Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent. ).
  • the content of the aromatic polyvalent carboxylic acid compound (L1) is 0.1 to 0.1% with respect to 100 mol% in total of the aromatic polyvalent carboxylic acid compound (L1) and the polyvalent carboxylic acid compound (D).
  • the porous metal complex according to any one of [18] to [21], which is in the range of 99.9 mol%.
  • porous metal complex according to any one of [18] to [22], wherein the porous metal complex further contains an organic ligand capable of multidentate coordination with the metal ion.
  • the production method of the present invention it is possible to produce a polymer having high solvent resistance, which has significantly improved resistance to solvents as compared with polymers obtained by conventional polymerization methods.
  • the polymer obtained by the production method of the present invention has a main chain that is one-dimensionally oriented and has a pseudocrystalline structure in the polymer, so that it can have a high density.
  • the polymer obtained by the production method of the present invention is excellent in heat resistance, mechanical strength, and the like.
  • the vinyl ester copolymer of the present invention is superior in solvent resistance, heat resistance, mechanical strength and the like as compared with a vinyl ester copolymer obtained by ordinary solution polymerization.
  • the schematic diagram of a porous metal complex is shown.
  • polymerization in a porous metal complex is shown.
  • (a) porous metal complex (b) aromatic compound (L) (for example, aromatic polycarboxylic acid compound (L1)), (c) monomer (V) (for example, vinyl ester monomer). ); And (i) monomer adsorption, (ii) polymerization, and (iii) decomposition / removal of the porous metal complex.
  • L aromatic compound
  • V for example, vinyl ester monomer
  • the powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 1 is shown.
  • the powder X-ray diffraction pattern of the porous metal complex obtained in Synthesis Example 2 is shown.
  • the powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 3 is shown.
  • the powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 4 is shown.
  • the crystal structure of the porous metal complex obtained in Comparative Synthesis Example 1 is shown.
  • the powder X-ray-diffraction pattern of the metal complex obtained by the comparative synthesis example 1 is shown.
  • An IR chart is shown.
  • (a) An IR chart of the vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer obtained in Example 1 is shown (bottom).
  • An IR chart of polyvinyl acetate (solution polymerized product) synthesized by solution polymerization is shown (top).
  • the vertical axis represents the intensity
  • the metal complex of the present invention is an aromatic compound (L) having at least two substituents having a terminal alkenyl group and at least one selected from ions of metals belonging to Groups 1 to 14 of the periodic table. Metal ions.
  • the aromatic compound (L) is a compound represented by the following general formula (1) or (2) having at least two substituents having a terminal alkenyl group.
  • a 1 and A 2 are the same or different.
  • X is a hydrogen atom or an alkali metal atom (for example, a sodium atom, a potassium atom, etc.).
  • B 1 to B 4 are each a substituent having the same or different terminal alkenyl group, and the others are a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an alkoxy group, a thioalkyl group Group, formyl group, acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group, hydroxyl group, carboxyl group, and alkali metal salt of carboxyl group Any of the substituents.
  • the number of carbon atoms contained in the substituent is preferably in the range of 0 to 5, more preferably in the range of 0 to 2.
  • halogen atoms include fluorine, chlorine, bromine and iodine atoms
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert
  • alkoxy group having a linear or branched alkyl group such as butyl group or pentyl group
  • the butoxy group is a thioalkyl group such as a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, an isobutylthio group, or a tert-butylthio group.
  • Examples of an acyloxy group include an acetoxy group, n -Propanoyloxy group, n-butanoyloxy group, pivaloyloxy group, benzoyl
  • Examples of the alkoxy group include an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group, and an n-butoxycarbonyl group
  • examples of a monoalkylamino group include a methylamino group
  • examples of a dialkylamino group include dimethylamino.
  • An example of the acylamino group is an acetylamino group.
  • alkyl group may have examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group).
  • Etc. amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyl) Oxy group, pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R Is an alkyl group having 1 to 5 carbon atoms).
  • the number of substituents on the alkyl group is preferably 1 to 3, more preferably 1.
  • the aromatic compound (L) is preferably an aromatic polyvalent carboxylic acid compound (L1), particularly preferably a benzene polyvalent carboxylic acid compound.
  • a 1 and A 2 are a carboxyl group or a salt thereof.
  • the “carboxyl group” includes a group represented by —COOH and a group represented by —COO 2 — .
  • the aromatic compound (L) is an aromatic polyvalent carboxylic acid compound (L1), in the porous metal complex, the carboxyl group is mainly in the form of a carboxylate (—COO ⁇ ) from which a proton has been eliminated.
  • —COO ⁇ carboxylate
  • a 1 and A 2 may be the same or different, but are preferably the same.
  • At least two of B 1 to B 4 are each a substituent having the same or different terminal alkenyl group.
  • the substituent having the terminal alkenyl group is not particularly limited as long as the alkenyl group represented by —CR ⁇ CH 2 is bonded to the terminal of the substituent.
  • the substituent having a terminal alkenyl group is preferably the following general formula (3)
  • Y 1 and Y 2 are the same or different and are an oxygen atom, a sulfur atom or —O—CO—, and [Y 1 — (CH 2 ) a ] represents Y 1 and a for each repeating unit. May be the same or different, a is an integer of 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. a is preferably in the range of 1 to 3, more preferably in the range of 1 to 2. b is preferably in the range of 0 to 2, more preferably 0 or 1. c is preferably 1. d is preferably in the range of 0 to 3, and more preferably in the range of 0 to 1. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxycarbonyl group.
  • substituent having a terminal alkenyl group examples include a vinyl group, isopropenyl group, allyl group, methallyl group, 3-butenyl group, vinyloxy group, isopropenyloxy group, allyloxy group, methallyloxy group, ( And allyloxy) methoxy group.
  • substituent having a terminal alkenyl group also include a substituent having a terminal alkenyl group represented by the following general formula (4).
  • aromatic compound (L) examples include 2,5-divinyl terephthalic acid, 2,5-diisopropenyl terephthalic acid, 2,5-diallyl terephthalic acid, 2,5-dimethallyl terephthalic acid, 2,5-di (vinyloxy) terephthalic acid, 2,5-di (isopropenyloxy) terephthalic acid, 2,5-di (allyloxy) terephthalic acid, 2,5-di (methallyloxy) terephthalic acid, 4, Examples thereof include 6-divinylisophthalic acid.
  • metal ions selected from Groups 1 to 14 of the periodic table those that form a porous metal complex with a structural unit derived from the aromatic compound (L) are suitable.
  • metal ions include lithium ions, sodium ions, potassium ions, magnesium ions, calcium ions, barium ions, scandium ions, lanthanoid ions, titanium ions, zirconium ions, vanadium ions, chromium ions, manganese ions, iron ions, and cobalt. Ions, nickel ions, copper ions, zinc ions, cadmium ions, aluminum ions and the like can be used, and copper ions and zinc ions are more preferable.
  • the metal ion is preferably a single metal ion, but may contain two or more kinds of metal ions.
  • the porous metal complex of this invention can also mix and use two or more types of porous metal complexes which consist of a single metal ion.
  • the porous metal complex may further contain a polyvalent carboxylic acid compound (D) different from the aromatic compound (L).
  • a polyvalent carboxylic acid compound (D) those having no terminal alkenyl group are preferred.
  • the polyvalent carboxylic acid compound (D) include, for example, succinic acid, 1,4-cyclohexanedicarboxylic acid, fumaric acid, muconic acid, 2,3-pyrazinedicarboxylic acid, terephthalic acid, isophthalic acid, 1, 4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 2,5-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,2 Aromatic dicarboxylic acid compounds such as '-dithiophene dicarboxylic acid; trimesic acid, trimellitic acid, biphenyl
  • the polyvalent carboxylic acid compound (D) may be used alone, or two or more polyvalent carboxylic acid compounds may be mixed and used. In the porous metal complex, the polyvalent carboxylic acid compound (D) exists mainly in a carboxylate state in which protons are eliminated from the carboxylic acid sites.
  • the polyvalent carboxylic acid compound (D) may further have a substituent other than the carboxyl group.
  • the polyvalent carboxylic acid having a substituent is preferably an aromatic polyvalent carboxylic acid, and the substituent is preferably bonded to the aromatic ring of the aromatic polyvalent carboxylic acid.
  • the number of substituents may be 1, 2 or 3.
  • the substituent is not particularly limited as long as it does not have a terminal alkenyl group.
  • a halogen atom an alkyl group which may have a substituent, an alkoxy group, a thioalkyl group, a formyl group
  • examples include acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group, hydroxyl group and the like.
  • Specific examples of the polyvalent carboxylic acid compound (D) include 2-nitroterephthalic acid, 2-fluoroterephthalic acid, 2,3,5,6-tetrafluoroterephthalic acid, 2,4,6-trifluoro- Examples include 1,3,5-benzenetricarboxylic acid.
  • the ratio is not particularly limited, but the aromatic compound (L) and the polyvalent carboxylic acid compound (D) contained in the metal complex.
  • the content ratio of the aromatic compound (L) is preferably in the range of 0.1 to 99.9 mol%, more preferably in the range of 0.5 to 90 mol% with respect to the total mol (100 mol%) of A range of 1 to 50 mol% is particularly preferable.
  • the content ratio of the polyvalent carboxylic acid compound (D) is preferably in the range of 99.9 to 0.1 mol%, more preferably in the range of 99.5 to 10 mol%, and 99 to 50 mol%. Within the range is particularly preferred.
  • the porous metal complex of the present invention may contain an organic ligand capable of bidentate coordination different from the aromatic compound (L) and the polyvalent carboxylic acid compound (D).
  • the organic ligand capable of bidentate coordination means a neutral ligand having two portions coordinated to a metal ion by a lone pair, for example, 1,4-diazabicyclo [2.
  • octane pyrazine, 2,5-dimethylpyrazine, 4,4′-bipyridyl, 2,2′-dimethyl-4,4′-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1, 4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4-pyridyl) -1,2,4,5-tetrazine, 2,2′-bi- 1,6-naphthyridine, phenazine, diazapyrene, trans-1,2-bis (4-pyridyl) ethene, 4,4′-azopyridine, 1,2-bis (4-pyridyl) ethane, 1,2-bis (4 -Pyridyl) propane, 1,2-bis (4-pyridyl) Glycol, N- (4-pyridyl) isonicotinamide,
  • the porous metal complex used in the present invention is preferably one in which the pores of the porous metal complex have a one-dimensional structure.
  • porous metal complexes having one-dimensional pores include porous metals composed of zinc ions, terephthalate ions, and 1,4-diazabicyclo [2.2.2] octane described in Non-Patent Document 2.
  • a complex The schematic diagram is shown in FIG. In the metal complex, bidentate 1,4-diazabicyclo [2.2.2] octane is coordinated to the axial position of the zinc ion of a two-dimensional lattice-like sheet composed of a carboxylate ion of terephthalic acid and zinc.
  • a three-dimensional structure in which the sheets are connected to each other is formed.
  • the two-dimensional sheet structure is formed with pores extending one-dimensionally in the vertical direction.
  • an example of forming a three-dimensional structure having one-dimensional pores includes a porous metal complex composed of aluminum ions and terephthalate ions.
  • the porous metal complex having one-dimensional pores is not limited to those forming a three-dimensional structure, and may be a two-dimensional structure or a one-dimensional structure.
  • a porous metal complex composed of a copper ion, 2,5-dihydroxyterephthalate ion, and 4,4′-bipyridyl described in Non-Patent Document 3 can be given.
  • the porous metal complex has a sheet-like two-dimensional structure, one-dimensional pores are formed by the integrated structure of the sheet.
  • the pores have a one-dimensional structure, and as described above, an aromatic polyvalent having at least two substituents having a terminal alkenyl group. It is necessary to include the carboxylic acid compound (L1) in the structure. Specific examples include porous metal complexes composed of zinc ions, 2,5-di (allyloxy) terephthalate ions, and 1,4-diazabicyclo [2.2.2] octane.
  • the crystal structure has one-dimensional pores, similar to the porous metal complex composed of zinc ion, terephthalate ion and 1,4-diazabicyclo [2.2.2] octane described in Non-Patent Document 2. A three-dimensional integrated structure is formed.
  • the particle diameter of the porous metal complex used in the present invention is preferably 10 nm to 100 ⁇ m, more preferably 100 nm to 100 ⁇ m.
  • Methods for measuring the particle size include a method of taking a particle image with a scanning electron microscope or the like, and a method of obtaining a particle size distribution with a laser diffraction particle size measuring device.
  • the pore size of the porous metal complex used in the present invention is preferably 3 to 20 mm, more preferably 3 to 15 mm, and still more preferably 5 to 10 mm.
  • the structure is determined by single crystal X-ray diffraction or powder X-ray diffraction, and the pore size can be obtained from this structure.
  • the pore size can also be measured by gas adsorption measurement.
  • the porous metal complex used in the present invention has at least one selected from an aromatic compound (L) having at least two substituents having a terminal alkenyl group and a salt of a metal belonging to Groups 1 to 14 of the periodic table.
  • D polyvalent carboxylic acid compound
  • it is preferable to produce it by allowing it to react for several hours to several days in a solvent under normal pressure and to precipitate it. At this time, the reaction may be performed under ultrasonic wave or microwave irradiation.
  • Examples of the metal salts belonging to Groups 1 to 14 of the periodic table used for the production of the porous metal complex include lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, scandium salt, lanthanoid salt, titanium salt, Zirconium salt, vanadium salt, chromium salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt and aluminum salt can be used, and copper salt and zinc salt are more preferable.
  • the metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides and hydrobromides can be used.
  • the molar ratio is preferably within a range of 3 to 3: 1, and more preferably within a range of 1: 2 to 2: 1.
  • a molar ratio range of the aromatic compound (L): the polyvalent carboxylic acid compound (D) 0.1: 99.9 to 99.9: 0.1 Is preferably within the range of 0.5: 99.5 to 70:30.
  • the molar concentration of the metal salt in the solvent is preferably 0.005 to 5.0 mol / L, more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
  • the total molar concentration of the aromatic compound (L) and the polyvalent carboxylic acid compound (D) in the solvent is preferably 0.001 to 5.0 mol / L, 0.005 More preferable is -2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
  • an organic solvent, water, or a mixed solvent thereof can be used.
  • the reaction temperature for producing the metal complex is preferably ⁇ 20 to 150 ° C.
  • the completion of the reaction for producing the metal complex can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography, but is not limited thereto.
  • the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum-dried at a temperature at which the metal complex is not decomposed (for example, 25 to 250 ° C.) for several hours.
  • the porous metal complex used in the present invention can be obtained. Cleaning with an organic solvent and vacuum drying can be replaced by cleaning with supercritical carbon dioxide, which is more effective.
  • composition ratio of each component constituting the metal complex can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis or elemental analysis, but is not limited thereto.
  • porous metal complex of the present invention can be suitably used for a polymer production method described later, a vinyl ester copolymer production described later, and the like.
  • the polymer production method of the present invention comprises an aromatic compound (L) having at least two substituents having a terminal alkenyl group (for example, an aromatic polyvalent carboxylic acid compound (L1)), A porous metal complex containing a monomer (V) having an unsaturated double bond in the pores of a porous metal complex containing at least one metal ion selected from ions of metals belonging to groups 1 to 14
  • the aromatic compound (L) and the monomer (V) present therein are copolymerized.
  • the porous metal complex containing ions the porous metal complex described in the aforementioned “1.” column can be suitably used.
  • the monomer (V) having an unsaturated double bond is polymerized in the pores of the aforementioned porous metal complex, whereby the aromatic compound (L) in the porous metal complex is monomerized.
  • a polymer containing a unit is synthesized. That is, the terminal alkenyl group of the aromatic compound (L) is copolymerized with the unsaturated double bond of the monomer (V).
  • the monomer (V) having an unsaturated double bond used in the present invention is not particularly limited as long as it is a size that can be accommodated in the pores of the porous metal complex.
  • a compound having a saturated double bond is preferred.
  • Monomers may be used alone or in combination of two or more.
  • vinyl esters, (meth) acrylic acid and esters thereof are preferable from the viewpoint that functional sites can be imparted by saponification or modification, and vinyl esters are particularly preferable.
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • the monomer (V) needs to be accommodated in the pores of the porous metal complex.
  • the monomer (V) may be adsorbed in the pores of the porous metal complex.
  • a method of adsorbing when the monomer is a liquid, a method of directly contacting the porous metal complex with the monomer can be mentioned. At that time, it is preferable that necessary additives such as a radical polymerization initiator and a chain transfer agent described later are dissolved in the monomer and adsorbed simultaneously. Further, when the monomer is a gas, a method in which the porous metal complex and the monomer are brought into direct contact is preferable.
  • a porous metal complex after dissolving a monomer in a suitable solvent, you may make it contact with a porous metal complex.
  • the solvent used here include, for example, alcohols such as water, methanol, ethanol, pentane, hexane, heptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, decalin, and the like.
  • Aliphatic hydrocarbons such as benzene, toluene, xylene, cumene, ethylbenzene, monochlorobenzene, and dichlorobenzene, and halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and dichloroethane.
  • the monomer (V) is contained in the pores of the porous metal complex and the polymerization reaction of the monomer (V) proceeds in the pores of the porous metal complex. Verification can be made by powder X-ray diffraction according to the method.
  • a general method is used. For example, there is a method of irradiating with heating, ultraviolet rays or radiation in the presence of a radical polymerization initiator. There is also a method of heating or irradiating without the radical polymerization initiator present. There is also a method of performing cationic polymerization by acting an acidic substance.
  • radical polymerization initiator used examples include compounds usually used as an initiator for radical polymerization.
  • a chain transfer agent may be added to adjust the molecular weight.
  • the chain transfer agent include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, ⁇ -methylstyrene dimer, terpinolene, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropio Nate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, etc. Can be mentioned.
  • a chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
  • an initiator for cationic polymerization compounds usually used as an initiator for cationic polymerization are used.
  • Lewis acid such as aluminum chloride
  • Bronsted acid such as sulfuric acid and hydrochloric acid
  • triphenylsulfonium trifluoromethanesulfonate Photoacid generators such as; and the like.
  • An acidic substance can be used individually by 1 type or in combination of 2 or more types.
  • the temperature at the time of copolymerization is selected in such a range that the polymerization proceeds, the monomer does not desorb from the porous metal complex, and the depolymerization of the polymer or the decomposition of the porous metal complex does not proceed.
  • the range is preferably ⁇ 50 to 400 ° C., more preferably 0 to 300 ° C., and still more preferably 0 to 200 ° C.
  • the polymer obtained by the production method of the present invention is usually obtained in a state of being accommodated in a porous metal complex.
  • a porous metal complex In the case of taking out only the polymer, for example, there is a method in which the porous metal complex is decomposed with an aqueous solution of a compound that coordinates to a metal ion such as aqueous ammonia or ethylenediaminetetraacetic acid, an acid or an alkaline aqueous solution. Since metal or the like may remain in the polymer, it is preferable to perform a washing operation with pure water, filter and dry.
  • the polymer obtained by the production method of the present invention has a carboxyl group derived from the aromatic polyvalent carboxylic acid compound (L1).
  • the carboxyl group may be —COOH or a salt thereof.
  • the carboxyl group is in a salt state, it is preferably an alkali metal salt such as sodium or potassium.
  • FIG. 2 schematically shows an example of how the monomer is polymerized by the production method of the present invention.
  • the monomer is taken into the pores of the porous metal complex.
  • the polymerization reaction is carried out in this state, the polymerization of the monomer reflects the shape of the pores, so that the monomer is polymerized one-dimensionally and a one-dimensionally oriented polymer can be obtained.
  • the one-dimensional orientation means that the polymer chains (which can be called “molecular chains”) are not entangled with each other as shown in the schematic diagram at the right end of FIG. It represents the state of being aligned in one direction.
  • the polymer obtained by the production method of the present invention is superior in solvent resistance as compared with a polymer obtained by a usual method such as solution polymerization, and is not affected by a solvent that usually dissolves. Have. For example, polyvinyl acetate obtained by solution polymerization is dissolved in acetone, but the vinyl acetate copolymer obtained by the method of the present invention is not affected by acetone.
  • the polymer of the present invention (for example, vinyl ester copolymer) has a site that is closely cross-linked, it is excellent in heat resistance. Furthermore, it has features such as an increase in mechanical strength in the direction of the alignment axis, a decrease in linear expansion coefficient, and an increase in density, and it can be used for various applications.
  • the orientation state of the polymer chain can be evaluated by, for example, powder X-ray diffraction. Since amorphous and non-oriented polymer chains do not have a regular structure, no peak is observed in the X-ray diffraction pattern. On the other hand, in the X-ray diffraction pattern of the oriented polymer, since a peak is observed at a position corresponding to the distance between the polymers, it can be judged that the polymer is oriented. Moreover, the domain structure derived from the oriented polymer chain can also be observed by high-resolution transmission electron microscope observation. The interchain distance between polymer chains is determined by the structure of the aromatic compound (L). In a preferred embodiment of the production method of the present invention, the polymer chain distance of the obtained polymer is, for example, 0.4 to 0.6 nm.
  • the polymer obtained by the method of the present invention has a hydrolyzable functional group such as an ester bond or an amide bond in the side chain
  • the polymer can be modified by hydrolysis.
  • vinyl acetate used as a monomer
  • polyvinyl acetate obtained by polymerization by the production method of the present invention is taken out by the above method, a sodium hydroxide solution is added and a saponification step is performed, whereby a vinyl alcohol copolymer is obtained.
  • a polymer can be obtained.
  • the vinyl alcohol copolymer thus obtained is superior in solvent resistance and heat resistance as compared with the vinyl alcohol copolymer synthesized by a usual method. It is useful for applications.
  • the polymer obtained by the method of the present invention is excellent in heat resistance as compared with a polymer obtained by a usual method such as solution polymerization.
  • a polymer obtained by a usual method such as solution polymerization.
  • polystyrene obtained by solution polymerization is completely depolymerized by heating to 400 ° C. or higher, but styrene copolymer obtained by the method of the present invention is completely depolymerized by heat treatment at 400 to 600 ° C. It does not polymerize and forms char.
  • the char is oriented in the same manner as the polymer before heat treatment, a characteristic carbon material can be obtained by heat-treating the polymer obtained by the method of the present invention.
  • the vinyl ester copolymer of the present invention is a copolymer of a vinyl ester monomer and an aromatic compound (L) having a substituent having a terminal alkenyl group.
  • a polymer chain containing an ester monomer in the main chain is crosslinked.
  • the polymer chain is one-dimensionally oriented.
  • vinyl ester copolymer can be rephrased as “vinyl ester copolymer” and is used interchangeably.
  • the vinyl ester copolymer of the present invention is, for example, an aromatic fragrance which is a ligand constituting a porous metal complex by adsorbing a vinyl ester monomer into the pores of the porous metal complex described in the above-mentioned “1.” column. It can be obtained by copolymerizing the group compound (L) and a vinyl ester monomer.
  • the vinyl ester monomer that constitutes the vinyl ester copolymer of the present invention is not particularly limited as long as it is a size that can be accommodated in the pores of the porous metal complex used for the production. 2 to 12 vinyl esters are preferred.
  • vinyl ester monomers examples include vinyl acetate, vinyl propionate, vinyl pivalate, vinyl formate, vinyl butyrate, vinyl n-caproate, vinyl isocaproate, vinyl octoate, vinyl trimethyl acetate, vinyl chloroacetate, trichloroacetic acid. Examples thereof include vinyl, vinyl trifluoroacetate, vinyl benzoate and the like. Monomers may be used alone or in combination of two or more. Among these monomers, vinyl acetate and vinyl pivalate are particularly preferable.
  • the vinyl ester copolymer of the present invention polymerizes the vinyl ester monomer in the pores of the porous metal complex described above, and the terminal alkenyl group that the aromatic compound (L) has and the vinyl group that the vinyl ester monomer has. It can be produced by copolymerization.
  • the vinyl ester copolymer of the present invention can be obtained, for example, by the method for producing a polymer described in the aforementioned “2.” column.
  • a preferred embodiment of the vinyl ester copolymer of the present invention is characterized in that polymer chains (which can be referred to as “molecular chains”) are oriented one-dimensionally. “Oriented in one dimension” represents a state in which polymer chains are not entangled and arranged side by side in an extended chain state as shown in the schematic diagram at the right end of FIG.
  • polymer chains which can be referred to as “molecular chains”
  • “Oriented in one dimension” represents a state in which polymer chains are not entangled and arranged side by side in an extended chain state as shown in the schematic diagram at the right end of FIG.
  • the vinyl ester copolymer of the present invention is superior in solvent resistance compared to a vinyl ester polymer obtained by a usual method such as solution polymerization, and is not affected by a solvent that normally dissolves. Have.
  • polyvinyl acetate obtained by solution polymerization dissolves in acetone, but the vinyl ester copolymer of the present invention using vinyl acetate as a monomer does not dissolve in acetone.
  • the vinyl ester copolymer of the present invention since the vinyl ester copolymer of the present invention has a site that is closely cross-linked, it is excellent in heat resistance. Furthermore, it has features such as an increase in mechanical strength in the direction of the alignment axis, a decrease in linear expansion coefficient, and an increase in density, and it can be used for various applications.
  • the polymer chain derived from the vinyl ester monomer constituting the vinyl ester copolymer of the present invention is one-dimensionally oriented. Since amorphous and non-oriented polymer chains do not have a regular structure, no peak is observed in the X-ray diffraction pattern. On the other hand, in the X-ray diffraction pattern of the oriented polymer, since a peak is observed at a position corresponding to the distance between polymer chains, it can be judged that the polymer is oriented. Moreover, the domain structure derived from the oriented polymer chain can also be observed by high-resolution transmission electron microscope observation. The interchain distance between polymer chains is determined by the structure of the aromatic compound (L). A preferred polymer chain distance is 0.4 to 0.6 nm.
  • the vinyl ester copolymer of the present invention can be modified by hydrolysis or the like.
  • a vinyl alcohol copolymer (vinyl alcohol copolymer) can be obtained by adding an alkali such as a sodium hydroxide solution to the vinyl ester copolymer of the present invention and performing a saponification step. It is considered that the vinyl alcohol copolymer thus obtained also maintains a state in which the polymer chain is one-dimensionally oriented. Therefore, it is superior in solvent resistance and heat resistance as compared with vinyl alcohol copolymers synthesized by a usual method such as solution polymerization, and thus is useful for various uses such as a base material for valuable metal recovery materials.
  • W ads is the adsorption amount (% by weight) of the monomer (V) in the complex / monomer complex before polymerization
  • W res is the residual amount (weight) of the monomer (V) in the complex / polymer complex after polymerization. %) Respectively.
  • the adsorption amount W ads (% by weight) of the monomer (V) in the complex / monomer complex before polymerization was determined as follows. 200 mg of the metal complex was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 1.5 mL of distilled and purified monomer (V) was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and excess monomer (V) was distilled off under reduced pressure. The obtained sample was subjected to thermogravimetry, and W ads was calculated from the weight W I0 before the start of measurement and the weight W I200 at 200 ° C. according to the following equation.
  • W ads ⁇ 1- (W I200 / W I0 ) ⁇ ⁇ 100 (%)
  • the residual amount W res (% by weight) of the monomer (V) in the complex / polymer complex after polymerization was determined as follows. Thermogravimetry of the complex / polymer complex after polymerization was performed, and W res was calculated from the weight W P0 before the start of measurement and the weight W P200 at 200 ° C. according to the following formula.
  • W res ⁇ 1- (W P200 / W P0 ) ⁇ ⁇ 100 (%) Details of the analysis conditions for thermogravimetry used to calculate W ads and W res are shown below.
  • Copolymerization composition of aromatic compound (L) in polymer (C) The copolymer composition (content of aromatic compound (L)) C (mol%) of the aromatic compound (L) (for example, aromatic polycarboxylic acid compound (L1)) in the polymer is determined by the following formula. It was.
  • f L represents the weight fraction of the compound in the complex (L), it was calculated from the value of x.
  • W ads is the adsorption amount (wt%) of the monomer V in the complex / monomer complex before polymerization
  • W res is the residual quantity (wt%) of the monomer V in the complex / polymer complex after polymerization
  • y is the mole fraction incorporated into the polymer by polymerization of the compound in the complex (L)
  • M L is the molecular weight of the compound (L)
  • M V respectively represent the molecular weight of the monomer V.
  • the molar fraction (y) taken into the polymer by polymerization was determined as follows. From the integral ratio of the spectrum and the value of x obtained by 1 H NMR measurement of the solution from which the complex / polymer complex after polymerization was decomposed with 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate and the precipitate was removed. Calculated. The measurement conditions for 1 H NMR were the same as those described in (2) above.
  • IR measurement Measurement was performed using a Fourier transform infrared spectrophotometer (FT-IR) to analyze the polymer composition. Details of the measurement conditions are shown below.
  • FT-IR Fourier transform infrared spectrophotometer
  • the anion derived from terephthalic acid is tp
  • the anion derived from 2,5-di (allyloxy) terephthalic acid is datp
  • the anion derived from 2,5-divinylterephthalic acid is used.
  • dvtp, 1,4-diazabicyclo [2.2.2] octane is expressed as ted.
  • the product was removed by centrifugation, dispersed in 20 mL of dehydrated dimethylformamide, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane was dissolved in 13 mL of toluene and added at 130 ° C. for 24 hours. Stir.
  • the deposited metal complex is centrifuged, washed with dehydrated dimethylformamide and dehydrated methanol, and then vacuum-dried at 130 ° C. and expressed by the chemical formula [Cu (tp) 1-x (datt) x (ted) 0.5 ] n Obtained 935 mg of the metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. Further, the content x of 2,5-di (allyloxy) terephthalic acid (L) in all polyvalent carboxylic acid compound units in the metal complex was 0.01 (1 mol%).
  • the product was removed by centrifugation, dispersed in 20 mL of dehydrated dimethylformamide, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane was dissolved in 13 mL of toluene and added at 130 ° C. for 24 hours. Stir.
  • the deposited metal complex is centrifuged, washed with dehydrated dimethylformamide and dehydrated methanol, and then vacuum-dried at 130 ° C. and expressed by the chemical formula [Cu (tp) 1-x (datt) x (ted) 0.5 ] n Obtained 889 mg of the metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the content ratio x of 2,5-di (allyloxy) terephthalic acid (L) in all the polyvalent carboxylic acid compound units in the metal complex was 0.02 (2 mol%).
  • FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex. Further, the content x of 2,5-di (allyloxy) terephthalic acid (L) in all the polyvalent carboxylic acid compound units in the metal complex was 0.03 (3 mol%).
  • FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex.
  • Example 1 200 mg of the metal complex obtained in Synthesis Example 1 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate.
  • the results of IR measurement of the obtained copolymer are shown in FIG.
  • the obtained vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer is a polymer mainly containing vinyl acetate-derived structural units because the peak pattern coincided with the polyvinyl acetate synthesized by solution polymerization. It was confirmed that there was. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 2 mol%.
  • Example 2 200 mg of the metal complex obtained in Synthesis Example 2 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate.
  • Example 1 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polyvinyl acetate. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 3 mol%.
  • Example 3 200 mg of the metal complex obtained in Synthesis Example 3 was placed in a 10 mL flask and vacuum-dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate.
  • Example 2 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polyvinyl acetate. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 4 mol%.
  • Example 4 200 mg of the metal complex obtained in Synthesis Example 4 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified methyl methacrylate was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and methyl methacrylate that was not taken into the metal complex at a pressure of 2 kPa was distilled off under reduced pressure. The flask was again filled with nitrogen and heated at 70 ° C. for 24 hours to polymerize methyl methacrylate.
  • Example 2 In the same manner as in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polymethyl methacrylate. Further, the content of 2,5-divinylterephthalic acid in the obtained polymer was 5 mol%.
  • Example 5 200 mg of the complex obtained in Synthesis Example 4 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled styrene was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and styrene was distilled off under reduced pressure at 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 24 hours to polymerize the monomer. As a result of measuring a polymerization rate using a part of the obtained complex / polymer complex, it was 38%.
  • Example 2 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was styrene. The content of 2,5-divinylterephthalic acid in the obtained polymer was 8 mol%.
  • the styrene-2,5-divinylterephthalic acid copolymer (15 mg) obtained above was heat-treated at 500 ° C. for 30 minutes in a nitrogen atmosphere to obtain 6 mg of black char.
  • the distance between the chains of the polymer constituting the char was measured and found to be 4.8 mm.
  • Comparative Example 1 200 mg of the metal complex obtained in Comparative Synthesis Example 1 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate.
  • Example 1 since the peak patterns of the obtained polyvinyl acetate and the polyvinyl acetate synthesized by solution polymerization matched by IR measurement, it was confirmed to be polyvinyl acetate.
  • the polymer (vinyl ester copolymer) obtained by the production method of the present invention is a polymer chain having a structural unit derived from the monomer (V) (vinyl acetate or methyl methacrylate) as the main chain.
  • V vinyl acetate or methyl methacrylate
  • Example 5 it was revealed that the polymer obtained by the production method of the present invention is excellent in heat resistance and can be carbonized by heat treatment at a high temperature of 500 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

The object of the invention is to provide a method for producing a polymer having high solvent resistance and to provide a vinyl ester copolymer having high solvent resistance. Provided as a means for attaining the above object are: a method for producing a polymer, characterized in that a monomer (V) having unsaturated double bonds is polymerized in the pores of a porous metal complex containing an aromatic polycarboxylic acid compound (L1) having at least two substituents that have terminal alkenyl groups, and containing at least one type of metal ion selected from ions of metals belonging to groups 1-14 of the periodic table, and a polymer containing the aromatic polycarboxylic acid compound (L1) in the monomer units is obtained; and a vinyl ester copolymer with the aromatic compound (L1) having at least two substituents that have terminal alkenyl groups, the copolymer being characterized in that a polymer chain containing the vinyl ester monomer in the main chain is crosslinked by the aromatic compound (L1) and oriented in one dimension.

Description

多孔性金属錯体、及び該金属錯体を用いたポリマーの製造方法、並びに、ビニルエステル系コポリマーPorous metal complex, method for producing polymer using the metal complex, and vinyl ester copolymer
 [関連出願の相互参照]
 本出願は、2013年2月8日に出願された、日本国特許出願第2013-023432号明細書及び2013年2月8日に出願された、日本国特許出願第2013-023408号明細書(それらの開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
[Cross-reference of related applications]
This application includes Japanese Patent Application No. 2013-023432 filed on Feb. 8, 2013 and Japanese Patent Application No. 2013-023408 filed on Feb. 8, 2013 ( The entire disclosures of which are incorporated herein by reference).
 本発明は、多孔性金属錯体の細孔内にモノマーを吸着させ、金属錯体を構成する配位子と共重合させる、ポリマーの製造方法に関するものである。また、本発明は該製造方法に使用することができる多孔性金属錯体にも関する。 The present invention relates to a polymer production method in which a monomer is adsorbed in the pores of a porous metal complex and copolymerized with a ligand constituting the metal complex. The present invention also relates to a porous metal complex that can be used in the production method.
 また、本発明はビニルエステル系コポリマーにも関するものである。さらに詳しくは、多孔性金属錯体の細孔内に吸着させたビニルエステル系モノマーを、多孔性金属錯体の配位子と共重合させて得られるビニルエステル系コポリマーに関するものである。 The present invention also relates to a vinyl ester copolymer. More specifically, the present invention relates to a vinyl ester copolymer obtained by copolymerizing a vinyl ester monomer adsorbed in the pores of a porous metal complex with a ligand of the porous metal complex.
 ポリマーは軽さや強度など性能のバランスに優れた材料であり、金属等と比較して低温で成形可能であるものが多いことから成形品として用いられている。汎用的な成形法の一つとして射出成形があるが、射出成形によってポリマーを成形した場合には、成形品に内部応力(残留歪みなど)が残り易い。内部応力の残った成形品は、変形、割れ、クラックなどが発生し易く、特にアルコール類、燃料油類、ワックスリムーバなどの有機溶剤に曝されると変形、クラック、割れ、変色などが一層生じ易くなる。かかる点からポリマーには高い耐溶剤性が必要とされている。耐溶剤性を改善したポリマーとして、例えばアイオノマー樹脂を用いた例が開示されている(特許文献1参照)。 Polymers are materials that have an excellent balance of performance such as lightness and strength, and are often used as molded products because they can be molded at low temperatures compared to metals. There is injection molding as one of general-purpose molding methods. However, when a polymer is molded by injection molding, internal stress (residual strain or the like) tends to remain in the molded product. Deformed, cracked, cracked, etc. are likely to occur in molded products with remaining internal stress, especially when exposed to organic solvents such as alcohols, fuel oils, wax removers, etc. It becomes easy. From this point, the polymer is required to have high solvent resistance. As a polymer with improved solvent resistance, for example, an ionomer resin is disclosed (see Patent Document 1).
 一方、有機配位子と金属イオンからなる多孔性金属錯体を用いて、この細孔内に低分子化合物を吸着させてモノマーを重合させる方法が知られている(特許文献2~5、非特許文献1参照)。これらの手法によれば、分子量分布や立体規則性が制御されたポリマーが得られることが開示されているが、耐溶剤性に関しては記載がない。 On the other hand, a method is known in which a monomer is polymerized by adsorbing a low-molecular compound in the pores using a porous metal complex composed of an organic ligand and a metal ion (Patent Documents 2 to 5, non-patent documents). Reference 1). According to these methods, it is disclosed that a polymer having a controlled molecular weight distribution and stereoregularity can be obtained, but there is no description regarding solvent resistance.
 また、汎用的なポリビニルエステルであるポリ酢酸ビニルは、ポリビニルアルコールの中間原料などとして広く用いられている。また、保護コロイドとしてポリビニルアルコールを含むポリ酢酸ビニル系エマルジョンは、紙用、木工用およびプラスチック用などの各種接着剤、含浸紙用および不織製品用などの各種バインダー、混和剤、表面処理剤、打継ぎ材、塗料、紙加工および繊維加工、壁紙などの用途に用いられている。これらの用途において、耐水性、耐溶剤性などを向上させる必要があり、これまでにポリビニルエステルの耐水性や耐溶剤性などを向上させるべく、様々な方法が提案されている。 Polyvinyl acetate, which is a general-purpose polyvinyl ester, is widely used as an intermediate raw material for polyvinyl alcohol. Polyvinyl acetate emulsions containing polyvinyl alcohol as a protective colloid are various adhesives for paper, woodworking and plastics, various binders for impregnated paper and non-woven products, admixtures, surface treatment agents, It is used for applications such as splicing materials, paints, paper processing and textile processing, and wallpaper. In these applications, it is necessary to improve water resistance, solvent resistance, etc., and various methods have been proposed so far in order to improve the water resistance, solvent resistance, etc. of polyvinyl esters.
 例えば、ポリビニルエステルまたはそのけん化物であるポリビニルアルコールに、カルボキシル基などの架橋可能な官能基を付加し、耐水性を向上させたポリビニルエステルまたはポリビニルアルコールが知られている(特許文献6及び7参照)。また、ポリ酢酸ビニルエマルジョンに界面活性剤を少量添加した塗料を粘着テープなどの背面処理剤として用いることで、耐溶剤性が向上することも知られている(特許文献8参照)。 For example, polyvinyl esters or polyvinyl alcohols are known in which water resistance is improved by adding a crosslinkable functional group such as a carboxyl group to polyvinyl ester or saponified polyvinyl alcohol (see Patent Documents 6 and 7). ). It is also known that the solvent resistance is improved by using a paint obtained by adding a small amount of a surfactant to a polyvinyl acetate emulsion as a back surface treatment agent such as an adhesive tape (see Patent Document 8).
 しかしながら、これらの手法によりポリビニルエステルまたはそのけん化物であるポリビニルアルコールの耐水性・耐溶剤性はある程度向上するものの、未だ改善の余地がある。 However, although the water resistance and solvent resistance of the polyvinyl ester or the saponified polyvinyl alcohol thereof are improved to some extent by these methods, there is still room for improvement.
 一方、反応性基を含む側鎖を有する規則性ポリマーの製造方法として、多孔性金属錯体の細孔内でモノマーを重合させる方法が知られている(特許文献3参照)。当該文献によれば、1次元の規則性ナノチャンネルとしての細孔を有する多孔性金属錯体を用いることにより、複数の反応性基を有するモノマーから、構造規則性を有するポリマーを得ることができる。反応性基を有する機能性分子として、スチレン、酢酸ビニルなどが例示されている。 On the other hand, as a method for producing a regular polymer having a side chain containing a reactive group, a method of polymerizing a monomer within the pores of a porous metal complex is known (see Patent Document 3). According to this document, a polymer having structure regularity can be obtained from a monomer having a plurality of reactive groups by using a porous metal complex having pores as one-dimensional regular nanochannels. Examples of functional molecules having a reactive group include styrene and vinyl acetate.
 しかしながら、特許文献3の方法によって得られるポリマーは、ポリマー鎖が1次元鎖構造を有するため、溶媒に対する溶解性はむしろ向上することが開示されている。 However, it is disclosed that the polymer obtained by the method of Patent Document 3 has rather improved solubility in a solvent because the polymer chain has a one-dimensional chain structure.
特開2004-224813号公報Japanese Patent Laid-Open No. 2004-224813 特開2006-225579号公報JP 2006-225579 A 特開2007-238874号公報JP 2007-238874 A 特開平9-324006号公報JP-A-9-324006 特開平8-217811号公報JP-A-8-217811 特開平8-60116号公報JP-A-8-60116 特公平1-31525号公報Japanese Patent Publication No. 1-31525 特開平9-143438号公報JP-A-9-143438
 かかる状況において、本発明が解決しようとする課題は、全く新しい耐溶剤性の高いポリマーの製造方法を提供すること、及び、耐溶剤性の高いビニルエステル系コポリマーを提供することである。 Under such circumstances, the problem to be solved by the present invention is to provide a completely new method for producing a polymer having high solvent resistance and to provide a vinyl ester copolymer having high solvent resistance.
 本発明者らが鋭意検討した結果、末端アルケニル基を少なくとも2つ有する特定の芳香族多価カルボン酸化合物を有する多孔性金属錯体を用いてモノマーを重合することにより、耐溶剤性の高いポリマーを製造することができ、上記課題を解決できることを見出し、本発明に至った。 As a result of intensive studies by the present inventors, a polymer having a high solvent resistance is obtained by polymerizing a monomer using a porous metal complex having a specific aromatic polyvalent carboxylic acid compound having at least two terminal alkenyl groups. It has been found that it can be manufactured and the above problems can be solved, and the present invention has been achieved.
 すなわち、本発明は、主に下記[1]~[23]に関するものである。 That is, the present invention mainly relates to the following [1] to [23].
 [1]末端アルケニル基を有する置換基を少なくとも2つ有する芳香族多価カルボン酸化合物(L1)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体の細孔内で、不飽和二重結合を有するモノマー(V)を重合させ、前記芳香族多価カルボン酸化合物(L1)を構成単位に含むポリマーを得ることを特徴とする、ポリマーの製造方法。 [1] An aromatic polycarboxylic acid compound (L1) having at least two substituents having a terminal alkenyl group, and at least one metal ion selected from ions of metals belonging to Groups 1 to 14 of the periodic table; Characterized in that a monomer (V) having an unsaturated double bond is polymerized in the pores of a porous metal complex containing a polymer to obtain a polymer containing the aromatic polyvalent carboxylic acid compound (L1) as a constituent unit. A method for producing a polymer.
 [2]前記芳香族多価カルボン酸化合物(L1)が、下記一般式(1)または(2)で示される化合物である[1]に記載のポリマーの製造方法; [2] The method for producing a polymer according to [1], wherein the aromatic polyvalent carboxylic acid compound (L1) is a compound represented by the following general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、AおよびAはカルボキシル基であり、B~Bのうち少なくとも2つはそれぞれ同一または異なって、下記一般式(3) (In the formula, A 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaがそれぞれ同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
で表される末端アルケニル基を有する置換基であり、B~Bのうち一般式(3)で表されないものは、同一または異なって、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基及びカルボキシル基からなる群から選ばれるいずれかの置換基である。)
(Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] is Y 1 and a is the same or different from each other in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxycarbonyl group. is there)
The substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent. Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent. )
 [3]前記多孔性金属錯体が、さらに前記芳香族多価カルボン酸化合物(L1)とは異なる多価カルボン酸化合物(D)を含む、[1]または[2]に記載のポリマーの製造方法。 [3] The method for producing a polymer according to [1] or [2], wherein the porous metal complex further contains a polyvalent carboxylic acid compound (D) different from the aromatic polyvalent carboxylic acid compound (L1). .
 [4]前記多価カルボン酸化合物(D)が、末端アルケニル基を有さない芳香族ジカルボン酸化合物である[3]に記載のポリマーの製造方法。 [4] The method for producing a polymer according to [3], wherein the polyvalent carboxylic acid compound (D) is an aromatic dicarboxylic acid compound having no terminal alkenyl group.
 [5]前記多孔性金属錯体中における芳香族多価カルボン酸化合物(L1)の含有割合が、芳香族多価カルボン酸化合物(L1)と多価カルボン酸化合物(D)との合計100モル%に対し、0.1~99.9モル%の範囲内である[3]または[4]に記載のポリマーの製造方法。 [5] The content of the aromatic polyvalent carboxylic acid compound (L1) in the porous metal complex is 100 mol% in total of the aromatic polyvalent carboxylic acid compound (L1) and the polyvalent carboxylic acid compound (D). The method for producing a polymer according to [3] or [4], which is in the range of 0.1 to 99.9 mol%.
 [6]前記多孔性金属錯体が、さらに前記金属イオンに多座配位可能な有機配位子を含む、[1]~[5]のいずれか1項に記載のポリマーの製造方法。 [6] The method for producing a polymer according to any one of [1] to [5], wherein the porous metal complex further contains an organic ligand capable of multidentate coordination with the metal ion.
 [7]不飽和二重結合を有するモノマー(V)が、ビニルエステルであることを特徴とする、[1]~[6]のいずれか1項に記載のポリマーの製造方法。 [7] The method for producing a polymer according to any one of [1] to [6], wherein the monomer (V) having an unsaturated double bond is a vinyl ester.
 [8]前記モノマー(V)が酢酸ビニルである、[7]に記載のポリマーの製造方法。 [8] The method for producing a polymer according to [7], wherein the monomer (V) is vinyl acetate.
 [9]さらに、前記モノマー(V)の重合後にけん化工程を含む、[7]または[8]に記載のポリマーの製造方法。 [9] The method for producing a polymer according to [7] or [8], further including a saponification step after the polymerization of the monomer (V).
 [10][1]~[8]のいずれか1項に記載の方法で得られたポリマーを400℃以上600℃以下で熱処理することを特徴とする炭素材料の製造方法。 [10] A method for producing a carbon material, wherein the polymer obtained by the method according to any one of [1] to [8] is heat-treated at a temperature of 400 ° C. to 600 ° C.
 [11]ビニルエステルモノマーと、末端アルケニル基を有する置換基を少なくとも2つ有する下記一般式(1)または(2)で表される芳香族化合物(L)との共重合体であって、前記芳香族化合物(L)により、ビニルエステルモノマーを主鎖に含むポリマー鎖が架橋されていることを特徴とするビニルエステル系コポリマー。 [11] A copolymer of a vinyl ester monomer and an aromatic compound (L) represented by the following general formula (1) or (2) having at least two substituents having a terminal alkenyl group, A vinyl ester copolymer, wherein a polymer chain containing a vinyl ester monomer in a main chain is crosslinked with an aromatic compound (L).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、AおよびAは同一または異なって下記一般式 (In the formula, A 1 and A 2 are the same or different and have the following general formula:
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
で表されるカルボキシル基若しくはその塩、 A carboxyl group represented by
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
で表されるピリジル基、 A pyridyl group represented by
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
で表されるイミダゾリル基、 An imidazolyl group represented by:
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
で表されるトリアゾリル基、または A triazolyl group represented by
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
で表されるテトラゾリル基であり、Xは水素原子またはアルカリ金属原子である。B~Bのうち少なくとも2つは同一または異なる末端アルケニル基を有する置換基であり、その他は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基、カルボキシル基及びカルボキシル基のアルカリ金属塩からなる群から選ばれるいずれかの置換基である。) And X is a hydrogen atom or an alkali metal atom. At least two of B 1 to B 4 are substituents having the same or different terminal alkenyl groups, and the others are hydrogen atom, halogen atom, alkyl group, alkoxy group, thioalkyl group, formyl group, acyloxy group, alkoxycarbonyl A substituent selected from the group consisting of a group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, a carboxyl group, and an alkali metal salt of a carboxyl group. )
 [12] 前記ポリマー鎖が一次元に配向していることを特徴とする、[11]に記載のビニルエステル系コポリマー。 [12] The vinyl ester copolymer according to [11], wherein the polymer chain is one-dimensionally oriented.
 [13]前記末端アルケニル基を有する置換基が、下記一般式(3) [13] The substituent having the terminal alkenyl group is represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaが同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
で表される置換基である、[11]また[12]に記載のビニルエステル系コポリマー。
(Wherein, Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] are the same or Y 1 and a is in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or alkoxycarbonyl Base)
The vinyl ester copolymer according to [11] or [12], which is a substituent represented by:
 [14]前記芳香族化合物(L)に由来する単量体単位の含有率が、0.1~50mol%である[11]~[13]のいずれか1項に記載のビニルエステル系コポリマー。 [14] The vinyl ester copolymer according to any one of [11] to [13], wherein the content of the monomer unit derived from the aromatic compound (L) is 0.1 to 50 mol%.
 [15]前記ビニルエステルモノマーを主鎖に含むポリマー鎖のポリマー鎖間距離が0.4~0.6nmの範囲内である[11]~[14]のいずれか1項に記載のビニルエステル系コポリマー。 [15] The vinyl ester system according to any one of [11] to [14], wherein the polymer chain distance of the polymer chain containing the vinyl ester monomer in the main chain is in the range of 0.4 to 0.6 nm. Copolymer.
 [16]前記ビニルエステルモノマーが酢酸ビニルであることを特徴とする請求項[11]~[15]のいずれか1項に記載のビニルエステル系コポリマー。 [16] The vinyl ester copolymer according to any one of [11] to [15], wherein the vinyl ester monomer is vinyl acetate.
 [17][11]~[16]のいずれか1項に記載の共重合体をけん化することにより得られるポリビニル系コポリマー。 [17] A polyvinyl copolymer obtained by saponifying the copolymer according to any one of [11] to [16].
 [18]末端アルケニル基を有する置換基を少なくとも2つ有する芳香族多価カルボン酸化合物(L1)と、それとは異なる多価カルボン酸化合物(D)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体。 [18] An aromatic polycarboxylic acid compound (L1) having at least two substituents having a terminal alkenyl group, a polyvalent carboxylic acid compound (D) different from the aromatic polycarboxylic acid compound (D1), and a metal belonging to Groups 1 to 14 of the periodic table A porous metal complex comprising at least one metal ion selected from the ions of:
 [19]芳香族多価カルボン酸化合物(L1)が、下記一般式(1)または(2)で示される化合物である[18]に記載の多孔性金属錯体; [19] The porous metal complex according to [18], wherein the aromatic polyvalent carboxylic acid compound (L1) is a compound represented by the following general formula (1) or (2);
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、AおよびAはカルボキシル基であり、B~Bのうち少なくとも2つはそれぞれ同一または異なって、下記一般式(3) (In the formula, A 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式(3)中、YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaがそれぞれ同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
で表される末端アルケニル基を有する置換基であり、B~Bのうち一般式(3)で表されないものは、同一または異なって、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基及びカルボキシル基からなる群から選ばれるいずれかの置換基である。)。
(In Formula (3), Y 1 and Y 2 are the same or different and are an oxygen atom, a sulfur atom, or —O—CO—, and [Y 1 — (CH 2 ) a ] represents Y 1 and a for each repeating unit. May be the same or different, a is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl having 1 to 5 carbon atoms Group or alkoxycarbonyl group)
The substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent. Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent. ).
 [20]前記末端アルケニル基を有する置換基が、下記一般式(4) [20] The substituent having the terminal alkenyl group is represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式(4)中、Oは酸素原子であり、dは1~5の整数である)で表されることを特徴とする[19]に記載の多孔性金属錯体。 The porous metal complex according to [19], wherein O is an oxygen atom and d is an integer of 1 to 5 in the formula (4).
 [21]多価カルボン酸化合物(D)が、末端アルケニル基を有さない芳香族ジカルボン酸化合物である[18]~[20]のいずれか1項に記載の多孔性金属錯体。 [21] The porous metal complex according to any one of [18] to [20], wherein the polyvalent carboxylic acid compound (D) is an aromatic dicarboxylic acid compound having no terminal alkenyl group.
 [22]芳香族多価カルボン酸化合物(L1)の含有割合が、芳香族多価カルボン酸化合物(L1)と多価カルボン酸化合物(D)との合計100モル%に対し、0.1~99.9モル%の範囲内である[18]~[21]のいずれか1項に記載の多孔性金属錯体。 [22] The content of the aromatic polyvalent carboxylic acid compound (L1) is 0.1 to 0.1% with respect to 100 mol% in total of the aromatic polyvalent carboxylic acid compound (L1) and the polyvalent carboxylic acid compound (D). The porous metal complex according to any one of [18] to [21], which is in the range of 99.9 mol%.
 [23]前記多孔性金属錯体が、さらに前記金属イオンに多座配位可能な有機配位子を含む、[18]~[22]のいずれか1項に記載の多孔性金属錯体。 [23] The porous metal complex according to any one of [18] to [22], wherein the porous metal complex further contains an organic ligand capable of multidentate coordination with the metal ion.
 本発明の製造方法によれば、従来の重合方法で得られるポリマーに比べて、溶剤に対する耐性を著しく改善した、耐溶剤性の高いポリマーを製造することができる。また、本発明の製造方法によって得られたポリマーは、その主鎖が一次元に配向されており、擬結晶構造をポリマー中に有するため、高密度にすることができる。さらに、本発明の製造方法によって得られたポリマーは、耐熱性、機械的強度等にも優れる。 According to the production method of the present invention, it is possible to produce a polymer having high solvent resistance, which has significantly improved resistance to solvents as compared with polymers obtained by conventional polymerization methods. In addition, the polymer obtained by the production method of the present invention has a main chain that is one-dimensionally oriented and has a pseudocrystalline structure in the polymer, so that it can have a high density. Furthermore, the polymer obtained by the production method of the present invention is excellent in heat resistance, mechanical strength, and the like.
 本発明によれば、溶剤に対する耐性を著しく改善した、ビニルエステル系コポリマーを得ることもできる。本発明のビニルエステル系コポリマーは、通常の溶液重合によって得られるビニルエステル系コポリマー体に比べ、耐溶剤性、耐熱性、機械強度などに優れる。 According to the present invention, it is also possible to obtain a vinyl ester copolymer with significantly improved resistance to solvents. The vinyl ester copolymer of the present invention is superior in solvent resistance, heat resistance, mechanical strength and the like as compared with a vinyl ester copolymer obtained by ordinary solution polymerization.
多孔性金属錯体の模式図を示す。The schematic diagram of a porous metal complex is shown. 多孔性金属錯体中における重合の模式図を示す。図中、(a)多孔性金属錯体、(b)芳香族化合物(L)(例えば、芳香族多価カルボン酸化合物(L1)。)、(c)モノマー(V)(例えば、ビニルエステルモノマー。);および、(i)モノマー吸着、(ii)重合、(iii)多孔性金属錯体の分解・除去の各工程をそれぞれ示す。The schematic diagram of superposition | polymerization in a porous metal complex is shown. In the figure, (a) porous metal complex, (b) aromatic compound (L) (for example, aromatic polycarboxylic acid compound (L1)), (c) monomer (V) (for example, vinyl ester monomer). ); And (i) monomer adsorption, (ii) polymerization, and (iii) decomposition / removal of the porous metal complex. 合成例1で得た多孔性金属錯体の粉末X線回折パターンを示す。The powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 1 is shown. 合成例2で得た多孔性金属錯体の粉末X線回折パターンを示す。The powder X-ray diffraction pattern of the porous metal complex obtained in Synthesis Example 2 is shown. 合成例3で得た多孔性金属錯体の粉末X線回折パターンを示す。The powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 3 is shown. 合成例4で得た多孔性金属錯体の粉末X線回折パターンを示す。The powder X-ray-diffraction pattern of the porous metal complex obtained by the synthesis example 4 is shown. 比較合成例1で得た多孔性金属錯体の結晶構造を示す。The crystal structure of the porous metal complex obtained in Comparative Synthesis Example 1 is shown. 比較合成例1で得た金属錯体の粉末X線回折パターンを示す。The powder X-ray-diffraction pattern of the metal complex obtained by the comparative synthesis example 1 is shown. IRチャートを示す。(a)実施例1で得た酢酸ビニル-2,5-ジ(アリルオキシ)テレフタル酸共重合体のIRチャートを示す(下)。(b)溶液重合により合成されるポリ酢酸ビニル(溶液重合品)のIRチャートを示す(上)。An IR chart is shown. (a) An IR chart of the vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer obtained in Example 1 is shown (bottom). (b) An IR chart of polyvinyl acetate (solution polymerized product) synthesized by solution polymerization is shown (top).
 図3~6及び8において、縦軸は強度(Intensity)を示す。 3 to 6 and 8, the vertical axis represents the intensity.
 1.多孔性金属錯体
 本発明の金属錯体は、末端アルケニル基を有する置換基を少なくとも2つ有する芳香族化合物(L)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含むことを特徴とする。
1. Porous metal complex The metal complex of the present invention is an aromatic compound (L) having at least two substituents having a terminal alkenyl group and at least one selected from ions of metals belonging to Groups 1 to 14 of the periodic table. Metal ions.
 芳香族化合物(L)は、末端アルケニル基を有する置換基を少なくとも2つ有する下記一般式(1)または(2)で表される化合物である。 The aromatic compound (L) is a compound represented by the following general formula (1) or (2) having at least two substituents having a terminal alkenyl group.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式中、AおよびAはそれぞれ同一または異なって下記一般式 In the above formula, A 1 and A 2 are the same or different, and
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
で表されるカルボキシル基若しくはその塩、 A carboxyl group represented by
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
で表されるピリジル基、 A pyridyl group represented by
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
で表されるイミダゾリル基、 An imidazolyl group represented by:
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
で表されるトリアゾリル基または A triazolyl group represented by
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
で表されるテトラゾリル基であり、Xは水素原子またはアルカリ金属原子(例えば、ナトリウム原子、カリウム原子など。)である。B~Bのうち少なくとも2つはそれぞれ同一または異なる末端アルケニル基を有する置換基であり、その他は、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基、ヒドロキシル基、カルボキシル基及びカルボキシル基のアルカリ金属塩からなる群から選ばれるいずれかの置換基である。置換基に含まれる炭素数は0~5の範囲が好ましく、0~2の範囲がさらに好ましい。 X is a hydrogen atom or an alkali metal atom (for example, a sodium atom, a potassium atom, etc.). At least two of B 1 to B 4 are each a substituent having the same or different terminal alkenyl group, and the others are a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an alkoxy group, a thioalkyl group Group, formyl group, acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group, hydroxyl group, carboxyl group, and alkali metal salt of carboxyl group Any of the substituents. The number of carbon atoms contained in the substituent is preferably in the range of 0 to 5, more preferably in the range of 0 to 2.
 ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が、アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基などの直鎖または分岐を有するアルキル基が、アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基が、チオアルキル基としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基,n-ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基が、アシロキシ基の例としては、アセトキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基が、アルコキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基が、モノアルキルアミノ基の例としてはメチルアミノ基が、ジアルキルアミノ基の例としては、ジメチルアミノ基が、アシルアミノ基の例としては、アセチルアミノ基が、それぞれ挙げられる。また、該アルキル基等が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基など)、カルボン酸無水物基(-CO-O-CO-R基)(Rは炭素数1~5のアルキル基である)などが挙げられる。アルキル基の置換基の数は、1~3個が好ましく、1個がより好ましい。 Examples of halogen atoms include fluorine, chlorine, bromine and iodine atoms, and examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert Examples of the alkoxy group having a linear or branched alkyl group such as butyl group or pentyl group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert- The butoxy group is a thioalkyl group such as a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, an isobutylthio group, or a tert-butylthio group. Examples of an acyloxy group include an acetoxy group, n -Propanoyloxy group, n-butanoyloxy group, pivaloyloxy group, benzoyl Examples of the alkoxy group include an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group, and an n-butoxycarbonyl group, examples of a monoalkylamino group include a methylamino group, and examples of a dialkylamino group include dimethylamino. An example of the acylamino group is an acetylamino group. Examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group). Etc.), amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyl) Oxy group, pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R Is an alkyl group having 1 to 5 carbon atoms). The number of substituents on the alkyl group is preferably 1 to 3, more preferably 1.
 芳香族化合物(L)は、好ましくは芳香族多価カルボン酸化合物(L1)、特に好ましくは、ベンゼン多価カルボン酸化合物である。この場合、A及びAは、カルボキシル基若しくはその塩である。 The aromatic compound (L) is preferably an aromatic polyvalent carboxylic acid compound (L1), particularly preferably a benzene polyvalent carboxylic acid compound. In this case, A 1 and A 2 are a carboxyl group or a salt thereof.
 本明細書において「カルボキシル基」とは、-COOHで表される基、-COOで表される基を包含する。芳香族化合物(L)が芳香族多価カルボン酸化合物(L1)である場合、多孔性金属錯体中においては、カルボキシル基は、主にプロトンが脱離したカルボキシレート(-COO)の状態で存在する。 In this specification, the “carboxyl group” includes a group represented by —COOH and a group represented by —COO 2 . When the aromatic compound (L) is an aromatic polyvalent carboxylic acid compound (L1), in the porous metal complex, the carboxyl group is mainly in the form of a carboxylate (—COO ) from which a proton has been eliminated. Exists.
 A及びAは同一であっても異なっていてもよいが、同一であるものが好ましい。 A 1 and A 2 may be the same or different, but are preferably the same.
 B~Bのうち少なくとも2つはそれぞれ同一または異なる末端アルケニル基を有する置換基である。前記末端アルケニル基を有する置換基は、置換基の末端に-CR=CHで表されるアルケニル基が結合しているものであれば特に限定されない。当該アルケニル基部分で、金属錯体の細孔内に収容されたモノマー(V)と共重合することにより、目的のポリマーを得ることができる。末端アルケニル基を有する置換基は、好ましくは下記一般式(3) At least two of B 1 to B 4 are each a substituent having the same or different terminal alkenyl group. The substituent having the terminal alkenyl group is not particularly limited as long as the alkenyl group represented by —CR═CH 2 is bonded to the terminal of the substituent. By copolymerizing the alkenyl group moiety with the monomer (V) accommodated in the pores of the metal complex, the target polymer can be obtained. The substituent having a terminal alkenyl group is preferably the following general formula (3)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
で表される置換基である。一般式(3)中、Y及びYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaがそれぞれ同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。aは1~3の範囲が好ましく、1~2の範囲がより好ましい。bは0~2の範囲が好ましく、0または1がより好ましい。cは1が好ましい。dは0~3の範囲が好ましく、0~1の範囲がより好ましい。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である。 It is a substituent represented by these. In the general formula (3), Y 1 and Y 2 are the same or different and are an oxygen atom, a sulfur atom or —O—CO—, and [Y 1 — (CH 2 ) a ] represents Y 1 and a for each repeating unit. May be the same or different, a is an integer of 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. a is preferably in the range of 1 to 3, more preferably in the range of 1 to 2. b is preferably in the range of 0 to 2, more preferably 0 or 1. c is preferably 1. d is preferably in the range of 0 to 3, and more preferably in the range of 0 to 1. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxycarbonyl group.
 末端アルケニル基を有する置換基としては、具体的には、ビニル基、イソプロペニル基、アリル基、メタアリル基、3-ブテニル基、ビニルオキシ基、イソプロペニルオキシ基、アリルオキシ基、メタアリルオキシ基、(アリルオキシ)メトキシ基などが挙げられる。 Specific examples of the substituent having a terminal alkenyl group include a vinyl group, isopropenyl group, allyl group, methallyl group, 3-butenyl group, vinyloxy group, isopropenyloxy group, allyloxy group, methallyloxy group, ( And allyloxy) methoxy group.
 末端アルケニル基を有する置換基の好ましい例として、下記一般式(4)で表される末端アルケニル基を有する置換基も挙げられる。 Preferable examples of the substituent having a terminal alkenyl group also include a substituent having a terminal alkenyl group represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式(4)中、Oは酸素原子であり、dは1~5の整数である)
 芳香族化合物(L)の具体例としては、例えば、2,5-ジビニルテレフタル酸、2,5-ジイソプロペニルテレフタル酸、2,5-ジアリルテレフタル酸、2,5-ジメタアリルテレフタル酸、2,5-ジ(ビニルオキシ)テレフタル酸、2,5-ジ(イソプロペニルオキシ)テレフタル酸、2,5-ジ(アリルオキシ)テレフタル酸、2,5-ジ(メタアリルオキシ)テレフタル酸、4,6-ジビニルイソフタル酸などが挙げられる。
(In formula (4), O is an oxygen atom and d is an integer of 1 to 5)
Specific examples of the aromatic compound (L) include 2,5-divinyl terephthalic acid, 2,5-diisopropenyl terephthalic acid, 2,5-diallyl terephthalic acid, 2,5-dimethallyl terephthalic acid, 2,5-di (vinyloxy) terephthalic acid, 2,5-di (isopropenyloxy) terephthalic acid, 2,5-di (allyloxy) terephthalic acid, 2,5-di (methallyloxy) terephthalic acid, 4, Examples thereof include 6-divinylisophthalic acid.
 周期表1~14族から選択される金属イオンとしては、芳香族化合物(L)由来の構造単位と多孔性金属錯体を形成するものが好適である。金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、スカンジウムイオン、ランタノイドイオン、チタンイオン、ジルコニウムイオン、バナジウムイオン、クロムイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、カドミウムイオンおよびアルミニウムイオンなどを使用することができ、銅イオン及び亜鉛イオンがより好ましい。金属イオンは、単一の金属イオンを使用することが好ましいが、2種以上の金属イオンを含んでいてもよい。また、本発明の多孔性金属錯体は、単一の金属イオンからなる多孔性金属錯体を2種類以上混合して使用することもできる。 As the metal ions selected from Groups 1 to 14 of the periodic table, those that form a porous metal complex with a structural unit derived from the aromatic compound (L) are suitable. Examples of metal ions include lithium ions, sodium ions, potassium ions, magnesium ions, calcium ions, barium ions, scandium ions, lanthanoid ions, titanium ions, zirconium ions, vanadium ions, chromium ions, manganese ions, iron ions, and cobalt. Ions, nickel ions, copper ions, zinc ions, cadmium ions, aluminum ions and the like can be used, and copper ions and zinc ions are more preferable. The metal ion is preferably a single metal ion, but may contain two or more kinds of metal ions. Moreover, the porous metal complex of this invention can also mix and use two or more types of porous metal complexes which consist of a single metal ion.
 前記多孔性金属錯体は、さらに芳香族化合物(L)とは異なる多価カルボン酸化合物(D)を含んでいてもよい。多価カルボン酸化合物(D)としては、末端アルケニル基を有さないものが好ましい。多価カルボン酸化合物(D)の好ましい具体例としては、例えば、コハク酸、1,4-シクロヘキサンジカルボン酸、フマル酸、ムコン酸、2,3-ピラジンジカルボン酸、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’‐ビフェニルジカルボン酸、2,5-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸、2,5-チオフェンジカルボン酸、2,2’-ジチオフェンジカルボン酸などの芳香族ジカルボン酸化合物;トリメシン酸、トリメリット酸、ビフェニル-3,4’,5-トリカルボン酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、1,3,5-トリス(4’-カルボキシ[1,1’-ビフェニル]‐4-イル)ベンゼンなどの芳香族トリカルボン酸化合物;ピロメリット酸、[1,1’:4’,1’’]ターフェニルー3,3’’,5,5’’-テトラカルボン酸、1,2,4,5-テトラキス(4-カルボキシフェニル)ベンゼンなどの芳香族テトラカルボン酸化合物;などが挙げられる。これらの中でもジカルボン酸化合物が好ましく、芳香族ジカルボン酸化合物がより好ましい。多価カルボン酸化合物(D)は、単独で用いても良く、2種以上の多価カルボン酸化合物を混合して用いても良い。多孔性金属錯体中においては、多価カルボン酸化合物(D)は主にカルボン酸部位からプロトンが脱離したカルボキシレートの状態で存在する。 The porous metal complex may further contain a polyvalent carboxylic acid compound (D) different from the aromatic compound (L). As the polyvalent carboxylic acid compound (D), those having no terminal alkenyl group are preferred. Preferable specific examples of the polyvalent carboxylic acid compound (D) include, for example, succinic acid, 1,4-cyclohexanedicarboxylic acid, fumaric acid, muconic acid, 2,3-pyrazinedicarboxylic acid, terephthalic acid, isophthalic acid, 1, 4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 2,5-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,2 Aromatic dicarboxylic acid compounds such as '-dithiophene dicarboxylic acid; trimesic acid, trimellitic acid, biphenyl-3,4', 5-tricarboxylic acid, 1,3,5-tris (4-carboxyphenyl) benzene, 1, Aromatic tricals such as 3,5-tris (4'-carboxy [1,1'-biphenyl] -4-yl) benzene Acid compounds; pyromellitic acid, [1,1 ′: 4 ′, 1 ″] terphenyl-3,3 ″, 5,5 ″ -tetracarboxylic acid, 1,2,4,5-tetrakis (4- Aromatic tetracarboxylic acid compounds such as carboxyphenyl) benzene; and the like. Among these, dicarboxylic acid compounds are preferable, and aromatic dicarboxylic acid compounds are more preferable. The polyvalent carboxylic acid compound (D) may be used alone, or two or more polyvalent carboxylic acid compounds may be mixed and used. In the porous metal complex, the polyvalent carboxylic acid compound (D) exists mainly in a carboxylate state in which protons are eliminated from the carboxylic acid sites.
 前記多価カルボン酸化合物(D)は、カルボキシル基以外に置換基をさらに有していてもよい。置換基を有する多価カルボン酸は、芳香族多価カルボン酸が好ましく、置換基は芳香族多価カルボン酸の芳香環に結合したものが好ましい。置換基の数は1、2または3個が挙げられる。置換基としては、末端アルケニル基を有さないものであれば特に限定されるものではないが、例えばハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基、ヒドロキシル基などが挙げられる。具体的な多価カルボン酸化合物(D)の例としては、2-ニトロテレフタル酸、2-フルオロテレフタル酸、2,3,5,6-テトラフルオロテレフタル酸、2,4,6-トリフルオロ-1,3,5-ベンゼントリカルボン酸などが挙げられる。 The polyvalent carboxylic acid compound (D) may further have a substituent other than the carboxyl group. The polyvalent carboxylic acid having a substituent is preferably an aromatic polyvalent carboxylic acid, and the substituent is preferably bonded to the aromatic ring of the aromatic polyvalent carboxylic acid. The number of substituents may be 1, 2 or 3. The substituent is not particularly limited as long as it does not have a terminal alkenyl group. For example, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, a thioalkyl group, a formyl group, Examples include acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group, hydroxyl group and the like. Specific examples of the polyvalent carboxylic acid compound (D) include 2-nitroterephthalic acid, 2-fluoroterephthalic acid, 2,3,5,6-tetrafluoroterephthalic acid, 2,4,6-trifluoro- Examples include 1,3,5-benzenetricarboxylic acid.
 多孔性金属錯体が多価カルボン酸化合物(D)を含む場合、その割合は特に限定されるものではないが、金属錯体中に含まれる芳香族化合物(L)と多価カルボン酸化合物(D)との合計モル(100モル%)に対し、芳香族化合物(L)の含有割合が0.1~99.9モル%の範囲内が好ましく、0.5~90モル%の範囲内がより好ましく、1~50モル%の範囲内が特に好ましい。また、多価カルボン酸化合物(D)の含有割合は、99.9~0.1モル%の範囲内が好ましく、99.5~10モル%の範囲内がより好ましく、99~50モル%の範囲内が特に好ましい。芳香族化合物(L)の含有率が低すぎる場合は、得られるポリマーの耐溶剤性が十分ではない場合がある。芳香族化合物(L)の含有率が高すぎると、耐溶剤性の高いポリマーは得られるもののポリマーの収率が低下する傾向にある。 When the porous metal complex contains the polyvalent carboxylic acid compound (D), the ratio is not particularly limited, but the aromatic compound (L) and the polyvalent carboxylic acid compound (D) contained in the metal complex. The content ratio of the aromatic compound (L) is preferably in the range of 0.1 to 99.9 mol%, more preferably in the range of 0.5 to 90 mol% with respect to the total mol (100 mol%) of A range of 1 to 50 mol% is particularly preferable. The content ratio of the polyvalent carboxylic acid compound (D) is preferably in the range of 99.9 to 0.1 mol%, more preferably in the range of 99.5 to 10 mol%, and 99 to 50 mol%. Within the range is particularly preferred. When the content rate of an aromatic compound (L) is too low, the solvent resistance of the polymer obtained may not be enough. If the content of the aromatic compound (L) is too high, a polymer having a high solvent resistance is obtained, but the polymer yield tends to decrease.
 本発明の多孔性金属錯体は、芳香族化合物(L)および多価カルボン酸化合物(D)とは異なる二座配位可能な有機配位子を含んでいてもよい。二座配位可能な有機配位子とは、非共有電子対で金属イオンに対して配位する部分を2箇所有する中性配位子を意味し、例えば、1,4-ジアザビシクロ[2.2.2]オクタン、ピラジン、2,5-ジメチルピラジン、4,4’-ビピリジル、2,2’-ジメチル-4,4’-ビピリジン、1,2-ビス(4-ピリジル)エチン、1,4-ビス(4-ピリジル)ブタジイン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,2’-ビ-1,6-ナフチリジン、フェナジン、ジアザピレン、トランス-1,2-ビス(4-ピリジル)エテン、4,4’-アゾピリジン、1,2-ビス(4-ピリジル)エタン、1,2-ビス(4-ピリジル)プロパン、1,2-ビス(4-ピリジル)-グリコール、N-(4-ピリジル)イソニコチンアミド、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、4,4’-ビス(4-ピリジル)ビフェニル、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド、1,2-ビス(1-イミダゾリル)エタン、1,2-ビス(1,2,4-トリアゾリル)エタン、1,2-ビス(1,2,3,4-テトラゾリル)エタン、1,2-ビス(1-イミダゾリル)プロパン、1,2-ビス(1,2,4-トリアゾリル)プロパン、1,2-ビス(1,2,3,4-テトラゾリル)プロパン、1,2-ビス(1-イミダゾリル)ブタン、1,2-ビス(1,2,4-トリアゾリル)ブタン、1,2-ビス(1,2,3,4-テトラゾリル)ブタン、1,4-ビス(ベンゾイミダゾールー1-イルメチル)-2,4,5,6-テトラメチルベンゼン、1,4-ビス(4-ピリジルメチル)-2,3,5,6―テトラメチルベンゼン、1,3-ビス(イミダゾール-1-イルメチル)-2,4,6-トリメチルベンゼン、1,3-ビス(4-ピリジルメチル)-2,4,6-トリメチルベンゼンなどが挙げられる。 The porous metal complex of the present invention may contain an organic ligand capable of bidentate coordination different from the aromatic compound (L) and the polyvalent carboxylic acid compound (D). The organic ligand capable of bidentate coordination means a neutral ligand having two portions coordinated to a metal ion by a lone pair, for example, 1,4-diazabicyclo [2. 2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4′-bipyridyl, 2,2′-dimethyl-4,4′-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1, 4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4-pyridyl) -1,2,4,5-tetrazine, 2,2′-bi- 1,6-naphthyridine, phenazine, diazapyrene, trans-1,2-bis (4-pyridyl) ethene, 4,4′-azopyridine, 1,2-bis (4-pyridyl) ethane, 1,2-bis (4 -Pyridyl) propane, 1,2-bis (4-pyridyl) Glycol, N- (4-pyridyl) isonicotinamide, 2,6-di (4-pyridyl) -benzo [1,2-c: 4,5-c ′] dipyrrole-1,3,5,7 (2H , 6H) -Tetron, 4,4′-bis (4-pyridyl) biphenyl, N, N′-di (4-pyridyl) -1,4,5,8-naphthalenetetracarboxydiimide, 1,2-bis ( 1-imidazolyl) ethane, 1,2-bis (1,2,4-triazolyl) ethane, 1,2-bis (1,2,3,4-tetrazolyl) ethane, 1,2-bis (1-imidazolyl) Propane, 1,2-bis (1,2,4-triazolyl) propane, 1,2-bis (1,2,3,4-tetrazolyl) propane, 1,2-bis (1-imidazolyl) butane, 1, 2-bis (1,2,4-triazolyl) butane, 1, -Bis (1,2,3,4-tetrazolyl) butane, 1,4-bis (benzimidazol-1-ylmethyl) -2,4,5,6-tetramethylbenzene, 1,4-bis (4-pyridyl) Methyl) -2,3,5,6-tetramethylbenzene, 1,3-bis (imidazol-1-ylmethyl) -2,4,6-trimethylbenzene, 1,3-bis (4-pyridylmethyl) -2 4,6-trimethylbenzene and the like.
 本発明に使用される多孔性金属錯体は、多孔性金属錯体の細孔が一次元構造であるものが好ましい。一次元の細孔を有する多孔性金属錯体の例としては、非特許文献2に記載されている亜鉛イオン、テレフタル酸イオン、1,4-ジアザビシクロ[2.2.2]オクタンからなる多孔性金属錯体が挙げられる。その模式図を図1に示す。該金属錯体は、テレフタル酸のカルボキシレートイオンと亜鉛からなる二次元格子状シートの亜鉛イオンのアキシャル位に二座配位の1,4-ジアザビシクロ[2.2.2]オクタンが配位することで、シート間が連結された三次元構造を形成する。その構造中に、二次元シート構造と垂直方向に一次元に伸びる細孔を形成する。同様に一次元細孔を有する三次元構造を形成する例として、アルミニウムイオンとテレフタル酸イオンからなる多孔性金属錯体が挙げられる。ただし、一次元の細孔を有する多孔性金属錯体は、三次元構造を形成するものに限定されるものではなく、二次元構造や一次元構造を形成するものでもよい。一例として、非特許文献3に記載されている銅イオン、2,5-ジヒドロキシテレフタル酸イオン、4,4’-ビピリジルからなる多孔性金属錯体が挙げられる。該多孔性金属錯体はシート状二次元構造を有するが、シートの集積構造により一次元の細孔を形成する。 The porous metal complex used in the present invention is preferably one in which the pores of the porous metal complex have a one-dimensional structure. Examples of porous metal complexes having one-dimensional pores include porous metals composed of zinc ions, terephthalate ions, and 1,4-diazabicyclo [2.2.2] octane described in Non-Patent Document 2. A complex. The schematic diagram is shown in FIG. In the metal complex, bidentate 1,4-diazabicyclo [2.2.2] octane is coordinated to the axial position of the zinc ion of a two-dimensional lattice-like sheet composed of a carboxylate ion of terephthalic acid and zinc. Thus, a three-dimensional structure in which the sheets are connected to each other is formed. In the structure, the two-dimensional sheet structure is formed with pores extending one-dimensionally in the vertical direction. Similarly, an example of forming a three-dimensional structure having one-dimensional pores includes a porous metal complex composed of aluminum ions and terephthalate ions. However, the porous metal complex having one-dimensional pores is not limited to those forming a three-dimensional structure, and may be a two-dimensional structure or a one-dimensional structure. As an example, a porous metal complex composed of a copper ion, 2,5-dihydroxyterephthalate ion, and 4,4′-bipyridyl described in Non-Patent Document 3 can be given. Although the porous metal complex has a sheet-like two-dimensional structure, one-dimensional pores are formed by the integrated structure of the sheet.
 ただし、本発明に使用できる多孔性金属錯体としては、細孔が一次元構造であるのみでは不十分であり、前述したように、末端アルケニル基を有する置換基を少なくとも2つ有する芳香族多価カルボン酸化合物(L1)を構造内に含むものである必要がある。具体的な例としては、亜鉛イオン、2,5-ジ(アリルオキシ)テレフタル酸イオン、1,4-ジアザビシクロ[2.2.2]オクタンからなる多孔性金属錯体が挙げられる。その結晶構造は、非特許文献2に記載されている亜鉛イオン、テレフタル酸イオン、1,4-ジアザビシクロ[2.2.2]オクタンからなる多孔性金属錯体と同様、一次元の細孔を有する三次元集積構造を形成する。 However, as a porous metal complex that can be used in the present invention, it is not sufficient that the pores have a one-dimensional structure, and as described above, an aromatic polyvalent having at least two substituents having a terminal alkenyl group. It is necessary to include the carboxylic acid compound (L1) in the structure. Specific examples include porous metal complexes composed of zinc ions, 2,5-di (allyloxy) terephthalate ions, and 1,4-diazabicyclo [2.2.2] octane. The crystal structure has one-dimensional pores, similar to the porous metal complex composed of zinc ion, terephthalate ion and 1,4-diazabicyclo [2.2.2] octane described in Non-Patent Document 2. A three-dimensional integrated structure is formed.
 本発明に使用される多孔性金属錯体の粒子径は、10nm~100μmが好ましく、より好ましくは100nm~100μmである。粒子径が10nmより小さい場合は、ポリマーの製造に用いる場合に、得られるポリマー鎖長が短く、耐溶剤性に劣る傾向がある。粒子径を測定する方法は、走査型電子顕微鏡などにより粒子の像を撮影する方法や、レーザー回折式粒度測定装置により粒子径の分布を求める方法がある。 The particle diameter of the porous metal complex used in the present invention is preferably 10 nm to 100 μm, more preferably 100 nm to 100 μm. When the particle diameter is smaller than 10 nm, the polymer chain length obtained is short when used for polymer production, and the solvent resistance tends to be poor. Methods for measuring the particle size include a method of taking a particle image with a scanning electron microscope or the like, and a method of obtaining a particle size distribution with a laser diffraction particle size measuring device.
 本発明に使用される多孔性金属錯体の細孔サイズは3~20Åが好ましく、より好ましくは3~15Å、さらに好ましくは5~10Åである。細孔を測定する方法は、単結晶X線回折、粉末X線回折によって構造を決定し、この構造から細孔サイズを求めることができる。また、ガス吸着測定によっても細孔サイズを測定することができる。 The pore size of the porous metal complex used in the present invention is preferably 3 to 20 mm, more preferably 3 to 15 mm, and still more preferably 5 to 10 mm. As a method for measuring pores, the structure is determined by single crystal X-ray diffraction or powder X-ray diffraction, and the pore size can be obtained from this structure. The pore size can also be measured by gas adsorption measurement.
 本発明に使用される多孔性金属錯体は、末端アルケニル基を有する置換基を少なくとも2つ有する芳香族化合物(L)と、周期表の1~14族に属する金属の塩から選択される少なくとも1種の金属塩と、必要に応じて、該金属イオンに二座配位可能な有機配位子及び多価カルボン酸化合物(D)とを、気相、液相または固相のいずれかで反応させることで製造することができるが、常圧下、溶媒中で数時間から数日間反応させ、析出させて製造することが好ましい。このとき、超音波またはマイクロウェーブ照射下で反応を行ってもよい。 The porous metal complex used in the present invention has at least one selected from an aromatic compound (L) having at least two substituents having a terminal alkenyl group and a salt of a metal belonging to Groups 1 to 14 of the periodic table. Reaction of a metal salt of a seed with an organic ligand capable of bidentate coordination with the metal ion and a polyvalent carboxylic acid compound (D), if necessary, in a gas phase, a liquid phase or a solid phase However, it is preferable to produce it by allowing it to react for several hours to several days in a solvent under normal pressure and to precipitate it. At this time, the reaction may be performed under ultrasonic wave or microwave irradiation.
 多孔性金属錯体の製造に用いる周期表の1~14族に属する金属の塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、スカンジウム塩、ランタノイド塩、チタン塩、ジルコニウム塩、バナジウム塩、クロム塩、マンガン塩、鉄塩、コバルト塩、ニッケル塩、銅塩、亜鉛塩、カドミウム塩およびアルミニウム塩などを使用することができ、銅塩及び亜鉛塩がより好ましい。金属塩は、単一の金属塩を使用することが好ましいが、2種以上の金属塩を混合して用いてもよい。また、これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、炭酸塩、塩酸塩、臭化水素酸塩などの無機酸塩を使用することができる。 Examples of the metal salts belonging to Groups 1 to 14 of the periodic table used for the production of the porous metal complex include lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, scandium salt, lanthanoid salt, titanium salt, Zirconium salt, vanadium salt, chromium salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt and aluminum salt can be used, and copper salt and zinc salt are more preferable. The metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides and hydrobromides can be used.
 多孔性金属錯体を製造するときの金属塩と芳香族化合物(L)の混合比率は、金属塩:芳香族化合物(L)=1:5~8:1のモル比の範囲内が好ましく、1:3~6:1の範囲内がより好ましい。多座配位可能な有機配位子を用いる場合には、金属塩と多座配位可能な有機配位子の混合比率は、金属塩:多座配位可能な有機配位子=1:3~3:1のモル比の範囲内が好ましく、1:2~2:1の範囲内がより好ましい。多価カルボン酸化合物(D)を用いる場合には、芳香族化合物(L):多価カルボン酸化合物(D)=0.1:99.9~99.9:0.1のモル比の範囲内が好ましく、0.5:99.5~70:30の範囲内がより好ましい。 The mixing ratio of the metal salt and the aromatic compound (L) when producing the porous metal complex is preferably within the range of the molar ratio of metal salt: aromatic compound (L) = 1: 5 to 8: 1. : More preferably in the range of 3-6: 1. When an organic ligand capable of multidentate coordination is used, the mixing ratio of the metal salt to the organic ligand capable of multidentate coordination is as follows: metal salt: organic ligand capable of multidentate coordination = 1: The molar ratio is preferably within a range of 3 to 3: 1, and more preferably within a range of 1: 2 to 2: 1. When the polyvalent carboxylic acid compound (D) is used, a molar ratio range of the aromatic compound (L): the polyvalent carboxylic acid compound (D) = 0.1: 99.9 to 99.9: 0.1 Is preferably within the range of 0.5: 99.5 to 70:30.
 金属錯体の製造を溶媒中で行なう場合、溶媒における金属塩のモル濃度は、0.005~5.0mol/Lが好ましく、0.01~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では未反応の金属塩が残留し、得られた金属錯体の精製が困難になる。 When the metal complex is produced in a solvent, the molar concentration of the metal salt in the solvent is preferably 0.005 to 5.0 mol / L, more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
 金属錯体の製造を溶媒中で行なう場合、溶媒における芳香族化合物(L)と多価カルボン酸化合物(D)のモル濃度の合計は、0.001~5.0mol/Lが好ましく、0.005~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。 When the metal complex is produced in a solvent, the total molar concentration of the aromatic compound (L) and the polyvalent carboxylic acid compound (D) in the solvent is preferably 0.001 to 5.0 mol / L, 0.005 More preferable is -2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
 金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N-ジメチルホルムアミド、水またはこれらの混合溶媒を使用することができる。 As the solvent used for the production of the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, water or These mixed solvents can be used.
 金属錯体を製造する際の反応温度としては、-20~150℃が好ましい。 The reaction temperature for producing the metal complex is preferably −20 to 150 ° C.
 金属錯体を製造する反応が終了したことはガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができるが、これらに限定されるものではない。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、金属錯体が分解しない程度の温度(例えば25~250℃)程度で数時間真空乾燥することにより、本発明に用いられる多孔性金属錯体を得ることができる。有機溶媒による洗浄、真空乾燥操作は、超臨界二酸化炭素による洗浄によっても代えることができ、より効果的である。 The completion of the reaction for producing the metal complex can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography, but is not limited thereto. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum-dried at a temperature at which the metal complex is not decomposed (for example, 25 to 250 ° C.) for several hours. Thus, the porous metal complex used in the present invention can be obtained. Cleaning with an organic solvent and vacuum drying can be replaced by cleaning with supercritical carbon dioxide, which is more effective.
 金属錯体を構成する各成分の組成比は、例えば、単結晶X線構造解析、粉末X線結晶構造解析または元素分析などにより確認できるが、これらに限定されるものではない。 The composition ratio of each component constituting the metal complex can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis or elemental analysis, but is not limited thereto.
 本発明の多孔性金属錯体は、後述するポリマーの製造方法、後述するビニルエステル系コポリマーの製造などに好適に使用することができる。 The porous metal complex of the present invention can be suitably used for a polymer production method described later, a vinyl ester copolymer production described later, and the like.
 2.ポリマーの製造方法
 本発明のポリマーの製造方法は、末端アルケニル基を有する置換基を少なくとも2つ有する芳香族化合物(L)(例えば、芳香族多価カルボン酸化合物(L1))と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体の細孔内に不飽和二重結合を有するモノマー(V)を収容し、多孔性金属錯体中に存在する芳香族化合物(L)とモノマー(V)とを共重合させることを特徴とする。
2. Polymer Production Method The polymer production method of the present invention comprises an aromatic compound (L) having at least two substituents having a terminal alkenyl group (for example, an aromatic polyvalent carboxylic acid compound (L1)), A porous metal complex containing a monomer (V) having an unsaturated double bond in the pores of a porous metal complex containing at least one metal ion selected from ions of metals belonging to groups 1 to 14 The aromatic compound (L) and the monomer (V) present therein are copolymerized.
 本発明のポリマーの製造方法に用いる末端アルケニル基を有する置換基を少なくとも2つ有する芳香族化合物(L)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体として、前述の「1.」欄に記載の多孔性金属錯体を好適に用いることができる。中でも、モノマーをその細孔内に収容して重合した場合に、得られるポリマー鎖が実質的に一次元方向に成長する構造をとるものを選択することが好ましい。つまり、多孔性金属錯体の細孔が一次元構造であるものが好ましい。 At least one metal selected from an aromatic compound (L) having at least two substituents having a terminal alkenyl group and a metal ion belonging to groups 1 to 14 of the periodic table used in the method for producing a polymer of the present invention As the porous metal complex containing ions, the porous metal complex described in the aforementioned “1.” column can be suitably used. Among them, it is preferable to select a monomer having a structure in which a polymer chain to be grown substantially in a one-dimensional direction when a monomer is contained in the pores and polymerized. That is, it is preferable that the pores of the porous metal complex have a one-dimensional structure.
 本発明の製造方法は、前述の多孔性金属錯体の細孔内で、不飽和二重結合を有するモノマー(V)を重合することで、多孔性金属錯体中の芳香族化合物(L)をモノマー単位として含むポリマーを合成するものである。つまり、芳香族化合物(L)が有する末端アルケニル基とモノマー(V)の不飽和二重結合とを共重合させることを特徴とする。 In the production method of the present invention, the monomer (V) having an unsaturated double bond is polymerized in the pores of the aforementioned porous metal complex, whereby the aromatic compound (L) in the porous metal complex is monomerized. A polymer containing a unit is synthesized. That is, the terminal alkenyl group of the aromatic compound (L) is copolymerized with the unsaturated double bond of the monomer (V).
 本発明に用いられる不飽和二重結合を有するモノマー(V)は、多孔性金属錯体の細孔内に収容しうるサイズであれば特に制限されるものではないが、炭素数2~12の不飽和二重結合を有する化合物が好ましい。例えば、酢酸ビニル、プロピオン酸ビニル、ピバル酸ビニル、蟻酸ビニル、酪酸ビニル、n-カプロン酸ビニル、イソカプロン酸ビニル、オクタン酸ビニル、トリメチル酢酸ビニル、クロロ酢酸ビニル、トリクロロ酢酸ビニル、トリフルオロ酢酸ビニル、安息香酸ビニル等のビニルエステル;塩化ビニル、臭化ビニル等のハロゲン化ビニル、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ブタジエン、シクロペンテン、シクロヘキセン、ビニルシクロヘキサン、ノルボルネン、ノルボルナジエン等の脂肪族アルケン;アクリル酸、アクリル酸メチル、メタクリル酸、メタクリル酸メチル等の(メタ)アクリル酸およびそのエステル;アクリロニトリル、メタクリロニトリル等のニトリル類;スチレン、ビニルナフタレン、4-ビニルピリジン等の芳香族ビニル化合物;が挙げられる。モノマーは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのモノマーの中でも、ビニルエステル、(メタ)アクリル酸およびそのエステルがけん化や変性により機能性部位を付与できる点から好ましく、ビニルエステルが特に好ましい。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味する。 The monomer (V) having an unsaturated double bond used in the present invention is not particularly limited as long as it is a size that can be accommodated in the pores of the porous metal complex. A compound having a saturated double bond is preferred. For example, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl formate, vinyl butyrate, vinyl n-caproate, vinyl isocaproate, vinyl octoate, vinyl trimethyl acetate, vinyl chloroacetate, vinyl trichloroacetate, vinyl trifluoroacetate, Vinyl esters such as vinyl benzoate; vinyl halides such as vinyl chloride and vinyl bromide, ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, butadiene, cyclopentene, cyclohexene, vinylcyclohexane, norbornene, norbornadiene Aliphatic alkenes such as; acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate and other (meth) acrylic acid and esters thereof; nitriles such as acrylonitrile and methacrylonitrile; Ren, vinyl naphthalene, aromatic vinyl compounds such as 4-vinylpyridine; and the like. Monomers may be used alone or in combination of two or more. Among these monomers, vinyl esters, (meth) acrylic acid and esters thereof are preferable from the viewpoint that functional sites can be imparted by saponification or modification, and vinyl esters are particularly preferable. In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid.
 前記モノマー(V)は、多孔性金属錯体の細孔内に収容される必要があるが、収容方法としては、例えば、多孔性金属錯体の細孔内にモノマー(V)を吸着させればよい。吸着させる方法としては、モノマーが液体の場合には、多孔性金属錯体とモノマーを直接接触させる方法が挙げられる。その際、後述するラジカル重合開始剤、連鎖移動剤など必要な添加剤をモノマー中に溶解して、同時に吸着させることが好ましい。また、モノマーがガスの場合にも、多孔性金属錯体とモノマーを直接接触させる方法が好ましい。また、モノマーを適当な溶媒に溶解させた後、多孔性金属錯体と接触させてもよい。ここで使用される溶媒の例としては、例えば、水、メタノール、エタノールなどのアルコール類、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロオクタン、デカリンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレン、クメン、エチルベンゼン、モノクロロベンゼン、ジクロロベンゼンなどの芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタンなどのハロゲン化炭化水素などが挙げられる。 The monomer (V) needs to be accommodated in the pores of the porous metal complex. For example, the monomer (V) may be adsorbed in the pores of the porous metal complex. . As a method of adsorbing, when the monomer is a liquid, a method of directly contacting the porous metal complex with the monomer can be mentioned. At that time, it is preferable that necessary additives such as a radical polymerization initiator and a chain transfer agent described later are dissolved in the monomer and adsorbed simultaneously. Further, when the monomer is a gas, a method in which the porous metal complex and the monomer are brought into direct contact is preferable. Moreover, after dissolving a monomer in a suitable solvent, you may make it contact with a porous metal complex. Examples of the solvent used here include, for example, alcohols such as water, methanol, ethanol, pentane, hexane, heptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, decalin, and the like. Aliphatic hydrocarbons such as benzene, toluene, xylene, cumene, ethylbenzene, monochlorobenzene, and dichlorobenzene, and halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and dichloroethane.
 モノマー(V)は多孔性金属錯体の細孔内への収容、及び、モノマー(V)の重合反応が多孔性金属錯体の細孔内で進行することは、例えば、非特許文献1に記載の方法に準じて粉末X線回折により検証をすることができる。 The monomer (V) is contained in the pores of the porous metal complex and the polymerization reaction of the monomer (V) proceeds in the pores of the porous metal complex. Verification can be made by powder X-ray diffraction according to the method.
 多孔性金属錯体の細孔内にモノマーを吸着させる前には、多孔性金属錯体に吸着された水分や溶媒を除去するため、真空で予備乾燥を行うことが好ましい。 Before the monomer is adsorbed in the pores of the porous metal complex, it is preferable to perform preliminary drying in a vacuum in order to remove moisture and solvent adsorbed on the porous metal complex.
 重合を開始させる方法としては、一般的な手法が用いられる。例えば、ラジカル重合開始剤の存在下に加熱あるいは紫外線、放射線などを照射する方法がある。また、ラジカル重合開始剤を存在させずに加熱あるいは放射線を照射する方法もある。また、酸性物質を作用させてカチオン重合を行う方法もある。 As a method for initiating polymerization, a general method is used. For example, there is a method of irradiating with heating, ultraviolet rays or radiation in the presence of a radical polymerization initiator. There is also a method of heating or irradiating without the radical polymerization initiator present. There is also a method of performing cationic polymerization by acting an acidic substance.
 使用するラジカル重合開始剤としては、ラジカル重合の開始剤として通常使用される化合物が挙げられる。例えば、ジ-tert-ブチルパーオキサイド、ラウロイルパーオキサイド、ステアリルパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルパーオキシネオデカネート、tert-ブチルパーオキシピバレート、ジラウロイルパーオキサイド、ジクミルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサンなどの有機過酸化物;2,2'-アゾビスイソブチロニトリル、2,2'-アゾビスイソバレロニトリル、1,1-アゾビス(1-シクロヘキサンカルボニトリル)、2,2'-アゾビス-4-メトキシ-2,4-アゾビスイソブチロニトリル、2,2'-アゾビス-2,4-ジメチルバレロニトリル、2,2'-アゾビス-2-メチルブチロニトリルなどアゾ系ラジカル重合開始剤;1-ヒドロキシ-シクロヘキシル-フェニル-ケトンなどのアルキルフェノン系光重合開始剤;トリエチルボランなどが挙げられる。重合開始剤は1種単独でまたは2種以上を組み合わせて用いることができる。ラジカル重合開始剤を使用する場合、前記モノマー(V)とともに多孔性金属錯体の細孔内に収容することで、ラジカル重合反応が有利に進行する。 Examples of the radical polymerization initiator used include compounds usually used as an initiator for radical polymerization. For example, di-tert-butyl peroxide, lauroyl peroxide, stearyl peroxide, benzoyl peroxide, tert-butyl peroxyneodecanate, tert-butyl peroxypivalate, dilauroyl peroxide, dicumyl peroxide, tert Organics such as butyl peroxy-2-ethylhexanoate, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane Peroxides: 2,2′-azobisisobutyronitrile, 2,2′-azobisisovaleronitrile, 1,1-azobis (1-cyclohexanecarbonitrile), 2,2′-azobis-4-methoxy -2,4-azobisisobutyronitrile, 2, Azo radical polymerization initiators such as' -azobis-2,4-dimethylvaleronitrile, 2,2'-azobis-2-methylbutyronitrile; alkylphenone-based photopolymerization initiators such as 1-hydroxy-cyclohexyl-phenyl-ketone Agents: triethylborane and the like. A polymerization initiator can be used individually by 1 type or in combination of 2 or more types. When the radical polymerization initiator is used, the radical polymerization reaction proceeds advantageously by accommodating the monomer (V) in the pores of the porous metal complex.
 ラジカル重合を行う場合は、分子量調整のために連鎖移動剤を加えてもよい。連鎖移動剤としては、例えばn-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、α-メチルスチレンダイマー、テルピノレン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、ペンタエリスリトールテトラキスチオプロピオネートなどが挙げられる。連鎖移動剤は1種単独でまたは2種以上を組み合わせて用いることができる。 When performing radical polymerization, a chain transfer agent may be added to adjust the molecular weight. Examples of the chain transfer agent include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, α-methylstyrene dimer, terpinolene, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropio Nate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, etc. Can be mentioned. A chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
 重合開始に使用する酸性物質としては、カチオン重合の開始剤として通常使用される化合物が用いられ、例えば、塩化アルミニウムなどのルイス酸;硫酸、塩酸などのブレンステッド酸、トリフルオロメタンスルホン酸トリフェニルスルホニウムなどの光酸発生剤;などが挙げられる。酸性物質は1種単独でまたは2種以上を組み合わせて用いることができる。 As the acidic substance used for initiating the polymerization, compounds usually used as an initiator for cationic polymerization are used. For example, Lewis acid such as aluminum chloride; Bronsted acid such as sulfuric acid and hydrochloric acid, triphenylsulfonium trifluoromethanesulfonate Photoacid generators such as; and the like. An acidic substance can be used individually by 1 type or in combination of 2 or more types.
 共重合させる際の温度は、重合が進行する範囲で、モノマーが該多孔性金属錯体から脱着せず、かつポリマーの解重合や多孔性金属錯体の分解が進行しない範囲で選択される。好ましくは-50~400℃、より好ましくは0~300℃、さらに好ましくは0~200℃の範囲である。 The temperature at the time of copolymerization is selected in such a range that the polymerization proceeds, the monomer does not desorb from the porous metal complex, and the depolymerization of the polymer or the decomposition of the porous metal complex does not proceed. The range is preferably −50 to 400 ° C., more preferably 0 to 300 ° C., and still more preferably 0 to 200 ° C.
 本発明の製造方法により得られるポリマーは、通常、多孔性金属錯体内に収容された状態で得られる。ポリマーのみを取り出す場合には、例えば多孔性金属錯体をアンモニア水やエチレンジアミン四酢酸水溶液など金属イオンに配位する化合物の水溶液、酸もしくはアルカリ水溶液にて分解する方法がある。ポリマー中に金属等が残存する可能性があるため、純水等で洗浄操作を行い、濾別し乾燥することが好ましい。 The polymer obtained by the production method of the present invention is usually obtained in a state of being accommodated in a porous metal complex. In the case of taking out only the polymer, for example, there is a method in which the porous metal complex is decomposed with an aqueous solution of a compound that coordinates to a metal ion such as aqueous ammonia or ethylenediaminetetraacetic acid, an acid or an alkaline aqueous solution. Since metal or the like may remain in the polymer, it is preferable to perform a washing operation with pure water, filter and dry.
 芳香族化合物(L)が芳香族多価カルボン酸化合物(L1)である場合、本発明の製造方法により得られるポリマーは、芳香族多価カルボン酸化合物(L1)に由来するカルボキシル基を有する。得られるポリマーにおいて、カルボキシル基は、-COOHまたはその塩であってもよい。カルボキシル基が塩の状態である場合、ナトリウム、カリウムなどのアルカリ金属の塩であることが好ましい。 When the aromatic compound (L) is an aromatic polyvalent carboxylic acid compound (L1), the polymer obtained by the production method of the present invention has a carboxyl group derived from the aromatic polyvalent carboxylic acid compound (L1). In the resulting polymer, the carboxyl group may be —COOH or a salt thereof. When the carboxyl group is in a salt state, it is preferably an alkali metal salt such as sodium or potassium.
 本発明の製造方法によってモノマーが重合される様子を、一例として図2に模式的に示す。図2において、モノマーは前記多孔性金属錯体の細孔内に取り込まれている。この状態で重合反応を行うと、細孔形状を反映してモノマーの重合が進行するため、モノマーは一次元に連なって重合し、一次元に配向した一次元鎖構造のポリマーを得ることができる。一次元に配向しているとは、図2の右端の模式図に示すように、ポリマー鎖(「分子鎖」と換言することができる。)同士が絡み合いを起こさず、伸びきり鎖の状態で一方向に並んで配列している状態を表す。このとき、多孔性金属錯体を構成する前記芳香族化合物(L)が一緒に共重合されることにより、ポリマー鎖同士が繋がれ架橋構造を形成する。よって、金属錯体を分解後もポリマー鎖が一次元に配向した状態は維持され、当該部分の構造は擬結晶性を示す。本発明の製造方法により得られるポリマーは、溶液重合などの通常の方法により得られるポリマーと比較して耐溶剤性に優れており、通常は溶解してしまう溶剤に対しても侵されないという特徴を有する。例えば、溶液重合により得られるポリ酢酸ビニルはアセトンに溶解するが、本発明の方法により得られる酢酸ビニル共重合体はアセトンに侵されない。さらに、本発明のポリマー(例えば、ビニルエステル系共重合体)は密に架橋している部位を有するため、耐熱性にも優れる。さらに、配向軸方向の機械的強度が高くなる、線膨張係数が低くなる、密度が高くなるなどの特徴があり、種々の用途に用いることができる。 FIG. 2 schematically shows an example of how the monomer is polymerized by the production method of the present invention. In FIG. 2, the monomer is taken into the pores of the porous metal complex. When the polymerization reaction is carried out in this state, the polymerization of the monomer reflects the shape of the pores, so that the monomer is polymerized one-dimensionally and a one-dimensionally oriented polymer can be obtained. . The one-dimensional orientation means that the polymer chains (which can be called “molecular chains”) are not entangled with each other as shown in the schematic diagram at the right end of FIG. It represents the state of being aligned in one direction. At this time, when the aromatic compound (L) constituting the porous metal complex is copolymerized together, the polymer chains are connected to form a crosslinked structure. Therefore, even after the metal complex is decomposed, the state in which the polymer chain is oriented in one dimension is maintained, and the structure of the portion exhibits pseudo-crystallinity. The polymer obtained by the production method of the present invention is superior in solvent resistance as compared with a polymer obtained by a usual method such as solution polymerization, and is not affected by a solvent that usually dissolves. Have. For example, polyvinyl acetate obtained by solution polymerization is dissolved in acetone, but the vinyl acetate copolymer obtained by the method of the present invention is not affected by acetone. Furthermore, since the polymer of the present invention (for example, vinyl ester copolymer) has a site that is closely cross-linked, it is excellent in heat resistance. Furthermore, it has features such as an increase in mechanical strength in the direction of the alignment axis, a decrease in linear expansion coefficient, and an increase in density, and it can be used for various applications.
 ポリマー鎖の配向状態は、例えば粉末X線回折により評価することができる。非晶質で無配向のポリマー鎖は規則的な構造を有さないため、X線回折パターンにピークが観察されない。一方、配向したポリマーのX線回折パターンには、ポリマー間距離に相当する箇所にピークが観察されることから、配向していることを判断することができる。また、高分解能透過型電子顕微鏡観察によっても、配向したポリマー鎖に由来するドメイン構造を観察することができる。また、ポリマー鎖同士の鎖間距離は芳香族化合物(L)の構造により決定される。本発明の製造方法の好ましい態様において、得られるポリマーのポリマー鎖間距離は、例えば、0.4~0.6nmである。 The orientation state of the polymer chain can be evaluated by, for example, powder X-ray diffraction. Since amorphous and non-oriented polymer chains do not have a regular structure, no peak is observed in the X-ray diffraction pattern. On the other hand, in the X-ray diffraction pattern of the oriented polymer, since a peak is observed at a position corresponding to the distance between the polymers, it can be judged that the polymer is oriented. Moreover, the domain structure derived from the oriented polymer chain can also be observed by high-resolution transmission electron microscope observation. The interchain distance between polymer chains is determined by the structure of the aromatic compound (L). In a preferred embodiment of the production method of the present invention, the polymer chain distance of the obtained polymer is, for example, 0.4 to 0.6 nm.
 また、本発明の方法により得られたポリマーが側鎖にエステル結合やアミド結合など加水分解性の官能基を有する場合には、加水分解によりポリマーを改質することができる。例えば、酢酸ビニルをモノマーとして用いた場合、本発明の製造方法により重合して得られたポリ酢酸ビニルを上記方法により取り出し、水酸化ナトリウム溶液を加えてけん化工程を行うことにより、ビニルアルコール系共重合体を得ることができる。このようにして得られたビニルアルコール系共重合体も通常の方法で合成されるビニルアルコール系共重合体に比べ、耐溶剤性、耐熱性に優れるため、有価金属回収材料の基材等、種々の用途に有用である。 Further, when the polymer obtained by the method of the present invention has a hydrolyzable functional group such as an ester bond or an amide bond in the side chain, the polymer can be modified by hydrolysis. For example, when vinyl acetate is used as a monomer, polyvinyl acetate obtained by polymerization by the production method of the present invention is taken out by the above method, a sodium hydroxide solution is added and a saponification step is performed, whereby a vinyl alcohol copolymer is obtained. A polymer can be obtained. The vinyl alcohol copolymer thus obtained is superior in solvent resistance and heat resistance as compared with the vinyl alcohol copolymer synthesized by a usual method. It is useful for applications.
 さらに、本発明の方法により得られるポリマーは、溶液重合などの通常の方法により得られるポリマーと比較して耐熱性に優れている。例えば、溶液重合により得られるポリスチレンは400℃以上に加熱することで完全に解重合を起こすが、本発明の方法により得られるスチレン共重合体は400~600℃で熱処理を行うと、完全に解重合せずチャーを形成する。またそのチャーは熱処理前のポリマーと同様に配向しているため、本発明の方法により得られるポリマーを熱処理することにより、特徴的な炭素材料を得ることができる。 Furthermore, the polymer obtained by the method of the present invention is excellent in heat resistance as compared with a polymer obtained by a usual method such as solution polymerization. For example, polystyrene obtained by solution polymerization is completely depolymerized by heating to 400 ° C. or higher, but styrene copolymer obtained by the method of the present invention is completely depolymerized by heat treatment at 400 to 600 ° C. It does not polymerize and forms char. Further, since the char is oriented in the same manner as the polymer before heat treatment, a characteristic carbon material can be obtained by heat-treating the polymer obtained by the method of the present invention.
 3.ビニルエステル系コポリマー
 本発明のビニルエステル系コポリマーは、ビニルエステルモノマーと末端アルケニル基を有する置換基を有する芳香族化合物(L)との共重合体であって、芳香族化合物(L)により、ビニルエステルモノマーを主鎖に含むポリマー鎖が架橋されている。好ましくは、本発明のビニルエステル系コポリマーは、前記ポリマー鎖が一次元に配向しているものである。
3. Vinyl ester copolymer The vinyl ester copolymer of the present invention is a copolymer of a vinyl ester monomer and an aromatic compound (L) having a substituent having a terminal alkenyl group. A polymer chain containing an ester monomer in the main chain is crosslinked. Preferably, in the vinyl ester copolymer of the present invention, the polymer chain is one-dimensionally oriented.
 本明細書において、「ビニルエステル系コポリマー」は「ビニルエステル系共重合体」と換言することができ、交換可能に用いられる。 In this specification, “vinyl ester copolymer” can be rephrased as “vinyl ester copolymer” and is used interchangeably.
 本発明のビニルエステル系コポリマーは、例えば、前述の「1.」欄に記載の多孔性金属錯体の細孔内にビニルエステルモノマーを吸着させ、多孔性金属錯体を構成する配位子である芳香族化合物(L)とビニルエステルモノマーとを共重合させることにより得ることができる。 The vinyl ester copolymer of the present invention is, for example, an aromatic fragrance which is a ligand constituting a porous metal complex by adsorbing a vinyl ester monomer into the pores of the porous metal complex described in the above-mentioned “1.” column. It can be obtained by copolymerizing the group compound (L) and a vinyl ester monomer.
 本発明のビニルエステル系コポリマーを構成するビニルエステルモノマーは、製造するために使用される多孔性金属錯体の細孔内に収容しうるサイズであれば特に制限されるものではないが、特に炭素数2~12のビニルエステルが好ましい。 The vinyl ester monomer that constitutes the vinyl ester copolymer of the present invention is not particularly limited as long as it is a size that can be accommodated in the pores of the porous metal complex used for the production. 2 to 12 vinyl esters are preferred.
 前記ビニルエステルモノマーの例としては、酢酸ビニル、プロピオン酸ビニル、ピバル酸ビニル、蟻酸ビニル、酪酸ビニル、n-カプロン酸ビニル、イソカプロン酸ビニル、オクタン酸ビニル、トリメチル酢酸ビニル、クロロ酢酸ビニル、トリクロロ酢酸ビニル、トリフルオロ酢酸ビニル、安息香酸ビニルなどが挙げられる。モノマーは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのモノマーの中でも、酢酸ビニル、ピバル酸ビニルが特に好ましい。 Examples of the vinyl ester monomers include vinyl acetate, vinyl propionate, vinyl pivalate, vinyl formate, vinyl butyrate, vinyl n-caproate, vinyl isocaproate, vinyl octoate, vinyl trimethyl acetate, vinyl chloroacetate, trichloroacetic acid. Examples thereof include vinyl, vinyl trifluoroacetate, vinyl benzoate and the like. Monomers may be used alone or in combination of two or more. Among these monomers, vinyl acetate and vinyl pivalate are particularly preferable.
 本発明のビニルエステル系コポリマーは、前述の多孔性金属錯体の細孔内で、ビニルエステルモノマーの重合を行い、芳香族化合物(L)が有する末端アルケニル基とビニルエステルモノマーが有するビニル基とを共重合させることにより製造することができる。本発明の1つの態様においては、本発明のビニルエステル系コポリマーは、例えば、前述の「2.」欄に記載のポリマーの製造方法により得ることができる。 The vinyl ester copolymer of the present invention polymerizes the vinyl ester monomer in the pores of the porous metal complex described above, and the terminal alkenyl group that the aromatic compound (L) has and the vinyl group that the vinyl ester monomer has. It can be produced by copolymerization. In one embodiment of the present invention, the vinyl ester copolymer of the present invention can be obtained, for example, by the method for producing a polymer described in the aforementioned “2.” column.
 本発明のビニルエステル系コポリマーの好ましい態様においては、ポリマー鎖(「分子鎖」と換言することができる。)が一次元に配向していることを特徴とする。一次元に配向しているとは、図2の右端の模式図に示すように、ポリマー鎖同士が絡み合いを起こさず、伸びきり鎖の状態で一方向に並んで配列している状態を表す。ビニルエステルモノマーを前記多孔性金属錯体の細孔内で重合させることにより、細孔形状を反映して重合が進行するため、ビニルエステルモノマーが一次元に連なった一次元鎖構造のポリマー鎖を有するビニルエステル系コポリマーを得ることができる。このとき、多孔性金属錯体を構成する前記芳香族化合物(L)が一緒に共重合されることにより、ポリマー鎖同士が繋がれ架橋構造を形成する。よって、金属錯体を分解後もポリマー鎖が一次元に配向した状態は維持され、当該部分の構造は擬結晶性を示す。これにより、本発明のビニルエステル系コポリマーは、溶液重合などの通常の方法により得られるビニルエステル重合体と比較して耐溶剤性に優れ、通常は溶解してしまう溶剤にも侵されないという特徴を有する。例えば、溶液重合により得られるポリ酢酸ビニルはアセトンに溶解するが、酢酸ビニルをモノマーとする本発明のビニルエステル系コポリマーはアセトンに溶解しない。さらに、本発明のビニルエステル系コポリマーは密に架橋している部位を有するため、耐熱性にも優れる。さらに、配向軸方向の機械的強度が高くなる、線膨張係数が低くなる、密度が高くなるなどの特徴があり、種々の用途に用いることができる。 A preferred embodiment of the vinyl ester copolymer of the present invention is characterized in that polymer chains (which can be referred to as “molecular chains”) are oriented one-dimensionally. “Oriented in one dimension” represents a state in which polymer chains are not entangled and arranged side by side in an extended chain state as shown in the schematic diagram at the right end of FIG. By polymerizing the vinyl ester monomer within the pores of the porous metal complex, the polymerization proceeds by reflecting the pore shape, so that the vinyl ester monomer has a one-dimensional chain-structured polymer chain. A vinyl ester copolymer can be obtained. At this time, when the aromatic compound (L) constituting the porous metal complex is copolymerized together, the polymer chains are connected to form a crosslinked structure. Therefore, even after the metal complex is decomposed, the state in which the polymer chain is oriented in one dimension is maintained, and the structure of the portion exhibits pseudo-crystallinity. As a result, the vinyl ester copolymer of the present invention is superior in solvent resistance compared to a vinyl ester polymer obtained by a usual method such as solution polymerization, and is not affected by a solvent that normally dissolves. Have. For example, polyvinyl acetate obtained by solution polymerization dissolves in acetone, but the vinyl ester copolymer of the present invention using vinyl acetate as a monomer does not dissolve in acetone. Furthermore, since the vinyl ester copolymer of the present invention has a site that is closely cross-linked, it is excellent in heat resistance. Furthermore, it has features such as an increase in mechanical strength in the direction of the alignment axis, a decrease in linear expansion coefficient, and an increase in density, and it can be used for various applications.
 本発明のビニルエステル系コポリマーを構成するビニルエステルモノマー由来のポリマー鎖が一次元配向していることは、例えば粉末X線回折などにより評価することができる。非晶質で無配向のポリマー鎖は規則的な構造を有さないため、X線回折パターンにピークが観察されない。一方、配向したポリマーのX線回折パターンには、ポリマー鎖間距離に相当する箇所にピークが観察されることから、配向していることを判断することができる。また、高分解能透過型電子顕微鏡観察によっても、配向したポリマー鎖に由来するドメイン構造を観察することができる。また、ポリマー鎖同士の鎖間距離は芳香族化合物(L)の構造により決定される。好ましいポリマー鎖間距離は、0.4~0.6nmである。 It can be evaluated by, for example, powder X-ray diffraction that the polymer chain derived from the vinyl ester monomer constituting the vinyl ester copolymer of the present invention is one-dimensionally oriented. Since amorphous and non-oriented polymer chains do not have a regular structure, no peak is observed in the X-ray diffraction pattern. On the other hand, in the X-ray diffraction pattern of the oriented polymer, since a peak is observed at a position corresponding to the distance between polymer chains, it can be judged that the polymer is oriented. Moreover, the domain structure derived from the oriented polymer chain can also be observed by high-resolution transmission electron microscope observation. The interchain distance between polymer chains is determined by the structure of the aromatic compound (L). A preferred polymer chain distance is 0.4 to 0.6 nm.
 また、本発明のビニルエステル系コポリマーは、加水分解などによりポリマーを改質することができる。例えば、本発明のビニルエステル系コポリマーに、水酸化ナトリウム溶液などのアルカリを加えてけん化工程を行うことにより、ビニルアルコール系コポリマー(ビニルアルコール系共重合体)を得ることができる。このようにして得られたビニルアルコール系コポリマーも、ポリマー鎖が一次元に配向した状態を維持していると考えられる。従って、溶液重合などの通常の方法で合成されるビニルアルコール系コポリマーに比べ、耐溶剤性、耐熱性に優れるため、有価金属回収材料の基材など、種々の用途に有用である。 Also, the vinyl ester copolymer of the present invention can be modified by hydrolysis or the like. For example, a vinyl alcohol copolymer (vinyl alcohol copolymer) can be obtained by adding an alkali such as a sodium hydroxide solution to the vinyl ester copolymer of the present invention and performing a saponification step. It is considered that the vinyl alcohol copolymer thus obtained also maintains a state in which the polymer chain is one-dimensionally oriented. Therefore, it is superior in solvent resistance and heat resistance as compared with vinyl alcohol copolymers synthesized by a usual method such as solution polymerization, and thus is useful for various uses such as a base material for valuable metal recovery materials.
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。以下の実施例および比較例における分析および評価は、以下の方法によって実施した。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to a following example. Analysis and evaluation in the following examples and comparative examples were carried out by the following methods.
 (1)粉末X線回折パターンの測定
 X線回折装置を用いて、回折角(2θ)=5~30°の範囲を走査し、対称反射法で測定した。測定条件の詳細を以下に示す。
(1) Measurement of powder X-ray diffraction pattern Using an X-ray diffractometer, the range of diffraction angle (2θ) = 5 to 30 ° was scanned and measured by a symmetric reflection method. Details of the measurement conditions are shown below.
<分析条件>
装置:株式会社リガク製 RINT2000 Ultima
X線源:CuKα(λ=1.5418Å) 40kV 200mA
ゴニオメーター:縦型ゴニオメーター
検出器:シンチレーションカウンター
ステップ幅:0.02°
スリット:発散スリット=0.5°
受光スリット=0.15mm
散乱スリット=0.5°
走査速度=6°/分(金属錯体(多孔性金属錯体)測定時)
     1°/分(ポリマー測定時)
<Analysis conditions>
Equipment: RINT2000 Ultimate made by Rigaku Corporation
X-ray source: CuKα (λ = 1.5418Å) 40 kV 200 mA
Goniometer: Vertical goniometer Detector: Scintillation counter Step width: 0.02 °
Slit: Divergent slit = 0.5 °
Receiving slit = 0.15mm
Scattering slit = 0.5 °
Scanning speed = 6 ° / min (when measuring metal complex (porous metal complex))
1 ° / min (when measuring polymer)
(2)単結晶X線結晶構造解析
 得られた単結晶をゴニオヘッドにマウントし、単結晶X線回折装置を用いて測定した。測定条件の詳細を以下に示す。
(2) Single crystal X-ray crystal structure analysis The obtained single crystal was mounted on a gonio head and measured using a single crystal X-ray diffractometer. Details of the measurement conditions are shown below.
<分析条件>
装置:ブルカー・エイエックスエス株式会社製SMART APEX II UltraX線源:MoKα(λ=0.71073Å) 50kV 24mA
集光ミラー:HELIOS multilayer optics for Mo radiation
検出器:APEX II CCD
コリメータ:Φ0.42mm
解析ソフト:SHELX-97
<Analysis conditions>
Apparatus: SMART APEX II Ultra X-ray source manufactured by Bruker AXS Co., Ltd .: MoKα (λ = 0.10773Å) 50 kV 24 mA
Condensing mirror: HELIOS multilayer optics for Moration
Detector: APEX II CCD
Collimator: Φ0.42mm
Analysis software: SHELX-97
(3)金属錯体中の芳香族化合物(L)(芳香族多価カルボン酸化合物(L1))の含有割合(x)
 金属錯体を構成する全ての多価カルボン酸化合物単位(芳香族化合物(L)と多価カルボン酸化合物(D)との合計)における(L)の含有割合(x)は、金属錯体約20mgを0.05mol/Lエチレンジアミン四酢酸二ナトリウム重水溶液約1gに溶解させてH NMR測定を行い、得られたスペクトルの積分比から算出した。分析条件の詳細を以下に記す。
(3) Content ratio (x) of aromatic compound (L) (aromatic polyvalent carboxylic acid compound (L1)) in the metal complex
The content ratio (x) of (L) in all polyvalent carboxylic acid compound units (total of aromatic compound (L) and polyvalent carboxylic acid compound (D)) constituting the metal complex is about 20 mg of metal complex. It was dissolved in about 1 g of 0.05 mol / L ethylenediaminetetraacetic acid disodium heavy aqueous solution, 1 H NMR measurement was carried out, and the integral ratio of the obtained spectrum was calculated. Details of the analysis conditions are described below.
<分析条件>
装置:日本電子株式会社製 JNM A-500
共鳴周波数:500MHz
溶媒:重水
温度:25℃
パルス繰り返し時間:5.0秒
積算回数:16回
<Analysis conditions>
Device: JNM A-500, manufactured by JEOL Ltd.
Resonance frequency: 500 MHz
Solvent: Heavy water Temperature: 25 ° C
Pulse repetition time: 5.0 seconds Integration count: 16 times
(4)モノマー(V)(ビニルエステルモノマー)の重合率
 金属錯体中で重合を行ったときのモノマー(V)(例えば、ビニルエステルモノマー)の重合率(Conv)は以下の式により求めた。
(4) Polymerization rate of monomer (V) (vinyl ester monomer) The polymerization rate (Conv) of monomer (V) (for example, vinyl ester monomer) when polymerized in a metal complex was determined by the following equation.
   Conv={1-(Wres/Wads)}×100(%)
但し、Wadsは重合前の錯体/モノマー複合体中のモノマー(V)の吸着量(重量%)を、Wresは重合後の錯体/ポリマー複合体中のモノマー(V)の残存量(重量%)をそれぞれ表す。
Conv = {1- (W res / W ads )} × 100 (%)
However, W ads is the adsorption amount (% by weight) of the monomer (V) in the complex / monomer complex before polymerization, and W res is the residual amount (weight) of the monomer (V) in the complex / polymer complex after polymerization. %) Respectively.
 重合前の錯体/モノマー複合体中のモノマー(V)の吸着量Wads(重量%)は以下のように求めた。金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製したモノマー(V)を1.5mL加えた。超音波を1分間照射した後、30分間静置し、減圧で過剰のモノマー(V)を留去した。得られたサンプルの熱重量測定を行い、測定開始前の重量WI0と200℃における重量WI200から、以下の式に従ってWadsを算出した。 The adsorption amount W ads (% by weight) of the monomer (V) in the complex / monomer complex before polymerization was determined as follows. 200 mg of the metal complex was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 1.5 mL of distilled and purified monomer (V) was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and excess monomer (V) was distilled off under reduced pressure. The obtained sample was subjected to thermogravimetry, and W ads was calculated from the weight W I0 before the start of measurement and the weight W I200 at 200 ° C. according to the following equation.
  Wads={1-(WI200/WI0)}×100(%)
 重合後の錯体/ポリマー複合体中のモノマー(V)の残存量Wres(重量%)を以下のように求めた。重合後の錯体/ポリマー複合体の熱重量測定を行い、測定開始前の重量WP0と200℃における重量WP200から、以下の式に従ってWresを算出した。
W ads = {1- (W I200 / W I0 )} × 100 (%)
The residual amount W res (% by weight) of the monomer (V) in the complex / polymer complex after polymerization was determined as follows. Thermogravimetry of the complex / polymer complex after polymerization was performed, and W res was calculated from the weight W P0 before the start of measurement and the weight W P200 at 200 ° C. according to the following formula.
  Wres={1-(WP200/WP0)}×100(%)
 なお、WadsおよびWresを算出するのに用いた熱重量測定の分析条件の詳細を以下に示す。
W res = {1- (W P200 / W P0 )} × 100 (%)
Details of the analysis conditions for thermogravimetry used to calculate W ads and W res are shown below.
<分析条件>
装置:株式会社リガク製 Thermo plus TG 8120
サンプルパン:アルミニウム
昇温速度:10℃/分
測定範囲:25℃~500℃
雰囲気:窒素(50mL/分)
<Analysis conditions>
Apparatus: Thermo plus TG 8120 manufactured by Rigaku Corporation
Sample pan: Aluminum heating rate: 10 ° C / min Measurement range: 25 ° C to 500 ° C
Atmosphere: Nitrogen (50 mL / min)
(5)ポリマー中の芳香族化合物(L)の共重合組成(C)
 ポリマー中における、芳香族化合物(L)(例えば、芳香族多価カルボン酸化合物(L1))の共重合組成(芳香族化合物(L)の含有率)C(mol%)を以下の式により求めた。
(5) Copolymerization composition of aromatic compound (L) in polymer (C)
The copolymer composition (content of aromatic compound (L)) C (mol%) of the aromatic compound (L) (for example, aromatic polycarboxylic acid compound (L1)) in the polymer is determined by the following formula. It was.
 C={(1-Wads)y・f/M}/{(Wads-Wres)/M+(1-Wads)y・f/M
但し、fは錯体中の化合物(L)の重量分率を表し、xの値から算出した。またWadsは重合前の錯体/モノマー複合体中のモノマーVの吸着量(重量%)を、Wresは重合後の錯体/ポリマー複合体中のモノマーVの残存量(重量%)を、yは錯体中の化合物(L)のうち重合によりポリマーに取り込まれるモル分率を、Mは化合物(L)の分子量を、MはモノマーVの分子量をそれぞれ表す。
C = {(1-W ads ) y · f L / M L} / {(W ads -W res) / M V + (1-W ads) y · f L / M L}
However, f L represents the weight fraction of the compound in the complex (L), it was calculated from the value of x. W ads is the adsorption amount (wt%) of the monomer V in the complex / monomer complex before polymerization, W res is the residual quantity (wt%) of the monomer V in the complex / polymer complex after polymerization, y is the mole fraction incorporated into the polymer by polymerization of the compound in the complex (L), M L is the molecular weight of the compound (L), M V respectively represent the molecular weight of the monomer V.
 錯体中の化合物(L)のうち重合(共重合)によりポリマーに取り込まれるモル分率(y)は以下のように求めた。重合後の錯体/ポリマー複合体を0.05mol/Lエチレンジアミン四酢酸二ナトリウム重水溶液により分解し、沈殿を除去した溶液をH NMR測定することにより得られたスペクトルの積分比とxの値から算出した。H NMRの測定条件は前記(2)に記載の条件と同一とした。 Of the compound (L) in the complex, the molar fraction (y) taken into the polymer by polymerization (copolymerization) was determined as follows. From the integral ratio of the spectrum and the value of x obtained by 1 H NMR measurement of the solution from which the complex / polymer complex after polymerization was decomposed with 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate and the precipitate was removed. Calculated. The measurement conditions for 1 H NMR were the same as those described in (2) above.
(6)ポリマーの耐溶剤性
 得られたポリマー10mgをアセトン1mLに浸漬し、3分間攪拌した後のポリマーの変化を目視で判定した。
(6) Solvent resistance of polymer 10 mg of the obtained polymer was immersed in 1 mL of acetone, and the change of the polymer after stirring for 3 minutes was visually determined.
  Y :ポリマーの外観に変化がない場合
  N :ポリマーがアセトンに溶解もしくは膨潤した場合
Y: When there is no change in the appearance of the polymer N: When the polymer is dissolved or swollen in acetone
(7)IR測定
フーリエ変換型赤外分光光度計(FT-IR)を用いて測定を行い、ポリマー組成に関する解析を行った。測定条件の詳細を以下に示す。
(7) IR measurement Measurement was performed using a Fourier transform infrared spectrophotometer (FT-IR) to analyze the polymer composition. Details of the measurement conditions are shown below.
<分析条件>
 装置 :フーリエ変換型赤外分光光度計 JIR-5500(日本電子製)
 モード:減衰全反射(ATR)法
 測定範囲:500~4000cm-1
 積算回数:128回
<Analysis conditions>
Apparatus: Fourier transform infrared spectrophotometer JIR-5500 (manufactured by JEOL)
Mode: attenuated total reflection (ATR) method Measurement range: 500 to 4000 cm −1
Integration count: 128 times
 以下の合成例、実施例および比較例において、テレフタル酸由来の陰イオンをtp、2,5-ジ(アリルオキシ)テレフタル酸由来の陰イオンをdatp、2,5-ジビニルテレフタル酸由来の陰イオンをdvtp、1,4-ジアザビシクロ[2.2.2]オクタンをtedと表記する。 In the following synthesis examples, examples and comparative examples, the anion derived from terephthalic acid is tp, the anion derived from 2,5-di (allyloxy) terephthalic acid is datp, and the anion derived from 2,5-divinylterephthalic acid is used. dvtp, 1,4-diazabicyclo [2.2.2] octane is expressed as ted.
 (合成例1)
 2,5-ジ(アリルオキシ)テレフタル酸133mg(0.48mmol)とテレフタル酸452mg(2.72mmol)とを250mlフラスコに投入し、脱水ジメチルホルムアミド200mlを加えて溶解させた。そこに硫酸銅五水和物799mg(3.2mmol)を脱水メタノール30mLに溶解させて加え、48時間25℃で攪拌した。生成物を遠心分離により取り出し、脱水ジメチルホルムアミド20mL中に分散させ、1,4-ジアザビシクロ[2.2.2]オクタン359mg(1.6mmol)をトルエン13mLに溶解して加え、130℃で24時間攪拌した。析出した金属錯体を遠心分離し、脱水ジメチルホルムアミド、脱水メタノールで洗浄したのち、130℃で真空乾燥して化学式[Cu(tp)1-x(datp)(ted)0.5nで表される金属錯体935mgを得た。得られた金属錯体の粉末X線回折パターンを図3に示す。また、金属錯体中の全多価カルボン酸化合物単位における2,5-ジ(アリルオキシ)テレフタル酸(L)の含有割合xは0.01(1モル%)であった。
(Synthesis Example 1)
133 mg (0.48 mmol) of 2,5-di (allyloxy) terephthalic acid and 452 mg (2.72 mmol) of terephthalic acid were put into a 250 ml flask, and 200 ml of dehydrated dimethylformamide was added and dissolved. Thereto was added 799 mg (3.2 mmol) of copper sulfate pentahydrate dissolved in 30 mL of dehydrated methanol, and the mixture was stirred at 25 ° C. for 48 hours. The product was removed by centrifugation, dispersed in 20 mL of dehydrated dimethylformamide, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane was dissolved in 13 mL of toluene and added at 130 ° C. for 24 hours. Stir. The deposited metal complex is centrifuged, washed with dehydrated dimethylformamide and dehydrated methanol, and then vacuum-dried at 130 ° C. and expressed by the chemical formula [Cu (tp) 1-x (datt) x (ted) 0.5 ] n Obtained 935 mg of the metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. Further, the content x of 2,5-di (allyloxy) terephthalic acid (L) in all polyvalent carboxylic acid compound units in the metal complex was 0.01 (1 mol%).
 (合成例2)
 2,5-ジ(アリルオキシ)テレフタル酸178mg(0.64mmol)とテレフタル酸425mg(2.56mmol)とを250mlフラスコに投入し、脱水ジメチルホルムアミド200mlを加えて溶解させた。そこに硫酸銅五水和物799mg(3.2mmol)を脱水メタノール30mLに溶解させて加え、48時間25℃で攪拌した。生成物を遠心分離により取り出し、脱水ジメチルホルムアミド20mL中に分散させ、1,4-ジアザビシクロ[2.2.2]オクタン359mg(1.6mmol)をトルエン13mLに溶解して加え、130℃で24時間攪拌した。析出した金属錯体を遠心分離し、脱水ジメチルホルムアミド、脱水メタノールで洗浄したのち、130℃で真空乾燥して化学式[Cu(tp)1-x(datp)(ted)0.5nで表される金属錯体889mgを得た。得られた金属錯体の粉末X線回折パターンを図4に示す。また、金属錯体中の全多価カルボン酸化合物単位における2,5-ジ(アリルオキシ)テレフタル酸(L)の含有割合xは0.02(2モル%)であった。
(Synthesis Example 2)
178 mg (0.64 mmol) of 2,5-di (allyloxy) terephthalic acid and 425 mg (2.56 mmol) of terephthalic acid were put into a 250 ml flask, and 200 ml of dehydrated dimethylformamide was added and dissolved. Thereto was added 799 mg (3.2 mmol) of copper sulfate pentahydrate dissolved in 30 mL of dehydrated methanol, and the mixture was stirred at 25 ° C. for 48 hours. The product was removed by centrifugation, dispersed in 20 mL of dehydrated dimethylformamide, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane was dissolved in 13 mL of toluene and added at 130 ° C. for 24 hours. Stir. The deposited metal complex is centrifuged, washed with dehydrated dimethylformamide and dehydrated methanol, and then vacuum-dried at 130 ° C. and expressed by the chemical formula [Cu (tp) 1-x (datt) x (ted) 0.5 ] n Obtained 889 mg of the metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. The content ratio x of 2,5-di (allyloxy) terephthalic acid (L) in all the polyvalent carboxylic acid compound units in the metal complex was 0.02 (2 mol%).
 (合成例3)
 2,5-ジ(アリルオキシ)テレフタル酸222mg(0.8mmol)とテレフタル酸398mg(2.4mmol)とを250mlフラスコに投入し、脱水ジメチルホルムアミド200mlを加えて溶解させた。そこに硫酸銅五水和物799mg(3.2mmol)を脱水メタノール30mLに溶解させて加え、48時間25℃で攪拌した。生成物を遠心分離により取り出し、脱水ジメチルホルムアミド20mL中に分散させ、1,4-ジアザビシクロ[2.2.2]オクタン359mg(1.6mmol)をトルエン13mLに溶解して加え、130℃で24時間攪拌した。析出した金属錯体を遠心分離し、脱水ジメチルホルムアミド、脱水メタノールで洗浄したのち、130℃で真空乾燥して化学式[Cu(tp)1-x(datp)(ted)0.5nで表される金属錯体868mgを得た。得られた金属錯体の粉末X線回折パターンを図5に示す。また、金属錯体中の全多価カルボン酸化合物単位における2,5-ジ(アリルオキシ)テレフタル酸(L)の含有割合xは0.03(3モル%)であった。
(Synthesis Example 3)
222 mg (0.8 mmol) of 2,5-di (allyloxy) terephthalic acid and 398 mg (2.4 mmol) of terephthalic acid were put into a 250 ml flask, and 200 ml of dehydrated dimethylformamide was added and dissolved. Thereto was added 799 mg (3.2 mmol) of copper sulfate pentahydrate dissolved in 30 mL of dehydrated methanol, and the mixture was stirred at 25 ° C. for 48 hours. The product was removed by centrifugation, dispersed in 20 mL of dehydrated dimethylformamide, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane was dissolved in 13 mL of toluene and added at 130 ° C. for 24 hours. Stir. The deposited metal complex is centrifuged, washed with dehydrated dimethylformamide and dehydrated methanol, and then vacuum-dried at 130 ° C. and expressed by the chemical formula [Cu (tp) 1-x (datt) x (ted) 0.5 ] n Obtained 868 mg of the metal complex. FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex. Further, the content x of 2,5-di (allyloxy) terephthalic acid (L) in all the polyvalent carboxylic acid compound units in the metal complex was 0.03 (3 mol%).
 (合成例4)
 2,5-ジビニルテレフタル酸119mg(0.64mmol)、テレフタル酸425mg(2.56mmol)、硝酸亜鉛606mg(3.2mmol)、1,4-ジアザビシクロ[2.2.2]オクタン359mg(1.6mmol)を250mlフラスコに投入し、脱水ジメチルホルムアミド200mlを加え、130℃で72時間攪拌した。析出した金属錯体を遠心分離し、脱水メタノールで洗浄したのち、130℃で真空乾燥して化学式[Zn(tp)1-x(dvtp)(ted)0.5nで表される金属錯体872mgを得た。得られた金属錯体の粉末X線回折パターンを図6に示す。また、金属錯体中の全多価カルボン酸化合物単位における2,5-ジビニルテレフタル酸(L)の含有割合xは0.05(5モル%)であった。
(Synthesis Example 4)
119 mg (0.64 mmol) of 2,5-divinylterephthalic acid, 425 mg (2.56 mmol) of terephthalic acid, 606 mg (3.2 mmol) of zinc nitrate, 359 mg (1.6 mmol) of 1,4-diazabicyclo [2.2.2] octane ) Was added to a 250 ml flask, 200 ml of dehydrated dimethylformamide was added, and the mixture was stirred at 130 ° C. for 72 hours. The precipitated metal complex is centrifuged, washed with dehydrated methanol, and then vacuum-dried at 130 ° C. to express the metal complex represented by the chemical formula [Zn (tp) 1-x (dvtp) x (ted) 0.5 ] n 872 mg was obtained. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. Further, the content x of 2,5-divinylterephthalic acid (L) in all the polyvalent carboxylic acid compound units in the metal complex was 0.05 (5 mol%).
 (比較合成例1)
 テレフタル酸531mg(3.2mmol)硝酸亜鉛606mg(3.2mmol)、1,4-ジアザビシクロ[2.2.2]オクタン359mg(1.6mmol)を250mlフラスコに投入し、脱水ジメチルホルムアミド200mlを加え、130℃で72時間攪拌した。析出した金属錯体を遠心分離して、得られた金属錯体について単結晶X線構造解析を行った結果を以下に示す。結晶構造は図8に示すように一次元細孔を有する三次元集積構造であった。さらに、析出した結晶を脱水メタノールで洗浄したのち、130℃で真空乾燥して化学式[Zn(tp)(ted)0.5nで表される多孔性金属錯体1037mgを得た。得られた金属錯体の粉末X線回折パターンを図7に示す。
Tetragonal(I4/mcm)
a=15.063(2)Å
c=19.247(5)Å
V=4367.1(14)Å3
Z=4
=0.0414
GOF=1.073
(Comparative Synthesis Example 1)
531 mg (3.2 mmol) of terephthalic acid, 606 mg (3.2 mmol) of zinc nitrate and 359 mg of 1,4-diazabicyclo [2.2.2] octane (1.6 mmol) were put into a 250 ml flask, and 200 ml of dehydrated dimethylformamide was added. The mixture was stirred at 130 ° C. for 72 hours. The results of single crystal X-ray structural analysis of the metal complex obtained by centrifuging the deposited metal complex are shown below. The crystal structure was a three-dimensional integrated structure having one-dimensional pores as shown in FIG. Further, the precipitated crystals were washed with dehydrated methanol and then vacuum dried at 130 ° C. to obtain 1037 mg of a porous metal complex represented by the chemical formula [Zn (tp) (ted) 0.5 ] n . FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex.
Tetragonal (I4 / mcm)
a = 15.063 (2) Å
c = 19.247 (5) Å
V = 4367.1 (14) Å 3
Z = 4
R 1 = 0.0414
GOF = 1.073
 図3~6を図8と比較することで、合成例1~4により得られた多孔性金属錯体の結晶構造は、比較合成例1により得られた多孔性金属錯体の結晶構造と一致しており、一次元細孔を有する三次元集積構造であることを確認した。 By comparing FIGS. 3 to 6 with FIG. 8, the crystal structure of the porous metal complex obtained in Synthesis Examples 1 to 4 is consistent with the crystal structure of the porous metal complex obtained in Comparative Synthesis Example 1. It was confirmed that the structure was a three-dimensional integrated structure having one-dimensional pores.
 実施例1
 合成例1により得られた金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製した酢酸ビニル1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaの圧力で金属錯体に取り込まれなかった酢酸ビニルを減圧留去した。再びフラスコを窒素で満たし、70℃で48時間加熱して酢酸ビニルを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、35%であった。得られた錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20mL加え、25℃で16時間攪拌した。生成した白色固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、酢酸ビニル-2,5-ジ(アリルオキシ)テレフタル酸共重合体15mgを得た。
Example 1
200 mg of the metal complex obtained in Synthesis Example 1 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate. As a result of measuring a polymerization rate using a part of the obtained complex / polymer complex, it was 35%. To the obtained complex / polymer complex, 20 mL of 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added and stirred at 25 ° C. for 16 hours. The produced white solid was removed by centrifugation, and then washed with distilled water until the washing solution became neutral. Then, the mixture was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum dried to obtain 15 mg of vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer.
 得られた共重合体のIR測定を行った結果を図9に示す。得られた酢酸ビニル-2,5-ジ(アリルオキシ)テレフタル酸共重合体は、溶液重合により合成されるポリ酢酸ビニルとピークパターンが一致したことから、主として酢酸ビニル由来の構成単位を含むポリマーであることが確認できた。また、得られたポリマーにおける2,5-ジ(アリルオキシ)テレフタル酸の含有率は2mol%であった。 The results of IR measurement of the obtained copolymer are shown in FIG. The obtained vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer is a polymer mainly containing vinyl acetate-derived structural units because the peak pattern coincided with the polyvinyl acetate synthesized by solution polymerization. It was confirmed that there was. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 2 mol%.
 実施例2
 合成例2により得られた金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製した酢酸ビニル1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaの圧力で金属錯体に取り込まれなかった酢酸ビニルを減圧留去した。再びフラスコを窒素で満たし、70℃で48時間加熱して酢酸ビニルを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、28%であった。得られた錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20mL加え、25℃で16時間攪拌した。生成した白色固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、酢酸ビニル-2,5-ジ(アリルオキシ)テレフタル酸共重合体12mgを得た。
Example 2
200 mg of the metal complex obtained in Synthesis Example 2 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate. As a result of measuring the polymerization rate using a part of the obtained complex / polymer complex, it was 28%. To the obtained complex / polymer complex, 20 mL of 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added and stirred at 25 ° C. for 16 hours. The produced white solid was removed by centrifugation, and then washed with distilled water until the washing solution became neutral. Thereafter, the mixture was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum dried to obtain 12 mg of vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer.
 実施例1と同様に、IR測定により、得られた共重合体の主成分がポリ酢酸ビニルであることを確認した。また、得られたポリマーにおける2,5-ジ(アリルオキシ)テレフタル酸の含有率は3mol%であった。 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polyvinyl acetate. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 3 mol%.
 実施例3
 合成例3により得られた金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製した酢酸ビニル1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaの圧力で金属錯体に取り込まれなかった酢酸ビニルを減圧留去した。再びフラスコを窒素で満たし、70℃で48時間加熱して酢酸ビニルを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、30%であった。得られた錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20mL加え、25℃で16時間攪拌した。生成した白色固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、酢酸ビニル-2,5-ジ(アリルオキシ)テレフタル酸共重合体13mgを得た。
Example 3
200 mg of the metal complex obtained in Synthesis Example 3 was placed in a 10 mL flask and vacuum-dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate. As a result of measuring the polymerization rate using a part of the obtained complex / polymer complex, it was 30%. To the obtained complex / polymer complex, 20 mL of 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added and stirred at 25 ° C. for 16 hours. The produced white solid was removed by centrifugation, and then washed with distilled water until the washing solution became neutral. Thereafter, the mixture was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum dried to obtain 13 mg of vinyl acetate-2,5-di (allyloxy) terephthalic acid copolymer.
 実施例1と同様に、IR測定により、得られた共重合体の主成分がポリ酢酸ビニルであることを確認した。また、得られたポリマーにおける2,5-ジ(アリルオキシ)テレフタル酸の含有率は4mol%であった。 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polyvinyl acetate. Further, the content of 2,5-di (allyloxy) terephthalic acid in the obtained polymer was 4 mol%.
 実施例4
 合成例4により得られた金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製したメタクリル酸メチル1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaの圧力で金属錯体に取り込まれなかったメタクリル酸メチルを減圧留去した。再びフラスコを窒素で満たし、70℃で24時間加熱してメタクリル酸メチルを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、69%であった。得られた錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20mL加え、25℃で16時間攪拌した。生成した白色固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、メタクリル酸メチル-2,5-ジビニルテレフタル酸共重合体 26mgを得た。
Example 4
200 mg of the metal complex obtained in Synthesis Example 4 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified methyl methacrylate was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and methyl methacrylate that was not taken into the metal complex at a pressure of 2 kPa was distilled off under reduced pressure. The flask was again filled with nitrogen and heated at 70 ° C. for 24 hours to polymerize methyl methacrylate. As a result of measuring the polymerization rate using a part of the obtained complex / polymer complex, it was 69%. To the obtained complex / polymer complex, 20 mL of 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added and stirred at 25 ° C. for 16 hours. The produced white solid was removed by centrifugation, and then washed with distilled water until the washing solution became neutral. Thereafter, the mixture was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum-dried to obtain 26 mg of methyl methacrylate-2,5-divinylterephthalic acid copolymer.
 実施例1と同様に、IR測定により、得られた共重合体の主成分がポリメタクリル酸メチルであることを確認した。また、得られたポリマーにおける2,5-ジビニルテレフタル酸の含有率は5mol%であった。 In the same manner as in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was polymethyl methacrylate. Further, the content of 2,5-divinylterephthalic acid in the obtained polymer was 5 mol%.
 実施例5
 合成例4により得られた錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製したスチレン1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaでスチレンを減圧留去した。再びフラスコを窒素で満たし、70℃で24時間加熱してモノマーを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、38%であった。残りの錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20ml加え、25℃で16時間攪拌した。生成した白色の固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、スチレン-2,5-ジビニルテレフタル酸共重合体18mgを得た。
Example 5
200 mg of the complex obtained in Synthesis Example 4 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled styrene was added. After irradiation with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and styrene was distilled off under reduced pressure at 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 24 hours to polymerize the monomer. As a result of measuring a polymerization rate using a part of the obtained complex / polymer complex, it was 38%. 20 ml of a 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added to the remaining complex / polymer complex, and the mixture was stirred at 25 ° C. for 16 hours. The produced white solid was taken out by centrifugation, and washed with distilled water until the washing solution became neutral. Thereafter, the mixture was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum dried to obtain 18 mg of a styrene-2,5-divinylterephthalic acid copolymer.
 実施例1と同様に、IR測定により、得られた共重合体の主成分がスチレンであることを確認した。また、得られたポリマーにおける2,5-ジビニルテレフタル酸の含有率は8mol%であった。 As in Example 1, it was confirmed by IR measurement that the main component of the obtained copolymer was styrene. The content of 2,5-divinylterephthalic acid in the obtained polymer was 8 mol%.
 上記で得られたスチレン-2,5-ジビニルテレフタル酸共重合体15mgを、窒素雰囲気下、500℃で30分間熱処理することで、黒色のチャー6mgを得た。そのチャーを構成するポリマーの鎖間距離を測定したところ、4.8Åであった。 The styrene-2,5-divinylterephthalic acid copolymer (15 mg) obtained above was heat-treated at 500 ° C. for 30 minutes in a nitrogen atmosphere to obtain 6 mg of black char. The distance between the chains of the polymer constituting the char was measured and found to be 4.8 mm.
 以上の実施例1~5に記載された方法で得られた共重合体は、いずれも粉末X線回折パターンを測定したところ、明確なピークが観察された。その2θの値からBraggの条件に基づいて、ポリマー鎖間距離(分子鎖間距離)を求めることができた。ポリマー鎖間距離dは、ポリマー鎖とX線が成す角度をθ、X線の波長をλとして、d=λ/(2sinθ)から求めた。いずれの測定結果においても2θ=18°にピークが見られたことから、ポリマー鎖間距離は、いずれも0.49nmであった。このことは、モノマー(V)(ビニルエステルモノマー)由来の構造単位のポリマー鎖が、距離0.49nmの鎖間距離をもって配向した状態で2,5-ジ(アリルオキシ)テレフタル酸もしくは2,5-ジビニルテレフタル酸由来の構造単位により架橋された構造を有していることを示していると考えられる。 All of the copolymers obtained by the methods described in Examples 1 to 5 above were measured for powder X-ray diffraction patterns, and clear peaks were observed. Based on the value of Bragg from the value of 2θ, the distance between polymer chains (distance between molecular chains) could be obtained. The polymer chain distance d was determined from d = λ / (2 sin θ) where θ is the angle formed by the polymer chain and the X-ray, and λ is the wavelength of the X-ray. In any measurement result, a peak was observed at 2θ = 18 °, and thus the polymer chain distance was 0.49 nm. This is because 2,5-di (allyloxy) terephthalic acid or 2,5-di (allyloxy) terephthalic acid in a state where the polymer chain of the structural unit derived from the monomer (V) (vinyl ester monomer) is oriented with a distance of 0.49 nm between the chains. This is considered to indicate that it has a structure crosslinked by a structural unit derived from divinylterephthalic acid.
 比較例1
 比較合成例1により得られた金属錯体200mgを10mLフラスコに入れ、25℃で4時間真空乾燥させた。フラスコを冷却し窒素で満たしたのち、蒸留精製した酢酸ビニル1.5mLに2,2’-アゾビスイソブチロニトリル3.6mgを溶解させたものを加えた。超音波を1分間照射した後、30分間静置し、2kPaの圧力で金属錯体に取り込まれなかった酢酸ビニルを減圧留去した。再びフラスコを窒素で満たし、70℃で48時間加熱して酢酸ビニルを重合させた。得られた錯体/ポリマー複合体のうち一部を使用して、重合率を測定した結果、38%であった。得られた錯体/ポリマー複合体に、エチレンジアミン四酢酸二ナトリウムの0.05mol/L水溶液を20mL加え、25℃で16時間攪拌した。生成した白色固体を遠心分離で取出したのち、洗浄液が中性になるまで蒸留水で洗浄した。その後、2規定の塩酸で酸性とし、遠心分離と蒸留水での洗浄を3回繰り返し、真空乾燥することで、ポリ酢酸ビニル19mgを得た。
Comparative Example 1
200 mg of the metal complex obtained in Comparative Synthesis Example 1 was placed in a 10 mL flask and vacuum dried at 25 ° C. for 4 hours. After the flask was cooled and filled with nitrogen, 3.6 mg of 2,2′-azobisisobutyronitrile dissolved in 1.5 mL of distilled and purified vinyl acetate was added. After irradiating with ultrasonic waves for 1 minute, the mixture was allowed to stand for 30 minutes, and vinyl acetate that was not taken into the metal complex was removed under reduced pressure at a pressure of 2 kPa. The flask was again filled with nitrogen and heated at 70 ° C. for 48 hours to polymerize vinyl acetate. As a result of measuring a polymerization rate using a part of the obtained complex / polymer complex, it was 38%. To the obtained complex / polymer complex, 20 mL of 0.05 mol / L aqueous solution of disodium ethylenediaminetetraacetate was added and stirred at 25 ° C. for 16 hours. The produced white solid was removed by centrifugation, and then washed with distilled water until the washing solution became neutral. Thereafter, the solution was acidified with 2N hydrochloric acid, centrifuged and washed with distilled water three times, and vacuum dried to obtain 19 mg of polyvinyl acetate.
 実施例1と同様に、IR測定により、得られたポリ酢酸ビニルと溶液重合により合成されるポリ酢酸ビニルとでピークパターンが一致したことから、ポリ酢酸ビニルであることを確認した。 As in Example 1, since the peak patterns of the obtained polyvinyl acetate and the polyvinyl acetate synthesized by solution polymerization matched by IR measurement, it was confirmed to be polyvinyl acetate.
 比較例2
 100mLフラスコに、酢酸ビニル4.75g、ジビニルベンゼン0.25g、2,2’-アゾビスイソブチロニトリル100mgを加えて、トルエン5gに溶解させ、系内を窒素置換した。70℃で6時間加熱して、酢酸ビニルを重合させた。反応終了後、反応溶液を100mLのへキサン中に投入することでポリマーを再沈殿させ、ろ過、真空乾燥することで、ポリ酢酸ビニル-ジビニルベンゼン共重合体0.9gを得た。
Comparative Example 2
To a 100 mL flask, 4.75 g of vinyl acetate, 0.25 g of divinylbenzene, and 100 mg of 2,2′-azobisisobutyronitrile were added and dissolved in 5 g of toluene, and the system was purged with nitrogen. By heating at 70 ° C. for 6 hours, vinyl acetate was polymerized. After completion of the reaction, the polymer was reprecipitated by putting the reaction solution into 100 mL of hexane, filtered and vacuum dried to obtain 0.9 g of a polyvinyl acetate-divinylbenzene copolymer.
 以上の比較例1及び2に記載された方法で得られたポリマーは、粉末X線回折パターンを測定したところ、いずれも明確なピークが観察されず、ポリマー鎖は配向していなかった。 When the powders obtained by the methods described in Comparative Examples 1 and 2 were measured for the powder X-ray diffraction pattern, no clear peak was observed, and the polymer chain was not oriented.
 以上の実施例1~4及び比較例1,2で得られたポリマーについて、上記に記載した測定条件により、各種物性を測定・評価した。結果を表1に示す。 Various physical properties of the polymers obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured and evaluated under the measurement conditions described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 実施例1~4の結果より、本発明の製造方法によって得られたポリマー(ビニルエステル系コポリマー)は、モノマー(V)(酢酸ビニルまたはメタクリル酸メチル)由来の構造単位を主鎖とするポリマー鎖が、距離0.49nmの鎖間距離をもって配向した状態で2,5-ジ(アリルオキシ)テレフタル酸もしくは2,5-ジビニルテレフタル酸由来の構造単位により架橋された構造を有しているため、耐溶剤性に優れることが明らかとなった。このような効果が得られる理由は定かではないが、ポリマー鎖が規則正しく配向した状態で芳香族多価カルボン酸化合物(L1)によって架橋されることにより、当該部分が結晶性を有するようになり、ポリマー(ビニルエステル系コポリマー)全体として耐溶剤性が向上したと考えている。 From the results of Examples 1 to 4, the polymer (vinyl ester copolymer) obtained by the production method of the present invention is a polymer chain having a structural unit derived from the monomer (V) (vinyl acetate or methyl methacrylate) as the main chain. Has a structure crosslinked with a structural unit derived from 2,5-di (allyloxy) terephthalic acid or 2,5-divinylterephthalic acid in an oriented state with an interchain distance of 0.49 nm. It became clear that it was excellent in solvent property. The reason why such an effect can be obtained is not clear, but when the polymer chain is regularly oriented and crosslinked by the aromatic polyvalent carboxylic acid compound (L1), the part has crystallinity, We believe that the solvent resistance of the polymer (vinyl ester copolymer) as a whole has improved.
 一方、比較例1より、反応場である金属錯体が、末端アルケニル基を有する置換基を2つ以上有する芳香族多価カルボン酸化合物(L1)を含まない場合は、モノマー(V)(酢酸ビニル)の重合は進行するものの、ポリマー鎖が化合物(L1)により架橋されていないため、ポリマー鎖の配向状態を維持できず、耐溶剤性に劣る結果となった。また、比較例2より、多孔性金属錯体を用いずに、モノマー(V)(酢酸ビニル)と末端アルケニル基を有する置換基を2つ以上有する芳香族多価カルボン酸化合物(L1)とを溶液重合させた場合は、ポリマー鎖は配向しておらず、生成物であるポリマーは耐溶剤性に劣る結果となった。 On the other hand, from Comparative Example 1, when the metal complex as the reaction field does not contain the aromatic polyvalent carboxylic acid compound (L1) having two or more substituents having a terminal alkenyl group, the monomer (V) (vinyl acetate) ) Proceeds but the polymer chain is not cross-linked by the compound (L1), so the orientation of the polymer chain cannot be maintained, resulting in poor solvent resistance. Further, from Comparative Example 2, a monomer (V) (vinyl acetate) and an aromatic polyvalent carboxylic acid compound (L1) having two or more substituents having a terminal alkenyl group were used without using a porous metal complex. When polymerized, the polymer chain was not oriented, and the resulting polymer was inferior in solvent resistance.
 また、実施例5より、本発明の製造方法によって得られるポリマーは耐熱性に優れているため、500℃の高温で熱処理することで、炭素化できることが明らかとなった。 Further, from Example 5, it was revealed that the polymer obtained by the production method of the present invention is excellent in heat resistance and can be carbonized by heat treatment at a high temperature of 500 ° C.

Claims (15)

  1.  末端アルケニル基を有する置換基を少なくとも2つ有する芳香族多価カルボン酸化合物(L1)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体の細孔内で、不飽和二重結合を有するモノマー(V)を重合させ、前記芳香族多価カルボン酸化合物(L1)を構成単位に含むポリマーを得ることを特徴とする、ポリマーの製造方法。 A porous material comprising an aromatic polyvalent carboxylic acid compound (L1) having at least two substituents having a terminal alkenyl group and at least one metal ion selected from ions of metals belonging to Groups 1 to 14 of the periodic table A polymer comprising a monomer (V) having an unsaturated double bond in the pores of a conductive metal complex to obtain a polymer containing the aromatic polyvalent carboxylic acid compound (L1) as a constituent unit Manufacturing method.
  2.  前記芳香族多価カルボン酸化合物(L1)が、下記一般式(1)または(2)で示される化合物である請求項1に記載のポリマーの製造方法;
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、AおよびAはカルボキシル基であり、B~Bのうち少なくとも2つはそれぞれ同一または異なって、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaがそれぞれ同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
    で表される末端アルケニル基を有する置換基であり、B~Bのうち一般式(3)で表されないものは、同一または異なって、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基及びカルボキシル基からなる群から選ばれるいずれかの置換基である。)
    The method for producing a polymer according to claim 1, wherein the aromatic polycarboxylic acid compound (L1) is a compound represented by the following general formula (1) or (2):
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] is Y 1 and a is the same or different from each other in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxycarbonyl group. is there)
    The substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent. Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent. )
  3.  前記多孔性金属錯体が、さらに前記芳香族多価カルボン酸化合物(L1)とは異なる多価カルボン酸化合物(D)を含む、請求項1または2に記載のポリマーの製造方法。 The method for producing a polymer according to claim 1 or 2, wherein the porous metal complex further contains a polyvalent carboxylic acid compound (D) different from the aromatic polyvalent carboxylic acid compound (L1).
  4.  前記多価カルボン酸化合物(D)が、末端アルケニル基を有さない芳香族ジカルボン酸化合物である請求項3に記載のポリマーの製造方法。 The method for producing a polymer according to claim 3, wherein the polyvalent carboxylic acid compound (D) is an aromatic dicarboxylic acid compound having no terminal alkenyl group.
  5.  前記多孔性金属錯体が、さらに前記金属イオンに多座配位可能な有機配位子を含む、請求項1~4のいずれか1項に記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 4, wherein the porous metal complex further contains an organic ligand capable of multidentate coordination with the metal ion.
  6.  不飽和二重結合を有するモノマー(V)が、ビニルエステルであることを特徴とする、請求項1~5のいずれか1項に記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 5, wherein the monomer (V) having an unsaturated double bond is a vinyl ester.
  7.  請求項1~6のいずれか1項に記載の方法で得られたポリマーを400℃以上600℃以下で熱処理することを特徴とする炭素材料の製造方法。 A method for producing a carbon material, wherein the polymer obtained by the method according to any one of claims 1 to 6 is heat-treated at a temperature of 400 ° C to 600 ° C.
  8.  ビニルエステルモノマーと、末端アルケニル基を有する置換基を少なくとも2つ有する下記一般式(1)または(2)で表される芳香族化合物(L)との共重合体であって、前記芳香族化合物(L)により、ビニルエステルモノマーを主鎖に含むポリマー鎖が架橋されていることを特徴とするビニルエステル系コポリマー。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式中、AおよびAは同一または異なって下記一般式
    Figure JPOXMLDOC01-appb-C000006
    で表されるカルボキシル基若しくはその塩、
    Figure JPOXMLDOC01-appb-C000007
    で表されるピリジル基、
    Figure JPOXMLDOC01-appb-C000008
    で表されるイミダゾリル基、
    Figure JPOXMLDOC01-appb-C000009
    で表されるトリアゾリル基、または
    Figure JPOXMLDOC01-appb-C000010
    で表されるテトラゾリル基であり、Xは水素原子またはアルカリ金属原子である。B~Bのうち少なくとも2つは同一または異なる末端アルケニル基を有する置換基であり、その他は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基、カルボキシル基及びカルボキシル基のアルカリ金属塩からなる群から選ばれるいずれかの置換基である。)
    A copolymer of a vinyl ester monomer and an aromatic compound (L) represented by the following general formula (1) or (2) having at least two substituents having a terminal alkenyl group, the aromatic compound A vinyl ester copolymer characterized in that a polymer chain containing a vinyl ester monomer in the main chain is crosslinked by (L).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, A 1 and A 2 are the same or different and have the following general formula:
    Figure JPOXMLDOC01-appb-C000006
    A carboxyl group represented by
    Figure JPOXMLDOC01-appb-C000007
    A pyridyl group represented by
    Figure JPOXMLDOC01-appb-C000008
    An imidazolyl group represented by:
    Figure JPOXMLDOC01-appb-C000009
    A triazolyl group represented by
    Figure JPOXMLDOC01-appb-C000010
    And X is a hydrogen atom or an alkali metal atom. At least two of B 1 to B 4 are substituents having the same or different terminal alkenyl groups, and the others are hydrogen atom, halogen atom, alkyl group, alkoxy group, thioalkyl group, formyl group, acyloxy group, alkoxycarbonyl A substituent selected from the group consisting of a group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, a carboxyl group, and an alkali metal salt of a carboxyl group. )
  9.  前記ポリマー鎖が一次元に配向していることを特徴とする、請求項8に記載のビニルエステル系コポリマー。 The vinyl ester copolymer according to claim 8, wherein the polymer chain is one-dimensionally oriented.
  10.  前記末端アルケニル基を有する置換基が、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000011
    (式中、YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaが同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
    で表される置換基である、請求項8または9に記載のビニルエステル系コポリマー。
    The substituent having the terminal alkenyl group is represented by the following general formula (3):
    Figure JPOXMLDOC01-appb-C000011
    (Wherein, Y 1 and Y 2 are the same or different oxygen atom, a sulfur atom or -O-CO-, [Y 1 - (CH 2) a] are the same or Y 1 and a is in each repeating unit A is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or alkoxycarbonyl Base)
    The vinyl ester copolymer according to claim 8 or 9, which is a substituent represented by:
  11.  請求項8~10のいずれか1項に記載の共重合体をけん化することにより得られるポリビニル系コポリマー。 A polyvinyl copolymer obtained by saponifying the copolymer according to any one of claims 8 to 10.
  12.  末端アルケニル基を有する置換基を少なくとも2つ有する芳香族多価カルボン酸化合物(L1)と、それとは異なる多価カルボン酸化合物(D)と、周期表の1~14族に属する金属のイオンから選択される少なくとも1種の金属イオンとを含む多孔性金属錯体。 An aromatic polycarboxylic acid compound (L1) having at least two substituents having a terminal alkenyl group, a polyvalent carboxylic acid compound (D) different from the aromatic polycarboxylic acid compound (L1), and ions of metals belonging to Groups 1 to 14 of the periodic table A porous metal complex comprising at least one metal ion selected.
  13.  芳香族多価カルボン酸化合物(L1)が、下記一般式(1)または(2)で示される化合物である請求項12に記載の多孔性金属錯体;
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    (式中、AおよびAはカルボキシル基であり、B~Bのうち少なくとも2つはそれぞれ同一または異なって、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000014
    (式(3)中、YおよびYは同一または異なって酸素原子、硫黄原子若しくは-O-CO-であり、〔Y-(CH〕は繰り返し単位毎にYおよびaがそれぞれ同一または異なっていてもよく、aは1~5、bは0~5、cは0または1、dは0~5の整数である。Rは水素原子、炭素数1~5のアルキル基またはアルコキシカルボニル基である)
    で表される末端アルケニル基を有する置換基であり、B~Bのうち一般式(3)で表されないものは、同一または異なって、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、アルコキシ基、チオアルキル基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基及びカルボキシル基からなる群から選ばれるいずれかの置換基である。)。
    The porous metal complex according to claim 12, wherein the aromatic polycarboxylic acid compound (L1) is a compound represented by the following general formula (1) or (2):
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, A 1 and A 2 are carboxyl groups, and at least two of B 1 to B 4 are the same or different, and the following general formula (3)
    Figure JPOXMLDOC01-appb-C000014
    (In Formula (3), Y 1 and Y 2 are the same or different and are an oxygen atom, a sulfur atom, or —O—CO—, and [Y 1 — (CH 2 ) a ] represents Y 1 and a for each repeating unit. May be the same or different, a is 1 to 5, b is 0 to 5, c is 0 or 1, and d is an integer of 0 to 5. R is a hydrogen atom, an alkyl having 1 to 5 carbon atoms Group or alkoxycarbonyl group)
    The substituents having a terminal alkenyl group represented by general formula (3) among B 1 to B 4 are the same or different and have a hydrogen atom, a halogen atom or a substituent. Selected from the group consisting of an alkyl group, an alkoxy group, a thioalkyl group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, and a carboxyl group Is any substituent. ).
  14.  多価カルボン酸化合物(D)が、末端アルケニル基を有さない芳香族ジカルボン酸化合物である請求項12または13に記載の多孔性金属錯体。 The porous metal complex according to claim 12 or 13, wherein the polyvalent carboxylic acid compound (D) is an aromatic dicarboxylic acid compound having no terminal alkenyl group.
  15.  前記多孔性金属錯体が、さらに前記金属イオンに多座配位可能な有機配位子を含む、請求項12~14のいずれか1項に記載の多孔性金属錯体。 The porous metal complex according to any one of claims 12 to 14, wherein the porous metal complex further comprises an organic ligand capable of multidentate coordination with the metal ion.
PCT/JP2014/052468 2013-02-08 2014-02-03 Porous metal complex, method for producing polymer using same, and vinyl ester copolymer WO2014123091A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013023408A JP2014152258A (en) 2013-02-08 2013-02-08 Vinyl ester copolymer
JP2013-023432 2013-02-08
JP2013023432A JP2014152259A (en) 2013-02-08 2013-02-08 Porous metal complex and method for manufacturing polymer using the same
JP2013-023408 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123091A1 true WO2014123091A1 (en) 2014-08-14

Family

ID=51299685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052468 WO2014123091A1 (en) 2013-02-08 2014-02-03 Porous metal complex, method for producing polymer using same, and vinyl ester copolymer

Country Status (1)

Country Link
WO (1) WO2014123091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227330A1 (en) * 2020-05-11 2021-11-18 苏州大学 Solvent-resistant polymer nanofiltration membrane, preparation method therefor, and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143786A (en) * 2007-12-18 2009-07-02 National Institute Of Advanced Industrial & Technology Method for producing porous carbon material
JP2010159228A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Self-organizing metal complex, method for producing the same, and catalyst material
JP2012527995A (en) * 2009-05-28 2012-11-12 サントゥル ナシオナル ドゥ ルシェルシュ シアンティフィック(セエヌエルエス) Use and equipment of a mixture of porous crystalline solids as nitrogen oxide reduction catalysts
JP2012530718A (en) * 2009-06-19 2012-12-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Complex mixed ligand open skeleton materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143786A (en) * 2007-12-18 2009-07-02 National Institute Of Advanced Industrial & Technology Method for producing porous carbon material
JP2010159228A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Self-organizing metal complex, method for producing the same, and catalyst material
JP2012527995A (en) * 2009-05-28 2012-11-12 サントゥル ナシオナル ドゥ ルシェルシュ シアンティフィック(セエヌエルエス) Use and equipment of a mixture of porous crystalline solids as nitrogen oxide reduction catalysts
JP2012530718A (en) * 2009-06-19 2012-12-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Complex mixed ligand open skeleton materials

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GAETANO DISTEFANO ET AL.: "Highly ordered alignment of a vinyl polymer by host-guest cross-polymerization", NATURE CHEMISTRY, vol. 5, no. 4, April 2013 (2013-04-01), pages 335 - 341 *
JESSE G.MCDANIEL ET AL.: "Microscopic Origins of Enhanced Gas Adsorption and Selectivity in Mixed-Linker Metal-Organic Frameworks", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 117, no. 33, 22 August 2013 (2013-08-22), pages 17131 - 17142 *
LIAN-XU SHI ET AL.: "The roles of the allyloxy groups on terephthalate for the formation of three coordination networks", INORGANIC CHEMISTRY COMMUNICATIONS, vol. 14, no. 4, April 2011 (2011-04-01), pages 569 - 572 *
MIN KIM ET AL.: "Functional tolerance in an isoreticular series of highly porous metal- organic frameworks", DALTON TRANSACTIONS, vol. 41, no. 20, 28 May 2012 (2012-05-28), pages 6277 - 6282 *
RYO NAKANISHI ET AL.: "Kakyogata Takoshitsu Kinzoku Sakutai o Mochiita Kobunshi no Haiko Seigyo Gosei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 93, no. 2, 8 March 2013 (2013-03-08), pages 240 *
TAKASHI UEMURA ET AL.: "Functionalization of Coordination Nanochannels for Controlling Tacticity in Radical Vinyl Polymerization", J. AM. CHEM. SOC., vol. 132, no. 13, 2010, pages 4917 - 4924 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227330A1 (en) * 2020-05-11 2021-11-18 苏州大学 Solvent-resistant polymer nanofiltration membrane, preparation method therefor, and use thereof

Similar Documents

Publication Publication Date Title
Liu et al. Degradation of poly (ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids
Na et al. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE)
Jaymand Recent progress in the chemical modification of syndiotactic polystyrene
JP5763312B2 (en) Method for producing polar group-containing allyl monomer copolymer
Lee et al. Toward ultimate control of radical polymerization: functionalized metal–organic frameworks as a robust environment for metal-catalyzed polymerizations
WO2018159791A1 (en) Host-group-containing polymerizable monomer, polymer material, method for producing same, and clathrate compound and method for producing same
Arredondo et al. Synthesis of CO 2-responsive cellulose nanocrystals by surface-initiated Cu (0)-mediated polymerisation
Liu et al. Grafting modification of ramie fibers with poly (2, 2, 2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide
Chen et al. Thermally reversible linking of halide-containing polymers by potassium dicyclopentadienedicarboxylate
WO2018207934A1 (en) Composition for polymerization, polymer of same and method for producing polymer
Li et al. Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS–(PCL–P (MEO 2 MA-co-PEGMA)) 16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature
Zhou et al. A well-defined amphiphilic polymer co-network from precise control of the end-functional groups of linear RAFT polymers
Darabi et al. PEGylation of Chitosan Via Nitroxide‐Mediated Polymerization in Aqueous Media
Sasaki et al. Highly selective bisphenol A—imprinted polymers prepared by atom transfer radical polymerization
WO2014123091A1 (en) Porous metal complex, method for producing polymer using same, and vinyl ester copolymer
JP4496986B2 (en) Polymerization method in pores of porous metal complexes
Garmendia et al. Facile synthesis of reversibly crosslinked poly (ionic liquid)-type gels: Recyclable supports for organocatalysis by N-heterocyclic carbenes
Saikia et al. Poly (ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study
TWI787277B (en) Vinyl alcohol-based polymer containing olefin in side chain and manufacturing method thereof
WO2016143876A1 (en) Ligand compound, and single-hole or multi-hole coordination polymer obtained using same
Tan et al. A light-mediated metal-free atom transfer radical chain transfer reaction for the controlled hydrogenation of poly (vinylidene fluoride-chlorotrifluoroethylene)
JP2014152259A (en) Porous metal complex and method for manufacturing polymer using the same
Yilu et al. Mechanochemistry: a novel approach to graft polypropylene with dual monomers (PP-g-(MAH-co-St))
Brownell et al. Synthesis of polar block grafted syndiotactic polystyrenes via a combination of iridium‐catalyzed activation of aromatic C H bonds and atom transfer radical polymerization
JP2014152258A (en) Vinyl ester copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749543

Country of ref document: EP

Kind code of ref document: A1