JP2010133866A - サンプリング波形測定装置および信号品質モニタ - Google Patents

サンプリング波形測定装置および信号品質モニタ Download PDF

Info

Publication number
JP2010133866A
JP2010133866A JP2008311423A JP2008311423A JP2010133866A JP 2010133866 A JP2010133866 A JP 2010133866A JP 2008311423 A JP2008311423 A JP 2008311423A JP 2008311423 A JP2008311423 A JP 2008311423A JP 2010133866 A JP2010133866 A JP 2010133866A
Authority
JP
Japan
Prior art keywords
sampling
frequency
signal
input signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008311423A
Other languages
English (en)
Other versions
JP5334551B2 (ja
Inventor
Takashi Mori
隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2008311423A priority Critical patent/JP5334551B2/ja
Publication of JP2010133866A publication Critical patent/JP2010133866A/ja
Application granted granted Critical
Publication of JP5334551B2 publication Critical patent/JP5334551B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】本発明は、入力信号のビット周波数の概略値が未知であっても、タイミングドリフトの少ないアイ波形を測定できるサンプリング波形測定装置及び精度の高い信号品質モニタを提供することを目的とする。
【解決手段】本発明は、サンプリング波形の時間軸信号を与えるビット同期回路が、入力信号のビット周波数とサンプリング周波数又はサンプリング周波数の整数倍の周波数との間のビート周波数のサンプリング周波数に対する比を検出し、検出したビート周波数のサンプリング周波数に対する比から時間軸信号を決定し、時間軸信号として出力することを特徴とするサンプリング波形測定装置である。
【選択図】図7

Description

本発明は、高速信号の波形をディジタル化して測定するサンプリング測定装置および測定した波形の品質をモニタする信号品質モニタに関する。
従来のサンプリング波形測定装置の構成を図1に示す。被測定対象である光信号発生器700は、高速(例えば、40Gbps)の光入力信号と同時に光入力信号と同期した基準周波数(例えば10MHz)の正弦波信号を出力する。サンプリング波形測定装置600において、サンプリング周波数算出部607は、光入力信号のビット周波数が手動で入力されると、ビット周波数の整数分の1よりも僅かに低いサンプリング周波数(例えば9.99999MHz)を算出し、周波数シンセサイザ606に設定する。周波数シンセサイザ606では、入力された基準周波数に従って、設定されたサンプリング周波数の正弦波信号を生成する。光サンプリングパルス発生回路605は、周波数シンセサイザ606の出力に従って、繰返しがサンプリング周波数に等しく、パルス幅が短い光サンプリングパルスを発生する。光サンプリングゲート601は、光サンプリングパルスが入力された時にゲートを開いて光入力信号をサンプリングする。光サンプリングゲート601の出力は、受光器602で電気信号に変換され、アナログ−ディジタル変換回路(以後、「アナログ−ディジタル変換回路」を「A−D変換回路」と略記する。)603でディジタル信号に変換され、アイ波形表示部604に入力される。
サンプリング波形測定装置600のサンプリング波形の測定原理を図2に示す。光サンプリングパルス発生回路605の出力する光サンプリングパルス(図2(b))の繰返し周期は光入力信号(図2(a))の繰返し周期の整数倍よりも僅かに長いので、光入力信号のパルス波形上の相対的なサンプリング位置は、前回のサンプリングよりも僅かに後方となる。この相対的なサンプリング位置の差をΔtとする。入力信号が繰返し波形の場合、入力信号を0、Δt、2Δt、3Δt・・・の位置でサンプリングしたのと等価になる。光サンプリングゲート601の出力する出力信号(図2(c))は、この光入力信号のパルス波形を時間軸方向に拡大した包絡線が得られる。光サンプリングゲート601の出力する出力信号は、時間軸が拡大されるので、低速の受光器602やA−D変換回路603を用いて高速の光入力信号波形を観測することが出来る。図2(a)から図2(c)では光入力信号が完全な繰返し波形の場合を示したが、光入力信号が2値のディジタル信号の場合、“0”に対応したサンプリング点と“1”に対応したサンプリング点が分離したアイ波形が得られる。RZ(Return to Zero)符号の信号のアイ波形の例を図3に示す。
サンプリング周波数をf、入力信号のビット周波数をfinとすると、1サンプル当たりの等価時間ステップΔtは、次の数式で表される。
Figure 2010133866
但し、Nは整数である。
従来技術では、通常0<Δt<<1/finとなるようにN及びfを選定する。光サンプリングゲート601の出力信号として、時間軸がS=1/(Δt・f)倍に拡大された入力信号波形が得られる。例えば、光入力信号のビット周波数が40GHz、サンプリング周波数が9.99999MHzの場合、Δtは0.1psとなり時間軸が約10倍に拡大される。この方法では入力信号のビット周波数とサンプリング周波数の関係を正確に合わせる必要があり、被測定対象700とサンプリング波形測定装置600の間で基準周波数の同期をとる必要がある。長距離の光ファイバで伝送された信号を測定する場合、被測定対象700とサンプリング波形測定装置600の間の距離が長く、電気信号で基準周波数の同期をとることが困難であった。この場合、基準周波数を別途光信号として伝送する手法や、受信端で光入力信号からクロック成分を抽出する手法がある。
しかし前者は、被測定信号となる通常の光入力信号以外の信号を送受信する特別な装置が送受信端両側に必要となり非常に繁雑である。後者は、高い周波数のクロック成分を抽出するクロック抽出回路が高価でかつ抽出可能なクロック周波数範囲が限られるといった問題点があった。またサンプリング波形測定装置600では、光入力信号に応じてビット周波数を設定する必要があると共に、周波数分解能が高くタイミングドリフトが少ない周波数シンセサイザおよびそれに同期した光サンプリングパルス発生回路605が必要で、測定装置が高価で大型になるという問題があった。
上記で説明した基準周波数の同期の問題を解決するために、ソフトウェア同期法を適用したサンプリング波形測定装置(例えば、非特許文献1参照。)が提案されている。ソフトウェア同期法を適用したサンプリング波形測定装置600の構成を図4に示す。光サンプリングパルス発生回路605、光サンプリングゲート601、受光器602、A−D変換回路603の構成は前述の従来技術と同じである。604はアイ波形表示部、606は周波数シンセサイザ、607はサンプリング周波数算出部、611は2乗検波回路、612は離散フーリエ変換器、613はローパスフィルタ、614は最大値検出回路、615はΔt変更回路、616は振幅スライス回路、617はヒストグラム、618は2乗和回路、619は最大値検出回路、620は時間軸決定回路である。周波数シンセサイザ606は被測定対象と基準周波数の同期をとっていないため、サンプリング周波数に若干の誤差が発生する。サンプリング周波数fの誤差が小さくても、等価時間ステップΔtの誤差は拡大されて大きくなる。例えば、光入力信号のビット周波数finが40GHz、サンプリング周波数fが9.99999MHzの場合、サンプリング周波数fの相対誤差が10−7で、等価時間ステップΔtの相対誤差が10%となる。
サンプリングされた信号に発生するビート周波数について図5を用いて説明する。RZ符号の信号は、図5(a)に示すようにビット周波数およびその整数倍の周波数2fin、3fin、・・・の周波数成分を持つ。一方、サンプリング周波数fのサンプリングパルスは、図5(b)に示すように、サンプリング周波数f及びその整数倍の周波数2f、3f、・・・の周波数成分を持つ。サンプリングは入力信号とサンプリングパルスの乗算に相当するので、図5(c)に示す周波数差がビート周波数となり、光サンプリングゲート601の出力信号には図5(d)に示すビート周波数f、2f、3f、・・・のビート信号が発生する。ビット周波数finの光入力信号とサンプリング周波数fのサンプリングパルスによるビート信号のビート周波数は次の数式で表される。
Figure 2010133866
数式(1)と数式(2)より、
Figure 2010133866
となる。数式3より、ビート周波数fが光サンプリングゲート601の出力の繰り返し周波数に等しいことが分かる。また、ビート周波数fがf/2よりも十分小さい場合、ビット周波数finの整数倍の周波数とサンプリング周波数の整数倍の周波数との間のビート周波数はfの整数倍となり、図5(d)に示すように、fとその整数倍の関係となる。
ビット周波数成分を持たないNRZ(Non Return to Zero)符号の光入力信号を測定するために、A−D変換されたディジタル信号Yに対して次の数式に示す2乗演算を行なう。
Figure 2010133866
2乗演算によってビット周波数成分及びその高調波成分が発生するので、RZ信号と同様のビート周波数を持つビート信号が発生する。Y’に対して離散フーリエ変換を行なうと図5(d)のようなスペクトルが得られる。
なお、入力信号のパルス幅が1ビット周期に比べて短い場合、ビット周波数の整数倍の周波数とサンプリング周波数の整数倍の周波数との間のビート周波数のレベルがビット周波数とサンプリング周波数の整数倍の周波数との間のビート周波数のレベルに近くなる。僅かなノイズ等によってこのレベル差が逆転することもあり、単にスペクトルの最大値を探すだけではビット周波数とサンプリング周波数の整数倍の周波数との間のビート周波数を確実に検出することは出来ない。そこで、図5(e)のようにビット周波数の整数倍の周波数とサンプリング周波数の整数倍の周波数との間のビート周波数2f、3f、・・・をローパスフィルタによって除去した後、最大値を検出すると、ビット周波数とサンプリング周波数の整数倍の周波数との間のビート周波数fが得られる。数式3より、
Figure 2010133866
となり、fからΔtを求めることが出来る。
しかし、Y’を離散フーリエ変換して得られるスペクトルは離散スペクトルであるため、ビート成分の周波数分解能が離散フーリエ変換のデータ点数で制限され、これより求めたΔtは誤差を持つ。Δtに誤差があると、アイ波形にタイミングドリフトが発生するため、離散スペクトルから求めたΔtを初期値として以下の繰返し処理を行なうことにより正確なΔtを求める。タイミングドリフトが無い場合のアイ波形とヒストグラムを図6に示す。まず、Δtの初期値を用いて図6(a)のようにアイ波形を描き、図6(a)の2本の横線の間にあるサンプルについて図6(b)のようにヒストグラムを作成する。ヒストグラムの各サンプル数をκとし、その2乗和Σκを計算する。Δtを変更して繰返し2乗和Σκを計算し、2乗和Σκが最大になる時のΔtをΔtの最適値とする。Δtの最適値が求まると、数式6
Figure 2010133866
のようにしてYに対応する時間軸値Xを再構成し、タイミングドリフトが最小のアイ波形を得ることが出来る。つまり、被測定対象とサンプリング波形測定装置の間で基準周波数の同期をとらず、光入力信号のビット周波数とサンプリング周波数の関係に誤差が存在する場合でも、サンプリングされた信号からΔtを正確に求め、入力信号と同期したアイ波形を得ることが出来る。
Mathias Westlund, Henrik Sunnerud, Magnus Karlson, and Peter A. Andrekson, "Software Synchronized All−Optical Sampling for Fiber Communication Systems", IEEE Journal of Lightwave Technology, vol.23, no.3, pp.1088−1099, March 2005
前述したソフトウェア同期法では、アイ波形を生成しスライスしてヒストグラムを求めるという複雑な処理を、Δtを変えて繰返し行なう必要があり、演算量が多いという課題がある。また、ビット周波数の整数倍の周波数とサンプリング周波数の整数倍の周波数との間のビート周波数がビット周波数とサンプリング周波数の整数倍の周波数との間のビート周波数よりも低くなると、ローパスフィルタによって除去出来なくなるので、常にビット周波数とサンプリング周波数の整数倍の周波数との間のビート周波数fがf/2よりも十分小さくなるようにする必要がある。このためには、光入力信号のビット周波数の概略値が既知で、それに合わせてサンプリング周波数を設定する必要がある。
そこで、入力信号のビット周波数の概略値が不明で、また、サンプリング周波数が不明であっても、少ない演算量でタイミングドリフトの少ないアイ波形を測定できるサンプリング波形測定装置及び精度の高い信号品質モニタを提供することを目的とする。
上記課題を解決するために、本発明に係るサンプリング波形測定装置は、離散スペクトルのデータ間を補間した後、前記入力信号のビット周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数の前記サンプリング周波数に対する比を検出し、検出した前記ビート周波数の前記サンプリング周波数に対する比から時間軸信号を決定することを特徴とする。
具体的には、本発明は、一定のサンプリング周波数のサンプリングパルスを発生するサンプリングパルス発生回路と、入力信号が入力され、前記サンプリングパルス発生回路からのサンプリングパルスが入力された時に前記入力信号をサンプリングするサンプリングゲート回路と、前記サンプリングゲート回路からのサンプリングされた入力信号をディジタル変換して振幅軸信号として出力するアナログ−ディジタル変換回路(以後、「アナログ−ディジタル変換回路」を「A−D変換回路」と略記する。)と、前記A−D変換回路からのディジタル変換された入力信号を用いて前記入力信号のビット周波数と同期をとった時間軸信号を出力するビット同期回路と、を備え、前記ビット同期回路は、前記A−D変換回路からのディジタル変換された入力信号を離散フーリエ変換して離散スペクトルを算出し、前記離散スペクトルのデータ間を補間した後、前記入力信号のビット周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数(以後、「前記入力信号のビット周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数」を「基本波ビート周波数」と略記する。)の前記サンプリング周波数に対する比を検出し、検出した前記基本波ビート周波数の前記サンプリング周波数に対する比から時間軸信号を決定し、前記時間軸信号として出力することを特徴とするサンプリング波形測定装置である。
本発明に係るサンプリング波形測定装置は、入力信号のビット周波数の概略値が不明で、また、サンプリング周波数が不明であっても、タイミングドリフトの少ないアイ波形を測定することができる。
本発明に係るサンプリング波形測定装置は、前記ビット同期回路が、前記離散スペクトルから前記基本波ビート周波数の前記サンプリング周波数に対する比の概略値を算出し、算出した概略値を用いて前記離散スペクトルのデータ間を補間してもよい。
本発明に係るサンプリング波形測定装置は、少ない演算量で離散スペクトルのデータ間隔よりも高い分解能でビート周波数を検出することができる。
本発明に係るサンプリング波形測定装置は、前記ビット同期回路が、前記離散スペクトルが最大となる最大周波数の前記サンプリング周波数に対する比を前記基本波ビート周波数の前記サンプリング周波数に対する比の概略値としてもよい。
入力信号のビット周波数成分のレベルがビット周波数の整数倍の周波数成分のレベルより大きい場合、本発明に係るサンプリング波形測定装置は、容易に基本波ビート周波数を推定することができる。
本発明に係るサンプリング波形測定装置は、前記ビット同期回路が、前記離散スペクトルが極大となる極大周波数の前記サンプリング周波数に対する比を複数検出し、前記極大周波数の前記サンプリング周波数に対する比のいずれかが前記基本波ビート周波数の前記サンプリング周波数に対する比であると仮定し、前記ビット周波数の整数倍の周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数(以後、「前記ビット周波数の整数倍の周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数」を「高調波ビート周波数」と略記する。)の前記サンプリング周波数に対する比と前記極大周波数の前記サンプリング周波数に対する比との誤差を計算し、前記誤差が最も小さくなる場合に仮定した極大周波数の前記サンプリング周波数に対する比を前記基本波ビート周波数の前記サンプリング周波数に対する比としてもよい。
本発明に係るサンプリング波形測定装置は、入力信号のビット周波数成分のレベルがビット周波数の整数倍の周波数成分のレベルより小さい、又は近い場合においても、確実に基本波ビート周波数を推定することができる。
本発明に係るサンプリング波形測定装置は、前記ビット同期回路が、前記A−D変換回路からのディジタル変換された入力信号を非線形関数に入力し、前記非線形関数の出力を離散フーリエ変換してもよい。
本発明に係るサンプリング波形測定装置は、NRZ符号の信号に対しても精度よくビート周波数を検出することができる。
本発明に係るサンプリング波形測定装置は、前記ビット同期回路が、前記基本波ビート周波数の信号成分の位相を検出し、検出した前記位相を用いて前記入力信号の特定の位置が特定の時間軸値となるように前記時間軸信号を決定してもよい。
本発明に係るサンプリング波形測定装置は、時間軸方向の変動の少ないアイ波形を得ることができる。
本発明に係るサンプリング波形測定装置は、一定の時間軸値範囲内に前記時間軸信号が発生しない場合に、前記サンプリングパルス発生回路が、前記サンプリング周波数を変更してもよい。
本発明に係るサンプリング波形測定装置は、アイ波形の欠落を防止することができる。
本発明に係るサンプリング波形測定装置は、前記入力信号が光入力信号であり、前記サンプリングパルス発生回路が、発生するサンプリングパルスが電気サンプリングパルスであり、前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの電気サンプリングパルスが入力された時に前記光入力信号をサンプリングする光変調器と、前記光変調器の出力するサンプリングされた光信号を電気信号に変換してサンプリングされた入力信号として出力する受光器と、を備えてもよい。
本発明に係るサンプリング波形測定装置は、入力信号が光入力信号であり、サンプリングパルスが電気サンプリングパルスであっても、サンプリング波形を得ることができる。
本発明に係るサンプリング波形測定装置は、前記入力信号が光入力信号であり、前記サンプリングパルス発生回路が、発生するサンプリングパルスが光サンプリングパルスであり、前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの光サンプリングパルスが入力された時に前記光入力信号をサンプリングする光サンプリングゲートと、前記光サンプリングゲートの出力するサンプリングされた光信号を電気信号に変換してサンプリングされた入力信号として出力する受光器と、を備えてもよい。
本発明に係るサンプリング波形測定装置は、入力信号が光入力信号であり、サンプリングパルスが光サンプリングパルスであっても、サンプリング波形を得ることができる。
本発明に係るサンプリング波形測定装置は、前記入力信号が電気入力信号であり、前記サンプリングパルス発生回路が、発生するサンプリングパルスが光サンプリングパルスであり、前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの光サンプリングパルスが入力された時に前記電気入力信号をサンプリングするEOサンプリングゲート、を備えてもよい。
本発明に係るサンプリング波形測定装置は、入力信号が電気入力信号であり、サンプリングパルスが光サンプリングパルスであっても、サンプリング波形を得ることができる。
本発明に係るサンプリング波形測定装置は、前記サンプリングパルス発生回路が、パッシブモード同期ファイバレーザでもよい。
本発明に係るサンプリング波形測定装置は、簡易に光サンプリングパルスを得ることができる。
本発明に係るサンプリング波形測定装置は、前記A−D変換回路からの振幅軸信号及び前記ビット同期回路からの時間軸信号を受けて前記入力信号のアイ波形を表示するアイ波形表示回路をさらに備えてもよい。
本発明に係るサンプリング波形測定装置は、アイ波形を観測することができる。
本発明に係る信号品質モニタは、上記いずれかに記載のサンプリング波形測定装置と、前記A−D変換回路からの振幅軸信号及び前記ビット同期回路からの時間軸信号で生成されるアイ波形から前記入力信号の信号品質を表す値を算出する信号品質算出回路と、を備えることを特徴とする信号品質モニタである。
本発明に係る信号品質モニタは、入力信号のビット周波数が不明で、また、サンプリング周波数が不明であっても、信号の品質を簡易に測定することができる。
本発明に係る信号品質モニタは、前記信号品質算出回路が、前記アイ波形の所定の時間軸値範囲内におけるハイレベルの平均値μ及び標準偏差σ並びにローレベルの平均値μ及び標準偏差σを求め、次式により得られるQ値を信号品質として算出してもよい。
Q=(μ−μ)/(σ+σ
本発明に係るサンプリング波形測定装置は、入力信号のビット周波数が不明で、また、サンプリング周波数が不明であっても、簡易にQ値を得ることができる。
なお、上記発明は可能な限り任意に組み合わせることができる。
本発明によれば、入力信号のビット周波数の概略値が不明で、また、サンプリング周波数が不明であっても、タイミングドリフトの少ないアイ波形を測定できるサンプリング波形測定装置及び精度の高い信号品質モニタを提供することができる。
添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
図7は、本実施形態に係るサンプリング波形測定装置の構成概略図である。本実施形態に係るサンプリング波形測定装置100は、サンプリングゲート101、A−D変換回路103、アイ波形表示回路104、サンプリングパルス発生回路105、ビット同期回路110を備える。ビット同期回路110は、離散フーリエ変換回路112、補間回路114、ビート周波数検出回路115、時間軸決定回路120を備える。ビット同期回路110は、ソフトウェアで離散フーリエ変換、補間、ビート周波数検出、時間軸決定の演算を行うことによっても実現できる。
サンプリングパルス発生回路105は、サンプリング周波数が一定でパルス幅が短いサンプリングパルスを発生する。サンプリングゲート101は、サンプリングパルス発生回路105からのサンプリングパルスが入力された時にゲートを開いて入力信号をサンプリングする。A−D変換回路103は、サンプリングゲート101によってサンプリングされた信号をディジタル信号に変換する。入力信号、サンプリングパルス共に電気信号の場合、サンプリングダイオードにより電気信号で、入力信号の電気信号をサンプリングするサンプリングゲート101を構成することが出来る。入力信号が電気信号で、サンプリングパルスが光信号の場合、電気光学効果を用いたEOサンプリング法により光信号で電気信号をサンプリングするサンプリングゲート101を構成することが出来る。入力信号が光信号で、サンプリングパルスが電気信号の場合、電界吸収型光変調器やLiNbO光変調器等の光強度変調器により、電気信号で光信号をサンプリングする光サンプリングゲートを構成することが出来る。入力信号、サンプリングパルス共に光信号の場合、非線形光学結晶を用いた和周波数生成、光ファイバや半導体光増幅器を用い4光波混合または相互位相変調、電界吸収型光変調器を用いた相互吸収変調等により光信号で光信号をサンプリングする光サンプリングゲートを構成することが出来る。光サンプリングゲートの場合、光サンプリングゲートの出力の光信号を電気信号に変換するためにフォトダイオード、アバランシェ・フォトダイオード、光電子増倍管等の受光器が必要となる。また、必要に応じて光信号を増幅するエルビウム添加光ファイバ増幅器や半導体光増幅器を追加することも可能である。以上の構成は従来のサンプリング波形測定装置と同様であり、電気信号と光信号の違いや、サンプリングゲートの動作原理の違いによらず本発明の同期手法を適用することが可能である。
本実施形態における波形同期の概要を図8に示す。入力信号(図8(a))がサンプリングパルス(図8(b))でサンプルされる。図2では、サンプリングパルスのサンプリング周期が入力信号の繰返し周期の整数倍よりも僅かに長い条件において、入力信号のパルス波形を時間軸方向に拡大したサンプリングゲート出力信号が得られることを示した。この条件が成り立たない場合、図8(c)に示すようにサンプリングゲート出力信号は入力信号波形を拡大したものにはならない。しかし、サンプリングゲート出力信号の各パルスの時間軸を並べ替えると、図8(d)に示すように入力信号波形を拡大した包絡線波形が得られる。入力信号がディジタル信号で強度変調された信号の場合、通常のサンプリングと同様にアイ波形が得られる。本発明は、入力信号のビット周波数およびサンプリングパルスのサンプリング周波数が不明の場合でも入力信号に同期したサンプリング波形を得る簡便な方法を提供するものである。
以下、図7のビット同期回路を中心に説明する。まず、サンプリングゲート101の出力信号をA−D変換回路103がA−D変換する。離散フーリエ変換回路112はA−D変換回路103の出力するディジタル信号を離散フーリエ変換する。実際には、離散フーリエ変換の1種である高速フーリエ変換(FFT:Fast Fourier Transformation)により速やかに離散フーリエ変換の計算を行なうことが可能である。離散フーリエ変換の結果は離散スペクトルとなるので、離散スペクトルのデータ間隔で周波数分解能が制限される。離散スペクトルのデータ間隔を狭くするには、長時間のディジタル信号を離散フーリエ変換する必要があり、演算量が多くなる問題があった。
本手法では、離散スペクトルのデータ間を補間することによって、離散スペクトルのデータ間隔よりも高い分解能でビート周波数を検出する。具体的には、離散フーリエ変換によって得られるパワースペクトルをPとし、補間関数をfint(f)とすると、パワースペクトルの補間値P(f)は
Figure 2010133866
で表される。但し、Δfは離散スペクトルの周波数間隔である。補間関数として、数式8に示すsinc関数や、
Figure 2010133866
数式9に示すGauss関数
Figure 2010133866
などを用いることができる。パワースペクトルの補間値P(f)が最大となる周波数をビート周波数fとする。P(f)の最大値を探す手法として、周波数を順次走査する方法のほかに、最大値付近で微分値dP(f)/dfが零になる値を探す方法がある。ビート周波数fが求まると、従来のソフトウェア同期法と同様に、数式5、6よりアイ波形の時間軸値Xを求めることができる。なお、Xを1ビット周期1/finで正規化したUI(Unit Interval)単位の時間軸値xは、
Figure 2010133866
となり、finに依存しなくなる。また、Yを離散フーリエ変換したときの横軸はサンプリング周波数fに対する相対周波数f/fであるので、サンプリング周波数fが不明の場合でも相対周波数f/fは求まる。よって、入力信号のビット周波数が不明でかつサンプリング周波数が不明の場合でも数式10よりUI単位の時間軸で同期のとれたアイ波形を得ることが出来る。
本実施形態に係るサンプリング波形測定装置の詳細構成を図9に示す。図9は、入力信号、サンプリングパルス共に光信号の場合を示している。本実施形態に係るサンプリング波形測定装置200は、光サンプリングゲート201、受光器202、A−D変換回路103、アイ波形表示回路104、光サンプリングパルス発生回路205、波形欠落検出回路131及びビット同期回路210を備える。ビット同期回路210は、非線形回路211離散フーリエ変換回路112、ビート周波数概略値検出回路213、補間回路214、ビート周波数検出回路115、時間軸決定回路120及び位相検波回路216を有する。ビット同期回路210及び波形欠落検出回路131は、ソフトウェアで演算を行うことによっても実現できる。
以下、図9の詳細構成を説明する。まず離散スペクトルから基本波ビート周波数の概略値を求め、この概略値の付近で補間値P(f)が最大になる周波数を検出することにより、補間値の最大を探す演算量を低減することが可能である。基本波ビート周波数fの概略値を求める方法として、単純にスペクトルが最大となる周波数を求める方法や、従来のソフトウェア同期法と同様に高調波ビート周波数をローパスフィルタで除去した後にスペクトルが最大となる周波数を求める方法がある。他に以下に示す方法がある
基本波ビート周波数fが高い、つまり、f/2に近い場合は、サンプリングによるf/2での周波数折り返しによって高調波ビート周波数が基本波ビート周波数fよりも低い周波数に発生することがあり、高調波ビート周波数のビート信号をローパスフィルタでカットすることが不可能となる。その様子を図10に示す。このような場合でも、基本波ビート周波数fを検出する方法を以下に示す。
まず、離散スペクトルが極大となる極大周波数を複数個検出する。極大周波数の個数は常に一定とする方法の他に、パワースペクトルがαPmaxより大きい極大周波数の個数を用いる方法がある。ここで、Pmaxはパワースペクトルの最大値、αは定数(例えば1/3)である。検出した極大周波数をfp(i)、i=1、2、・・・、mとする。fp(1)が基本波ビート周波数であると仮定し、サンプリングによるf/2での周波数折り返しを考慮して、高調波ビート周波数を数式11で求め、
Figure 2010133866
f’p(k)に最も近いfp(i)との周波数差を各倍高調波次数k=2、3、・・・mについて積算して周波数誤差を求める。基本波ビート周波数と仮定する極大周波数をfp(1)からfp(m)まで繰返し、前記周波数誤差が最小となる場合に仮定した極大周波数を前記基本波ビート周波数の概略値とする。この手法により、基本波ビート周波数のレベルよりも高調波ビート周波数のレベルが大きく、かつ高調波ビート周波数が折り返しによって基本波ビート周波数fよりも低い周波数に存在する場合でも、基本波ビート周波数fを求めることが出来る。以上の基本波ビート周波数の概略値を求める方法は絶対周波数で表したが、離散スペクトルの横軸はサンプリング周波数fに対する相対周波数f/fであるので、式11の両辺をfで除算することにより、同様にして基本波ビート周波数fのサンプリング周波数fに対する相対周波数f/fの概略値を求めることもできる。
この結果、基本波ビート周波数fをf/2よりも十分小さくするという制限が無くなるので、入力信号のビット周波数とサンプリング周波数が不明の場合(fは0からf/2の間の周波数になる)でも基本波ビート周波数fを求めることが出来る。よって、入力信号とサンプリングパルスの基準周波数同期が不要なだけでなく、入力信号のビット周波数を設定する必要のないサンプリング波形測定装置を実現することが出来る。さらに、サンプリングパルスのサンプリング周波数を正確に設定する必要が無いので、高価な高分解能周波数シンセサイザが不要で、サンプリングパルスを周波数シンセサイザに同期させる必要も無く、例えば安価で小型のパッシブモード同期ファイバレーザを光サンプリングパルス発生器として使用することが可能である。
ビット周波数成分を持たないNRZ符号の信号を測定するために、A−D変換されたディジタル信号Yに対して非線形演算を行なう。非線形演算として、従来のソフトウェア同期で用いた数式4の2乗演算の他に、絶対値演算や平方根演算などが適用可能である。前記ディジタル信号中の前記基本波ビート周波数の信号成分の位相を検出することにより、アイ波形の時間軸方向の位置を知ることができ、アイ波形を描く際、検出した位相の特定の値が特定の時間軸値となるようにすると、時間軸方向に一定のアイ波形を得ることが出来る。例えば、時間軸の中心が位相0度となるようにすると、アイ開口部が常に時間軸の中心に描かれる。具体的には、次の数式によりY中の基本波ビート周波数fの信号成分の位相φを算出する。
Figure 2010133866
そして、次の数式によりアイ波形の時間軸(UI単位)を求める。
Figure 2010133866
ビット周波数の成分を持たないNRZ符号の信号の場合は、非線形演算の出力Y’を用いて同様に位相φを算出する。
Figure 2010133866
入力信号のビット周波数とサンプリング周波数が特定の関係、例えば、整数比の関係に近い場合、図11に示すようにアイ波形の一部欠落が発生する。アイ波形の時間軸値xから欠落の有無を検知することが出来る。例えば、xを値が小さい順に並べ変え、間隔|xi+1−x|の最大値が一定値よりも大きい場合、欠落有りと判断できる。また、時間軸を一定間隔で分割してxのヒストグラムを作成し、サンプル数が0の区間が存在する場合、欠落有りと判断できる。欠落有りと判断された場合、サンプリング周波数を僅かに変更して欠落を回避する。サンプリング周波数変更後も欠落が存在する場合は、さらにサンプリング周波数変更を繰り返す。欠落が発生する確率は小さいので、サンプリング周波数の数回程度の変更で欠落を実用上回避することが出来る。
アイ波形から求めることが出来る信号品質を表す指標としてQ値が知られている。図7又は図9に示すサンプリング波形測定装置に、入力信号の品質を表す値を算出する信号品質算出回路を追加して、信号品質モニタを構成してもよい。例えば、信号品質算出回路は、図12に示すように、アイ開口の大きい部分に時間窓を設け、この時間窓内のサンプルを抽出する。時間窓内のサンプルを“0”レベルと“1”レベルに分離し、“0”レベルのサンプルについて平均値μと標準偏差σを求め、“1”レベルのサンプルについて平均値μと標準偏差σを求める。そして次式によりQ値を計算する。
Figure 2010133866
このQ値が大きいほどビット誤り率が小さくなるので、信号品質が高い。Q値は20log10(Q)を計算してdB単位で表示してもよい。時間窓の位置は、アイ開口が大きい部分を目視で設定する方法の他に、時間窓の位置を変えてQ値を計算し、最もQ値が大きくなる時間窓の位置が最適とみなす方法がある。
本発明の同期法によって得られたアイ波形からQ値を算出することにより、入力信号のビット周波数が不明で、また、サンプリング周波数が不明の場合でも簡便に信号品質を評価可能な信号品質モニタを構成することが出来る。
本発明のサンプリング波形測定装置及び信号品質モニタは、光伝送装置の特性測定に利用することができる。
従来のサンプリング波形測定装置の構成を説明する図である。 サンプリング波形測定装置600のサンプリング波形の測定原理を説明する図である。 RZ符号の信号のアイ波形の例である。 ソフトウェア同期法を適用したサンプリング波形測定装置の構成を説明する図である。 サンプリングされた信号に発生するビート周波数を示す図である。 アイ波形とヒストグラムを説明する図である。 本実施形態に係るサンプリング波形測定装置の構成概略図を説明する図である。 本実施形態における波形同期の概要を説明する図である。 本実施形態に係るサンプリング波形測定装置の詳細構成を説明する図である。 ビット周波数の成分によるビートのビート周波数fを検出する方法を説明する図である。 アイ波形の一部欠落の発生を説明する図である。 アイ波形から求めることが出来る信号品質を表す方法を説明する図である。
符号の説明
100、200、600 サンプリング波形測定装置
101 サンプリングゲート
103、603 A−D変換回路
104 アイ波形表示回路
105 サンプリングパルス発生回路
110、210 ビット同期回路
112 離散フーリエ変換回路
114、214 補間回路
115 ビット周波数検出回路
131 波形欠落検出回路
120、620 時間軸決定回路
201、601 光サンプリングゲート
202、602 受光器
205、605 光サンプリングパルス発生回路
211 非線形回路
213 ビート周波数概略値検出回路
216 位相検波回路
604 アイ波形表示部
606 周波数シンセサイザ
607 サンプリング周波数算出部
611 2乗検波回路
612 離散フーリエ変換器
613 ローパスフィルタ
614 最大値検出回路
615 Δt変更回路
616 振幅スライス回路
617 ヒストグラム
618 2乗和回路
619 最大値検出回路

Claims (14)

  1. 一定のサンプリング周波数のサンプリングパルスを発生するサンプリングパルス発生回路と、
    入力信号が入力され、前記サンプリングパルス発生回路からのサンプリングパルスが入力された時に前記入力信号をサンプリングするサンプリングゲート回路と、
    前記サンプリングゲート回路からのサンプリングされた入力信号をディジタル変換して振幅軸信号として出力するアナログ−ディジタル変換回路(以後、「アナログ−ディジタル変換回路」を「A−D変換回路」と略記する。)と、
    前記A−D変換回路からのディジタル変換された入力信号を用いて前記入力信号のビット周波数と同期をとった時間軸信号を出力するビット同期回路と、を備え、
    前記ビット同期回路は、前記A−D変換回路からのディジタル変換された入力信号を離散フーリエ変換して離散スペクトルを算出し、前記離散スペクトルのデータ間を補間した後、前記入力信号のビット周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数(以後、「前記入力信号のビット周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数」を「基本波ビート周波数」と略記する。)の前記サンプリング周波数に対する比を検出し、検出した前記基本波ビート周波数の前記サンプリング周波数に対する比から時間軸信号を決定し、前記時間軸信号として出力することを特徴とするサンプリング波形測定装置。
  2. 前記ビット同期回路が、前記離散スペクトルから前記基本波ビート周波数の前記サンプリング周波数に対する比の概略値を算出し、算出した概略値を用いて前記離散スペクトルのデータ間を補間することを特徴とする請求項1に記載のサンプリング波形測定装置。
  3. 前記ビット同期回路が、前記離散スペクトルが最大となる最大周波数の前記サンプリング周波数に対する比を前記基本波ビート周波数の前記サンプリング周波数に対する比の概略値とすることを特徴とする請求項2に記載のサンプリング波形測定装置。
  4. 前記ビット同期回路が、前記離散スペクトルが極大となる極大周波数の前記サンプリング周波数に対する比を複数検出し、前記極大周波数の前記サンプリング周波数に対する比のいずれかが前記基本波ビート周波数の前記サンプリング周波数に対する比であると仮定し、前記ビット周波数の整数倍の周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数(以後、「前記ビット周波数の整数倍の周波数と前記サンプリング周波数又は前記サンプリング周波数の整数倍の周波数との間のビート周波数」を「高調波ビート周波数」と略記する。)の前記サンプリング周波数に対する比と前記極大周波数の前記サンプリング周波数に対する比との誤差を計算し、前記誤差が最も小さくなる場合に仮定した極大周波数の前記サンプリング周波数に対する比を前記基本波ビート周波数の前記サンプリング周波数に対する比とする請求項2に記載のサンプリング波形測定装置。
  5. 前記ビット同期回路が、前記A−D変換回路からのディジタル変換された入力信号を非線形関数に入力し、前記非線形関数の出力を離散フーリエ変換することを特徴とする請求項1から4のいずれかに記載のサンプリング波形測定装置。
  6. 前記ビット同期回路が、前記基本波ビート周波数の信号成分の位相を検出し、検出した前記位相を用いて前記入力信号の特定の位置が特定の時間軸値となるように前記時間軸信号を決定することを特徴とする請求項1から5のいずれかに記載のサンプリング波形測定装置。
  7. 一定の時間軸値範囲内に前記時間軸信号が発生しない場合に、前記サンプリングパルス発生回路が、前記サンプリング周波数を変更することを特徴とする請求項1から6のいずれかに記載のサンプリング波形測定装置。
  8. 前記入力信号が光入力信号であり、
    前記サンプリングパルス発生回路が、発生するサンプリングパルスが電気サンプリングパルスであり、
    前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの電気サンプリングパルスが入力された時に前記光入力信号をサンプリングする光変調器と、
    前記光変調器の出力するサンプリングされた光信号を電気信号に変換してサンプリングされた入力信号として出力する受光器と、を備えることを特徴とする請求項1から7のいずれかに記載のサンプリング波形測定装置。
  9. 前記入力信号が光入力信号であり、
    前記サンプリングパルス発生回路が、発生するサンプリングパルスが光サンプリングパルスであり、
    前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの光サンプリングパルスが入力された時に前記光入力信号をサンプリングする光サンプリングゲートと、
    前記光サンプリングゲートの出力するサンプリングされた光信号を電気信号に変換してサンプリングされた入力信号として出力する受光器と、を備えることを特徴とする請求項1から7のいずれかに記載のサンプリング波形測定装置。
  10. 前記入力信号が電気入力信号であり、
    前記サンプリングパルス発生回路が、発生するサンプリングパルスが光サンプリングパルスであり、
    前記サンプリングゲート回路が、前記サンプリングパルス発生回路からの光サンプリングパルスが入力された時に前記電気入力信号をサンプリングするEOサンプリングゲート、を備えることを特徴とする請求項1から7のいずれかに記載のサンプリング波形測定装置。
  11. 前記サンプリングパルス発生回路が、パッシブモード同期ファイバレーザであることを特徴とする請求項9又は10に記載のサンプリング波形測定装置。
  12. 前記A−D変換回路からの振幅軸信号及び前記ビット同期回路からの時間軸信号を受けて前記入力信号のアイ波形を表示するアイ波形表示回路をさらに備えることを特徴とする請求項1から11のいずれかに記載のサンプリング波形測定装置。
  13. 請求項1から12のいずれかに記載のサンプリング波形測定装置と、
    前記A−D変換回路からの振幅軸信号及び前記ビット同期回路からの時間軸信号で生成されるアイ波形から前記入力信号の信号品質を表す値を算出する信号品質算出回路と、を備えることを特徴とする信号品質モニタ。
  14. 前記信号品質算出回路が、前記アイ波形の所定の時間軸値範囲内におけるハイレベルの平均値μ及び標準偏差σ並びにローレベルの平均値μ及び標準偏差σを求め、次式により得られるQ値を信号品質として算出することを特徴とする請求項13に記載の信号品質モニタ。
    Q=(μ−μ)/(σ+σ
JP2008311423A 2008-12-05 2008-12-05 サンプリング波形測定装置および信号品質モニタ Expired - Fee Related JP5334551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311423A JP5334551B2 (ja) 2008-12-05 2008-12-05 サンプリング波形測定装置および信号品質モニタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311423A JP5334551B2 (ja) 2008-12-05 2008-12-05 サンプリング波形測定装置および信号品質モニタ

Publications (2)

Publication Number Publication Date
JP2010133866A true JP2010133866A (ja) 2010-06-17
JP5334551B2 JP5334551B2 (ja) 2013-11-06

Family

ID=42345296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311423A Expired - Fee Related JP5334551B2 (ja) 2008-12-05 2008-12-05 サンプリング波形測定装置および信号品質モニタ

Country Status (1)

Country Link
JP (1) JP5334551B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033164A (zh) * 2010-11-16 2011-04-27 哈尔滨工业大学 一种计算电信号的基波分量采样信号序列的方法和系统
JP2015004584A (ja) * 2013-06-20 2015-01-08 アンリツ株式会社 サンプリング波形測定装置およびサンプリング波形測定方法
KR101831198B1 (ko) * 2016-04-14 2018-02-22 국방과학연구소 통신 신호에 대한 감소된 연산량을 가지는 2-단계 tdoa/fdoa 정보 추정 방법
CN108572277A (zh) * 2017-06-28 2018-09-25 北京航空航天大学 多频信号测量方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152361A (ja) * 1994-11-29 1996-06-11 Nippon Telegr & Teleph Corp <Ntt> 光信号波形の測定装置
JP2001194241A (ja) * 2000-01-11 2001-07-19 Nec Corp 光サンプリング波形測定方法及び光サンプリング波形測定装置
JP2004048688A (ja) * 2002-05-14 2004-02-12 Nippon Telegr & Teleph Corp <Ntt> 高速サンプリングによるデータ信号品質評価方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152361A (ja) * 1994-11-29 1996-06-11 Nippon Telegr & Teleph Corp <Ntt> 光信号波形の測定装置
JP2001194241A (ja) * 2000-01-11 2001-07-19 Nec Corp 光サンプリング波形測定方法及び光サンプリング波形測定装置
JP2004048688A (ja) * 2002-05-14 2004-02-12 Nippon Telegr & Teleph Corp <Ntt> 高速サンプリングによるデータ信号品質評価方法および装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033164A (zh) * 2010-11-16 2011-04-27 哈尔滨工业大学 一种计算电信号的基波分量采样信号序列的方法和系统
JP2015004584A (ja) * 2013-06-20 2015-01-08 アンリツ株式会社 サンプリング波形測定装置およびサンプリング波形測定方法
KR101831198B1 (ko) * 2016-04-14 2018-02-22 국방과학연구소 통신 신호에 대한 감소된 연산량을 가지는 2-단계 tdoa/fdoa 정보 추정 방법
CN108572277A (zh) * 2017-06-28 2018-09-25 北京航空航天大学 多频信号测量方法及系统
CN108572277B (zh) * 2017-06-28 2020-06-09 北京航空航天大学 多频信号测量方法及系统

Also Published As

Publication number Publication date
JP5334551B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
US8686712B2 (en) Time stretch enhanced recording scope
EP3514987B1 (en) Methods and apparatus for radio frequency (rf) photonic spectrometer using optical frequency combs
JP5448903B2 (ja) 光パルス試験装置
JP4803846B2 (ja) 光信号同期サンプリング装置及びその方法並びにそれを用いる光信号モニタ装置及びその方法
US10541722B2 (en) Photonic compressed sensing nyquist folding receiver
JP5334551B2 (ja) サンプリング波形測定装置および信号品質モニタ
JP5604042B2 (ja) 光信号品質モニタ装置及びその方法
CN104734774A (zh) 用于监控以及控制光通信系统的性能的方法和装置
CN111966960A (zh) 全光短时傅里叶变换系统及方法
CN110186578A (zh) 超快光场的三域信息获取方法和系统
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
JP2003032194A (ja) 光通信システムにおける性能監視法
JP6069113B2 (ja) サンプリング波形測定装置およびサンプリング波形測定方法
JP5094447B2 (ja) パルスレーダ装置
CN114325739A (zh) 超高速瞬态光子多普勒测速系统
Chi et al. Compressive sensing based on optical mixing using a spectral shaper with bipolar coding
JP2007051960A (ja) 光パルスのタイミング雑音計測装置
EP3361653A1 (en) Method of monitoring chromatic dispersion in optical communication network and device utilizing same
Zhu et al. Broadband instantaneous multi-frequency measurement based on chirped pulse compression
Crockett et al. Capturing ultra-broadband complex-fields of arbitrary duration using a real-time spectrogram
JP3843316B2 (ja) 光パルスのタイミングジッター計測方法およびそのための計測装置
JP5372447B2 (ja) サンプリング装置および信号モニタ
JP5271791B2 (ja) 光信号波形測定方法、装置及びプログラム
CN114427956B (zh) 基于分数傅里叶变换的扫频激光本征线宽测量系统及方法
US20240097782A1 (en) Method and system for generating the spectrogram of a signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees