JP2010133586A - 冷凍サイクル装置及び冷凍サイクル装置の制御方法 - Google Patents

冷凍サイクル装置及び冷凍サイクル装置の制御方法 Download PDF

Info

Publication number
JP2010133586A
JP2010133586A JP2008308155A JP2008308155A JP2010133586A JP 2010133586 A JP2010133586 A JP 2010133586A JP 2008308155 A JP2008308155 A JP 2008308155A JP 2008308155 A JP2008308155 A JP 2008308155A JP 2010133586 A JP2010133586 A JP 2010133586A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
flow rate
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308155A
Other languages
English (en)
Other versions
JP4804528B2 (ja
Inventor
Hirosuke Shimazu
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008308155A priority Critical patent/JP4804528B2/ja
Publication of JP2010133586A publication Critical patent/JP2010133586A/ja
Application granted granted Critical
Publication of JP4804528B2 publication Critical patent/JP4804528B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Abstract

【課題】デフロスト運転後、性能低下させることなく短時間でエジェクタサイクルに移行することのできる冷凍サイクル装置を得る。
【解決手段】圧縮機5、凝縮器6、気液分離器12、蒸発器14、及び、凝縮器6からの液冷媒が流入する駆動流入口11aと蒸発器14からの冷媒が吸引される吸引流入口11bとを備えたエジェクタ11が冷媒配管で接続され、エジェクタサイクルを形成する冷凍サイクル装置100において、第一開閉弁9と、第一流量調整弁10と、第二開閉弁16と、第三開閉弁18と、第二流量調整弁19と、第一開閉弁9、第一流量調整弁10、第二開閉弁16、第三開閉弁18、及び第二流量調整弁19を制御して冷媒の流路を切り替える制御手段30とを備え、制御手段30は、蒸発器14の着霜状態を解消するデフロスト運転が終了した後、蒸発器14に液冷媒を循環させる冷媒流路を形成する。
【選択図】図1

Description

本発明は、エジェクタを用いた冷凍サイクル装置及び該装置の制御方法に関する。
冷媒減圧手段及び冷媒循環手段としてエジェクタを用いたエジェクタサイクルによる冷凍サイクル装置において、蒸発器に付着した霜を取り除く除霜運転(デフロスト運転)を行うことが知られている。
このような除霜運転において、「除霜運転モードが終了した後、少なくとも所定時間は、開閉弁61を開いた状態で圧縮機10を停止させる準備運転モードを実行した後、通常運転モードを実施する」技術が提案されている(例えば、特許文献1参照)。
特許第4042637号公報(図1、第7頁)
上記特許文献1の技術によれば、凝縮器に多量の液冷媒が溜まるのを防止できるので、凝縮器の実凝縮能力が低下してしまうことを防止でき、除霜運転から通常運転に切り替わった直後に高圧側冷媒圧力が過度に上昇してしまうことを防止できる。
しかしながら、上記特許文献1の技術では、除霜運転モードが終了してから通常運転モードを実施するまでの所要時間に着目していない。たとえば、「ホットガスデフロスト」あるいは「ヒータデフロスト」などによりデフロスト運転を行った直後は、蒸発器自体が高温となっている。この状態でエジェクタサイクルを適用すると、エジェクタの吸引流量が低下し、蒸発器が十分に冷却されるまでに長時間を要する可能性がある。こうなると、デフロスト運転を終了してから通常のエジェクタサイクルに移行するまでに長時間を要し、運転サイクル全体での性能低下となる。さらにエジェクタの吸引流量が低いと、蒸発器でのパスバランスが悪化し、一部のパスは冷却されても他のパスがなかなか冷却されない可能性があり、性能悪化を更に助長することとなってしまう。
本発明は、上述のような課題を解決するためになされたもので、デフロスト運転後、性能低下させることなく短時間でエジェクタサイクルに移行することのできる冷凍サイクル装置を提供するものである。
本発明に係る冷凍サイクル装置は、
圧縮機、凝縮器、気液分離器、蒸発器、及び、前記凝縮器からの液冷媒が流入する駆動流入口と前記蒸発器からの冷媒が吸引される吸引流入口とを備えたエジェクタが冷媒配管で接続され、
前記エジェクタの駆動流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記エジェクタの駆動流入口、の順に冷媒を循環させる駆動流と、
前記エジェクタの吸引流入口、前記気液分離器の液相側出口、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させる吸引流とを発生させるエジェクタサイクルを形成する冷凍サイクル装置において、
前記凝縮器と前記エジェクタの駆動流入口の間に設けた第1冷媒流量調整機構と、
前記気液分離器の液側出口と前記蒸発器の間に設けた第2冷媒流量調整機構と、
前記凝縮器の出口側配管と前記蒸発器の入口側配管とを接続するバイパス経路と、
前記バイパス経路上に設けた第3冷媒流量調整機構と、
前記第1冷媒流量調整機構、前記第2冷媒流量調整機構、及び前記第3冷媒流量調整機構を制御して冷媒の流路を切り替える制御手段とを備え、
前記制御手段は、前記蒸発器の着霜状態を解消するデフロスト運転が終了した後、前記蒸発器に液冷媒を循環させる冷媒流路を形成するものである。
本発明に係る冷凍サイクル装置は、デフロスト運転が終了した後、蒸発器に液冷媒を循環させる冷媒流路を形成する。このため、デフロスト運転後の蒸発器を短時間で冷却することができ、デフロスト運転後からエジェクタサイクルでの運転までの所要時間を短縮することができる。したがって、デフロスト運転を含む運転サイクル全体の性能を改善することができる。
実施の形態1.
以下、本実施の形態1では、庫内に冷気を供給する冷凍機に本発明を適用した場合を例に説明する。
図1は、本発明の実施の形態1に係る冷凍機100の冷媒回路図である。図1において、冷凍機100は、コンデンシングユニット1、ユニットクーラ2、液延長配管3、ガス延長配管4、ホットガスバイパス21、及び制御装置30を備える。冷凍機100を構成する回路の内部には、冷媒が封入されている。
コンデンシングユニット1は、吸入した冷媒を高圧状態に圧縮して吐出する圧縮機5と、圧縮機5から吐出された吐出ガス冷媒を凝縮、液化する凝縮器6と、余剰冷媒を貯留して冷媒流量を調整する液溜8と、余剰冷媒を貯留して圧縮機5へ液冷媒が流入するのを防ぐアキュームレータ13を備え、配管接続されている。凝縮器6の近傍には、凝縮器6の外表面へ空気を送風する凝縮器ファン7を備える。
ユニットクーラ2は、エジェクタ11、気液分離器12、蒸発器14、及び蒸発器ファン15を備え、配管接続されている。
気液分離器12は、ガス側出口12aと、液側出口12bの2箇所の出口を備え、ガス側出口12aはガス延長配管4に、液側出口12bは、第二開閉弁16を介して蒸発器14の入口側に接続されている。気液分離器12は、エジェクタ11から送られてきた冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒をガス側出口12aへ、液冷媒を液側出口12bへそれぞれ供給する。
蒸発器14は、多数の伝熱管に空気との熱交換を促進するプレートフィンが接続されて構成された、プレートフィンチューブ型の蒸発器である。蒸発器14の近傍には、蒸発器14の外表面へ空気を送風する蒸発器ファン15を備える。
エジェクタ11は、駆動流入口11aと、吸引流入口11bの2箇所の入口を備える。駆動流入口11aは、第一開閉弁9、第一流量調整弁10を介して液延長配管3に接続されている。吸引流入口11bは、蒸発器14の出口側と接続されている。エジェクタ11は、駆動流入口11aから流入した冷媒を、ノズル(図示せず)によって減圧し、吸引流入口11bから吸引した冷媒を混合部(図示せず)にて混合し、さらにディフューザ部(図示せず)により昇圧させて低圧二相の冷媒とし、これを気液分離器12へと供給する。
第一開閉弁9は、エジェクタ11の駆動流入口11aへ流入する冷媒の通路を開閉することにより、冷媒を通過させ、あるいは冷媒の流れを遮断する。
第一流量調整弁10は、弁開度を調整することにより、エジェクタ11の駆動流入口11aへ流入する冷媒の流量を調整する。閉弁状態とすることで、冷媒の流れを遮断することも可能である。
なお、本実施の形態1に係る第一開閉弁9と第一流量調整弁10により、本発明の第1流量調整機構を構成する。
気液分離器12の液側出口12bと、蒸発器14の入口側とは、第二開閉弁16を介して冷媒配管によって接続されている。第二開閉弁16は、気液分離器12の液側出口12bから蒸発器14の入口側へと流入する冷媒の通路を開閉することにより、冷媒を通過させ、あるいは冷媒の流れを遮断する。
なお、本実施の形態1に係る第二開閉弁16は、本発明の第2流量調整機構に相当する。
また、凝縮器6の出口側と蒸発器14の入口側とを接続するバイパス経路17を備え、バイパス経路17には第三開閉弁18及び第二流量調整弁19を備える。
第三開閉弁18は、凝縮器6の出口側から蒸発器14の入口側へと流入する冷媒の通路を開閉することにより、冷媒を通過させ、あるいは冷媒の流れを遮断する。
第二流量調整弁19は、弁開度を調整することにより、凝縮器6の入口側から蒸発器14の入口側へと流入する冷媒の流量を調整する。閉弁状態とすることで、冷媒の流れを遮断することも可能である。
なお、本実施の形態1に係る第三開閉弁18と第二流量調整弁19により、本発明の第3流量調整機構を構成する。
ホットガスバイパス21は、圧縮機5と凝縮器6とを接続する配管から分岐して、圧縮機5の出口側と蒸発器14の入口側とを接続している。圧縮機5から出た高温・高圧のガス冷媒をホットガスバイパス21を介して蒸発器14に供給することにより、蒸発器14に付着した霜を融解する。ホットガスバイパス21にはホットガスデフロスト弁22が設置されており、このホットガスデフロスト弁22を開閉することで、蒸発器14へのガス冷媒の供給の有無を制御することができる。
制御装置30は、圧縮機5の回転数、凝縮器ファン7及び蒸発器ファン15の動作、第一開閉弁9、第二開閉弁16及び第三開閉弁18の開閉状態、第一流量調整弁10及び第二流量調整弁19の開度等を制御して、冷凍機100の冷媒流量の制御や運転制御を行う。制御装置30は、所定の制御動作がプログラムされたマイコンや各種装置から構成することができる。本実施の形態1では、単一の制御装置30によって上記制御を行う場合を例に説明するが、制御対象ごとに別個の制御装置を設ける構成としてもよい。
次に、上記のように構成された冷凍機100の動作について説明する。冷凍機100は複数の運転モードを備えている。具体的には、エジェクタサイクルによって空気の冷却を行う通常運転、蒸発器14のフィン(図示せず)の表面に付着した霜を取り除くデフロスト運転、デフロスト運転後通常運転に移行するまでの間に行うファン遅延運転である。以下、図2〜図4を参照しつつ順に説明する。
(通常運転)
図2は、通常運転時の冷媒の流れを示す冷媒回路図である。図2及びこれ以降で説明する図3、図4では、冷媒が流れる配管を太線で表示している。また、第一開閉弁9、第二開閉弁16、第三開閉弁18において、開状態の弁を白抜き表示し、閉状態の弁を黒塗り表示している。また、蒸発器ファン15において、動作状態を白抜き表示し、停止状態を黒塗り表示している。
図2において、通常運転を行う際には、第一開閉弁9及び第二開閉弁16は開状態、第三開閉弁18は閉状態、ホットガスデフロスト弁22は閉状態に制御されている。また、第一流量調整弁10は、所定の開度で開かれた状態である。
コンデンシングユニット1の圧縮機5が作動すると、冷媒は圧縮されて高温高圧の過熱ガスとなる。過熱ガスとなった冷媒は、凝縮器6において、凝縮器ファン7により送風された外気と熱交換される。熱交換された冷媒は、高圧低温の飽和液状態、もしくは、飽和液に近い状態となって液溜8へ流入し、液延長配管3を経由してユニットクーラ2内に至る。
液延長配管3によりユニットクーラ2へ流入した冷媒は、第一開閉弁9を通過し、第一流量調整弁10により減圧されて、駆動流入口11aからエジェクタ11へと流入する。この冷媒の流れを駆動流とする。
エジェクタ11へ流入した駆動流は、エジェクタ11内のノズル(図示せず)によって減圧・高速化され、混合部(図示せず)において巻き込み作用に伴うポンプ作用を生じる。このポンプ作用により、吸引流入口11bから吸引流が引き込まれ、駆動流と吸引流が混合部で混合される。さらに、エジェクタ11内のディフューザ部(図示せず)にて冷媒の動圧が静圧に変換されて昇圧し、低圧二相の状態となって気液分離器12に流入する。このように、エジェクタ11内で冷媒の圧力を回復させることにより、圧縮機5の吸引圧力が上昇して冷媒の循環量を増やすことができるので、圧縮機5の動力を低減させることができる。
気液分離器12に流入した低圧二相の冷媒のうち、液冷媒は、液側出口12bを出て蒸発器14に流入し、蒸発器ファン15により搬送された空気と熱交換して低圧の過熱ガス、あるいは高乾き度の二相冷媒となる。蒸発器14から出た二相冷媒は、エジェクタ11の駆動流に吸引されて、吸引流入口11bから吸引流としてエジェクタ11へ流入する。
一方で、気液分離器12に流入した冷媒のうち、飽和ガスもしくは高乾き度の二相冷媒は、ガス側出口12aを出て、ガス延長配管4によりアキュームレータ13に導かれ、圧縮機5へ至る。
なお、ホットガスデフロスト弁22は閉状態であるので、冷媒はホットガスバイパス21を通過しない。また、第三開閉弁18も閉状態であるので、冷媒はバイパス経路17を通過しない。
ここで、冷凍機100の庫内温度が設定温度より高い場合には、第一流量調整弁10を絞り、庫内温度が設定温度より低い場合には、第一流量調整弁10を緩め、駆動流量を調節する。このように駆動流量を調節することで、吸引流量を変化させることができ、冷凍能力を調整することができる。
上述のような通常運転において、冷凍機100の扉(図示せず)を開閉すると、これに伴って庫内に侵入した水分により、蒸発器14のフィン表面には霜が付着してその量が次第に増加することとなる。フィンに付着する霜が増加すると、蒸発器14の性能低下を生じさせ、また、蒸発器14の出口で冷媒が二相状態となることにより圧縮機5の信頼性を低下させてしまう。このような状態になるのを防ぐため、以下に述べるデフロスト運転を行ってフィン表面に付着した霜を融解させる。なお、デフロスト運転は、所定周期、あるいは所定時刻など、任意のタイミングで行う。
(デフロスト運転)
図3は、デフロスト運転時の冷媒の流れを示す冷媒回路図である。
デフロスト運転を行う際には、まず、ホットガスデフロスト弁22を開状態とし、第一開閉弁9、第二開閉弁16、及び第三開閉弁18を閉状態とする。また、蒸発器ファン15を停止状態にする。
この状態で圧縮機5が作動すると、冷媒は圧縮されて高温高圧の過熱ガスとなる。過熱ガスとなった冷媒は、ホットガスデフロスト弁22を介してホットガスバイパス21により導かれ、蒸発器14へと流入する。
蒸発器14へ流入した高温高圧のガス冷媒は、蒸発器14を通過する際に、温熱でフィン表面に付着した霜を融解させる。
蒸発器14を通過した冷媒は、吸引流入口11bからエジェクタ11へ流入して気液分離器12へ至る。そして、ガス側出口12aから出てガス延長配管4、アキュームレータ13を経て圧縮機5へ至る。
なお、第一開閉弁9は閉状態であるので、駆動流入口11aからエジェクタ11へ入る駆動流はない。また、第二開閉弁16も閉状態であるので、気液分離器12の液側出口12bから蒸発器14へ至る冷媒の流れもない。また、第三開閉弁18も閉状態であるので、冷媒はバイパス経路17を通過しない。
また、蒸発器ファン15は停止状態であるので、蒸発器14で庫内空気との熱交換は行われない。したがって、蒸発器14内を高温の冷媒が通過しても、冷凍機100の庫内に温風が吹き込むことがない。
上述のようなデフロスト運転が終了すると、蒸発器14は、高温のガス冷媒が通過したことにより通常運転時よりも高温状態となっている。仮に、このまま蒸発器ファン15を回転させて通常運転に移行すると、蒸発器14周辺の温かい空気が冷凍機100の庫内に循環することとなり、庫内温度を所定温度に保つことができず不都合が生じる。このため、以下に述べるファン遅延運転を行い、蒸発器14の温度を、通常運転時と同等温度まで低下させる。
(ファン遅延運転)
図4は、ファン遅延運転時の冷媒の流れを示す冷媒回路図である。
ファン遅延運転を行う際には、まず、ホットガスデフロスト弁22を閉状態にするとともに、第三開閉弁18を開状態にし、第二流量調整弁19は所定の開度で開かれた状態とする。第一開閉弁9及び第二開閉弁16は、前述のデフロスト運転時と同様、閉状態とする。また、蒸発器ファン15も、デフロスト運転時と同様に、停止状態とする。
この状態で圧縮機5が作動すると、冷媒は圧縮されて高温高圧の過熱ガスとなる。過熱ガスとなった冷媒は、凝縮器6において、凝縮器ファン7により搬送された外気と熱交換される。熱交換された冷媒は、低温高圧の飽和液状態、もしくは、飽和液に近い状態となって液溜8へ流入し、液延長配管3を経由してユニットクーラ2内に至る。このときの冷媒は、低温高圧の液冷媒となっている。
この低温高圧の液冷媒は、バイパス経路17により導かれて第三開閉弁18、第二流量調整弁19を通過して、蒸発器14へ流入する。
蒸発器14へ流入した低温高圧の液冷媒は、自身の持つ冷熱で蒸発器14を冷却する。蒸発器14を通過した冷媒は吸引流入口11bからエジェクタ11を経て気液分離器12へ流入し、ガス側出口12aから出てガス延長配管4、アキュームレータ13を経由して圧縮機5へ至る。
すなわち、ファン遅延運転においては、エジェクタ11の吸引流入口11b、気液分離器12のガス側出口12a、ガス延長配管4、アキュームレータ13、圧縮機5、凝縮器6、液溜8、液延長配管3、バイパス経路17、蒸発器14、エジェクタ11の吸引流入口11b、の順に冷媒を循環させるバイパス吸引流が生じている。このようなバイパス吸引流を生じさせる冷媒流路を形成し、蒸発器14に低温高圧の液冷媒を流して冷却している。
ここで、蒸発器ファン15が停止した状態で蒸発器14内を冷媒が流れるため十分な熱交換ができず、蒸発器14出口は低乾き度の二相状態となる。蒸発器14を通過した二相状態の冷媒のうちの液冷媒は、気液分離器12及びアキュームレータ13に蓄積されるので、圧縮機5へのいわゆる液バックを抑止することができ、圧縮機5の信頼性を確保することができる。
なお、第一開閉弁9は閉状態であるので、駆動流入口11aからエジェクタ11へ入る駆動流はない。また、第二開閉弁16も閉状態であるので、気液分離器12の液側出口12bから蒸発器14へ至る冷媒の流れもない。また、ホットガスデフロスト弁22も閉状態であるので、冷媒はホットガスバイパス21を通過しない。
上述のようなファン遅延運転を、図示しないタイマにより計測して所定時間だけ行う。ファン遅延運転が終了すると、通常運転に戻る。
通常運転に戻る際には、第一開閉弁9及び第二開閉弁16を開状態にし、第三開閉弁18及びホットガスデフロスト弁22を閉状態とする。そして、蒸発器ファン15の回転動作を開始させる。
このように、本実施の形態1に係る冷凍機100においては、ファン遅延運転時においてエジェクタ11の駆動流をなくし、バイパス経路17から蒸発器14へ液冷媒を直接供給するようにした。このため、低温の液冷媒により蒸発器14を確実に短時間で冷却することができる。このため、デフロスト運転後から通常運転までに行うファン遅延運転の所要時間を短縮することができ、デフロスト運転を含む運転サイクル全体の性能を向上させることができる。冷却時間をまた、バイパス経路17により導かれる冷媒の循環量も大きいので、パスバランスによる冷却の不均一が生じにくく、蒸発器14を短時間で冷却することができる。
実施の形態2.
本実施の形態2では、ファン遅延運転の他の動作例について説明する。なお、前述の実施の形態1では、ホットガスデフロストによりデフロスト運転を行う場合を例に説明したが、本実施の形態2では、ヒータによって蒸発器を除霜するヒータデフロストを行う場合を例に説明する。
図5は、本発明の実施の形態2に係る冷凍機200の冷媒回路図である。図5及び以降の説明において、前述の実施の形態1と同一又は相当する構成要素には、同一の符号を付している。
図5において、蒸発器14の近傍にはヒータ20を備え、アキュームレータ13の上流側には圧力センサ23を備える。なお、前述の実施の形態1で述べたホットガスバイパス21及びホットガスデフロスト弁22は備えていない。
ヒータ20は、電気により発熱するヒータであり、蒸発器14を暖める。なお、蒸発器14近傍の空気を暖めることによって、間接的に蒸発器14を暖める構成としてもよい。ヒータ20への通電制御は、制御装置30が行う。ヒータ20は、本発明の加熱手段に相当する。
圧力センサ23は、圧縮機5に流入する冷媒の圧力を検知し、検知結果を制御装置30に出力する。
次に、上記のように構成された冷凍機200の動作について説明する。図6は、本実施の形態2に係る冷凍機200のメイン処理の動作フローである。
図6において、冷凍機200を起動すると(S101)、図示しない温度検知手段及び圧力検知手段により冷凍機200内の各所の温度や冷媒圧力の検知を行い、検知結果に基づいて所定の初期設定を行う(S102)。
初期設定が終了すると、エジェクタサイクルによって空気の冷却を行う通常運転を開始する(S103)。
通常運転において、第一開閉弁9と第二開閉弁16は開状態、第三開閉弁18は閉状態であり、前述の実施の形態1と同様の動作を行う。また、第一流量調整弁10は流路抵抗が可変であり、庫内温度が設定温度より高い場合には第一流量調整弁10を絞り、庫内温度が設定温度より低い場合には第一流量調整弁10を緩め、駆動流量を調節することで吸引流量を変化させ、冷凍能力を調整することができる。
通常運転中において、デフロスト運転を開始するタイミングになるまでは(S104)、通常運転を続ける。
デフロスト運転を開始するタイミングになると(S104)、デフロスト運転を行う前の準備としてポンプダウン運転を行い(S110)、続けて、デフロスト運転(S120)、及びファン遅延運転(S130)を行う。ファン遅延運転が終了すると(S130)、通常運転に戻る(S103)。
ここで、デフロスト運転は、所定周期(例えば1日に4回程度)で行うことができるが、必ずしも一定時間間隔で行う必要はない。例えば、冷凍機200がスーパーなどで用いられるものであれば、庫内への荷入れ・荷出しの頻度、スーパーの営業時間、繁忙時間など、一年や一日などの単位での負荷変動に応じ、所定時刻になるとデフロスト運転を行うこととしても良い。
(ポンプダウン運転)
次に、図7及び図8を参照してポンプダウン運転の動作を説明する。
図7は、ポンプダウン運転の動作フロー、図8は同じくポンプダウン運転時の冷媒の流れを示す冷媒回路図である。
図7において、まず、第一開閉弁9を閉状態にし(S111)、冷媒回路の高圧側(コンデンシングユニット1側)と低圧側(ユニットクーラ2側)とを切り離す。なお、このとき、通常運転と同様に、第二開閉弁16は開状態、第三開閉弁18は閉状態である。冷媒回路の高圧側と低圧側とが切り離されていて低圧側には冷媒が流入しないので、圧縮機5の低圧が次第に低下する。
続けて、圧力センサ23で圧縮機5への冷媒の吸入圧力Psを検知し(S112)、検知した吸入圧力PsがPs切値未満か否か判定する(S113)。ここで、Ps切値とは、圧縮機5を停止させる際の閾値となる冷媒圧力であり、制御装置30は、吸入圧力PsがPs切値未満になると圧縮機5の動作を停止させる。吸入圧力PsがPs切値未満となるまで運転を続けるが、このとき、低圧側(ユニットクーラ2側)に存在する液冷媒は、蒸発器14でガス化された後、エジェクタ11、気液分離器12、アキュームレータ13を介して圧縮機5へと導かれる。圧縮機5に吸引された冷媒は、高圧ガス化されて凝縮器6で液化し、液溜8に貯留される。
そして、吸入圧力PsがPs切値以下になると(S113)、圧縮機5の運転を停止させる(S114)。
図8に示すように、第一開閉弁9及び第三開閉弁18が閉状態であるので、ユニットクーラ2側に流入する冷媒の流れはない。そして、ステップS114で圧縮機5の運転が停止するまでの間、圧縮機5の吸引力によりユニットクーラ2内の冷媒が徐々にコンデンシングユニット1へ流入していく。
一連のポンプダウン運転により、蒸発器14、気液分離器12、アキュームレータ13内に存在する冷媒のほぼすべては低圧ガス状態となる。なお、通常運転時に蒸発器14、気液分離器12、アキュームレータ13内に存在していた液冷媒は、液溜8に貯留されることとなるので、圧縮機5の高圧が過度に上昇することはない。
(デフロスト運転)
次に、図9及び図10を参照してデフロスト運転の動作を説明する。
図9は、デフロスト運転の動作フロー、図10は同じくデフロスト運転時の冷媒の流れを示す冷媒回路図である。
図9において、まず、蒸発器ファン15の運転を停止させ(S121)、ヒータ20への通電を開始する(S122)。通電されたヒータ20は発熱を開始し、蒸発器14を暖める。このようにすることで、蒸発器14のフィン(図示せず)表面に付着した霜を融解させる。
図10に示すように、圧縮機5は停止状態であり、第一開閉弁9が閉状態であることからエジェクタ11に流入する駆動流も無いので、冷媒は流れない。また、蒸発器ファン15は停止状態であるので、ヒータ20によって暖められた空気が冷凍機200の庫内へ吹き込むこともない。
そして、ヒータ20への通電時間が所定時間を経過すると(S123)、ヒータ20への通電を停止して(S124)、デフロスト運転を終了する。なお、ヒータ20への通電時間(S123)は、蒸発器14のフィン及び伝熱管に付着した霜を融解させることができるような長さで、予め図示しないタイマにより設定されている。この通電時間は、蒸発器14のフィン及び伝熱管に付着した霜を融かすのに十分な時間を長めに確保しているので、デフロスト運転を終了した直後は蒸発器14のフィンと伝熱管は加熱されて高温状態となっている。
(ファン遅延運転)
次に、図11〜図14を参照してファン遅延運転の動作を説明する。
図11は、ファン遅延運転の動作フロー、図12〜図14は同じくファン遅延運転時の冷媒の流れを示す冷媒回路図である。図12〜図14は、図11の動作フローにおけるステップS134、S138、S139での冷媒の流れをそれぞれ示している。
図11において、まず、第二開閉弁16を閉状態とし、第三開閉弁18を開状態とする。また、第二流量調整弁19の開度を、高低圧が通常運転時の状態に近くなるように、適当な開度に調整する。このように、高圧側と低圧側を導通させることで圧縮機5の吸入圧力が次第に上昇していく。なお、第一開閉弁9は、前述のデフロスト運転時と同様に閉状態である。
圧力センサ23は圧縮機5の吸入圧力Psを検知し(S132)、検知した吸入圧力Psが、Ps入値より大きいか否か判定する(S133)。ここで、Ps入値とは、圧縮機5を起動させる際の閾値となる冷媒圧力であり、制御装置30は、吸入圧力PsがPs入値を超えると圧縮機5を起動させる(S134)。
図12は、ステップS134における冷媒の流れを示す。
図12に示すように、圧縮機5が起動を開始すると、圧縮機5により圧縮されて高温高圧の過熱ガスとなった冷媒は、凝縮器6で液化し、液溜8、液延長配管3を経由してユニットクーラ2へと流入する。さらに、バイパス経路17に入り、第三開閉弁18及び第二流量調整弁19を経て蒸発器14へ流入し、エジェクタ11の吸引流入口11bに流入する。
蒸発器14へ流入する冷媒は低温の液冷媒であるので、冷媒が通過するときに蒸発器14は冷却される。なお、蒸発器ファン15は停止した状態であるので、蒸発器14での熱交換量は通常運転時よりも少ない。このため、蒸発器14の出口側の冷媒は、低乾き度の二相状態で、吸引流入口11bからエジェクタ11に入る。
エジェクタ11を通過した冷媒のうち、ガス冷媒は、気液分離器12のガス側出口12a、ガス延長配管4、アキュームレータ13を経由して、圧縮機5へ至る。
一方で、エジェクタ11を通過した冷媒のうち、液冷媒は、気液分離器12及びアキュームレータ13内で過渡的に貯留される。したがって、圧縮機5への液バックを防ぐことができ、圧縮機5の信頼性を確保することができる。
すなわち、ファン遅延運転のステップS134においては、エジェクタ11の吸引流入口11b、気液分離器12のガス側出口12a、ガス延長配管4、アキュームレータ13、圧縮機5、凝縮器6、液溜8、液延長配管3、バイパス経路17、蒸発器14、エジェクタ11の吸引流入口11b、の順に冷媒を循環させるバイパス吸引流が生じている。このようなバイパス吸引流を生じさせる冷媒流路を形成することにより、蒸発器14に低温高圧の液冷媒を流して冷却している。なお、第一開閉弁9は閉状態であるので、駆動流入口11aからエジェクタ11へ入る駆動流はない。
圧縮機5を起動(S134)してから所定時間が経過すると(S135)、第一開閉弁9を開状態にするとともに、第一流量調整弁10を全閉もしくは全閉に近い状態の開度にする(S136)。なお、このとき、第二開閉弁16及び第三開閉弁18の開閉状態に変化はなく、第二開閉弁16は閉状態、第三開閉弁18は開状態である。
続けて、蒸発器ファン15を起動させる(S137)。さらに、第一流量調整弁10の開度を調整し、前回の開度(全閉もしくは全閉に近い状態)と、通常運転時の開度の中間程度の所定開度とする(S138)。
図13は、ステップS138における冷媒の流れを示す。
図13に示すように、第一開閉弁9は開状態であるとともに、第一流量調整弁10は所定開度に制御されているので、エジェクタ11には、蒸発器14を通過した吸引流と第一流量調整弁10を通過した駆動流とが流れる。また、前述のバイパス吸引流も同様に流れている。バイパス吸引流は駆動流の昇圧仕事に依存せず、第二流量調整弁19を介して確実に流れる。また、蒸発器ファン15が運転されるため、蒸発器14にて熱交換が行われる。
続けて、第二開閉弁16を開状態とする(S139)。そして、第二流量調整弁19の開度を所定量だけ低減させるとともに、第一流量調整弁10の開度を所定量だけ増加させる(S140)。
図14は、ステップS140における冷媒の流れを示す。
図14に示すように、第一開閉弁9は開状態で、かつ、第一流量調整弁10は所定開度で開かれているので、エジェクタ11の駆動流入口11a、気液分離器12のガス側出口12a、ガス延長配管4、圧縮機5、凝縮器6、液溜8、液延長配管3、エジェクタ11の駆動流入口11a、の順に冷媒が循環する。なお、第一流量調整弁10は通常運転時の開度よりも小さいので、冷媒の流れは通常運転時より少ない。
また、第二開閉弁16が開状態であるので、エジェクタ11の吸引流入口11b、気液分離器12の液側出口12b、蒸発器14、エジェクタ11の吸引流入口11b、の順に冷媒が循環する。
さらに、第三開閉弁18は開状態で、かつ、第二流量調整弁19は所定開度で開かれているので、エジェクタ11の吸引流入口11b、気液分離器12のガス側出口12a、ガス延長配管4、圧縮機5、凝縮器6、液溜8、液延長配管3、バイパス経路17、蒸発器14、エジェクタ11の吸引流入口11b、の順に冷媒が循環する。なお、第二流量調整弁19の開度はデフロスト運転時よりも小さくなるよう制御されているので、冷媒の流れはデフロスト運転時より少ない。
そして、第二流量調整弁19の開度が全閉もしくは全閉に近い所定状態か否か判定し(S141)、この所定状態に達していない場合には、ステップS140に戻る。ステップS141において、第二流量調整弁19の開度が前記所定状態に達した場合には、第三開閉弁18を閉状態にして(S142)、ファン遅延運転を終了する。
このように、本実施の形態2に係る冷凍機200においては、ファン遅延運転開始時においてエジェクタ11の駆動流をなくし、バイパス経路17から蒸発器14へ冷媒を直接供給するようにした。また、ファン遅延運転の中途からは(S139〜S141)、蒸発器14への冷媒流れは、エジェクタ11の駆動流による気液分離器12の液側出口12bからの吸引流と、バイパス経路17により導かれた冷媒の直接流れとが存在し、エジェクタ11の効果を生かしつつ運転できるようにした。このため、前述の実施の形態1と同様、低温の液冷媒により蒸発器14を確実に短時間で冷却することができる。したがって、デフロスト運転後から通常運転までに行うファン遅延運転の所要時間を短縮することができ、デフロスト運転を含む運転サイクル全体の性能を向上させることができる。冷却時間をまた、バイパス経路17により導かれる冷媒の循環量も大きいので、パスバランスによる冷却の不均一が生じにくく、蒸発器14を短時間で冷却することができる。
また、冷凍機では一般に、冷凍機油が相溶/非相溶に関係なく、蒸発器14内に最も冷凍機油が滞留しやすく、ポンプダウン運転時は更に滞留しやすい。しかし、ファン遅延運転時にバイパス経路17により直接液冷媒を流すので、滞留した冷凍機油を運びやすく、圧縮機5の信頼性を確保することができる。
また、本実施の形態2ではヒータ20により蒸発器14を除霜するヒータデフロスト運転としたので、エジェクタ11を通過する冷媒回路はユニットクーラ2内で完結する。したがって、既存のコンデンシングユニット1と本実施の形態2に係るユニットクーラ2とを組み合わせることができるので、適用範囲が広い。また、ホットガス用の延長配管を設ける必要がないので、施工性に優れている。
なお、本実施の形態2では、ステップS137で第一開閉弁9を開状態とした後、ステップS319で第二開閉弁16を開状態とし、ステップS142で第三開閉弁18を閉状態とした。しかし、第二開閉弁16及び第三開閉弁18の開閉状態を変更する順序はこれに限定するものではなく、順序が入れ替わってもよい。
また、本実施の形態2では、ヒータデフロスト方式によりデフロスト運転を行う場合を例に説明したが、ホットガスデフロスト方式のデフロスト運転を行う場合であっても、同様の効果を得ることができる。
また、上記実施の形態1及び実施の形態2において、ファン遅延運転時には蒸発器ファン15を停止させることとしたが、蒸発器ファン15を常に運転させることとしてもよい。この場合、蒸発器14を通過した空気の風路上に開閉可能な入口を備えたダクトを設ける。そして、ファン遅延運転時には、ダクトの入口を開いて蒸発器14を通過した空気をダクトに導いて蒸発器14と冷凍機の庫内とを遮断することで、冷凍機の庫内に流入しないようにする。そして、ダクトの出口を蒸発器14の風上に設けることで、ファン遅延運転時に蒸発器14を通過した空気をダクトと蒸発器14の間で循環させることができる。また、ダクトの出口を冷凍機100の庫外に設け、ファン遅延運転時に蒸発器14を通過した空気をダクトを介して外部に排出するようにしてもよい。このようにしても、冷凍機の庫内に温かい空気が流入するのを防ぐことができる。
また、ファン遅延運転時には、第二流量調整弁19の弁開度を変更することとしてもよい。具体的には、ファン遅延運転の開始時に、第二流量調整弁19の弁開度を大きくすることで冷媒循環量を増加させ、滞留冷凍機油を運びやすくする。そして、ファン遅延運転の後半では弁開度を小さくすることで、圧縮機5へ混入する冷媒の循環量を低減することができる。このようにすることで、圧縮機5の信頼性を向上させることができる。
また、上記説明ではファン遅延運転を固定時間行うこととしたが、蒸発器や冷媒の温度を検知する温度検知手段を設け、温度の検知結果に応じてファン遅延運転の時間を決定してもよい。このようにすることで、最適な時間だけファン遅延運転を行うことができる。
また、上記説明では空冷式の凝縮器6を例に説明したが、水冷式であってもよい。
また、第一開閉弁9と第一流量調整弁10により第1流量調整機構を構成する場合を例に説明したが、第一開閉弁9と第一流量調整弁10を一体にして第1流量調整機構を構成してもよい。同様に、第三開閉弁18と第二流量調整弁19を一体にして第3流量調整機構を構成してもよい。さらには、第一開閉弁9あるいは第一流量調整弁10を、エジェクタ11の内部に組み込む構成とすることもできる。
さらに、圧縮機は、一定速のものを用いても良いが、インバータ圧縮機を用いて庫内温度を制御することとしても良く、同等の効果を得ることができる。
本発明の実施の形態1に係る冷凍機の冷媒回路図である。 本発明の実施の形態1に係る冷凍機の通常運転時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍機のデフロスト運転時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍機のファン遅延運転時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍機の冷媒回路図である。 本発明の実施の形態2に係る冷凍機のメイン処理を示す動作フローである。 図3におけるポンプダウン運転を示す動作フローである。 本発明の実施の形態2に係る冷凍機のポンプダウン運転時の冷媒の流れを示す冷媒回路図である。 図3におけるデフロスト運転を示す動作フローである。 本発明の実施の形態2に係る冷凍機のデフロスト運転時の冷媒の流れを示す冷媒回路図である。 図3におけるファン遅延運転を示す動作フローである。 本発明の実施の形態2に係る冷凍機のファン遅延運転時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍機のファン遅延運転時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍機のファン遅延運転時の冷媒の流れを示す冷媒回路図である。
符号の説明
1 コンデンシングユニット、2 ユニットクーラ、3 液延長配管、4 ガス延長配管、5 圧縮機、6 凝縮器、7 凝縮器ファン、8 液溜、9 第一開閉弁、10 第一流量調整弁、11 エジェクタ、11a 駆動流入口、11b 吸引流入口、12 気液分離器、12a ガス側出口、12b 液側出口、13 アキュームレータ、14 蒸発器、15 蒸発器ファン、16 第二開閉弁、17 バイパス経路、18 第三開閉弁、19 第二流量調整弁、20 ヒータ、21 ホットガスバイパス、22 ホットガスデフロスト弁、23 圧力センサ、30 制御装置、100 冷凍機、200 冷凍機。

Claims (10)

  1. 圧縮機、凝縮器、気液分離器、蒸発器、及び、前記凝縮器からの液冷媒が流入する駆動流入口と前記蒸発器からの冷媒が吸引される吸引流入口とを備えたエジェクタが冷媒配管で接続され、
    前記エジェクタの駆動流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記エジェクタの駆動流入口、の順に冷媒を循環させる駆動流と、
    前記エジェクタの吸引流入口、前記気液分離器の液相側出口、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させる吸引流とを発生させるエジェクタサイクルを形成する冷凍サイクル装置において、
    前記凝縮器と前記エジェクタの駆動流入口の間に設けた第1冷媒流量調整機構と、
    前記気液分離器の液側出口と前記蒸発器の間に設けた第2冷媒流量調整機構と、
    前記凝縮器の出口側配管と前記蒸発器の入口側配管とを接続するバイパス経路と、
    前記バイパス経路上に設けた第3冷媒流量調整機構と、
    前記第1冷媒流量調整機構、前記第2冷媒流量調整機構、及び前記第3冷媒流量調整機構を制御して冷媒の流路を切り替える制御手段とを備え、
    前記制御手段は、前記蒸発器の着霜状態を解消するデフロスト運転が終了した後、前記蒸発器に液冷媒を循環させる冷媒流路を形成する
    ことを特徴とする冷凍サイクル装置。
  2. 前記制御手段は、前記デフロスト運転が終了した後において、
    前記第1冷媒流量調整機構及び前記第2冷媒流量調整機構が冷媒を遮断するよう制御するとともに前記第3冷媒流量調整機構が冷媒を通過させるよう制御して、前記エジェクタの吸引流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記バイパス経路、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させるバイパス吸引流に切り替えて運転させることにより前記蒸発器に液冷媒を循環させた後、
    前記第1冷媒流量調整機構及び前記第2冷媒流量調整機構が冷媒を通過させるよう制御するとともに前記第3冷媒流量調整機構が冷媒を遮断するよう制御して、前記エジェクタサイクルの冷媒流路に切り替える
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  3. 前記制御手段は、前記デフロスト運転が終了した後において、
    前記第1冷媒流量調整機構及び前記第2冷媒流量調整機構が冷媒を遮断するよう制御するとともに前記第3冷媒流量調整機構が冷媒を通過させるよう制御して、前記エジェクタの吸引流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記バイパス経路、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させるバイパス吸引流に切り替えて運転させることにより前記蒸発器に液冷媒を循環させた後、
    前記第1冷媒流量調整機構の流量を段階的に増加させるよう制御して、前記駆動流を段階的に増加させ、
    前記第3の流量調節機構の流量を段階的に減少させるよう制御して、前記バイパス吸引流を段階的に減少させ、
    前記第2冷媒流量調整機構が冷媒を通過させるよう制御して、前記エジェクタサイクルの冷媒流路に切り替える
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  4. 前記蒸発器に送風する蒸発器ファンを備え、
    前記制御手段は、前記デフロスト運転から前記エジェクタサイクルの冷媒流路に切り替えるまでの間は、前記蒸発器ファンを停止させる
    ことを特徴とする請求項1〜請求項3のいずれかに記載の冷凍サイクル装置。
  5. 前記蒸発器を通過した空気の風路上に開閉可能な入口を有するダクトを備え、
    前記デフロスト運転から前記エジェクタサイクルの冷媒流路に切り替えるまでの間は、前記ダクトはその入口を開いて、前記蒸発器を通過した空気を冷凍サイクル装置の負荷側空間に流入しないよう導く
    ことを特徴とする請求項1〜請求項3のいずれかに記載の冷凍サイクル装置。
  6. 前記蒸発器を加熱する加熱手段を備え、
    前記制御手段は、
    前記第1冷媒流量調整機構及び第3冷媒流量調整機構が冷媒を遮断するよう制御した状態で前記圧縮機を動作させるポンプダウン運転を行って前記蒸発器を低圧状態にした後、
    前記加熱手段に通電して前記デフロスト運転を行う
    ことを特徴とする請求項1〜請求項5のいずれかに記載の冷凍サイクル装置。
  7. 前記蒸発器または蒸発器を流れる冷媒の温度を検出する温度検出手段を備え、
    前記制御手段は、前記デフロスト運転が終了した後の前記温度検出手段の検出値が所定の値以下となった場合に、前記エジェクタサイクルの冷媒流路に切り替える
    ことを特徴とする請求項1〜請求項6のいずれかに記載の冷凍サイクル装置。
  8. 圧縮機、凝縮器、気液分離器、蒸発器、及び、前記凝縮器からの液冷媒が流入する駆動流入口と前記蒸発器からの冷媒が吸引される吸引流入口とを備えたエジェクタが冷媒配管で接続され、
    前記エジェクタの駆動流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記エジェクタの駆動流入口、の順に冷媒を循環させる駆動流と、
    前記エジェクタの吸引流入口、前記気液分離器の液相側出口、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させる吸引流とを発生させるエジェクタサイクルを形成する冷凍サイクル装置の制御方法であって、
    前記蒸発器の着霜状態を解消するデフロスト運転が終了した後、前記蒸発器に液冷媒を循環させる冷媒流路を形成する工程を有する
    ことを特徴とする冷凍サイクル装置の制御方法。
  9. 圧縮機、凝縮器、気液分離器、蒸発器、及び、前記凝縮器からの液冷媒が流入する駆動流入口と前記蒸発器からの冷媒が吸引される吸引流入口とを備えたエジェクタが冷媒配管で接続され、
    前記エジェクタの駆動流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記エジェクタの駆動流入口、の順に冷媒を循環させる駆動流と、
    前記エジェクタの吸引流入口、前記気液分離器の液相側出口、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させる吸引流とを発生させるエジェクタサイクルを形成する冷凍サイクル装置の制御方法であって、
    前記蒸発器の着霜状態を解消するデフロスト運転が終了した後において、
    前記凝縮器の出口側配管と前記蒸発器の入口側配管とを接続するバイパス経路を形成する工程と、
    前記エジェクタの吸引流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記バイパス経路、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させるバイパス吸引流を形成して運転することにより前記蒸発器に液冷媒を循環させる工程と、
    前記エジェクタサイクルの冷媒流路に切り替える工程とを有する
    ことを特徴とする冷凍サイクル装置の制御方法。
  10. 圧縮機、凝縮器、気液分離器、蒸発器、及び、前記凝縮器からの液冷媒が流入する駆動流入口と前記蒸発器からの冷媒が吸引される吸引流入口とを備えたエジェクタが冷媒配管で接続され、
    前記エジェクタの駆動流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記エジェクタの駆動流入口、の順に冷媒を循環させる駆動流と、
    前記エジェクタの吸引流入口、前記気液分離器の液相側出口、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させる吸引流とを発生させるエジェクタサイクルを形成する冷凍サイクル装置の制御方法であって、
    前記蒸発器の着霜状態を解消するデフロスト運転が終了した後において、
    前記凝縮器の出口側配管と前記蒸発器の入口側配管とを接続するバイパス経路を形成する工程と、
    前記エジェクタの吸引流入口、前記気液分離器の気相側出口、前記圧縮機、前記凝縮器、前記バイパス経路、前記蒸発器、前記エジェクタの吸引流入口、の順に冷媒を循環させるバイパス吸引流を形成して運転することにより前記蒸発器に液冷媒を循環させる工程と、
    前記駆動流を段階的に増加させる工程と、
    前記バイパス吸引流を段階的に減少させる工程と、
    前記エジェクタサイクルの冷媒流路に切り替える工程とを有する
    ことを特徴とする冷凍サイクル装置の制御方法。
JP2008308155A 2008-12-03 2008-12-03 冷凍サイクル装置及び冷凍サイクル装置の制御方法 Expired - Fee Related JP4804528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308155A JP4804528B2 (ja) 2008-12-03 2008-12-03 冷凍サイクル装置及び冷凍サイクル装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308155A JP4804528B2 (ja) 2008-12-03 2008-12-03 冷凍サイクル装置及び冷凍サイクル装置の制御方法

Publications (2)

Publication Number Publication Date
JP2010133586A true JP2010133586A (ja) 2010-06-17
JP4804528B2 JP4804528B2 (ja) 2011-11-02

Family

ID=42345045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308155A Expired - Fee Related JP4804528B2 (ja) 2008-12-03 2008-12-03 冷凍サイクル装置及び冷凍サイクル装置の制御方法

Country Status (1)

Country Link
JP (1) JP4804528B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307822A (zh) * 2013-06-28 2013-09-18 南京平欧空调设备有限公司 回热高压除霜储液气液分离器
JP2014190562A (ja) * 2013-03-26 2014-10-06 Sanden Corp 冷凍サイクル及び冷却機器
WO2015029394A1 (ja) * 2013-08-29 2015-03-05 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ
WO2016084341A1 (ja) * 2014-11-27 2016-06-02 株式会社デンソー ヒートポンプサイクル装置
JP5992076B1 (ja) * 2015-07-23 2016-09-14 三菱電機株式会社 冷凍サイクル装置、その冷凍サイクル装置を備えた冷蔵庫、冷凍サイクル装置の除霜方法
US20220412624A1 (en) * 2021-06-24 2022-12-29 Booz Allen Hamilton Inc. Thermal management systems
US11629901B1 (en) * 2019-12-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130768A (ja) * 1984-11-29 1986-06-18 松下冷機株式会社 冷蔵庫
JPH05118715A (ja) * 1991-10-31 1993-05-14 Daikin Ind Ltd 冷凍装置の運転制御装置
JP2003097868A (ja) * 2001-09-25 2003-04-03 Denso Corp エジェクタサイクル
JP2006132800A (ja) * 2004-11-02 2006-05-25 Denso Corp 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130768A (ja) * 1984-11-29 1986-06-18 松下冷機株式会社 冷蔵庫
JPH05118715A (ja) * 1991-10-31 1993-05-14 Daikin Ind Ltd 冷凍装置の運転制御装置
JP2003097868A (ja) * 2001-09-25 2003-04-03 Denso Corp エジェクタサイクル
JP2006132800A (ja) * 2004-11-02 2006-05-25 Denso Corp 冷凍サイクル装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190562A (ja) * 2013-03-26 2014-10-06 Sanden Corp 冷凍サイクル及び冷却機器
CN103307822A (zh) * 2013-06-28 2013-09-18 南京平欧空调设备有限公司 回热高压除霜储液气液分离器
WO2015029394A1 (ja) * 2013-08-29 2015-03-05 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ
JP2015045477A (ja) * 2013-08-29 2015-03-12 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ
US20160209094A1 (en) * 2013-08-29 2016-07-21 Denso Corporation Ejector-type refrigeration cycle, and ejector
US10465957B2 (en) * 2013-08-29 2019-11-05 Denso Corporation Ejector-type refrigeration cycle, and ejector
WO2016084341A1 (ja) * 2014-11-27 2016-06-02 株式会社デンソー ヒートポンプサイクル装置
JP5992076B1 (ja) * 2015-07-23 2016-09-14 三菱電機株式会社 冷凍サイクル装置、その冷凍サイクル装置を備えた冷蔵庫、冷凍サイクル装置の除霜方法
US11629901B1 (en) * 2019-12-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
US20220412624A1 (en) * 2021-06-24 2022-12-29 Booz Allen Hamilton Inc. Thermal management systems
US11639818B2 (en) * 2021-06-24 2023-05-02 Booz Allen Hamilton Inc. Thermal management systems

Also Published As

Publication number Publication date
JP4804528B2 (ja) 2011-11-02

Similar Documents

Publication Publication Date Title
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP4804528B2 (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
KR101192346B1 (ko) 히트 펌프식 급탕장치
JP5809872B2 (ja) 加温装置
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
JP2008096033A (ja) 冷凍装置
JP2010255921A (ja) 空気調和機
JP5939764B2 (ja) ヒートポンプ装置及びヒートポンプ給湯機
KR101155497B1 (ko) 히트펌프식 급탕장치
JP5641875B2 (ja) 冷凍装置
JP6465711B2 (ja) 冷凍サイクル装置
EP3546850B1 (en) Refrigeration device
JP2013119954A (ja) ヒートポンプ式温水暖房機
JP2015064169A (ja) 温水生成装置
JP2013137123A (ja) 冷凍装置
US20200263916A1 (en) Refrigeration machine
JP4269476B2 (ja) 冷凍装置
JP2007247997A (ja) 空気調和装置
JP2012251667A (ja) 空気冷媒式冷凍装置のデフロスト方法及び装置
JPH10220932A (ja) 冷凍装置の除霜方法
JP7038277B2 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
JP2004360973A (ja) ヒートポンプ給湯装置
JP2007051840A (ja) 空気調和装置
JP2019138486A (ja) 冷媒回路システム及びデフロスト運転の制御方法
EP3696478B1 (en) Heat pump system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees