JP2010114282A - Method for evaluation of metal pollution in semiconductor substrate - Google Patents
Method for evaluation of metal pollution in semiconductor substrate Download PDFInfo
- Publication number
- JP2010114282A JP2010114282A JP2008286050A JP2008286050A JP2010114282A JP 2010114282 A JP2010114282 A JP 2010114282A JP 2008286050 A JP2008286050 A JP 2008286050A JP 2008286050 A JP2008286050 A JP 2008286050A JP 2010114282 A JP2010114282 A JP 2010114282A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- substrate
- metal
- solution
- roughened region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本発明は、半導体基板の金属汚染評価方法に関するものであり、詳しくは、半導体基板の特性に悪影響を与える半導体基板中の金属不純物濃度を正確かつ簡便に評価可能な半導体基板の金属汚染評価方法に関するものである、 The present invention relates to a method for evaluating metal contamination of a semiconductor substrate, and more particularly, to a method for evaluating metal contamination of a semiconductor substrate capable of accurately and simply evaluating a metal impurity concentration in a semiconductor substrate that adversely affects the characteristics of the semiconductor substrate. Is,
半導体製造分野では、回路の高集積化、デバイスの微細化に伴い、デバイスの性能に悪影響を与える半導体基板中に存在する金属不純物量を低減することが重要な課題となっている。そこで、半導体基板中に含まれる金属不純物を高精度かつ簡便に評価可能な分析法の確立が望まれている。 In the semiconductor manufacturing field, with the high integration of circuits and the miniaturization of devices, it has become an important issue to reduce the amount of metal impurities present in a semiconductor substrate that adversely affects device performance. Therefore, it is desired to establish an analysis method capable of easily and accurately evaluating metal impurities contained in a semiconductor substrate.
半導体基板中の金属不純物評価方法としては、以下の方法が知られている。
(1)半導体基板を大量の弗酸と硝酸との混合溶液で溶解し、その酸溶液希釈または濃縮して原子吸光光度計(AAS)等で定量分析を行う方法。
(2)半導体基板を酸蒸気にて分解し、その分解残渣を酸で後処理し、AASや誘導結合プラズマ質量分析装置(ICP−MS)等で定量評価を行う方法(特許文献1参照)。
(3)ポリシリコン層を有するシリコンウェーハを用いて半導体基板加工プロセスでのCu汚染を評価する方法(特許文献2参照)。
(4)シリコン基板を熱処理し、Cuを表面に外方拡散して基板表面のCuを分析する方法(特許文献3参照)。
(1) A method in which a semiconductor substrate is dissolved in a large amount of a mixed solution of hydrofluoric acid and nitric acid, and the acid solution is diluted or concentrated, and quantitative analysis is performed with an atomic absorption photometer (AAS) or the like.
(2) A method in which a semiconductor substrate is decomposed with acid vapor, the decomposition residue is post-treated with an acid, and quantitative evaluation is performed with an AAS or an inductively coupled plasma mass spectrometer (ICP-MS) (see Patent Document 1).
(3) A method for evaluating Cu contamination in a semiconductor substrate processing process using a silicon wafer having a polysilicon layer (see Patent Document 2).
(4) A method in which a silicon substrate is heat-treated and Cu is diffused outwardly on the surface to analyze Cu on the substrate surface (see Patent Document 3).
上記方法(1)は、基板溶解のために大量の酸を用いるため、必然的に検出下限が高くなる。従って、高い清浄度を要求される半導体基板では、感度不足の問題がある。
上記方法(2)は、シリコン残渣が試料中に多く存在しているので、酸溶液をそのまま高感度分析装置であるICP−MSに導入すると、シリコン分子の干渉により正確な分析が困難となる。また、このシリコン分子の干渉を抑えるためには、分析試料系外にシリコン残渣を除去するために長時間を要する前処理が必要となる。
これに対し上記方法(3)は、基板を分解する必要がないため方法(1)および(2)に比べ簡便な方法ではあるものの、半導体基板中のCuを捕獲させるためのポリシリコン層を半導体基板表面に形成する工程、片面のみに半導体基板中のCuを拡散させるため半導体基板の片面のポリシリコン層を除去する工程、半導体基板中のCuをポリシリコン層へ拡散させポリシリコン層へ捕獲させるための熱処理工程、前記ポリシリ層に捕獲されたCuを定量評価するために半導体基板のポリシリコン層を弗酸と硝酸の混酸にて溶解し、前記混酸中に含まれるCu成分を定量する工程、といった複数の工程を行う必要があり手間と時間を要する。さらに、半導体基板にポリシリコン層を形成させるための高額な熱処理炉の設置や維持管理が必要である。また、ポリシリコン層を弗酸と硝酸の混酸で溶解させる工程では使用する弗化樹脂製のプレートの洗浄や清浄度管理などが煩雑であり、作業効率的にも課題があった。
一方、上記方法(4)は、方法(1)〜(3)に比べ簡便な方法であるものの、微量金属成分を高感度分析することが求められる半導体基板の金属汚染分析方法としては、検出感度および測定精度が不十分であった。
Since the method (1) uses a large amount of acid for dissolving the substrate, the lower detection limit is inevitably increased. Therefore, there is a problem of insufficient sensitivity in a semiconductor substrate that requires high cleanliness.
In the above method (2), since a large amount of silicon residue is present in the sample, when an acid solution is introduced as it is into ICP-MS, which is a highly sensitive analyzer, accurate analysis becomes difficult due to interference of silicon molecules. Further, in order to suppress the interference of the silicon molecules, a pretreatment that requires a long time is required to remove the silicon residue outside the analysis sample system.
On the other hand, although the method (3) is simpler than the methods (1) and (2) because it is not necessary to decompose the substrate, a polysilicon layer for capturing Cu in the semiconductor substrate is used as the semiconductor. A step of forming on the substrate surface, a step of removing the polysilicon layer on one side of the semiconductor substrate in order to diffuse Cu in the semiconductor substrate only on one side, a Cu layer in the semiconductor substrate being diffused into the polysilicon layer and trapped in the polysilicon layer A heat treatment step for quantitatively evaluating Cu trapped in the polysilicon layer, dissolving a polysilicon layer of a semiconductor substrate with a mixed acid of hydrofluoric acid and nitric acid, and quantifying a Cu component contained in the mixed acid; It takes a lot of time and labor. Furthermore, it is necessary to install and maintain an expensive heat treatment furnace for forming a polysilicon layer on the semiconductor substrate. Further, in the process of dissolving the polysilicon layer with a mixed acid of hydrofluoric acid and nitric acid, cleaning of the fluororesin plate used and management of cleanliness are complicated, and there is a problem in work efficiency.
On the other hand, the method (4) is a simpler method than the methods (1) to (3), but the detection sensitivity is a metal contamination analysis method for a semiconductor substrate that is required to analyze trace metal components with high sensitivity. And the measurement accuracy was insufficient.
そこで本発明の目的は、半導体基板特性に悪影響を与える金属不純物を簡便かつ高精度に分析するための手段を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a means for analyzing metal impurities that adversely affect semiconductor substrate characteristics in a simple and highly accurate manner.
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、片面を粗面化した半導体基板を加熱処理すると、半導体基板中の金属不純物が粗面化によりダメージを与えた部分の歪み場へ拡散する結果、粗面化した基板表面上で金属不純物を回収できること、そしてこの方法による金属不純物の回収率は、半導体基板を粗面化することなく加熱処理する上記方法(4)と比べて顕著に向上すること、を新たに見出した。
本発明は、以上の知見に基づき完成された。
As a result of intensive studies to achieve the above object, the present inventors have conducted heat treatment on a semiconductor substrate having one surface roughened, and the metal impurities in the semiconductor substrate are damaged by the surface roughening. As a result of diffusion into the strain field, the metal impurities can be recovered on the roughened substrate surface, and the recovery rate of the metal impurities by this method is the same as the method (4) in which the heat treatment is performed without roughening the semiconductor substrate. It has been newly found that it can be remarkably improved.
The present invention has been completed based on the above findings.
即ち、上記目的は、下記手段により達成された。
[1]半導体基板の表裏面の一方に粗面化領域を形成すること、
上記粗面化領域形成後の半導体基板を加熱処理すること、および
上記粗面化領域上に溶液を走査させた後、該溶液中の金属成分を分析すること、
を含む半導体基板の金属汚染評価方法。
[2]前記半導体基板はホウ素を含有するシリコン基板である[1]に記載の方法。
[3]分析対象の金属はCuおよび/またはNiである[1]または[2]に記載の方法。
[4]前記粗面化領域の形成を研削により行う[1]〜[3]のいずれかに記載の方法。
[5]前記半導体基板は、工程汚染の把握を行うための基板である[1]〜[4]のいずれかに記載の方法。
That is, the above object was achieved by the following means.
[1] forming a roughened region on one of the front and back surfaces of the semiconductor substrate;
Heat-treating the semiconductor substrate after formation of the roughened region, and after scanning the solution on the roughened region, analyzing a metal component in the solution;
Method for evaluating metal contamination of semiconductor substrate including
[2] The method according to [1], wherein the semiconductor substrate is a silicon substrate containing boron.
[3] The method according to [1] or [2], wherein the metal to be analyzed is Cu and / or Ni.
[4] The method according to any one of [1] to [3], wherein the roughened region is formed by grinding.
[5] The method according to any one of [1] to [4], wherein the semiconductor substrate is a substrate for grasping process contamination.
本発明によれば、半導体基板特性に悪影響を与える半導体基板の金属汚染を高感度かつ簡便に評価することができる。評価対象の半導体基板を、工程汚染の把握を行う半導体基板とすることで、工程の金属汚染を把握することができ、これにより高品質な半導体基板を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the metal contamination of the semiconductor substrate which has a bad influence on a semiconductor substrate characteristic can be evaluated highly sensitively and simply. By making the semiconductor substrate to be evaluated a semiconductor substrate for grasping the process contamination, it is possible to grasp the metal contamination in the process, thereby providing a high-quality semiconductor substrate.
[半導体基板の金属汚染評価方法]
本発明の半導体基板の金属汚染評価方法は、以下の工程を含む。
(1)半導体基板の表裏面の一方に粗面化領域を形成すること、
(2)上記粗面化領域形成後の半導体基板を加熱処理すること、および
(3)上記粗面化領域上に溶液を走査させた後、該溶液中の金属成分を分析すること。
以下、各工程の詳細を順次説明する。
[Method for evaluating metal contamination of semiconductor substrates]
The method for evaluating metal contamination of a semiconductor substrate according to the present invention includes the following steps.
(1) forming a roughened region on one of the front and back surfaces of the semiconductor substrate;
(2) Heat-treating the semiconductor substrate after forming the roughened region, and (3) scanning the solution on the roughened region, and then analyzing a metal component in the solution.
Hereinafter, the details of each process will be described sequentially.
工程(1)
工程(1)は、半導体基板の表裏面の一方に粗面化領域を形成する工程である。本発明において粗面化領域とは、粗面化領域を形成する面とは反対の面と比べて表面粗さの粗い領域をいう。工程(1)により表面に粗面化領域が形成された半導体基板を加熱処理することにより、粗面化領域上で基板中の金属不純物を高回収率で捕獲することができる。この理由を、本発明者らは以下のように推察している。
基板表面を粗面化することにより、粗面化された基板表面に歪み場ができ、その後加熱処理を施すことにより、この歪み場に向かって基板中の金属不純物が拡散する。これに対し、上記方法(4)のように粗面化領域を形成せず加熱処理を行うと、基板中の金属不純物が基板両面に向かって拡散するため、高感度分析のためには基板両面から金属成分を回収しなければならない。基板の片面に粗面化領域を形成すれば、粗面化領域を含む面に向かって金属不純物を選択的に拡散させることができるため、基板の片面から金属成分を回収することにより、高感度分析が可能になる。また、粗面化領域に向かう拡散速度は、鏡面に向かう拡散速度と比べて顕著に高いことも、本発明における金属成分の回収率向上に寄与していると考えられる。
Process (1)
Step (1) is a step of forming a roughened region on one of the front and back surfaces of the semiconductor substrate. In the present invention, the roughened region means a region having a rough surface compared to the surface opposite to the surface forming the roughened region. By heat-treating the semiconductor substrate having a roughened region formed on the surface in the step (1), metal impurities in the substrate can be captured on the roughened region with a high recovery rate. The inventors presume this reason as follows.
By roughening the substrate surface, a strain field is formed on the roughened substrate surface, and then heat treatment is performed, whereby metal impurities in the substrate are diffused toward the strain field. On the other hand, when the heat treatment is performed without forming the roughened region as in the above method (4), the metal impurities in the substrate diffuse toward the both surfaces of the substrate. Metal components must be recovered from. If a roughened region is formed on one side of the substrate, metal impurities can be selectively diffused toward the surface including the roughened region, so that high sensitivity can be obtained by recovering metal components from one side of the substrate. Analysis becomes possible. Moreover, it is considered that the diffusion rate toward the roughened region is significantly higher than the diffusion rate toward the mirror surface, which contributes to the improvement in the recovery rate of the metal component in the present invention.
前記粗面化領域は、基板の表裏面のいずれか一方に形成する。金属成分の回収率の点からは、他方の面は鏡面であることが好ましい。また、基板表面の一部に粗面化領域を形成してもよいが、検出感度を高めるためには全面を粗面化することが好ましい。 The roughened region is formed on either the front or back surface of the substrate. From the viewpoint of the recovery rate of the metal component, the other surface is preferably a mirror surface. Further, although a roughened region may be formed on a part of the substrate surface, it is preferable to roughen the entire surface in order to increase detection sensitivity.
粗面化領域の形成は、研磨処理、研削処理、切削処理等の表面処理によって行うことができる。好適な粗さを付与するためには、研削により粗面化領域を形成することが好ましい。研削条件は、研削砥石の砥粒サイズ等により制御することができる。金属成分の回収率の点から、研削深さは50〜500nmとすることが好ましい。 The roughened region can be formed by surface treatment such as polishing, grinding, or cutting. In order to impart suitable roughness, it is preferable to form a roughened region by grinding. Grinding conditions can be controlled by the abrasive grain size of the grinding wheel. From the viewpoint of the recovery rate of the metal component, the grinding depth is preferably 50 to 500 nm.
評価対象となる半導体基板は、シリコン基板であることが好ましい。シリコン基板としては、ホウ素等のドーパント濃度が1019atms/cm3程度であり、抵抗値が1〜10mΩ・cm程度であるシリコン基板(いわゆるp++基板)、ドーパント濃度が1018atms/cm3程度であり、抵抗値が10mΩ・cm超〜1000mΩ・cm程度であるシリコン基板(いわゆるp+基板)、ドーパント濃度が1015atms/cm3程度であり、抵抗値が1Ω・cm超程度であるシリコン基板(いわゆるp-基板)があり、本発明の評価方法は上記基板のいずれにも適用可能であるが、以下の理由からp++基板およびp+基板に適用することが好ましく、p++基板に適用することがより好ましい。
従来、シリコン基板の中で、高濃度でドーパントを含むシリコン基板(低抵抗基板)は、金属不純物の分析が困難であった。これは基板中のドーパント濃度が高くなるほど、金属成分、特にCuの固溶度が高くなり、かつCuの拡散係数が低くなるからである。これに対し本発明によれば、基板表面に粗面化領域を形成することにより、基板表面での金属不純物の回収率を高めることができるため、低抵抗基板であっても金属不純物を高精度分析することができる。
The semiconductor substrate to be evaluated is preferably a silicon substrate. As a silicon substrate, a silicon substrate (so-called p ++ substrate) having a dopant concentration such as boron of about 10 19 atms / cm 3 and a resistance value of about 1 to 10 mΩ · cm, a dopant concentration of 10 18 atms / cm A silicon substrate (so-called p + substrate) having a resistance value of about 10 mΩ · cm to about 1000 mΩ · cm, a dopant concentration of about 10 15 atms / cm 3 , and a resistance value of about 1 Ω · cm There is a silicon substrate (so-called p − substrate), and the evaluation method of the present invention can be applied to any of the above substrates. However, it is preferably applied to p ++ substrate and p + substrate for the following reasons. ++ More preferably applied to the substrate.
Conventionally, among silicon substrates, a silicon substrate containing a dopant at a high concentration (low resistance substrate) has been difficult to analyze metal impurities. This is because the higher the dopant concentration in the substrate, the higher the solid solubility of the metal component, particularly Cu, and the lower the diffusion coefficient of Cu. On the other hand, according to the present invention, by forming the roughened region on the substrate surface, the recovery rate of the metal impurities on the substrate surface can be increased, so that the metal impurities can be accurately detected even on a low resistance substrate Can be analyzed.
本発明の評価方法における評価対象金属としては、半導体基板の汚染金属として知られる各種金属を挙げることができるが、回収率の点からCuおよびNiが好ましい。 Examples of the metal to be evaluated in the evaluation method of the present invention include various metals known as contaminating metals of the semiconductor substrate, and Cu and Ni are preferable from the viewpoint of the recovery rate.
工程(2)
工程(2)は、粗面化領域を形成した半導体基板を加熱処理する工程である。加熱処理により、基板内部から粗面化領域に向かって金属不純物を選択的に拡散させることができる。加熱処理は、基板を加熱炉内で所定時間保持する方法、基板をホットプレート等の加熱源と接触させる方法等により行うことができる。加熱条件は、基板中のドーパント濃度等に応じて設定することができ、加熱温度は、例えば200〜1250℃、加熱時間は、例えば30分〜24時間である。上記加熱温度は、加熱炉を使用する方法については、加熱炉内の雰囲気温度をいい、加熱源と接触させる方法については、加熱源の温度をいうものとする。加熱源を使用する方法では、粗面化領域を含む面とは反対の面を加熱源と接触させることが好ましい。基板内で温度勾配ができることにより粗面化領域での金属成分の回収率が高まるからである。具体的には、半導体基板を、粗面化領域を形成した面を上に向けてホットプレート上に所定時間保持することが好ましい。加熱処理時の雰囲気は、特に限定されるものではなく、例えば、大気中、酸化性雰囲気、窒素等の不活性ガス雰囲気等であることができる。
Process (2)
Step (2) is a step of heat-treating the semiconductor substrate on which the roughened region is formed. By the heat treatment, metal impurities can be selectively diffused from the inside of the substrate toward the roughened region. The heat treatment can be performed by a method of holding the substrate in a heating furnace for a predetermined time, a method of bringing the substrate into contact with a heating source such as a hot plate, or the like. The heating conditions can be set according to the dopant concentration and the like in the substrate, the heating temperature is, for example, 200 to 1250 ° C., and the heating time is, for example, 30 minutes to 24 hours. The heating temperature refers to the atmospheric temperature in the heating furnace for the method of using the heating furnace, and the temperature of the heating source for the method of contacting with the heating source. In the method using a heating source, it is preferable that the surface opposite to the surface including the roughened region is brought into contact with the heating source. This is because the recovery rate of the metal component in the roughened region is increased by forming a temperature gradient in the substrate. Specifically, the semiconductor substrate is preferably held on the hot plate for a predetermined time with the surface on which the roughened region is formed facing up. The atmosphere during the heat treatment is not particularly limited, and can be, for example, the air, an oxidizing atmosphere, an inert gas atmosphere such as nitrogen, or the like.
工程(2)は、製造ラインで実際に使用される加熱処理炉内で行うこともできる。例えば、片面に粗面化領域を形成した半導体基板を製造ラインにサンプル基板として導入し、製品基板製造に使用される加熱処理炉において加熱処理を施すと、加熱処理炉内の汚染金属が基板内部に拡散した後、粗面化領域に向かって拡散する。その後、加熱処理炉から取り出したサンプル基板を工程(3)に付すことにより、加熱処理炉内の金属汚染に起因する基板の汚染金属を定性および/または定量分析することができる。 Step (2) can also be performed in a heat treatment furnace actually used in the production line. For example, when a semiconductor substrate with a roughened region formed on one side is introduced as a sample substrate into a production line and subjected to heat treatment in a heat treatment furnace used for production of product substrates, contaminated metals in the heat treatment furnace are exposed inside the substrate. Then, it diffuses toward the roughened region. Thereafter, by subjecting the sample substrate taken out from the heat treatment furnace to the step (3), it is possible to qualitatively and / or quantitatively analyze the contaminated metal of the substrate caused by metal contamination in the heat treatment furnace.
工程(3)
上記工程(2)の後、必要に応じて放冷等により基板を冷却した後、工程(3)を行う。上記工程(2)により基板表面の粗面化領域上に、基板中の金属不純物が酸化物等として析出すると考えられる。工程(3)は、この析出した金属不純物を粗面化領域から回収するために、粗面化領域上に溶液を走査させた後、該溶液中の金属成分を分析する工程である。溶液の走査は、基板表面に滴下した溶液を全面になじませるように、基板を傾けながら回転させる方法等により、自動または手動で行うことができる。回収溶液としては、酸性溶液を用いることができる。酸性溶液としては、弗酸、過酸化水素水および水の混合溶液、具体的には、2質量%弗酸/2質量%過酸化水素水/水の混合液を用いることができる。本発明によれば、前述の方法(1)〜(3)のように基板やポリシリコン層を溶解することなく、上記のような弱酸溶液による表面走査により金属成分を容易に回収することができる。基板表面に供給および走査する溶液量は、基板表面上の金属成分を高回収率で回収できるように適宜設定することが好ましい。
Step (3)
After the step (2), the substrate is cooled by cooling or the like as necessary, and then the step (3) is performed. It is considered that the metal impurity in the substrate is precipitated as an oxide or the like on the roughened region of the substrate surface by the step (2). Step (3) is a step of analyzing a metal component in the solution after scanning the solution on the roughened region in order to collect the deposited metal impurities from the roughened region. The scanning of the solution can be performed automatically or manually by a method of rotating the substrate while tilting so that the solution dripped onto the surface of the substrate is adapted to the entire surface. An acidic solution can be used as the recovery solution. As the acidic solution, a mixed solution of hydrofluoric acid, hydrogen peroxide solution and water, specifically, a mixed solution of 2% by mass hydrofluoric acid / 2% by mass hydrogen peroxide solution / water can be used. According to the present invention, the metal component can be easily recovered by surface scanning with the above weak acid solution without dissolving the substrate or the polysilicon layer as in the above-described methods (1) to (3). . The amount of solution supplied and scanned on the substrate surface is preferably set as appropriate so that the metal component on the substrate surface can be recovered at a high recovery rate.
前記回収液中に回収された金属成分は、溶液中の金属成分の定量分析および/または定性分析するために通常使用される各種分析方法によって分析することができる。そのような方法としては、原子吸光分光法(AAS法:Atomic Absorption Spectrometry)、誘導結合プラズマ質量分析法(ICP−MS法:Inductively Coupled Plasma Mass Spectrometry)等を挙げることができる。 The metal component recovered in the recovery solution can be analyzed by various analysis methods usually used for quantitative analysis and / or qualitative analysis of the metal component in the solution. Examples of such methods include atomic absorption spectroscopy (AAS method) and inductively coupled plasma mass spectrometry (ICP-MS method: Inductively Coupled Plasma Mass Spectrometry).
AAS法、特に黒鉛炉加熱型AAS法(GF−AAS:Graphite Furnace AAS)は、装置が簡単で操作も容易であることから、広く用いられている。GF−AAS法では、試料溶液を黒鉛電気炉に導入し、その後、比較的低温で溶媒を気化してから、これを2000〜2800℃に加熱して金属元素を原子化する。次いで、原子化された金属を、外部光源から照射された各元素固有の光の吸収割合を測定することによって定量する。通常、光源としてはホローカソードランプが用いられる。測定元素ごとに光源を変更する必要はあるものの、このGF−AAS法は、試料溶液中濃度で〜数十ppt(pg/ml)の分析感度を得ることができる。また、吸収測定時に磁場をかけ、Zeeman効果の利用によりバックグランドを補正することにより、検出感度を更に向上することができる。 An AAS method, particularly a graphite furnace heating type AAS method (GF-AAS: Graphite Furnace AAS) is widely used because the apparatus is simple and easy to operate. In the GF-AAS method, a sample solution is introduced into a graphite electric furnace, and then a solvent is vaporized at a relatively low temperature, and then heated to 2000 to 2800 ° C. to atomize a metal element. Next, the atomized metal is quantified by measuring the absorption ratio of light unique to each element irradiated from an external light source. Usually, a hollow cathode lamp is used as the light source. Although it is necessary to change the light source for each measurement element, this GF-AAS method can obtain an analytical sensitivity of up to several tens of ppt (pg / ml) at a concentration in the sample solution. Further, detection sensitivity can be further improved by applying a magnetic field during absorption measurement and correcting the background by using the Zeeman effect.
ICP−MS法では、試料溶液をネブライザによってガス化またはエアロゾル化し、これを誘導結合コイルで印加した高周波電力によるアルゴンプラズマ中へ導入する。試料は、大気圧プラズマ中で6000〜7000K程度に加熱され、各元素は原子化、さらには90%以上の効率でイオン化される。イオンは、スキマー(インターフェイス)を通過した後、イオンレンズ部によりエネルギー収束され、次いで<10-6Paの高真空状態に維持された質量分析計へ導かれ、質量分析される。これにより、溶液中の金属成分を定量することができる。ICP−MS法によれば、微量金属成分を高感度に分析することができる。ICP−MS法は、強酸溶液を分析することは困難であるが、本発明によれば、弱酸によって金属成分を回収することができるため、ICP−MS法による金属成分の分析を容易に行うことができる。 In the ICP-MS method, a sample solution is gasified or aerosolized by a nebulizer and introduced into argon plasma by high frequency power applied by an inductive coupling coil. The sample is heated to about 6000 to 7000 K in atmospheric pressure plasma, and each element is atomized and further ionized with an efficiency of 90% or more. After passing through the skimmer (interface), the ions are focused by the ion lens unit, and then guided to a mass spectrometer maintained in a high vacuum state of <10 −6 Pa for mass analysis. Thereby, the metal component in a solution can be quantified. According to the ICP-MS method, trace metal components can be analyzed with high sensitivity. Although it is difficult to analyze a strong acid solution in the ICP-MS method, according to the present invention, the metal component can be recovered with a weak acid, and therefore the metal component can be easily analyzed by the ICP-MS method. Can do.
金属不純物は、半導体基板製造工程中の酸化、拡散等の各種熱処理において基板内部へ容易に拡散し、析出物、転位、酸素有機積層欠陥(OSF:Oxidation−induced Stacking Fault)等の結晶欠陥、少数キャリアのライフタイム低下、リーク電流の増大、酸化膜の絶縁破壊電圧劣化等を引き起こすおそれがある。そのため、熱処理プロセス等の製造工程における金属汚染を低減するために、通常、製品を熱処理する前に、使用する加熱炉のプロセス汚染量を評価用基板を用いて試験的に評価し、この評価値に基づいて汚染を改善した後に、本格的な製品熱処理を行っている。また、日常の工程汚染の把握のため、例えば1ロットあたり1枚、1日あたり1枚、または1週間あたり1枚の評価用基板をサンプリングすることにより、工程汚染を評価することも行われている。本発明の評価方法は、上記のような工程汚染の把握を行うための基板の評価方法として用いることができる。 Metal impurities are easily diffused into the substrate during various heat treatments such as oxidation and diffusion during the manufacturing process of the semiconductor substrate. There is a possibility that the lifetime of the carrier is reduced, the leakage current is increased, and the dielectric breakdown voltage of the oxide film is deteriorated. Therefore, in order to reduce metal contamination in manufacturing processes such as heat treatment processes, the process contamination amount of the heating furnace to be used is usually evaluated on a trial basis using an evaluation substrate before heat treating the product. After improving the contamination based on this, full-scale product heat treatment is performed. In addition, in order to grasp daily process contamination, process contamination is also evaluated by sampling, for example, one substrate per lot, one substrate per day, or one substrate per week. Yes. The evaluation method of the present invention can be used as a substrate evaluation method for grasping the process contamination as described above.
以下、本発明を実施例により説明する。但し、本発明は実施例に示す態様に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples. However, this invention is not limited to the aspect shown in the Example.
1.高濃度既知金属汚染半導体基板評価の実施例・比較例 1. Example / comparative example of high-concentration known metal contamination semiconductor substrate evaluation
[実施例1]
NiおよびCuにより、表面濃度換算1×1013atoms/cm2で半導体基板(ボロンドープシリコン基板、基板抵抗値:0.010Ω・cm)中を均一に既知汚染した。この半導体基板の片面全面を、研削ダメージを付加することにより粗面化した後に、研削ダメージを付加した面を上に向け、基板を300℃に加熱したホットプレート上に水平に配置し、1時間の加熱処理を行った。その後、酸性水溶液(2質量%弗酸/2質量%過酸化水素水/水)で研削ダメージを付加した半導体基板表面を走査した後、酸性溶液中の金属成分をICP−MSで定量した。
[Example 1]
Ni and Cu uniformly contaminated the semiconductor substrate (boron-doped silicon substrate, substrate resistance value: 0.010 Ω · cm) uniformly at a surface concentration of 1 × 10 13 atoms / cm 2 . After the entire surface of one surface of the semiconductor substrate is roughened by applying grinding damage, the surface with the grinding damage is turned upward and the substrate is horizontally placed on a hot plate heated to 300 ° C. for 1 hour. The heat treatment was performed. Thereafter, the surface of the semiconductor substrate to which grinding damage was added was scanned with an acidic aqueous solution (2% by mass hydrofluoric acid / 2% by mass hydrogen peroxide / water), and then the metal components in the acidic solution were quantified by ICP-MS.
[比較例1]
実施例1と同様の方法で既知量NiCu汚染した半導体基板にポリシリコン層を両面付加した。その後、片面のみポリシリコン層を除去した半導体基板を、ポリシリコン層を上に向け300℃に加熱したホットプレート上に水平に配置し、1時間加熱処理した。加熱処理後、ポリシリコン層表面を、実施例1と同様の酸性溶液で走査した後、酸性溶液中の金属成分をICP−MSで定量した。
[Comparative Example 1]
A polysilicon layer was added to both sides of a semiconductor substrate contaminated with a known amount of NiCu in the same manner as in Example 1. Thereafter, the semiconductor substrate from which the polysilicon layer was removed only on one side was placed horizontally on a hot plate heated to 300 ° C. with the polysilicon layer facing upward, and heat-treated for 1 hour. After the heat treatment, the surface of the polysilicon layer was scanned with the same acidic solution as in Example 1, and then the metal components in the acidic solution were quantified by ICP-MS.
[比較例2]
加熱処理後、ポリシリコン層を弗酸と硝酸との混合溶液で溶解した後、溶解液中の金属成分をICP−MSで定量した。
[Comparative Example 2]
After the heat treatment, the polysilicon layer was dissolved in a mixed solution of hydrofluoric acid and nitric acid, and then the metal components in the solution were quantified by ICP-MS.
[比較例3]
基板表面に研削ダメージを付加しなかった点以外、実施例1と同様の操作を行った。
[Comparative Example 3]
The same operation as in Example 1 was performed except that grinding damage was not added to the substrate surface.
[比較例4]
ホットプレート上で加熱処理を行わなかった点以外、実施例1と同様の操作を行った。
[Comparative Example 4]
The same operation as in Example 1 was performed except that the heat treatment was not performed on the hot plate.
実施例1および比較例1〜4のICP−MSによるCuおよびNiの定量結果を図1に示す。
比較例2は、回収率は良好であったが評価手順が煩雑である。また、比較例1の結果から、ポリシリコン層表面の回収液の走査だけでは、半導体基板中の金属不純物を回収できないことがわかる。
これに対し図1に示すように、実施例1により、簡便な方法によって比較例2と同程度の高い回収率で汚染金属を定量することができた。
一方、比較例3の研削ダメージ付加されていない半導体基板では、汚染量に対して回収率が約10%程度であり、回収率が低かった。また、比較例4の研削ダメージを付加したがホットプレートによる加熱処理を行っていない半導体基板では、半導体基板中金属不純物が研削ダメージの捕獲サイトへ拡散しないため、汚染金属の検出は不可能であった。
The quantitative results of Cu and Ni by ICP-MS in Example 1 and Comparative Examples 1 to 4 are shown in FIG.
In Comparative Example 2, the recovery rate was good, but the evaluation procedure was complicated. Moreover, it can be seen from the results of Comparative Example 1 that the metal impurities in the semiconductor substrate cannot be recovered only by scanning the recovered liquid on the surface of the polysilicon layer.
On the other hand, as shown in FIG. 1, according to Example 1, the contaminated metal could be quantified with a high recovery rate comparable to that of Comparative Example 2 by a simple method.
On the other hand, in the semiconductor substrate to which no grinding damage was applied in Comparative Example 3, the recovery rate was about 10% with respect to the amount of contamination, and the recovery rate was low. In addition, in the semiconductor substrate to which grinding damage of Comparative Example 4 was added but not subjected to the heat treatment by the hot plate, the metal impurity in the semiconductor substrate does not diffuse to the grinding damage capturing site, so that contamination metal cannot be detected. It was.
2.低濃度既知金属汚染半導体基板評価の実施例・比較例 2. Examples and comparative examples of low-concentration known metal contamination semiconductor substrate evaluation
[実施例2]
表面濃度換算1×1011atoms/cm2で半導体基板(ボロンドープシリコン基板、基板抵抗値:0.010Ω・cm)をNiCu汚染した点以外、実施例1と同様の操作を行った。
[Example 2]
The same operation as in Example 1 was performed, except that the semiconductor substrate (boron-doped silicon substrate, substrate resistance value: 0.010 Ω · cm) was contaminated with NiCu at a surface concentration conversion of 1 × 10 11 atoms / cm 2 .
[比較例5]
表面濃度換算1×1011atoms/cm2で半導体基板をNiCu汚染した点以外、比較例1と同様の操作を行った。
[Comparative Example 5]
The same operation as in Comparative Example 1 was performed except that the semiconductor substrate was contaminated with NiCu at a surface concentration conversion of 1 × 10 11 atoms / cm 2 .
[比較例6]
表面濃度換算1×1011atoms/cm2で半導体基板をNiCu汚染した点以外、比較例2と同様の操作を行った。
[Comparative Example 6]
The same operation as in Comparative Example 2 was performed except that the semiconductor substrate was contaminated with NiCu at a surface concentration equivalent of 1 × 10 11 atoms / cm 2 .
[比較例7]
表面濃度換算1×1011atoms/cm2で半導体基板をNiCu汚染した点以外、比較例3と同様の操作を行った。
[Comparative Example 7]
The same operation as in Comparative Example 3 was performed, except that the semiconductor substrate was contaminated with NiCu at a surface concentration equivalent of 1 × 10 11 atoms / cm 2 .
[比較例8]
表面濃度換算1×1011atoms/cm2で半導体基板をNiCu汚染した点以外、比較例4と同様の操作を行った。
[Comparative Example 8]
The same operation as in Comparative Example 4 was performed except that the semiconductor substrate was contaminated with NiCu at a surface concentration equivalent of 1 × 10 11 atoms / cm 2 .
実施例2および比較例5〜8のICP−MSによるCuおよびNiの定量結果を図2に示す。
図2に示すように、実施例2では汚染量に対し、ほぼ100%の回収率で基板中の金属不純物の回収が可能であった。
The quantitative results of Cu and Ni by ICP-MS in Example 2 and Comparative Examples 5 to 8 are shown in FIG.
As shown in FIG. 2, in Example 2, it was possible to recover metal impurities in the substrate at a recovery rate of almost 100% with respect to the amount of contamination.
以上の結果から、本発明によれば、高濃度金属汚染された半導体基板および低濃度金属汚染された半導体基板のいずれについても、簡便かつ高感度分析が可能であることが示された。 From the above results, it was shown that according to the present invention, simple and highly sensitive analysis is possible for both a semiconductor substrate contaminated with a high concentration metal and a semiconductor substrate contaminated with a low concentration metal.
3.未知濃度金属汚染評価の実施例 3. Example of evaluating metal contamination of unknown concentration
[実施例3]
半導体製造加工ラインの異なる鏡面研磨されたボロンドープシリコン基板(基板酸素濃度:1.0×1018atoms/cm3(ASTM F−121 1979)基板抵抗値:0.008Ω・cm)を2枚用意した。
上記2枚の半導体基板の片面に研削ダメージを付加するため、#8000番程度の研削砥石を有する研削装置にて、前記半導体表面の鏡面研磨された面を、約200nmの研削深さで研削した。
研削した表面を上にして、300℃に加熱したホットプレート上に半導体基板を水平に配置した状態で1時間保持し、加熱処理を施した。ホットプレート加熱後、半導体基板を弗化樹脂製のプレート上に研削ダメージを付加した面を上にして配置し、半導体基板の温度が室温になるまで放冷した。
放冷後、研削ダメージを付加した基板表面上に2%弗酸2%過酸化水素水(質量%)水溶液を1ml滴下した。滴下した前記酸性水溶液を前記半導体基板表面上にて走査させ、半導体基板中から前記半導体基板表面へ拡散した金属不純物を回収した。
前記酸性回収液中のCuおよびNiを、ICP−MSにより定量分析した。結果を表1に示す。表1に示すように、ライン1とライン2の結果の比較から、ライン1中に金属汚染があることを把握することができる。
[Example 3]
Prepare two mirror-polished boron-doped silicon substrates (substrate oxygen concentration: 1.0 × 10 18 atoms / cm 3 (ASTM F-121 1979) substrate resistance: 0.008 Ω · cm) with different semiconductor manufacturing processing lines did.
In order to apply grinding damage to one side of the two semiconductor substrates, the mirror-polished surface of the semiconductor surface was ground at a grinding depth of about 200 nm with a grinding apparatus having a grinding wheel of about # 8000. .
With the ground surface facing up, the semiconductor substrate was held horizontally for 1 hour on a hot plate heated to 300 ° C. and subjected to heat treatment. After heating the hot plate, the semiconductor substrate was placed on a fluororesin plate with the grinding damage face up, and allowed to cool until the temperature of the semiconductor substrate reached room temperature.
After standing to cool, 1 ml of 2% hydrofluoric acid, 2% hydrogen peroxide (mass%) aqueous solution was dropped on the substrate surface to which grinding damage was added. The dropped acidic aqueous solution was scanned on the surface of the semiconductor substrate, and metal impurities diffused from the semiconductor substrate to the surface of the semiconductor substrate were collected.
Cu and Ni in the acidic recovery solution were quantitatively analyzed by ICP-MS. The results are shown in Table 1. As shown in Table 1, it can be understood from the comparison of the results of line 1 and line 2 that metal contamination is present in line 1.
4.工程汚染把握の実施例 4). Example of grasping process contamination
[実施例4]
鏡面研磨したボロンドープシリコン基板(基板酸素濃度:1.0×1018atoms/cm3(ASTM F−121 1979)基板抵抗値:0.010Ω・cm)を2枚準備した。
上記2枚の半導体基板の片面に研削ダメージを付加するため、#8000番程度の研削砥石を有する研削装置にて、前記半導体表面の鏡面研磨された面を、約300nmの研削深さで研削した。
前記研削ダメージを付加した半導体基板を1枚ずつ半導体製造用の加熱処理炉1と加熱熱処理炉2で約1000℃1時間 窒素雰囲気下にて加熱熱処理を行った。
上記加熱処理を施した2枚の研削ダメージを付加した基板表面上にそれぞれ2%弗酸2%過酸化水素水(質量%)水溶液を1ml滴下した。滴下した前記酸性水溶液を前記半導体基板表面上にて走査させ、半導体基板中から半導体基板表面へ拡散した金属不純物を回収した。
前記酸性回収液中のCuおよびNiを、ICP−MSにより定量分析した。結果を表2に示す。ここで検出された金属不純物は、加熱処理にて加熱処理炉から半導体基板内部に拡散した金属不純物量に相当する。表2の結果から、熱処理炉2でNi汚染が存在し、熱処理炉の改善が必要であると判定することができる。
[Example 4]
Two mirror-polished boron-doped silicon substrates (substrate oxygen concentration: 1.0 × 10 18 atoms / cm 3 (ASTM F-121 1979) substrate resistance value: 0.010 Ω · cm) were prepared.
In order to add grinding damage to one side of the two semiconductor substrates, the mirror-polished surface of the semiconductor surface was ground at a grinding depth of about 300 nm with a grinding machine having a grinding wheel of about # 8000. .
The semiconductor substrate to which the grinding damage was added was subjected to heat treatment in a nitrogen atmosphere in a heat treatment furnace 1 and a heat treatment furnace 2 for manufacturing semiconductors one by one in a nitrogen atmosphere.
1 ml of 2% hydrofluoric acid, 2% hydrogen peroxide (mass%) aqueous solution was dropped on each of the two heat-treated substrate surfaces subjected to grinding damage. The dropped acidic aqueous solution was scanned on the surface of the semiconductor substrate, and metal impurities diffused from the semiconductor substrate to the surface of the semiconductor substrate were collected.
Cu and Ni in the acidic recovery solution were quantitatively analyzed by ICP-MS. The results are shown in Table 2. The metal impurities detected here correspond to the amount of metal impurities diffused from the heat treatment furnace into the semiconductor substrate by the heat treatment. From the results in Table 2, it can be determined that Ni contamination exists in the heat treatment furnace 2 and that the heat treatment furnace needs to be improved.
本発明は、半導体基板の製造分野に有用である。 The present invention is useful in the field of manufacturing semiconductor substrates.
Claims (5)
上記粗面化領域形成後の半導体基板を加熱処理すること、および
上記粗面化領域上に溶液を走査させた後、該溶液中の金属成分を分析すること、
を含む半導体基板の金属汚染評価方法。 Forming a roughened region on one of the front and back surfaces of the semiconductor substrate;
Heat-treating the semiconductor substrate after formation of the roughened region, and after scanning the solution on the roughened region, analyzing a metal component in the solution;
Method for evaluating metal contamination of semiconductor substrate including
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008286050A JP2010114282A (en) | 2008-11-07 | 2008-11-07 | Method for evaluation of metal pollution in semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008286050A JP2010114282A (en) | 2008-11-07 | 2008-11-07 | Method for evaluation of metal pollution in semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010114282A true JP2010114282A (en) | 2010-05-20 |
Family
ID=42302617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008286050A Pending JP2010114282A (en) | 2008-11-07 | 2008-11-07 | Method for evaluation of metal pollution in semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010114282A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196433A (en) * | 2000-01-17 | 2001-07-19 | Mitsubishi Materials Silicon Corp | METHOD FOR MEASURING CONCENTRATION OF Cu IN SILICON WAFER |
JP2001213694A (en) * | 2000-01-27 | 2001-08-07 | Mitsubishi Materials Silicon Corp | Semiconductor wafer with low copper content |
-
2008
- 2008-11-07 JP JP2008286050A patent/JP2010114282A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196433A (en) * | 2000-01-17 | 2001-07-19 | Mitsubishi Materials Silicon Corp | METHOD FOR MEASURING CONCENTRATION OF Cu IN SILICON WAFER |
JP2001213694A (en) * | 2000-01-27 | 2001-08-07 | Mitsubishi Materials Silicon Corp | Semiconductor wafer with low copper content |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5087855B2 (en) | Heat treatment evaluation wafer, heat treatment evaluation method, and semiconductor wafer manufacturing method | |
JP5720297B2 (en) | Method for analyzing metal contamination of silicon wafers | |
JP4992246B2 (en) | Method for evaluating Cu in silicon wafer | |
JP3494102B2 (en) | Evaluation method of metal impurity concentration in silicon wafer | |
JP6118031B2 (en) | Impurity analysis apparatus and method | |
JP2013108759A (en) | Impurity analysis method of hydrofluoric acid solution for semiconductor wafer process, and management method of replacement time of hydrofluoric acid solution | |
WO2011083719A1 (en) | Method and apparatus for etching of surface layer part of silicon wafer, and method for analysis of metal contamination in silicon wafer | |
TW201705326A (en) | Method of evaluating semiconductor substrate and method of manufacturing semiconductor substrate | |
JP5904512B1 (en) | Analysis method of silicon substrate | |
JP3680476B2 (en) | Heat treatment evaluation wafer and heat treatment evaluation method using the same | |
JP6063616B2 (en) | Analysis method of silicon sample | |
JP5434056B2 (en) | Method for evaluating metal contamination of semiconductor substrates | |
JP5413342B2 (en) | Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method | |
JP2010114282A (en) | Method for evaluation of metal pollution in semiconductor substrate | |
JP2973638B2 (en) | Impurity analysis method | |
CN111868888B (en) | Etching method, metal contamination evaluation method and manufacturing method for boron-doped p-type silicon wafer | |
JP2010212451A (en) | Method for evaluating metal contamination on surface layer of semiconductor substrate | |
US6146909A (en) | Detecting trace levels of copper | |
JP4760458B2 (en) | Method for analyzing metal contamination of semiconductor wafer storage container | |
JP2011082338A (en) | Analyzing method and analyzing device for semiconductor substrate | |
JP2023133001A (en) | Method for analyzing polishing slurry for silicon wafer | |
KR100999358B1 (en) | Method of estimating the concentration of metal contamination in wafer | |
CN117732770A (en) | Processing method for improving metal pollution of edge of silicon polishing sheet | |
JP5682186B2 (en) | Impurity contamination assessment method for environmental atmosphere | |
CN117168942A (en) | Sampling method for detecting metal on surface of silicon wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130716 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130912 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131112 |