JP2011082338A - Analyzing method and analyzing device for semiconductor substrate - Google Patents

Analyzing method and analyzing device for semiconductor substrate Download PDF

Info

Publication number
JP2011082338A
JP2011082338A JP2009233345A JP2009233345A JP2011082338A JP 2011082338 A JP2011082338 A JP 2011082338A JP 2009233345 A JP2009233345 A JP 2009233345A JP 2009233345 A JP2009233345 A JP 2009233345A JP 2011082338 A JP2011082338 A JP 2011082338A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
sulfuric acid
hydrophobic member
analyzing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009233345A
Other languages
Japanese (ja)
Inventor
Noritomo Mitsugi
伯知 三次
Masami Hirata
真佐美 平田
Harumi Shibata
晴美 柴田
Seiji Nagai
清司 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009233345A priority Critical patent/JP2011082338A/en
Publication of JP2011082338A publication Critical patent/JP2011082338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing method and an analyzing device for a semiconductor substrate that can easily recover and analyze, at a low cost, metal impurity contaminants included in the semiconductor substrate. <P>SOLUTION: Concentrated sulfuric acid 2 as a recovery liquid is supplied to the surface of the semiconductor substrate 1, a hydrophobic member 3 is disposed so as to hold the concentrated sulfuric acid 2 between itself and the semiconductor substrate 1 to bring the concentrated sulfuric acid 2 into wide contact with the semiconductor substrate 1, and after metal impurities included in the semiconductor substrate 1 are dissolved in the concentrated sulfuric acid 2, the hydrophobic member 3 is removed to analyze the concentrated sulfuric acid 2 left at least on one surface of the semiconductor substrate 1 and the hydrophobic member 3. It is preferable that the semiconductor substrate 1 is heated. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、半導体基板内部に含まれる金属不純物を低コストかつ容易に分析可能な半導体基板の分析方法および分析装置に関するものである。   The present invention relates to a semiconductor substrate analysis method and analysis apparatus capable of easily analyzing metal impurities contained in a semiconductor substrate at low cost.

近年の半導体デバイスの微細化、高集積化に伴い、半導体基板中の金属がデバイス特性を劣化させ、デバイス製造の歩留まりに大きな影響を与えることが知られている。そこで、この金属不純物を除去するためのゲッタリング方法や洗浄方法などが数多く検討されている。
例えば、特許文献1には、半導体基板を加熱した酸溶液中に浸漬することによって半導体基板をアニールし、金属を半導体基板表面に拡散させ、拡散させた金属を半導体基板表面で酸溶液によって酸化および錯化し、半導体基板表面から除去する方法が開示されている。
With the recent miniaturization and higher integration of semiconductor devices, it is known that the metal in the semiconductor substrate deteriorates the device characteristics and greatly affects the device manufacturing yield. Therefore, a lot of gettering methods and cleaning methods for removing the metal impurities have been studied.
For example, in Patent Document 1, the semiconductor substrate is annealed by immersing the semiconductor substrate in a heated acid solution, the metal is diffused to the surface of the semiconductor substrate, and the diffused metal is oxidized and oxidized by the acid solution on the surface of the semiconductor substrate. A method of complexing and removing from a semiconductor substrate surface is disclosed.

さらに、半導体基板内部から除去した金属不純物を回収して分析する方法として、特許文献2には、半導体基板表面に濃硫酸を滴下した後、滴下した濃硫酸を半導体基板全面に均一に広げるため、かつ、次工程の熱処理時に濃硫酸が急激に蒸発または飛散するのを防ぐために、半導体基板上の濃硫酸を汚染のない別の半導体基板で挟み込み、全体に熱処理を施すことで、半導体基板内部に固溶している金属不純物を濃硫酸中に抽出し、この濃硫酸中の金属不純物を化学分析する方法が提案されている。   Furthermore, as a method for recovering and analyzing metal impurities removed from the inside of the semiconductor substrate, Patent Document 2 discloses that after the concentrated sulfuric acid is dropped on the surface of the semiconductor substrate, the concentrated sulfuric acid is uniformly spread over the entire surface of the semiconductor substrate. In addition, in order to prevent the concentrated sulfuric acid from rapidly evaporating or scattering during the heat treatment in the next step, the concentrated sulfuric acid on the semiconductor substrate is sandwiched between other semiconductor substrates that are not contaminated, and the entire substrate is heat treated, so that There has been proposed a method of extracting metal impurities dissolved in concentrated sulfuric acid and chemically analyzing the metal impurities in the concentrated sulfuric acid.

特表2002−514353号公報JP-T-2002-514353 特許第3494102号Japanese Patent No. 3494102

しかしながら、本発明者らは上述した従来の半導体基板の分析方法に改良すべき点を見出した。すなわち、特許文献2には、半導体基板から金属不純物を除去した後、この半導体基板を濃硫酸から引き剥がすために、アンモニア蒸気により濃硫酸を中和し、HF蒸気により半導体基板表面の酸化膜等を気相分解するといった工程が必要であることが開示されている。なぜなら、半導体基板は親水性であり、その表面上に広がった高粘性の濃硫酸と強力に接着されているため、このままの状態では濃硫酸から半導体基板を引き剥がすことが不可能であるからである。従って、上述した追加の工程が必要となり、回収工程が複雑であるという問題点があった。   However, the present inventors have found that the above-described conventional method for analyzing a semiconductor substrate should be improved. That is, in Patent Document 2, after removing metal impurities from a semiconductor substrate, in order to peel the semiconductor substrate from concentrated sulfuric acid, concentrated sulfuric acid is neutralized with ammonia vapor, and an oxide film on the surface of the semiconductor substrate with HF vapor, etc. It is disclosed that a process such as gas phase decomposition is necessary. This is because the semiconductor substrate is hydrophilic and strongly bonded to the highly viscous concentrated sulfuric acid spread on the surface, so it is impossible to peel the semiconductor substrate from the concentrated sulfuric acid in this state. is there. Therefore, the additional process mentioned above was needed and there existed a problem that the collection | recovery process was complicated.

そこで、本発明の目的は、上述した問題点を解消し、半導体基板内部に含まれる金属不純物汚染を低コストかつ容易に回収および分析可能な半導体基板の分析方法および分析装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor substrate analysis method and analysis apparatus that can solve the above-described problems and can easily recover and analyze metal impurity contamination contained in a semiconductor substrate at low cost. .

本発明の要旨は、以下のとおりである。
(1)半導体基板の表面に回収液を供給し、該回収液を半導体基板との間に挟むように疎水性部材を配置し、該回収液を前記半導体基板に広く接触させ、前記半導体基板の内部に含まれる金属不純物を前記回収液中へ溶解させた後、前記疎水性部材を取り外し、前記半導体基板および前記疎水性部材の少なくとも一方の表面に残留する前記回収液を分析することを特徴とする半導体基板の分析方法。
The gist of the present invention is as follows.
(1) Supplying a recovery liquid to the surface of the semiconductor substrate, disposing a hydrophobic member so as to sandwich the recovery liquid between the semiconductor substrate, bringing the recovery liquid into wide contact with the semiconductor substrate, After the metal impurities contained therein are dissolved in the recovery liquid, the hydrophobic member is removed, and the recovery liquid remaining on at least one surface of the semiconductor substrate and the hydrophobic member is analyzed. For analyzing a semiconductor substrate.

(2)半導体基板の表面に隙間を介して疎水性部材を配置し、前記隙間に回収液を供給し、前記半導体基板と前記疎水性部材とで前記回収液を挟むことによって、該回収液を前記半導体基板に広く接触させ、前記半導体基板の内部に含まれる金属不純物を前記回収液中へ溶解させ、その後前記疎水性部材を取り外し、前記半導体基板および前記疎水性部材の少なくとも一方の表面に残留する前記回収液を分析することを特徴とする半導体基板の分析方法。 (2) A hydrophobic member is disposed on the surface of the semiconductor substrate via a gap, a recovery liquid is supplied to the gap, and the recovery liquid is sandwiched between the semiconductor substrate and the hydrophobic member. Widely contact the semiconductor substrate, dissolve metal impurities contained in the semiconductor substrate into the recovery solution, then remove the hydrophobic member and remain on at least one surface of the semiconductor substrate and the hydrophobic member A method for analyzing a semiconductor substrate, comprising: analyzing the recovered liquid.

(3)前記半導体基板、前記回収液および前記疎水性部材のうちの少なくとも1つを加熱することにより前記半導体基板を加熱することを特徴とする上記(1)または(2)に記載の半導体基板の分析方法。 (3) The semiconductor substrate according to (1) or (2), wherein the semiconductor substrate is heated by heating at least one of the semiconductor substrate, the recovery liquid, and the hydrophobic member. Analysis method.

(4)前記疎水性部材はフッ素樹脂またはフッ素樹脂をコーティングした部材であることを特徴とする上記(1)〜(3)のいずれかに記載の半導体基板の分析方法。 (4) The method for analyzing a semiconductor substrate according to any one of (1) to (3), wherein the hydrophobic member is a fluororesin or a member coated with a fluororesin.

(5)前記回収液は硫酸あるいはシアノイオンを含有することを特徴とする上記(1)〜(4)のいずれかに記載の半導体基板の分析方法。 (5) The method for analyzing a semiconductor substrate as described in any one of (1) to (4) above, wherein the recovered liquid contains sulfuric acid or cyano ions.

(6)半導体基板の表面に回収液を供給する供給手段と、
該回収液の表面に配置され、前記半導体基板との間に前記回収液を挟持する疎水性部材と、
前記回収液を分析する分析手段と、
を具えることを特徴とする半導体基板の分析装置。
(6) supply means for supplying the recovered liquid to the surface of the semiconductor substrate;
A hydrophobic member disposed on the surface of the recovered liquid and sandwiching the recovered liquid with the semiconductor substrate;
Analyzing means for analyzing the recovered liquid;
An apparatus for analyzing a semiconductor substrate, comprising:

(7)前記半導体基板、前記回収液および前記疎水性部材のうちの少なくとも1つを加熱することにより前記半導体基板を加熱するための加熱手段をさらに具えることを特徴とする上記(6)に記載の半導体基板の分析装置。 (7) The above (6), further comprising heating means for heating the semiconductor substrate by heating at least one of the semiconductor substrate, the recovered liquid, and the hydrophobic member. The analysis apparatus of the semiconductor substrate as described.

本発明は、内部に金属不純物が含まれる半導体基板と疎水性部材との間に回収液を挟むことによって、この金属不純物の除去および分析を低コストかつ容易に実現できる半導体基板の分析方法および分析装置を提供することができる。   The present invention provides an analysis method and analysis of a semiconductor substrate that can easily remove and analyze the metal impurity at low cost by sandwiching a recovery liquid between the semiconductor substrate containing the metal impurity and a hydrophobic member. An apparatus can be provided.

本発明の半導体基板の分析装置の一部構成図である。It is a partial block diagram of the semiconductor substrate analyzer of the present invention.

図1は、本発明の半導体基板の分析装置の一部構成図である。
内部に金属不純物(例えば銅)を含む半導体基板1の表面に回収液、例えば濃硫酸2を供給し、濃硫酸2の上に疎水性部材3を載せ、疎水性部材3と半導体基板1とにより濃硫酸2を挟み、半導体基板1の表面に濃硫酸2を密着させて配置する。すると、半導体基板1の内部に含まれる金属不純物が濃硫酸2中へ溶解され、半導体基板1から除去される。そして、疎水性部材3を取り除き、半導体基板1および疎水性部材3の少なくとも一方の表面に残留する、溶解した金属不純物を含む濃硫酸を回収し分析する。
ここで、半導体基板1をホットプレート4に載せて、半導体基板1を加熱すると、金属不純物が半導体基板1中で拡散しやすくなり、濃硫酸2中への溶解が促進されるので好ましい。この加熱温度は、100〜290℃程度の範囲が好ましい。なぜなら、加熱温度が100℃未満であると、金属の拡散が十分に促進されず、一方、290℃超であると、硫酸の沸点を超えるためである。
FIG. 1 is a partial configuration diagram of a semiconductor substrate analyzer according to the present invention.
A recovered liquid, for example, concentrated sulfuric acid 2 is supplied to the surface of the semiconductor substrate 1 containing metal impurities (for example, copper) inside, and the hydrophobic member 3 is placed on the concentrated sulfuric acid 2. Concentrated sulfuric acid 2 is sandwiched and concentrated sulfuric acid 2 is placed in close contact with the surface of the semiconductor substrate 1. Then, the metal impurities contained in the semiconductor substrate 1 are dissolved in the concentrated sulfuric acid 2 and removed from the semiconductor substrate 1. Then, the hydrophobic member 3 is removed, and concentrated sulfuric acid containing dissolved metal impurities remaining on at least one surface of the semiconductor substrate 1 and the hydrophobic member 3 is collected and analyzed.
Here, it is preferable to place the semiconductor substrate 1 on the hot plate 4 and heat the semiconductor substrate 1 because the metal impurities are easily diffused in the semiconductor substrate 1 and the dissolution in the concentrated sulfuric acid 2 is promoted. The heating temperature is preferably in the range of about 100 to 290 ° C. This is because if the heating temperature is less than 100 ° C., the metal diffusion is not sufficiently promoted, whereas if it exceeds 290 ° C., the boiling point of sulfuric acid is exceeded.

半導体基板1の内部の金属不純物は、加熱に伴う拡散現象により、半導体基板1の内部を移動する。濃硫酸2を半導体基板1の表面に接触させると、金属の析出反応を促進することができる。さらに、析出した金属不純物を濃硫酸2中へ溶解させることで、金属不純物を除去することができる。   Metal impurities inside the semiconductor substrate 1 move inside the semiconductor substrate 1 due to a diffusion phenomenon accompanying heating. When concentrated sulfuric acid 2 is brought into contact with the surface of the semiconductor substrate 1, the metal precipitation reaction can be promoted. Furthermore, the metal impurities can be removed by dissolving the precipitated metal impurities in the concentrated sulfuric acid 2.

半導体基板1の表面に濃硫酸2を滴下した場合、高濃度の酸は粘性が高いため、そのままでは半導体基板1の表面上に広がらない。それゆえ、濃硫酸2の上に疎水性部材3を載せ、疎水性部材3を半導体基板1に対して押し当て、濃硫酸2と半導体基板1の表面とを広い範囲で密着させ、疎水性部材3と半導体基板1とにより濃硫酸2を挟んだ状態にする。このとき、半導体基板1の表面は親水性であるので、半導体基板1と疎水性部材3との間隙の毛細管現象を利用して、微量の濃硫酸2を半導体基板1の表面に広く行き渡らせることができる。   When concentrated sulfuric acid 2 is dropped on the surface of the semiconductor substrate 1, the high-concentration acid has a high viscosity and does not spread on the surface of the semiconductor substrate 1 as it is. Therefore, the hydrophobic member 3 is placed on the concentrated sulfuric acid 2, the hydrophobic member 3 is pressed against the semiconductor substrate 1, and the concentrated sulfuric acid 2 and the surface of the semiconductor substrate 1 are brought into close contact with each other over a wide range. The concentrated sulfuric acid 2 is sandwiched between the semiconductor substrate 3 and the semiconductor substrate 1. At this time, since the surface of the semiconductor substrate 1 is hydrophilic, a small amount of concentrated sulfuric acid 2 is widely spread over the surface of the semiconductor substrate 1 by utilizing the capillary phenomenon in the gap between the semiconductor substrate 1 and the hydrophobic member 3. Can do.

ここで、濃硫酸2を半導体基板1とで挟む部材として、疎水性部材3を用いることが肝要である。なぜなら、疎水性部材3の代わりに従来のように親水性部材を用いた場合には、親水性部材が濃硫酸を強く吸着するため、金属不純物を濃硫酸に溶解させた後、このままの状態でこの親水性部材を濃硫酸から引き剥がすことができない。親水性部材を濃硫酸から引き剥がすためには、アンモニア蒸気により濃硫酸を中和し、HF蒸気により半導体基板表面の酸化膜等を気相分解するという追加の工程が必要になる。
そこで、本発明者らは、疎水性部材3を用いることにより、疎水性の反発力を利用して、追加の工程を必要とすることなく、疎水性部材3を濃硫酸2から容易に引き剥がすことができることに想到した。
なお、部材表面に液体を滴下したとき、液体と部材表面とのなす角である接触角θに関して、親水性部材では0°≦θ<90°となり、液体は部材表面に広がる。一方、疎水性部材では、90°≦θとなり、液体は部材表面に広がらない。
疎水性の反発力に関して、極性が主な原因として考えられている。例えば、水分子では酸素原子がマイナス,水素原子がプラスの電荷を帯びており、分子全体では分極している。この分極している物質は極性物質と呼ばれ、極性物質同士はなじみ易いので、極性物質は親水性になる。一方、分極していない非極性物質は、極性物質となじみ難いので、疎水性になる。
また、疎水性部材3はフッ素樹脂またはフッ素樹脂をコーティングした部材、シリコーン樹脂であることが好ましい。
Here, it is important to use the hydrophobic member 3 as a member for sandwiching the concentrated sulfuric acid 2 with the semiconductor substrate 1. This is because when a hydrophilic member is used instead of the hydrophobic member 3 as in the prior art, the hydrophilic member strongly adsorbs concentrated sulfuric acid. Therefore, after the metal impurities are dissolved in concentrated sulfuric acid, This hydrophilic member cannot be peeled off from concentrated sulfuric acid. In order to peel off the hydrophilic member from the concentrated sulfuric acid, an additional step of neutralizing the concentrated sulfuric acid with ammonia vapor and vapor-phase decomposition of the oxide film on the surface of the semiconductor substrate with HF vapor is required.
Therefore, the present inventors use the hydrophobic member 3 to easily peel off the hydrophobic member 3 from the concentrated sulfuric acid 2 without using an additional step by utilizing the hydrophobic repulsive force. I came up with the idea that I could do it.
When the liquid is dropped on the member surface, the contact angle θ, which is the angle formed between the liquid and the member surface, is 0 ° ≦ θ <90 ° for the hydrophilic member, and the liquid spreads on the member surface. On the other hand, in the hydrophobic member, 90 ° ≦ θ, and the liquid does not spread on the member surface.
Polarity is considered the main cause for hydrophobic repulsion. For example, water molecules are negatively charged with oxygen atoms and positively charged with hydrogen atoms, and the entire molecule is polarized. This polarized substance is called a polar substance, and polar substances are easily compatible with each other, so that the polar substance becomes hydrophilic. On the other hand, nonpolarized nonpolar substances are not compatible with polar substances and are therefore hydrophobic.
Further, the hydrophobic member 3 is preferably a fluororesin, a member coated with a fluororesin, or a silicone resin.

疎水性部材3の大きさは、測定したい領域の大きさに応じて適宜変更可能である。例えば、半導体基板1の全部を測定対象とする場合には、図1に示すように半導体基板1と同じ、あるいはそれ以上の大きさの疎水性部材3を用いることが好ましい。また、半導体基板1の一部の領域を測定対象とする場合(中心部や端に局所的な金属汚染があることが想定される場合)には、その領域だけに濃硫酸2が広がるように、その領域と同じ大きさの疎水性部材3を用いることが好ましい。   The size of the hydrophobic member 3 can be appropriately changed according to the size of the region to be measured. For example, when the entire semiconductor substrate 1 is to be measured, it is preferable to use a hydrophobic member 3 having the same size as or larger than that of the semiconductor substrate 1 as shown in FIG. Further, when a partial region of the semiconductor substrate 1 is a measurement target (when it is assumed that there is local metal contamination at the center or end), the concentrated sulfuric acid 2 is spread only in that region. The hydrophobic member 3 having the same size as that region is preferably used.

本発明の方法には微量の濃硫酸2(例えば、直径200mmの半導体基板全面に対して0.1mmの厚みとするために約3ml)しか必要ないので、消耗品となる回収液のランニングコストを抑えることができる。
また、回収液として濃硫酸を例に説明してきたが、濃硫酸に限定されることはなく、任意の酸性溶液あるいはシアノイオンを含有する溶液を用いることもできる。
Since the method of the present invention requires only a small amount of concentrated sulfuric acid 2 (for example, about 3 ml in order to obtain a thickness of 0.1 mm with respect to the entire surface of a semiconductor substrate having a diameter of 200 mm), the running cost of the recovered liquid that becomes a consumable is reduced. Can be suppressed.
Further, although concentrated sulfuric acid has been described as an example of the recovered liquid, it is not limited to concentrated sulfuric acid, and any acidic solution or a solution containing cyano ions can also be used.

回収液2の供給方法としては、半導体基板1の表面の中央部分に回収液2を滴下してもよいし、塗布してもよい。あるいは、疎水性部材3の表面に回収液2を滴下した後、その上から半導体基板1を貼り付けてもよい。
また、半導体基板1と疎水性部材3との間に所定の隙間を設け、この隙間に回収液2を供給して、半導体基板1と疎水性部材3とにより回収液2を挟んでもよい。この場合、半導体基板1と疎水性部材3の外側から回収液2を供給することもできるし、疎水性部材3に穴を開けてその穴から回収液2を供給することもできる。
さらにまた、半導体基板1の表裏の両方に疎水性部材3を配置し、両側に設けた隙間に回収液2を供給し、半導体基板1の表裏の両側から不純物を回収液中に析出させることもできる。
As a method for supplying the recovery liquid 2, the recovery liquid 2 may be dropped or applied to the central portion of the surface of the semiconductor substrate 1. Or after dripping the collection | recovery liquid 2 on the surface of the hydrophobic member 3, you may affix the semiconductor substrate 1 from it.
Alternatively, a predetermined gap may be provided between the semiconductor substrate 1 and the hydrophobic member 3, the recovery liquid 2 may be supplied to the gap, and the recovery liquid 2 may be sandwiched between the semiconductor substrate 1 and the hydrophobic member 3. In this case, the recovery liquid 2 can be supplied from the outside of the semiconductor substrate 1 and the hydrophobic member 3, or the recovery liquid 2 can be supplied from the hole formed in the hydrophobic member 3.
Furthermore, the hydrophobic member 3 may be disposed on both the front and back sides of the semiconductor substrate 1, the recovery liquid 2 may be supplied to the gap provided on both sides, and impurities may be precipitated in the recovery liquid from both front and back sides of the semiconductor substrate 1. it can.

半導体基板1とは、パターン付基板およびパターンなし基板(ベアウェーハ)のいずれでもよく、それらを研削や化学機械研磨により薄厚化した基板でもよい。ただし、パターン付基板の場合、パターンのない裏面に回収液を供給し、当該裏面から金属不純物を回収液中に溶解させる必要がある。   The semiconductor substrate 1 may be either a substrate with a pattern or a substrate without a pattern (bare wafer), or a substrate obtained by thinning them by grinding or chemical mechanical polishing. However, in the case of a substrate with a pattern, it is necessary to supply the recovery liquid to the back surface without the pattern and dissolve metal impurities in the recovery liquid from the back surface.

半導体基板1を加熱する方法は、図1の例に限定されることはなく、疎水性部材3を加熱する、半導体基板1と疎水性部材3との間の回収液2を電磁波によって加熱する、あるいは、加熱した回収液2を供給すること等によって、結果的に半導体基板1を加熱することもできる。   The method for heating the semiconductor substrate 1 is not limited to the example of FIG. 1, the hydrophobic member 3 is heated, the recovered liquid 2 between the semiconductor substrate 1 and the hydrophobic member 3 is heated by electromagnetic waves, Alternatively, the semiconductor substrate 1 can be heated as a result by supplying a heated recovery liquid 2 or the like.

また、回収液の金属不純物濃度は、例えば、フレームレス原子吸光光度計や誘導結合プラズマ質量分析計(ICP−MS)を用いて分析することができる。   The metal impurity concentration of the recovered liquid can be analyzed using, for example, a flameless atomic absorption photometer or an inductively coupled plasma mass spectrometer (ICP-MS).

以下、本発明の実施例について説明する。
図1に示した構成図のように、発明例1のp型半導体基板(直径200mm、銅表面濃度換算値:1.33-1.44×1011atoms/cm2)および、発明例2の銅が低濃度のp型半導体基板(直径200mm、銅表面濃度換算値:0.995-1.08×1011atoms/cm2)を用意した。表面濃度換算とは、p型半導体基板内部の不純物が全て表面へ析出した場合の表面濃度である。次に、各p型半導体基板の表面に98%硫酸を400μl滴下し、その上にフッ素樹脂板を載せ、98%硫酸とp型半導体基板表面とを広い範囲で密着するように載置した。ここで、約500gのフッ素樹脂板の自重を利用して、98%硫酸をp型半導体基板表面に密着させている。次に、ホットプレート上でこのp型半導体基板を200℃、2時間加熱した。加熱により、p型半導体基板の内部の陽イオン化した金属不純物の拡散および98%硫酸中への溶出が促進された。
ここで、溶出した金属不純物量を以下の方法で測定した。各p型半導体基板を1時間以上放置して室温まで冷却した後、フッ素樹脂板を取り除いた。フッ素樹脂板は疎水性であるので、98%硫酸から容易に引き剥がすことができた。次に、滴下した98%硫酸400μlのうち200μl分を回収し、0.5%まで希釈した。希釈した回収液を誘導結合プラズマ質量分析計(ICP−MS)で分析した。
表1に各p型半導体基板内部から98%硫酸中に取り込まれた銅の測定結果を示す。回収前の銅の表面濃度の換算値と回収液の測定値が略等しいので、半導体基板内部に含まれていた銅は全て98%硫酸中に溶解したと考えられる。また低濃度の銅を含有する半導体基板(発明例2)に対しても、同様の結果が得られた。
以上の通り、金属不純物が溶解した硫酸から疎水性部材を容易に引き剥がすことができることが確認できた。よって、本発明によって、半導体基板内部に含まれる金属不純物汚染を低コストかつ容易に分析可能であることが分かる。
Examples of the present invention will be described below.
As shown in the configuration diagram of FIG. 1, the p-type semiconductor substrate of the invention example 1 (diameter 200 mm, copper surface concentration conversion value: 1.33-1.44 × 1011 atoms / cm 2) and the copper of the invention example 2 of p-type with a low concentration A semiconductor substrate (diameter 200 mm, copper surface concentration conversion value: 0.995-1.08 × 10 11 atoms / cm 2) was prepared. The surface concentration conversion is the surface concentration when impurities inside the p-type semiconductor substrate are all deposited on the surface. Next, 400 μl of 98% sulfuric acid was dropped on the surface of each p-type semiconductor substrate, a fluororesin plate was placed thereon, and the 98% sulfuric acid and the p-type semiconductor substrate surface were placed in close contact with each other over a wide range. Here, 98% sulfuric acid is brought into close contact with the surface of the p-type semiconductor substrate by utilizing the own weight of about 500 g of the fluororesin plate. Next, this p-type semiconductor substrate was heated at 200 ° C. for 2 hours on a hot plate. Heating promoted diffusion of cationized metal impurities inside the p-type semiconductor substrate and elution into 98% sulfuric acid.
Here, the amount of eluted metal impurities was measured by the following method. Each p-type semiconductor substrate was allowed to stand for 1 hour or longer and cooled to room temperature, and then the fluororesin plate was removed. Since the fluororesin plate was hydrophobic, it could be easily peeled from 98% sulfuric acid. Next, 200 μl of the dripped 98% sulfuric acid of 400 μl was recovered and diluted to 0.5%. The diluted recovered solution was analyzed with an inductively coupled plasma mass spectrometer (ICP-MS).
Table 1 shows the measurement results of copper taken into 98% sulfuric acid from the inside of each p-type semiconductor substrate. Since the converted value of the copper surface concentration before recovery and the measured value of the recovery liquid are substantially equal, it is considered that all the copper contained in the semiconductor substrate was dissolved in 98% sulfuric acid. Similar results were obtained for a semiconductor substrate containing a low concentration of copper (Invention Example 2).
As described above, it was confirmed that the hydrophobic member can be easily peeled off from the sulfuric acid in which the metal impurities are dissolved. Therefore, according to the present invention, it can be seen that the metal impurity contamination contained in the semiconductor substrate can be easily analyzed at low cost.

Figure 2011082338
Figure 2011082338

1 半導体基板
2 濃硫酸
3 疎水性部材
4 ホットプレート
1 Semiconductor substrate 2 Concentrated sulfuric acid 3 Hydrophobic member 4 Hot plate

Claims (7)

半導体基板の表面に回収液を供給し、該回収液を半導体基板との間に挟むように疎水性部材を配置し、該回収液を前記半導体基板に広く接触させ、前記半導体基板の内部に含まれる金属不純物を前記回収液中へ溶解させた後、前記疎水性部材を取り外し、前記半導体基板および前記疎水性部材の少なくとも一方の表面に残留する前記回収液を分析することを特徴とする半導体基板の分析方法。   A recovery liquid is supplied to the surface of the semiconductor substrate, a hydrophobic member is arranged so that the recovery liquid is sandwiched between the semiconductor substrate, the recovery liquid is brought into wide contact with the semiconductor substrate, and contained in the semiconductor substrate The semiconductor substrate is characterized in that after the metal impurities to be dissolved are dissolved in the recovery liquid, the hydrophobic member is removed, and the recovery liquid remaining on at least one surface of the semiconductor substrate and the hydrophobic member is analyzed Analysis method. 半導体基板の表面に隙間を介して疎水性部材を配置し、前記隙間に回収液を供給し、前記半導体基板と前記疎水性部材とで前記回収液を挟むことによって、該回収液を前記半導体基板に広く接触させ、前記半導体基板の内部に含まれる金属不純物を前記回収液中へ溶解させ、その後前記疎水性部材を取り外し、前記半導体基板および前記疎水性部材の少なくとも一方の表面に残留する前記回収液を分析することを特徴とする半導体基板の分析方法。   A hydrophobic member is disposed on the surface of the semiconductor substrate via a gap, a recovery liquid is supplied to the gap, and the recovery liquid is sandwiched between the semiconductor substrate and the hydrophobic member, whereby the recovery liquid is supplied to the semiconductor substrate. The metal impurities contained in the semiconductor substrate are dissolved in the recovery liquid, and then the hydrophobic member is removed, and the recovery remaining on at least one surface of the semiconductor substrate and the hydrophobic member A method for analyzing a semiconductor substrate, comprising analyzing a liquid. 前記半導体基板、前記回収液および前記疎水性部材のうちの少なくとも1つを加熱することにより前記半導体基板を加熱することを特徴とする請求項1または2に記載の半導体基板の分析方法。   The semiconductor substrate analysis method according to claim 1, wherein the semiconductor substrate is heated by heating at least one of the semiconductor substrate, the recovery liquid, and the hydrophobic member. 前記疎水性部材はフッ素樹脂またはフッ素樹脂をコーティングした部材であることを特徴とする請求項1〜3のいずれかに記載の半導体基板の分析方法。   The method for analyzing a semiconductor substrate according to claim 1, wherein the hydrophobic member is a fluororesin or a member coated with a fluororesin. 前記回収液は硫酸あるいはシアノイオンを含有することを特徴とする請求項1〜4のいずれかに記載の半導体基板の分析方法。   The method for analyzing a semiconductor substrate according to claim 1, wherein the recovered liquid contains sulfuric acid or cyano ions. 半導体基板の表面に回収液を供給する供給手段と、
該回収液の表面に配置され、前記半導体基板との間に前記回収液を挟持する疎水性部材と、
前記回収液を分析する分析手段と、
を具えることを特徴とする半導体基板の分析装置。
Supply means for supplying the recovered liquid to the surface of the semiconductor substrate;
A hydrophobic member disposed on the surface of the recovered liquid and sandwiching the recovered liquid with the semiconductor substrate;
Analyzing means for analyzing the recovered liquid;
An apparatus for analyzing a semiconductor substrate, comprising:
前記半導体基板、前記回収液および前記疎水性部材のうちの少なくとも1つを加熱することにより前記半導体基板を加熱するための加熱手段をさらに具えることを特徴とする請求項6に記載の半導体基板の分析装置。   The semiconductor substrate according to claim 6, further comprising a heating unit configured to heat the semiconductor substrate by heating at least one of the semiconductor substrate, the recovery liquid, and the hydrophobic member. Analysis equipment.
JP2009233345A 2009-10-07 2009-10-07 Analyzing method and analyzing device for semiconductor substrate Pending JP2011082338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233345A JP2011082338A (en) 2009-10-07 2009-10-07 Analyzing method and analyzing device for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233345A JP2011082338A (en) 2009-10-07 2009-10-07 Analyzing method and analyzing device for semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2011082338A true JP2011082338A (en) 2011-04-21

Family

ID=44076087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233345A Pending JP2011082338A (en) 2009-10-07 2009-10-07 Analyzing method and analyzing device for semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2011082338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination
CN113484403A (en) * 2021-08-06 2021-10-08 上海富乐德智能科技发展有限公司 Method for testing trace element pollution on surface of gas dispersion component for semiconductor manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114618A (en) * 1997-06-20 1999-01-22 Showa Denko Kk Analytical equipment and analytical method of impurities of semiconductor wafer
JP2001208743A (en) * 2000-01-26 2001-08-03 Shin Etsu Handotai Co Ltd Method for evaluating concentration of metal impurity in silicon wafer
JP2001242050A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Pretreatment device for analyzing surface impurity of plate specimen and pretreatment method for analyzing surface impurity of plate specimen using the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114618A (en) * 1997-06-20 1999-01-22 Showa Denko Kk Analytical equipment and analytical method of impurities of semiconductor wafer
JP2001208743A (en) * 2000-01-26 2001-08-03 Shin Etsu Handotai Co Ltd Method for evaluating concentration of metal impurity in silicon wafer
JP2001242050A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Pretreatment device for analyzing surface impurity of plate specimen and pretreatment method for analyzing surface impurity of plate specimen using the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination
CN113484403A (en) * 2021-08-06 2021-10-08 上海富乐德智能科技发展有限公司 Method for testing trace element pollution on surface of gas dispersion component for semiconductor manufacturing

Similar Documents

Publication Publication Date Title
TWI351708B (en)
JP5148889B2 (en) Cleaning method and electronic device manufacturing method
JP6118031B2 (en) Impurity analysis apparatus and method
KR100749144B1 (en) Method for evaluating concentration of metallic impurities in silicon wafer
Yang et al. Study of Cu film surface treatment using formic acid vapor/solution for low temperature bonding
JP2011082338A (en) Analyzing method and analyzing device for semiconductor substrate
WO2016039032A1 (en) Silicon substrate analysis method
JP5413342B2 (en) Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP2008020339A (en) Analyzing method for polishing slurry of silicone wafer
JP2016119332A (en) Manufacturing method of recovery instrument, recovery method of metal impurity, and analysis method of metal impurity
JP2010046617A (en) Washing process of component made of fluororesin
JP2011025302A (en) Plasma substrate surface treatment joining method and device therefor
JP5399308B2 (en) Pretreatment liquid for electroless plating on semiconductor wafer, electroless plating method, and semiconductor device
JP2011100978A (en) Method and device for cleaning semiconductor substrate
CN111868888B (en) Etching method, metal contamination evaluation method and manufacturing method for boron-doped p-type silicon wafer
TWI241401B (en) A method of assaying elements in a substrate for optics, electronics, or optoelectronics
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2010212451A (en) Method for evaluating metal contamination on surface layer of semiconductor substrate
JP5407609B2 (en) Silicon wafer evaluation method
JPH02271253A (en) Surface analysis of silicon semiconductor substrate
Madani et al. SiC cleaning method by use of dilute HCN aqueous solutions
Ogawa et al. Pt Etching Method at Low Temperature Using Electrolyzed Sulfuric Acid Solution
CN101882599A (en) Method for forming metal line of semiconductor device
RU2359357C1 (en) Methods for treatment of plate surface prior to application of polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A131 Notification of reasons for refusal

Effective date: 20131119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A977 Report on retrieval

Effective date: 20131211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20140116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20140318

Free format text: JAPANESE INTERMEDIATE CODE: A02