JPH02271253A - Surface analysis of silicon semiconductor substrate - Google Patents

Surface analysis of silicon semiconductor substrate

Info

Publication number
JPH02271253A
JPH02271253A JP9197189A JP9197189A JPH02271253A JP H02271253 A JPH02271253 A JP H02271253A JP 9197189 A JP9197189 A JP 9197189A JP 9197189 A JP9197189 A JP 9197189A JP H02271253 A JPH02271253 A JP H02271253A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
silicon semiconductor
acid
oxide film
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9197189A
Other languages
Japanese (ja)
Inventor
Yasuko Tanizoe
谷添 泰子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP9197189A priority Critical patent/JPH02271253A/en
Publication of JPH02271253A publication Critical patent/JPH02271253A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze a very small amount of the impurity adhered to the surface of a silicon semiconductor substrate by dissolving the same by decomposing the natural oxide film of the silicon semiconductor substrate not by a liquid but by the vapor of volatile substance. CONSTITUTION:At first, the vapor of volatile substance is applied to the surface of a silicon semiconductor substrate for a definite time. As a result, the natural oxide film present on the surface of the substrate is reacted with the volatile substance to be decomposed. Next, a definite amount of purified nitric acid and other acid is applied to the surface to be measured of the silicon semiconductor substrate to dissolve the same so as to etch the surface of the substrate to collect a reaction product and this metal element-containing solution is recovered by a micropipette and used as a sample to be measured by a flameless atomic absorption analyzer. Therefore, the impurity to be detected is adhered to the surface of the silicon semiconductor substrate until collected by purified nitric acid and other acid and no positional variation is generated. Since the impurity is collected by a purified acid, it is unnecessary to fear contamination from chemicals.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、シリコン半導体基板の表面分析方法に関す
るもので、特にシリコン半導体基板の表面に存する超微
量不純物分析用試料(以下、単に「試料」と称する。)
の採取段階にその特徴を有するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for analyzing the surface of a silicon semiconductor substrate, and particularly relates to a method for analyzing the surface of a silicon semiconductor substrate, and particularly to a method for analyzing the surface of a silicon semiconductor substrate (hereinafter simply referred to as a "sample"). ).
It has its characteristics at the stage of collection.

(従来の技術) 素子製造工程では、その表面に付着する汚染物を除去す
べく、シリコン半導体基板の洗浄が行なわれる。この洗
浄後、清浄度評価をするため各種表面分析が行なわれる
。そして、この表面分析における適正な分析値把握は、
超LSI素子の性能及び歩留りを高める上で必須不可欠
なものであるが、従来の表面分析による分析値は、シリ
コン半導体基板表面の適切な清浄度を表わすものでなく
、超LSI素子に適用し難い数値であり、評価上清浄度
の高いシリコン半導体基板の中にも、電気特性の劣るも
のがしばしば存在していた。その理由は、次記するよう
に、分析試料の採取段階でシリコン半導体基板以外の物
質から試料が汚染されるためである。
(Prior Art) In an element manufacturing process, a silicon semiconductor substrate is cleaned to remove contaminants adhering to its surface. After this cleaning, various surface analyzes are performed to evaluate cleanliness. In order to properly understand the analytical value in this surface analysis,
Although it is indispensable to improve the performance and yield of VLSI devices, the analytical values obtained from conventional surface analysis do not represent the appropriate cleanliness of the silicon semiconductor substrate surface and are difficult to apply to VLSI devices. Even among silicon semiconductor substrates that are evaluated to be highly clean, there are often those with poor electrical properties. The reason for this is that, as described below, the sample is contaminated by substances other than the silicon semiconductor substrate at the stage of collecting the analysis sample.

従来から基板表面の不純物を測定する手段として、低温
蒸留法で精製した弗化水素酸及び硝酸を混合した溶液を
シリコン半導体基板に噴霧し、滴下した溶液を測定する
方法がある。しかしながら低温蒸留法で薬品を精製して
も、すでに0.1ppb以上の不純物(Na、 Kなど
)を含んでいるため、直接混合溶液を噴霧すると、薬品
からの汚染を防止できない。また、反応した溶液は、別
容器に滴下するが、この別容器から汚染することもあり
、極微量の基板表面汚染物を検出するには、多くの問題
点がある。
Conventionally, as a means of measuring impurities on a substrate surface, there is a method of spraying a solution of a mixture of hydrofluoric acid and nitric acid purified by low-temperature distillation onto a silicon semiconductor substrate, and measuring the dripped solution. However, even if the chemicals are purified by low-temperature distillation, they already contain 0.1 ppb or more of impurities (Na, K, etc.), so direct spraying of the mixed solution will not prevent contamination from the chemicals. Further, the reacted solution is dropped into a separate container, but this separate container may be contaminated, and there are many problems in detecting minute amounts of substrate surface contaminants.

そこで、例えば特開昭61−221649号に見る如く
、半導体薄膜の超高純度分析において、密閉容器中に分
析試料と弗化水素酸とを置き、加熱手段にて蒸発する弗
化水素蒸気でSiO□やSi3N。
For example, as seen in JP-A No. 61-221649, in ultra-high purity analysis of semiconductor thin films, an analysis sample and hydrofluoric acid are placed in a closed container, and hydrogen fluoride vapor evaporated by heating means is used to oxidize SiO2. □ and Si3N.

を溶解し、その溶液をフレームレス原子吸光分析装置で
分析することが行なわれている。この方法は薬品中の不
純物や溶液採取時の汚染を抑制するのに適している。
The solution is analyzed using a flameless atomic absorption spectrometer. This method is suitable for suppressing impurities in chemicals and contamination during solution collection.

(発明が解決しようとする問題点) しかしながら、この方法は、シリコン半導体基板の表面
汚染物の分析に限定した場合に下記する問題点がある。
(Problems to be Solved by the Invention) However, this method has the following problems when limited to analysis of surface contaminants on silicon semiconductor substrates.

すなわち、上記方法は、金属シリコンが弗化水素酸で溶
解できないという理由により、予め酸化炉でSiO3膜
を基板表面に成長させる工程を必要とする。しかし、熱
酸化の段階で新たに汚染物を付けないという保証はなく
、同一洗浄を行なったシリコン基板を異なる炉で酸化し
た場合に、分析結果が異なることがある。つまり、この
場合も、装置からの汚染その他の要因で酸化の段階にお
いて汚染される可能性がある。更に、反応生成物を溶解
し、回収する段階においても問題が存する。つまり、反
応生成物中の元素か溶解液よりもシリコンに親しむ場合
、例えばCuはH2OよりもSiに親しむ元素であり、
このような元素にあっては溶解液に回収されずシリコン
半導体基板に逆吸着してしまう。従って、より正確な分
析値を得るためには、溶解回収液の選定も適性に行わな
ければならない。
That is, the above method requires a step of growing an SiO3 film on the substrate surface in advance in an oxidation furnace because metallic silicon cannot be dissolved with hydrofluoric acid. However, there is no guarantee that new contaminants will not be added during the thermal oxidation stage, and the analysis results may differ if silicon substrates that have undergone the same cleaning are oxidized in different furnaces. In other words, in this case as well, there is a possibility of contamination during the oxidation stage due to contamination from the equipment or other factors. Furthermore, problems exist in the steps of dissolving and recovering the reaction products. That is, if an element in the reaction product is more friendly to silicon than the solution, for example, Cu is an element that is more friendly to Si than H2O,
Such elements are not recovered by the solution but instead are reversely adsorbed onto the silicon semiconductor substrate. Therefore, in order to obtain more accurate analytical values, it is necessary to appropriately select the solution for dissolution and recovery.

(問題点を解決するだめの手段) この発明は、かかる従来技術の問題点を解決するため、
熱酸化膜を付けることなく、シリコン半導体基板の表面
に付着した極微量の不純物を溶解し、分析する方法を提
案することを目的としてなされたもので、下記技術手段
を採用する。
(Means for Solving the Problems) In order to solve the problems of the prior art, the present invention
The purpose of this study was to propose a method for dissolving and analyzing extremely small amounts of impurities attached to the surface of a silicon semiconductor substrate without applying a thermal oxide film, and the following technical means were adopted.

すなわち本発明方法は、シリコン半導体基板の自然酸化
膜を、液体ではなく揮発性物質の蒸気、例えば弗化水素
酸と硝酸の混合蒸気によって分解し、分解されたシリコ
ン半導体基板上に存する反応生成物を、精製した硝酸そ
の他の酸で溶解して回収し、この回収物を試料として元
素分析することをその内容とする。
That is, the method of the present invention decomposes the natural oxide film of a silicon semiconductor substrate using a vapor of a volatile substance, such as a mixed vapor of hydrofluoric acid and nitric acid, instead of a liquid, and removes reaction products existing on the decomposed silicon semiconductor substrate. The purpose of this method is to dissolve and recover the substances using purified nitric acid or other acids, and to conduct elemental analysis of the recovered substances as samples.

ここで「自然酸化膜」とは、酸化炉において形成された
人為的な酸化膜でなく、シリコン半導体基板の表面に自
然に形成される薄い酸化膜を指称する。
Here, the term "natural oxide film" refers to a thin oxide film that is naturally formed on the surface of a silicon semiconductor substrate, rather than an artificial oxide film formed in an oxidation furnace.

なお、精製した硝酸その他の酸で溶解し、回収して分析
する段階については、従来の湿式分析法と全く同様であ
る。つまり、試料をフレームレス原子吸光分析装置にか
けて行なうものであり、精製した酸は薬品中の不純物を
抑制できるという長所を有する(特開昭60−6953
1号)。そして、酸を使用するのは、酸がシリコン半導
体基板の表面をエツチングしながらシリコン半導体基板
表面に付着している金属を溶解回収するのに適している
ためである。
Note that the steps of dissolving with purified nitric acid or other acid, recovering, and analyzing are exactly the same as in the conventional wet analysis method. In other words, the sample is subjected to a flameless atomic absorption spectrometer, and purified acid has the advantage of suppressing impurities in chemicals (Japanese Patent Laid-Open No. 60-6953).
No. 1). The reason why acid is used is that acid is suitable for etching the surface of the silicon semiconductor substrate and dissolving and recovering metal attached to the surface of the silicon semiconductor substrate.

(作 用) 本発明では、まず、揮発性物質の蒸気を一定時間シリコ
ン半導体基板の表面に当てる。この結果シリコン半導体
基板の表面に存する自然酸化膜が揮発性物質と反応し、
分解される。もつとも、上記分解反応状態は目視で確認
できる状態でなく、また、分解液も生していない。ただ
単にシリコン半導体基板の表面に、目視で確認できない
自然酸化膜の分解反応生成物か存する状態となっている
のである。
(Function) In the present invention, first, vapor of a volatile substance is applied to the surface of a silicon semiconductor substrate for a certain period of time. As a result, the natural oxide film existing on the surface of the silicon semiconductor substrate reacts with volatile substances,
Decomposed. However, the state of the decomposition reaction described above cannot be visually confirmed, and no decomposition liquid is produced. This simply means that there are decomposition reaction products of the natural oxide film on the surface of the silicon semiconductor substrate that cannot be visually confirmed.

次に、シリコン半導体基板の測定対象面に一定量の精製
した硝酸その他の酸を加えて、シリコン半導体基板表面
をエツチングする如く溶解させて反応物を集め、該金属
元素含有溶液(酸)をマイクロとベットで回収し、これ
を試料として、フレームレス原子吸光分析装置て測定す
る。
Next, a certain amount of purified nitric acid or other acid is added to the surface of the silicon semiconductor substrate to be measured, and the surface of the silicon semiconductor substrate is dissolved in an etching manner to collect the reactants. This is collected in a bed and measured using a flameless atomic absorption spectrometer as a sample.

従って、検出対象たる不純物は、精製した硝酸その他の
酸で集められる迄の間は、シリコン半導体基板の表面に
付着しており、他の不純物を混入させる要因となる位置
変動を生じない。また、不純物は精製した酸で集められ
るのて、従来生じていた薬品からの汚染を憂慮する必要
もない。
Therefore, until the impurity to be detected is collected with purified nitric acid or other acid, it remains attached to the surface of the silicon semiconductor substrate, and no positional fluctuation occurs that may cause the contamination of other impurities. Additionally, since impurities are collected with purified acid, there is no need to worry about contamination from chemicals, which was the case in the past.

なお、上記した本発明の実施に際し、自然酸化膜の分解
反応を密閉容器内で行なえば、分解反応速度が早くなり
、反応時の環境からの汚染を少なくすることができる。
In carrying out the present invention described above, if the decomposition reaction of the natural oxide film is carried out in a closed container, the decomposition reaction rate will be increased and contamination from the environment during the reaction can be reduced.

勿論、シリコン半導体基板の測定対象面に接触物を存在
させないことも、試料の汚染防止上重要なことである。
Of course, it is also important to avoid contact with the surface of the silicon semiconductor substrate to be measured in order to prevent contamination of the sample.

また、自然酸化膜の分解反応後、測定対象面以外の表面
を真空チャックしてシリコン半導体基板を取り出し、精
製した硝酸その他の酸を添加すれば、より簡単に一層正
確な試料が得られることになる。
In addition, after the decomposition reaction of the natural oxide film, vacuum-chuck the surface other than the surface to be measured, remove the silicon semiconductor substrate, and add purified nitric acid or other acid to obtain a more accurate sample more easily. Become.

(実施例) 以下に本発明の一実施例を図面に基づき説明する。(Example) An embodiment of the present invention will be described below based on the drawings.

第1図は、本発明の実施に用いる装置例の樅断面を示し
ており、図中、11は分解容器、12は取手13を有す
る蓋体、14は半導体ウェーハ、14aは半導体ウェー
ハの表面に施されたSin2層である。分解容器11内
の中央部には、複数の保持台15が積み重ねて配設され
、分解容器11内の保持台15の周囲には、弗化水素酸
溶液と硝酸溶液との混合溶液16を入れた蒸発用容器1
7が配設されている。
FIG. 1 shows a cross section of an example of an apparatus used for carrying out the present invention. In the figure, 11 is a decomposition container, 12 is a lid body having a handle 13, 14 is a semiconductor wafer, and 14a is a surface of the semiconductor wafer. It is a Sin2 layer applied. A plurality of holding stands 15 are arranged in a stacked manner in the center of the decomposition vessel 11, and a mixed solution 16 of a hydrofluoric acid solution and a nitric acid solution is placed around the holding stands 15 inside the decomposition vessel 11. Evaporation container 1
7 are arranged.

上記保持台15は、第1図に示すように、上部が開口し
その底面には半導体ウェーハ14を水平に支持する支持
部15aが突設されている。また、保持台15には、他
の保持台15上に積み重ねるための複数の脚部15bを
有し、これらの脚部15b間が、図中矢印で示すように
、蒸発した弗化水素と硝酸の混合蒸気を通すように開口
された構造となっている。なお、上記各容器11,17
は、本実施例では全てテフロンにより形成されている。
As shown in FIG. 1, the holding table 15 has an open top and a support portion 15a protruding from the bottom that supports the semiconductor wafer 14 horizontally. In addition, the holding table 15 has a plurality of legs 15b for stacking on other holding tables 15, and between these leg parts 15b, as shown by arrows in the figure, evaporated hydrogen fluoride and nitric acid It has an open structure that allows the mixed vapor to pass through. In addition, each of the above containers 11, 17
are all made of Teflon in this embodiment.

このような表面分解装置により分解液を得るには、まず
、各保持台15の支持部15aに、分解すべきSin、
薄膜を上側にして半導体ウェーハ14をセットし、次に
、各保持台15を分解容器11内中央部に積み重ねて配
設し、蓋体12により分解容器11を密閉し、その後、
常温で所定時間放置する。
In order to obtain a decomposition liquid using such a surface decomposition device, first, Sin to be decomposed,
The semiconductor wafer 14 is set with the thin film facing upward, and then each holding table 15 is stacked and arranged in the center of the decomposition container 11, and the decomposition container 11 is sealed with the lid body 12, and then,
Leave it at room temperature for the specified time.

密閉された上記分解容器11内では、弗化水素酸と硝酸
との混合溶液16から蒸発した混合蒸気が、矢印で示す
ように、積み重ねられた最上部の保持台15ではその開
口を通じ、また他の保持台15では脚部15b、15b
間を通じて、各保持台15内の半導体ウェーハ14上面
に至り、半導体ウェーハ14の表裏面が混合蒸気により
分解される。半導体ウェーハ14の表面において、分解
されたシリコン半導体基板上に存する反応生成物を、精
製した硝酸その他の酸で溶解して回収し、この回収物を
試料として元素分析するものである。すなわち、精製し
た硝酸その他の酸で溶解された溶解液は、各半導体ウェ
ーハ14の上面上で、液滴18となって集合する。そし
て、蓋体12を取外した後、集合した各液滴18をマイ
クロとベットでそれぞれ回収することにより、各半導体
ウェーハ14の試料を得ることができる。実施例では、
この場合、上部の保持台15を順次取りはずすことによ
り、遂次下方の保持台15上の半導体ウェーハ14の試
料を得ることができる。なお各試料は、例えばフレーム
レス原子吸光分析装置により不純物の分析測定を行なう
In the hermetically sealed decomposition vessel 11, the mixed vapor evaporated from the mixed solution 16 of hydrofluoric acid and nitric acid flows through the opening in the holding table 15 at the top of the stack, as shown by the arrow, and to other parts. In the holding stand 15, the legs 15b, 15b
Through the process, the top surface of the semiconductor wafer 14 in each holding table 15 is reached, and the front and back surfaces of the semiconductor wafer 14 are decomposed by the mixed vapor. Reaction products existing on the decomposed silicon semiconductor substrate on the surface of the semiconductor wafer 14 are recovered by dissolving them with purified nitric acid or other acids, and this recovered material is used as a sample for elemental analysis. That is, the solution dissolved with purified nitric acid or other acid collects as droplets 18 on the upper surface of each semiconductor wafer 14. After removing the lid 12, each collected droplet 18 is collected using a micro and a bed, thereby obtaining a sample of each semiconductor wafer 14. In the example,
In this case, by sequentially removing the upper holding table 15, samples of the semiconductor wafers 14 on the lower holding table 15 can be sequentially obtained. Each sample is analyzed for impurities using, for example, a flameless atomic absorption spectrometer.

このように、本実施例においては、半導体ウェーハの表
面の情報のみの分解液を得ることができるので、分解液
中に従来の如き両面の情報が入ることがなく、不純物量
分析のための最適な試料を得ることが可能となる。また
、分解液がマイクロピペットにより直接採取されるので
、従来生じていた受容器自体からの汚染も除去できる。
In this way, in this example, it is possible to obtain a decomposition solution containing only information on the surface of the semiconductor wafer, so information on both sides is not included in the decomposition solution as in the conventional method, and it is optimal for impurity amount analysis. This makes it possible to obtain a sample that is accurate. Furthermore, since the decomposition solution is directly collected with a micropipette, contamination from the receptor itself, which conventionally occurs, can be removed.

以下に、フレームレス原子吸光分析装置で元素分析を行
なった具体例につき説明する。なお、フレームレス原子
吸光分析装置の条件は、乾燥:  150’Cで30秒
、 灰化:Naの場合1000℃で5秒、 原子化:Naの場合2200°Cで4秒である。
A specific example in which elemental analysis was performed using a frameless atomic absorption spectrometer will be described below. The conditions of the flameless atomic absorption spectrometer are: drying: 150'C for 30 seconds, ashing: 1000°C for 5 seconds in the case of Na, and atomization: 2200°C for 4 seconds in the case of Na.

[第1実施例コ 自然酸化膜の厚さが数10人で径が4インチであるシリ
コン半導体基板を1600cm”の密閉容器に入れ、こ
れに、温度30度の条件下、15z弗化水素酸100m
文、70%硝酸100m文の混合蒸気を120分間当て
て上記自然酸化膜を分解反応させ、その後、50〜10
0ILfLの精製した硝酸(比抵抗17Ωcm以上)を
滴下して試料を得て、フレームレス原子吸光分析装置で
元素分析を行なった結果、下記の分析値を得た。
[First Example] A silicon semiconductor substrate with a natural oxide film of several tens of thickness and a diameter of 4 inches was placed in a 1,600 cm airtight container, and was heated with 15Z hydrofluoric acid at a temperature of 30 degrees Celsius. 100m
The above natural oxide film was decomposed and reacted by applying a mixed vapor of 70% nitric acid and 100ml of 70% nitric acid for 120 minutes.
A sample was obtained by dropping 0 ILfL of purified nitric acid (specific resistance of 17 Ωcm or more), and elemental analysis was performed using a flameless atomic absorption spectrometer, and the following analytical values were obtained.

N a :6.OX 10’ atoms/cm2Cu
 :8.OX 10109ato/cm2F e :3
.5X 10109ato/cm”[第2実施例コ この例は、従来法を実施したもので、熱処理を施した後
の酸化膜の厚さが750人で、径が4インチであるシリ
コン半導体基板を1600cm’の密閉容器に入れ、こ
れに、温度30度の条件下、15%弗化水素酸100n
+fLの蒸気を120分間当てて上記酸化膜を分解反応
させ、これにより生じた分解液を純水で集め、これを試
料として、フレームレス原子吸光分析装置で元素分析を
行なった結果、下記の分析値を得た。
Na: 6. OX 10' atoms/cm2Cu
:8. OX 10109ato/cm2F e:3
.. 5X 10109ato/cm'' [Second Example] In this example, a conventional method was implemented, and a silicon semiconductor substrate with an oxide film thickness of 750 mm after heat treatment and a diameter of 4 inches was heated to 1600 cm. 100n of 15% hydrofluoric acid at a temperature of 30 degrees.
+fL steam was applied for 120 minutes to decompose the oxide film, and the resulting decomposed liquid was collected with pure water, and this was used as a sample for elemental analysis using a flameless atomic absorption spectrometer. As a result, the following analysis was obtained. Got the value.

N a :9.OX 10109ato/cm2Cu 
:  (2,OX 10’atoms/cm”F e 
:4.OX 10109ato/cm2このように、第
1実施例と、第2実施例とでは、Na、Cu、Feの値
が異なる点を明瞭に峻別することができた。ここで、C
uについての分析値が大きく異っているが、これはH2
Oと酸に対するCuの親密性の差に甚くもの、及びH2
Oが単に溶解して集めるのみであるのに対し、酸がシリ
コン半導体基板をエツチングしつつ表面に付着した金属
を集めるものであるという差に起因すると考えられる。
Na:9. OX 10109ato/cm2Cu
: (2,OX 10'atoms/cm"F e
:4. OX 10109ato/cm2 In this way, it was possible to clearly distinguish between the first example and the second example in terms of the differences in the values of Na, Cu, and Fe. Here, C
The analysis values for u are significantly different, but this is due to H2
There is a huge difference in the affinity of Cu to O and acid, and H2
This is thought to be due to the difference that O merely dissolves and collects, whereas acid collects metal attached to the surface while etching the silicon semiconductor substrate.

なお、同一洗浄を行なったにもかかわらず、熱酸化した
方が分析値が高い。このことは、酸化のときに何等かの
汚染があったために分析値が高くなったものと思料され
る。
Note that even though the same cleaning was performed, the analytical value was higher after thermal oxidation. This is thought to be due to the high analytical value due to some kind of contamination during oxidation.

(発明の効果) 以上説明したように、本発明は、シリコン基板表面に熱
処理をして5in2膜を付ける必要がなく、もともと付
いている自然酸化膜を利用して分析を行なうので、処理
時の炉等からの汚染の要因がなくなるものである。しか
も、薬品を直接シリコン基板に噴霧して分解するのでは
なく、揮発性物質の蒸気で分解させるので、薬品からの
汚染を低減化でき、さらに、全ての反応から回収に到る
まで、測定しようとするシリコン基板表面上で行ない、
別の容器に移すことがないので、容器からの汚染を低減
化でき、回収に際して使用されている溶解液が精製され
た酸であるため、回収がシリコン半導体基板表面をエツ
チングする如く行われ、表面に付着している金属を漏れ
なく集めることができ、この結果、測定しようとするシ
リコン基板をそのままの状態で汚染なく不純物の元素分
析を正確に行うことができ、これによりシリコン半導体
基板の清浄度管理を向上できる。
(Effects of the Invention) As explained above, the present invention does not require heat treatment to attach a 5in2 film to the silicon substrate surface, and analyzes are performed using the naturally attached oxide film. This eliminates the source of contamination from furnaces, etc. Furthermore, since the chemical is not directly sprayed onto the silicon substrate to decompose it, but it is decomposed using the vapor of a volatile substance, contamination from the chemical can be reduced, and furthermore, it is possible to measure every reaction from reaction to recovery. carried out on the surface of a silicon substrate,
Since there is no need to transfer to another container, contamination from the container can be reduced, and since the solution used for recovery is purified acid, recovery is performed as if etching the surface of the silicon semiconductor substrate. As a result, it is possible to accurately perform elemental analysis of impurities without contaminating the silicon substrate to be measured, which improves the cleanliness of the silicon semiconductor substrate. Improve management.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に用いる表面分解装誼の概略縦
断面図である。 11・・・容器      14・・・保持台15・・
・半導体ウェーハ 16・・・弗化水素酸と硝酸の混合溶液特許出願人 九
州電子金属株式会社 特許出願人 大阪チタニウム製造株式会社代 理 人 
 弁理士  森     正  澄第1図 11・・・容器 14・・・保持台 15・・・半導体ウェーハ 16・・・q見合溶液 手続補正書(自発) 平成2年5月25日 特許庁長官  吉 1)文 毅 殿   1、。 υ゛− 1事件の表示 平成01年特許願 第091971号 2 発明の名称 シリコン半導体基板の表面分析方法 3 補正をする者 事件との関係  特許出願人 4代理人〒164電話(03) 373−9510住 
所  東京都中野区本町2丁目9番10号7 補正の内
容 (1)明細書第4頁第6行ないし同第8行の「B応生成
物中の元素が溶解液よりもシリコンに親しむ場合4例え
ばCuはH,OよりもStに親しも元素であり、」を次
のように訂正する。 「反応生成物中の元素が溶解液に溶解しにくし場合、例
えばSt上のCuはH2Oで溶解しにくい。j (2)明細書第11頁第3行ないし同第4行σ「(比抵
抗17Ωcm以上)」を削除する。 (3)明細書第11頁第11行ないし同第191′の「
この例は、・・・分析値を得た。」を次のように訂正す
る。 「自然酸化膜の厚さが数10人で径が4インチ7あるシ
リコン半導体基板を1600cm3の密閉容器番コ入れ
、これに、温度30度の条件下、15%弗化水舅酸10
0m文、70%硝酸100m文の混合蒸気を120分1
当てて上記自然酸化膜を分解反応させ、その後、50〜
1.00PMの精製した純水(比抵抗17Ωcm力上)
を滴下して試料を得て、フレームレス原子ツ光分析装置
で元素分析を行なった結果、下記の分と  新値な得た
。J (4)明細書第12頁第11行ないし同第14行?  
 の「なお、同一洗浄を・・・ものと思料される。」を
削除する。 テ 〈 ■ λ 耐
FIG. 1 is a schematic longitudinal cross-sectional view of a surface disassembly device used for carrying out the present invention. 11... Container 14... Holding stand 15...
・Semiconductor wafer 16...Mixed solution of hydrofluoric acid and nitric acid Patent applicant Kyushu Electronic Metals Co., Ltd. Patent applicant Osaka Titanium Manufacturing Co., Ltd. Agent
Patent Attorney Masa Sumi Mori Figure 1 11... Container 14... Holding stand 15... Semiconductor wafer 16... q Procedural amendment for matching solutions (voluntary) May 25, 1990 Commissioner of the Japan Patent Office Yoshi 1 ) Moon Yi 1. υ゛- 1 Display of the case 1999 Patent Application No. 091971 2 Name of the invention Method for analyzing the surface of a silicon semiconductor substrate 3 Person making the amendment Relationship to the case Patent applicant 4 attorney 164 Telephone (03) 373-9510 residence
Address: 2-9-10-7, Honmachi, Nakano-ku, Tokyo Contents of the amendment (1) In the specification, page 4, lines 6 to 8, “When the elements in the reaction product B are more familiar with silicon than with the solution.” 4.For example, Cu is an element that is more closely related to St than H and O,'' is corrected as follows. ``If the elements in the reaction product are difficult to dissolve in the solution, for example, Cu on St is difficult to dissolve in H2O. (resistance 17 Ωcm or more)" is deleted. (3) From page 11, line 11 to 191' of the specification, "
In this example...the analysis value was obtained. ” should be corrected as follows. ``Put a silicon semiconductor substrate with a natural oxide film of several tens of thickness and a diameter of 4 inches into a 1600 cm3 airtight container, and place it in 15% fluoride water,
Mixed steam of 0m and 70% nitric acid 100m for 120 minutes.
The natural oxide film is subjected to a decomposition reaction, and then 50~
1.00PM purified water (specific resistance 17Ωcm force)
A sample was obtained by dropping it, and elemental analysis was performed using a flameless atomic spectrometer. As a result, the following new values were obtained. J (4) Page 12, line 11 to line 14 of the specification?
``In addition, it is considered that the same cleaning...'' will be deleted. Te〈 ■ λ resistance

Claims (1)

【特許請求の範囲】[Claims]  シリコン半導体基板の自然酸化膜を揮発性物質の蒸気
によって分解し、分解されたシリコン半導体基板上に存
する反応生成物を、精製した硝酸その他の酸で溶解して
回収し、この回収物を試料として元素分析することを特
徴とするシリコン半導体基板の表面分析方法。
The natural oxide film on the silicon semiconductor substrate is decomposed by vapor of a volatile substance, and the reaction products present on the decomposed silicon semiconductor substrate are dissolved and recovered with purified nitric acid or other acids, and this recovered material is used as a sample. A method for analyzing the surface of a silicon semiconductor substrate, characterized by elemental analysis.
JP9197189A 1989-04-13 1989-04-13 Surface analysis of silicon semiconductor substrate Pending JPH02271253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9197189A JPH02271253A (en) 1989-04-13 1989-04-13 Surface analysis of silicon semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9197189A JPH02271253A (en) 1989-04-13 1989-04-13 Surface analysis of silicon semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02271253A true JPH02271253A (en) 1990-11-06

Family

ID=14041420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9197189A Pending JPH02271253A (en) 1989-04-13 1989-04-13 Surface analysis of silicon semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02271253A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286956A (en) * 1991-03-15 1992-10-12 Nec Corp Chemical analysis method and pre-treatment device used for it
JP2001194362A (en) * 2000-01-11 2001-07-19 Fuji Film Microdevices Co Ltd Method and apparatus for extracting impurities in semi conductor substrate
JP2009294091A (en) * 2008-06-05 2009-12-17 Sumco Corp Analyzing method of contaminant in silicon wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286956A (en) * 1991-03-15 1992-10-12 Nec Corp Chemical analysis method and pre-treatment device used for it
JP2001194362A (en) * 2000-01-11 2001-07-19 Fuji Film Microdevices Co Ltd Method and apparatus for extracting impurities in semi conductor substrate
JP4514267B2 (en) * 2000-01-11 2010-07-28 富士フイルム株式会社 Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JP2009294091A (en) * 2008-06-05 2009-12-17 Sumco Corp Analyzing method of contaminant in silicon wafer

Similar Documents

Publication Publication Date Title
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
JPH02271253A (en) Surface analysis of silicon semiconductor substrate
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP4078980B2 (en) Method for analyzing metal impurities on silicon substrate surface
JPH0198944A (en) Surface analysis of silicon semiconductor substrate
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP2973638B2 (en) Impurity analysis method
JP6687518B2 (en) Analytical sample collection method and its use
JPH02272359A (en) Method for measuring quantity of impurity on wafer surface
JPH01189558A (en) Analyzing method of surface of si semiconductor substrate
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP2000332072A (en) Surface analysis method of semiconductor substrate
JP3477216B2 (en) Etching method for ultra-trace metal analysis on silicon wafer surface
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP2011082338A (en) Analyzing method and analyzing device for semiconductor substrate
JP2000292326A (en) Method for manufacturing analyzing sample for metal impurity contained in synthetic resin, and measuring method of metal impurity using it
JPH01189559A (en) Analyzing method of surface of si semiconductor substrate
JP3243302B2 (en) Wafer analysis instrument
JPH0539532A (en) Method for recovering cu on semiconductor wafer surface
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP2772035B2 (en) Method for measuring the amount of impurities on the wafer surface