JP2016119332A - Manufacturing method of recovery instrument, recovery method of metal impurity, and analysis method of metal impurity - Google Patents

Manufacturing method of recovery instrument, recovery method of metal impurity, and analysis method of metal impurity Download PDF

Info

Publication number
JP2016119332A
JP2016119332A JP2014256457A JP2014256457A JP2016119332A JP 2016119332 A JP2016119332 A JP 2016119332A JP 2014256457 A JP2014256457 A JP 2014256457A JP 2014256457 A JP2014256457 A JP 2014256457A JP 2016119332 A JP2016119332 A JP 2016119332A
Authority
JP
Japan
Prior art keywords
recovery
metal impurities
liquid
semiconductor substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014256457A
Other languages
Japanese (ja)
Other versions
JP6354563B2 (en
Inventor
健司 荒木
Kenji Araki
健司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014256457A priority Critical patent/JP6354563B2/en
Publication of JP2016119332A publication Critical patent/JP2016119332A/en
Application granted granted Critical
Publication of JP6354563B2 publication Critical patent/JP6354563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a manufacturing method of a recovery instrument capable of accurately recovering and analyzing metal impurities present on the surface of a substrate; a recovery method of metal impurities; and an analysis method of metal impurities.SOLUTION: A recovery instrument 1 is formed of a fluorine resin, and has: a support tray 2 having a flat support surface 21; and a ring member 3 which is placed on the support tray 2 and acts as a recovery instrument. An inner surface of an opening 34 of the ring member 3 is subjected to surface melting processing at 340-380°C and surface polishing processing so that the surface roughness becomes 200 nm or less. When metal impurities are recovered, a semiconductor substrate W is mounted on the support tray 2, the ring member 3 is placed on the semiconductor substrate W, and the outer periphery of the semiconductor substrate W is sandwiched between the support tray 2 and the ring member 3. Then, a recovery liquid is injected into the opening 34, and the metal impurities present on the surface of the semiconductor substrate W are eluted in the recovery liquid. Then, the recovery liquid is taken out from the opening 34, and the metal impurities in the recovery liquid are measured by ICP-MS or the like.SELECTED DRAWING: Figure 1

Description

本発明は、半導体基板の表面に存在する金属不純物を回収するための回収器具の製造方法、半導体基板の表面に存在する金属不純物の回収方法及び分析方法に関する。   The present invention relates to a method for manufacturing a recovery tool for recovering metal impurities present on the surface of a semiconductor substrate, a method for recovering metal impurities present on the surface of a semiconductor substrate, and an analysis method.

半導体基板の表面に存在する金属不純物は、半導体デバイス特性や半導体デバイス製造歩留まりを低下させる原因のひとつとなっている。このため基板表面の金属不純物による汚染対策が重要となり、基板表面の金属不純物の高感度な分析技術が必要となる。   Metal impurities present on the surface of a semiconductor substrate are one of the causes of reducing semiconductor device characteristics and semiconductor device manufacturing yield. Therefore, it is important to take measures against contamination by metal impurities on the substrate surface, and a highly sensitive analysis technique for metal impurities on the substrate surface is required.

基板表面に存在する金属不純物の分析方法として、原子吸光分析法(AAS: Atomic Absorption Spectrometry)や、誘導結合プラズマ発光分光分析法(ICP-OES: Inductively Coupled Plasma Optical Emission Spectrometry)、誘導結合プラズマ質量分析法(ICP-MS: Inductively Coupled Plasma Mass Spectrometry)等が知られている。   Methods for analyzing metal impurities present on the substrate surface include atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES), and inductively coupled plasma mass spectrometry. The method (ICP-MS: Inductively Coupled Plasma Mass Spectrometry) is known.

また、これらの分析方法で金属不純物の分析を行うには、基板表面の金属不純物を回収する必要があり、その回収方法として従来様々な方法が提案されている。例えば、特許文献1には、フッ酸蒸気により基板表面の自然酸化膜を気相分解し、その後、金属不純物を回収するための薬液(回収液)を半導体基板の表面上で満遍なく走査することにより、金属不純物を薬液中に取り込む方法が記載されている。   In addition, in order to analyze metal impurities by these analysis methods, it is necessary to recover metal impurities on the surface of the substrate, and various methods have been proposed as recovery methods. For example, Patent Document 1 discloses that a natural oxide film on a substrate surface is vapor-phase decomposed with hydrofluoric acid vapor, and then a chemical solution (recovered solution) for recovering metal impurities is uniformly scanned on the surface of the semiconductor substrate. Describes a method for incorporating metal impurities into a chemical solution.

また、この他に、特許文献1には、(1)中央部が湾曲したくぼみを有する耐酸性容器を使用し、くぼみ部分に回収液を入れ、分析面を下に向けた基板を容器に置くことで、基板表面の金属不純物を回収液中に取り込む方法が開示されている。また、特許文献2には、(2)平坦な底面を有する支持容器に回収液を添加し、その上に分析対象基板を載せることで、金属不純物を回収液中に取り込む方法が開示されている。さらに、特許文献3、非特許文献1には、(3)分析対象基板の裏面側に配置される平坦な支持面と、分析対象基板の表面側に配置されるリング部材とで、分析対象基板を挟み込みように支持し、リング部材の開口部に回収液を注入することで、金属不純物を回収液中に取り込む方法が開示されている。   In addition to this, in Patent Document 1, (1) an acid-resistant container having a depression with a curved central part is used, a recovery solution is put into the depression, and a substrate with the analysis surface facing downward is placed in the container. Thus, a method is disclosed in which metal impurities on the substrate surface are taken into the recovery liquid. Patent Document 2 discloses (2) a method in which a recovery solution is added to a support container having a flat bottom surface, and a metal substrate is taken into the recovery solution by placing an analysis target substrate thereon. . Further, in Patent Document 3 and Non-Patent Document 1, (3) the analysis target substrate includes a flat support surface disposed on the back surface side of the analysis target substrate and a ring member disposed on the front surface side of the analysis target substrate. A method is disclosed in which the metal impurities are taken into the recovery liquid by supporting the metal so as to be sandwiched and injecting the recovery liquid into the opening of the ring member.

また、これら文献には、金属不純物の回収時に用いる治具、容器として、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂を用いることが記載されている。   In addition, these documents describe the use of a fluororesin such as PTFE (polytetrafluoroethylene) as a jig and container used when recovering metal impurities.

特開平10−64966号公報JP-A-10-64966 特開2013−115261号公報JP 2013-115261 A 特開2007−207783号公報JP 2007-207783 A 竹中みゆき、外4名、「加熱気化/誘導結合プラズマ質量分析法によるシリコンウェハー中の超微量クロム、鉄、ニッケル及び銅の深さ方向分布の測定」、分析化学、公益社団法人日本分析化学会、1994年、Vol.43、p173−176Miyuki Takenaka, 4 others, “Measurement of depth distribution of ultra-fine chromium, iron, nickel and copper in silicon wafers by thermal vaporization / inductively coupled plasma mass spectrometry”, Analytical Chemistry, Japan Analytical Chemistry Society 1994, Vol. 43, p173-176

上記(1)〜(3)の回収方法では、基板表面に存在する金属不純物の回収時に、回収器具(耐酸性容器、支持容器、リング部材)と回収液とが接触する。そのため、回収器具から回収液への金属不純物の溶出や、回収液から回収器具への金属不純物の吸着により、基板表面に存在する金属不純物の回収精度が低下し、その結果、基板表面に存在する金属不純物の分析精度が低下するという問題がある。   In the recovery methods (1) to (3) above, the recovery tool (acid-resistant container, support container, ring member) and the recovery liquid come into contact with each other during recovery of the metal impurities present on the substrate surface. For this reason, the elution of metal impurities from the recovery tool to the recovery liquid and the adsorption of metal impurities from the recovery liquid to the recovery tool reduce the accuracy of recovery of metal impurities present on the substrate surface. There is a problem that the analysis accuracy of metal impurities is lowered.

本発明は、上記問題に鑑みてなされたものであり、基板表面に存在する金属不純物を正確に回収、分析できる回収器具の製造方法、金属不純物の回収方法及び金属不純物の分析方法を提供することを課題とする。   The present invention has been made in view of the above problems, and provides a method for manufacturing a recovery tool, a method for recovering metal impurities, and a method for analyzing metal impurities that can accurately recover and analyze metal impurities present on the surface of a substrate. Is an issue.

本発明者は、検討の結果、回収液と接触する回収器具の部分(接液部)の表面状態及び表面加工粗さが重要であることを見出し、本発明を完成させた。   As a result of the study, the present inventor found that the surface condition and the surface processing roughness of the part of the collecting device (wetted part) in contact with the collected liquid are important, and completed the present invention.

すなわち、本発明は、半導体基板の表面に存在する金属不純物の回収時に用いられ、前記回収時に前記表面に供給された回収液が接触する接液部を有した回収器具の製造方法であって、
前記接液部を有した形状に成形された樹脂製の成形品を準備する準備工程と、
前記成形品における前記接液部の表面を溶融加工する溶融工程と、
前記溶融工程を実施した後に前記接液部の表面研磨を行う研磨工程と、
を含むことを特徴とする。
That is, the present invention is a method of manufacturing a recovery instrument that has a liquid contact portion that is used when recovering metal impurities present on the surface of a semiconductor substrate and that contacts the recovery liquid supplied to the surface during the recovery,
A preparation step of preparing a resin molded product molded into a shape having the liquid contact part;
A melting step of melting the surface of the wetted part in the molded product;
A polishing step of performing surface polishing of the wetted part after performing the melting step;
It is characterized by including.

本発明によれば、準備工程で、回収器具として必要な形状に成形された樹脂製の成形品を準備し、その準備した成形品における接液部に対して表面処理を行う。具体的には、先ず、溶融工程により、接液部の表面部分を溶融させるいわゆる溶融加工をするので、成形時に形成された接液部表面の微細な孔を消滅させることができる。次に、研磨工程により接液部の表面研磨を行うので、接液部の表面を平滑化できる。これにより、回収液と接触した場合の接液部からの金属不純物の溶出や、接液部への金属不純物の吸着を減少させることができ、基板表面に存在する金属不純物を正確に回収できる。   According to the present invention, in the preparation step, a resin molded product molded into a shape necessary as a collecting tool is prepared, and surface treatment is performed on the liquid contact portion in the prepared molded product. Specifically, first, so-called melting processing is performed to melt the surface portion of the wetted part in the melting step, so that the fine holes on the wetted part surface formed at the time of molding can be eliminated. Next, since the surface of the wetted part is polished by the polishing step, the surface of the wetted part can be smoothed. As a result, elution of metal impurities from the wetted part when in contact with the recovered liquid and adsorption of metal impurities to the wetted part can be reduced, and the metal impurities present on the substrate surface can be recovered accurately.

また、本発明において、前記回収器具は、前記回収時に前記半導体基板の表面側に配置されて、その配置の際に前記半導体基板の表面の特定部位を露出させる前記接液部としてのリング状の開口部を有し、前記開口部に前記回収液が注入されるとすることができる。これによって、開口部−回収液間の金属不純物の溶出及び吸着を減少させることができ、基板表面の特定部位に存在する金属不純物を正確に回収できる。   Further, in the present invention, the collection device is arranged on the surface side of the semiconductor substrate at the time of collection, and a ring-shaped as the liquid contact portion that exposes a specific part of the surface of the semiconductor substrate at the time of the collection. It has an opening, and the recovered liquid can be injected into the opening. As a result, the elution and adsorption of metal impurities between the opening and the recovery liquid can be reduced, and the metal impurities present at a specific site on the substrate surface can be accurately recovered.

また、本発明において、準備工程では、フッ素樹脂の成形品を準備するとするのが好ましい。このとき、フッ素樹脂の種類がポリテトラフルオロエチレンとすることができる。このように、ポリテトラフルオロエチレン等のフッ素樹脂で回収器具を製造することで、耐薬品性が高い回収器具を得ることができ、回収器具から回収液への汚染(クロスコンタミ)を抑えることができる。また、フッ素樹脂の成形は、例えば、原料を加圧焼成することにより得られた素材を、所望の形状に切削加工する工程を実施するが、この場合には、切削された箇所の表面には、加圧焼成品特有の微細な孔が存在するとともに、表面加工粗さが大きい。このような、フッ素樹脂の加圧焼成切削品を本発明に適用すると、特に効果的である。   Moreover, in this invention, it is preferable to prepare the molded article of a fluororesin in a preparation process. At this time, the kind of fluororesin can be polytetrafluoroethylene. In this way, by producing a collection device with a fluororesin such as polytetrafluoroethylene, it is possible to obtain a collection device with high chemical resistance and to suppress contamination (cross-contamination) from the collection device to the collected liquid. it can. In addition, the molding of the fluororesin is performed, for example, by performing a process of cutting a raw material obtained by pressure firing the raw material into a desired shape. In addition, there are fine pores peculiar to the press fired product, and the surface processing roughness is large. It is particularly effective when such a pressure-fired cut product of fluororesin is applied to the present invention.

また、フッ素樹脂を用いた場合、溶融工程では、340℃〜380℃で接液部の表面溶融加工を行うのが好ましい。フッ素樹脂の融点は327℃であり、340℃以下では、フッ素樹脂は溶融しないか、溶融したとしても粘性が高いので加工しにくいという問題がある。また、380℃以上では、溶融したフッ素樹脂中の空気が膨張(発砲)するため加工しにくいという問題がある。340℃〜380℃で接液部の表面溶融加工を行うことで、粘性を低くでき、かつフッ素樹脂中の空気の膨張を抑えることができ、その結果、接液部表面を容易に溶融加工できる。   Moreover, when a fluororesin is used, it is preferable to perform the surface melt processing of the wetted part at 340 ° C. to 380 ° C. in the melting step. The melting point of the fluororesin is 327 ° C., and if it is 340 ° C. or less, there is a problem that the fluororesin does not melt or is difficult to process because it has high viscosity even when melted. Further, at 380 ° C. or higher, there is a problem that processing in the molten fluororesin is difficult because it expands (fires). By performing surface melt processing of the wetted part at 340 ° C. to 380 ° C., the viscosity can be lowered and expansion of air in the fluororesin can be suppressed, and as a result, the wetted part surface can be easily melt processed. .

また、フッ素樹脂を用いた場合、研磨工程では、表面粗さRaが200nm以下となるように接液部の表面研磨を行うのが好ましい。これによって、後述の実施例で示すように、接液部−回収液間の金属不純物の溶出及び吸着を効果的に減少させることができる。   In the case where a fluororesin is used, it is preferable to perform surface polishing of the wetted part so that the surface roughness Ra is 200 nm or less in the polishing step. Thereby, as shown in the below-mentioned Example, the elution and adsorption | suction of the metal impurity between liquid contact part-recovery liquid can be reduced effectively.

本発明の金属不純物の回収方法は、本発明の製造方法により得られた回収器具を用いて、半導体基板の表面に回収液を供給することにより該表面に存在する金属不純物を回収することを特徴とする。   The method for recovering metal impurities of the present invention is characterized by recovering metal impurities present on the surface of the semiconductor substrate by supplying a recovery liquid to the surface of the semiconductor substrate using the recovery tool obtained by the manufacturing method of the present invention. And

このように、接液部の表面処理(溶融工程、研磨工程)が行われた回収器具を用いることで、回収液と接触した場合の接液部からの金属不純物の溶出や、接液部への金属不純物の吸着を減少させることができ、基板表面に存在する金属不純物を正確に回収できる。   In this way, by using a recovery tool that has been subjected to surface treatment (melting process, polishing process) of the wetted part, elution of metal impurities from the wetted part when in contact with the recovered liquid, or to the wetted part Therefore, the metal impurities present on the substrate surface can be accurately recovered.

また、本発明の回収方法において、前記回収器具は、前記半導体基板をその表面側に配置されて、その配置の際に前記半導体基板の表面の特定部位を露出させる前記接液部としてのリング状の開口部を有し、
前記回収器具と、前記半導体基板の裏面を支持する平坦な支持面を有した裏面側支持部材とにより、前記半導体基板を挟み込むように支持した状態で、前記開口部に前記回収液を注入する。
Further, in the recovery method of the present invention, the recovery tool is arranged in a ring shape as the liquid contact part in which the semiconductor substrate is disposed on the surface side and a specific part of the surface of the semiconductor substrate is exposed during the placement. With an opening of
The recovery solution is injected into the opening in a state where the semiconductor substrate is supported by the recovery tool and a back-side support member having a flat support surface that supports the back surface of the semiconductor substrate.

このように、回収時に、回収器具と裏面側支持部材とにより、半導体基板を挟み込むように支持することで、注入された回収液を開口部内に保持でき、基板表面の特定部位に存在する金属不純物を正確に回収できる。言い換えると、回収液が開口部外(基板表面の特定部位以外の部位や基板の裏面など)に回り込むことによるクロスコンタミの発生を抑制できる。   In this way, during collection, the collected recovery liquid and the back-side support member are supported so as to sandwich the semiconductor substrate, so that the injected collected liquid can be held in the opening, and the metal impurities present in a specific part of the substrate surface Can be collected accurately. In other words, it is possible to suppress the occurrence of cross-contamination due to the collected liquid flowing outside the opening (a part other than a specific part on the substrate surface, the back surface of the substrate, etc.)

また、本発明の回収方法において、半導体基板が炭化シリコン基板とすることができる。炭化シリコン基板の表面は親水性を有するため、疎水性の表面を有した半導体基板に比べて、基板表面に供給した回収液を薄く広がりやすくできる。つまり、少ない量の回収液でも、基板表面の各部に回収液をいきわたらせることができる。回収液を少なくすることで、接液部−回収液間の金属不純物の溶出及び吸着を抑制できる。   In the recovery method of the present invention, the semiconductor substrate can be a silicon carbide substrate. Since the surface of the silicon carbide substrate has hydrophilicity, the recovery liquid supplied to the surface of the substrate can be spread thinly and easily compared to a semiconductor substrate having a hydrophobic surface. That is, even with a small amount of collected liquid, the collected liquid can be distributed to each part of the substrate surface. By reducing the recovered liquid, elution and adsorption of metal impurities between the wetted part and the recovered liquid can be suppressed.

また、本発明の回収方法において、半導体基板がシリコン基板とすることができる。シリコン基板の表面は疎水性を有するため、親水性の表面を有した半導体基板に比べて、表面張力の影響で回収液は薄く広がらずに一部に集まり易くなってしまう。このため、基板表面を回収液で覆うには大量の回収液が必要となる。本発明では、大量の回収液と接触する接液部に対して上記表面処理を行った回収器具を用いるので、接液部−回収液間の金属不純物の溶出及び吸着を抑制できる。また、回収液を多く使った場合、接液部に回収液が残留し易く、金属不純物の回収率が悪化する原因となるが、本発明では、接液部に対して上記表面処理を行っているので、その回収率の悪化を抑えることができる。その結果、正確に金属不純物の分析を行うことができる。   In the recovery method of the present invention, the semiconductor substrate can be a silicon substrate. Since the surface of the silicon substrate has hydrophobicity, the recovered liquid does not spread thinly and easily gathers in part compared to a semiconductor substrate having a hydrophilic surface due to the influence of surface tension. For this reason, a large amount of recovery liquid is required to cover the substrate surface with the recovery liquid. In this invention, since the collection | recovery instrument which performed the said surface treatment with respect to the liquid contact part which contacts a large amount of collection liquids is used, the elution and adsorption | suction of the metal impurity between liquid contact parts-recovery liquid can be suppressed. In addition, when a large amount of the recovery liquid is used, the recovery liquid tends to remain in the wetted part, which causes a reduction in the recovery rate of metal impurities. In the present invention, the surface treatment is performed on the wetted part. Therefore, the deterioration of the recovery rate can be suppressed. As a result, the metal impurities can be accurately analyzed.

また、本発明の回収方法において、前記回収液は、フッ酸と過酸化水素水の混合水溶液、フッ酸と塩酸と過酸化水素水の混合水溶液又はフッ酸と硝酸と塩酸の混合水溶液である。回収液としてフッ酸と過酸化水素水の混合水溶液又はフッ酸と塩酸と過酸化水素水の混合水溶液を用いることで、基板表面に存在する金属不純物をその混合水溶液中に溶出(回収)できる。また、回収液としてフッ酸と硝酸と塩酸の混合水溶液を用いることで、基板表面だけでなく、表面近傍の基板内の金属不純物もその混合溶液中に溶出できる。   In the recovery method of the present invention, the recovery solution is a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide solution, a mixed aqueous solution of hydrofluoric acid, hydrochloric acid and hydrogen peroxide solution, or a mixed aqueous solution of hydrofluoric acid, nitric acid and hydrochloric acid. By using a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide solution or a mixed aqueous solution of hydrofluoric acid, hydrochloric acid and hydrogen peroxide solution as the recovery liquid, metal impurities present on the substrate surface can be eluted (recovered) into the mixed aqueous solution. Further, by using a mixed aqueous solution of hydrofluoric acid, nitric acid, and hydrochloric acid as the recovery liquid, not only the substrate surface but also metal impurities in the substrate near the surface can be eluted into the mixed solution.

本発明の金属不純物の分析方法は、本発明の金属不純物の回収方法を実施した後、前記回収液中の金属不純物量を測定することを特徴とする。これによれば、接液部−回収液間の金属不純物の溶出及び吸着を抑えた回収液中の金属不純物量を測定するので、基板表面に存在する金属不純物を正確に分析できる。   The metal impurity analysis method of the present invention is characterized in that after the metal impurity recovery method of the present invention is carried out, the amount of metal impurities in the recovered solution is measured. According to this, since the amount of metal impurities in the recovered liquid that suppresses the elution and adsorption of metal impurities between the wetted part and the recovered liquid is measured, it is possible to accurately analyze the metal impurities present on the substrate surface.

回収治具の側面断面図である。It is side surface sectional drawing of a collection | recovery jig. リング部材の製造手順を示したフローチャートである。It is the flowchart which showed the manufacturing procedure of the ring member. PTFEテストピースからの金属不純物溶出量の調査結果を示した図である。It is the figure which showed the investigation result of the metal impurity elution amount from a PTFE test piece. PTFEテストピース表面への金属不純物吸着量の調査結果を示した図である。It is the figure which showed the investigation result of the metal impurity adsorption amount to the PTFE test piece surface. 実施例におけるSiC基板表面の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the SiC substrate surface in an Example. 比較例におけるSiC基板表面の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the SiC substrate surface in a comparative example. 実施例におけるシリコン基板表面の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the silicon substrate surface in an Example. 実施例におけるシリコン基板表面近傍の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the silicon substrate surface vicinity in an Example. 比較例におけるシリコン基板表面の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the silicon substrate surface in a comparative example. 比較例におけるシリコン基板表面近傍の金属不純物測定結果を示した図である。It is the figure which showed the metal impurity measurement result of the silicon substrate surface vicinity in a comparative example. 比較例における回収治具の側面断面図である。It is side surface sectional drawing of the collection | recovery jig | tool in a comparative example.

以下、本発明の実施形態を図面を参照しながら説明する。本実施形態では、上記特許文献3、非特許文献1に記載の方法と同様の方法により、半導体基板の表面に存在する金属不純物を回収し、分析する場合に本発明を適用した例を説明する。図1は、本実施形態の回収治具1の側面断面図を示している。なお、図1には、回収治具1にセット(固定)された、金属不純物の分析対象となる半導体基板W(以下、分析対象基板という場合もある)も図示している。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, an example in which the present invention is applied to a case where metal impurities present on the surface of a semiconductor substrate are collected and analyzed by the same method as described in Patent Document 3 and Non-Patent Document 1 will be described. . FIG. 1 shows a side cross-sectional view of the recovery jig 1 of the present embodiment. FIG. 1 also illustrates a semiconductor substrate W (hereinafter also referred to as an analysis target substrate) that is set (fixed) on the recovery jig 1 and is an analysis target of metal impurities.

回収治具1は、特許文献3、非特許文献1に記載の回収治具と同様に構成されており、支持皿2と、リング部材3とを備えている。それら支持皿2、リング部材3は、PTFE(ポリテトラフルオロエチレン)により形成されている。支持皿2は、有底円筒状に形成されている。詳しくは、支持皿2は、上から見て円形、且つ有底の開口を有し、その開口は、分析対象基板Wの径と同じ、又はそれよりも大きい径に形成される。なお、図1では、開口は、分析対象基板Wの径と同じ径に形成されている。また、開口内の底面21は平坦な面に形成される。また、開口内の側面22には螺子部が形成されている。   The recovery jig 1 is configured similarly to the recovery jigs described in Patent Document 3 and Non-Patent Document 1, and includes a support tray 2 and a ring member 3. The support plate 2 and the ring member 3 are made of PTFE (polytetrafluoroethylene). The support tray 2 is formed in a bottomed cylindrical shape. Specifically, the support plate 2 has a circular and bottomed opening as viewed from above, and the opening is formed to have a diameter equal to or larger than the diameter of the analysis target substrate W. In FIG. 1, the opening is formed to have the same diameter as that of the analysis target substrate W. The bottom surface 21 in the opening is formed as a flat surface. Further, a screw portion is formed on the side surface 22 in the opening.

リング部材3はリング状(円筒状)に形成されている。詳しくは、リング部材3は、リング部材3の上面と下面の間を貫通した開口部34(図1の斜線ハッチングの部分)を有する。リング部材3を図1のように設置した時に、分析対象基板Wの表面のうち金属不純物の回収を行う特定部位が開口部34から露出されるように、開口部34の大きさ及び形成位置が定められる。図1では、分析対象基板Wの外周部を除く大部分(基板中心を中心とした、分析対象基板Wの径よりも若干小さい径の円内部分)を特定部位としている。   The ring member 3 is formed in a ring shape (cylindrical shape). Specifically, the ring member 3 has an opening 34 (a hatched portion in FIG. 1) penetrating between the upper surface and the lower surface of the ring member 3. When the ring member 3 is installed as shown in FIG. 1, the size and position of the opening 34 are set such that a specific part of the surface of the analysis target substrate W where metal impurities are collected is exposed from the opening 34. Determined. In FIG. 1, most of the analysis target substrate W excluding the outer peripheral portion (the inner portion of the circle having a diameter slightly smaller than the diameter of the analysis target substrate W centered on the substrate center) is set as the specific portion.

また、開口部34の内面は、後述の製造工程により、表面溶融加工及び表面研磨が施されている。その内面の表面粗さRa(算術平均粗さ)は200nm以下となっている。   Further, the inner surface of the opening 34 is subjected to surface melting processing and surface polishing by a manufacturing process described later. The inner surface has a surface roughness Ra (arithmetic mean roughness) of 200 nm or less.

また、リング部材3は、支持皿2の開口径と同じ外径に形成されて支持皿2の開口に挿入される挿入部31を有する。その挿入部31の外周面32には、支持皿2の開口に挿入された際に、支持皿2の螺子部22(開口の側面)とねじ結合する螺子部が形成されている。さらに、リング部材3は、挿入部31の上端に接続される形で挿入部31の径よりも大きい径の大径部33を有する。   The ring member 3 has an insertion portion 31 that is formed to have the same outer diameter as the opening diameter of the support tray 2 and is inserted into the opening of the support tray 2. The outer peripheral surface 32 of the insertion portion 31 is formed with a screw portion that is screw-coupled with the screw portion 22 (side surface of the opening) of the support plate 2 when inserted into the opening of the support plate 2. Further, the ring member 3 has a large-diameter portion 33 having a diameter larger than the diameter of the insertion portion 31 so as to be connected to the upper end of the insertion portion 31.

なお、リング部材3が本発明の回収器具に相当し、開口部34が接液部に相当し、支持皿2が裏面側支持部材に相当する。   In addition, the ring member 3 corresponds to the collection | recovery instrument of this invention, the opening part 34 corresponds to a liquid-contact part, and the support plate 2 corresponds to a back surface side support member.

リング部材3は、図2に示す手順にしたがって製造される。先ず、リング部材3として必要な形状(開口部34を有した形状)に成形されたPTFE製の成形品を準備する(S1)。具体的には、例えば、PTFEの原料を加圧焼成することで、図1の形状に機械加工しやすい形状を有したPTFE製の素材を形成し、その素材を図1に示す形状に切削加工(機械加工)する。得られた成形品(加圧焼成品)における開口部34の内面には、加圧焼成品特有の微細な孔が存在する。また、開口部34の内面は切削加工面とされるので、表面加工粗さが大きい。なお、S1の工程が本発明の準備工程に相当する。   The ring member 3 is manufactured according to the procedure shown in FIG. First, a PTFE molded product formed into a shape necessary for the ring member 3 (a shape having an opening 34) is prepared (S1). Specifically, for example, a PTFE raw material is pressure-fired to form a PTFE material having a shape that can be easily machined into the shape shown in FIG. 1, and the material is cut into the shape shown in FIG. (Machining). On the inner surface of the opening 34 in the obtained molded product (pressure-fired product), there are fine holes unique to the pressure-fired product. Further, since the inner surface of the opening 34 is a cutting surface, the surface processing roughness is large. In addition, the process of S1 corresponds to the preparation process of this invention.

次に、S1で得られた成形品の開口部34に対して、340℃〜380℃で表面溶融加工を行う(S2)。具体的には、開口部34の内面に、340℃〜380℃の熱を加え表面部分を溶融させる。熱を加える時間は例えば30分間以内とする。340℃〜380℃の熱を加えることで、内面を溶融でき、その溶融時の内面の粘性を適切にできるとともに、成形品中の空気の膨張を抑えることができる。また、溶融状態の内面に対して加工処理(平滑化)を行うことで、内面に存在していた微細な孔を消滅させることができるとともに、内面の表面粗さを小さくできる。なお、S2の工程が本発明の溶融工程に相当する。   Next, surface melting processing is performed at 340 ° C. to 380 ° C. for the opening 34 of the molded product obtained in S1 (S2). Specifically, heat of 340 ° C. to 380 ° C. is applied to the inner surface of the opening 34 to melt the surface portion. The time for applying heat is, for example, within 30 minutes. By applying heat at 340 ° C. to 380 ° C., the inner surface can be melted, the viscosity of the inner surface at the time of melting can be made appropriate, and the expansion of air in the molded product can be suppressed. Further, by performing processing (smoothing) on the inner surface in the molten state, fine holes existing on the inner surface can be eliminated, and the surface roughness of the inner surface can be reduced. Note that step S2 corresponds to the melting step of the present invention.

次に、S2の表面溶融加工を実施した後の開口部34に対して、表面粗さRa(算術平均粗さ)が200nm以下となるように表面研磨を行う(S3)。なお、S3の工程が本発明の研磨工程に相当する。以上の工程を経て、リング部材3が得られる。   Next, surface polishing is performed so that the surface roughness Ra (arithmetic average roughness) is 200 nm or less with respect to the opening 34 after the surface melting processing of S2 is performed (S3). Note that step S3 corresponds to the polishing step of the present invention. The ring member 3 is obtained through the above steps.

なお、支持皿2の製造方法については、支持皿2には回収液と接触する接液部が存在しないので、表面溶融加工及び表面研磨をしなくても良く、PTFEの素材(加圧焼成品)を切削加工することで、支持皿2が得られる。   As for the manufacturing method of the support dish 2, since there is no liquid contact part in contact with the recovered liquid in the support dish 2, there is no need for surface melting processing and surface polishing. ) Is obtained by cutting.

次に、回収治具1を用いて、分析対象基板Wの表面の金属不純物を回収及び分析する手順を説明する。先ず、支持皿2の底面21に分析対象基板Wを載置する。この分析対象基板Wの種類はどのようなものでも良いが、例えば、炭化シリコン(SiC)基板又はシリコン(Si)基板とすることができる。   Next, a procedure for collecting and analyzing metal impurities on the surface of the analysis target substrate W using the collection jig 1 will be described. First, the analysis target substrate W is placed on the bottom surface 21 of the support tray 2. Any type of analysis target substrate W may be used, and for example, a silicon carbide (SiC) substrate or a silicon (Si) substrate may be used.

分析対象基板Wを載置した後、次に、支持皿2の開口にリング部材3の挿入部31を挿入する。このとき、リング部材3(大径部33)を中心軸線まわりに回転させることで、挿入部31が支持皿2の開口に挿入されていき、その挿入に伴いリング部材3の螺子部32と支持皿2の螺子部22とがねじ結合される。挿入部31の下面35が分析対象基板Wの表面(外周部)に接触するまで、挿入部31を支持皿2の開口に挿入させる。これによって、分析対象基板Wの外周部が支持皿2とリング部材3とで挟み込まれる形で、分析対象基板Wは回収治具1に固定(支持)される。   After placing the analysis target substrate W, next, the insertion portion 31 of the ring member 3 is inserted into the opening of the support tray 2. At this time, by rotating the ring member 3 (large-diameter portion 33) around the central axis, the insertion portion 31 is inserted into the opening of the support tray 2, and along with the insertion, the screw portion 32 of the ring member 3 is supported. The screw portion 22 of the plate 2 is screwed. The insertion part 31 is inserted into the opening of the support plate 2 until the lower surface 35 of the insertion part 31 contacts the surface (outer peripheral part) of the analysis target substrate W. As a result, the analysis target substrate W is fixed (supported) to the recovery jig 1 such that the outer peripheral portion of the analysis target substrate W is sandwiched between the support tray 2 and the ring member 3.

その後、開口部34に、分析対象基板Wの表面に存在する金属不純物を溶出させる薬液(回収液)を注入する。この回収液としては、例えば、フッ酸と過酸化水素水の混合水溶液、フッ酸と塩酸と過酸化水素水の混合水溶液、又はフッ酸と硝酸と塩酸の混合水溶液が用いられる。いずれの混合水溶液を用いたとしても、基板表面の金属不純物を溶出させることができるが、フッ酸と硝酸と塩酸の混合水溶液を用いた場合には、基板表面だけでなく、表面近傍の基板内に存在する金属不純物も混合水溶液中に溶出させることができる。よって、基板表面の金属不純物のみを回収、分析したい場合には、フッ酸と過酸化水素水の混合水溶液又はフッ酸と塩酸と過酸化水素水の混合水溶液を用いるのが好ましい。また、基板表面及び表面近傍の基板内に存在する金属不純物を回収、分析したい場合には、フッ酸と硝酸と塩酸の混合水溶液を用いるのが好ましい。   Thereafter, a chemical solution (recovery solution) that elutes metal impurities present on the surface of the analysis target substrate W is injected into the opening 34. As this recovery liquid, for example, a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide, a mixed aqueous solution of hydrofluoric acid, hydrochloric acid and hydrogen peroxide, or a mixed aqueous solution of hydrofluoric acid, nitric acid and hydrochloric acid is used. Although any mixed aqueous solution is used, metal impurities on the substrate surface can be eluted. However, when a mixed aqueous solution of hydrofluoric acid, nitric acid and hydrochloric acid is used, not only the substrate surface but also the substrate in the vicinity of the surface. Metal impurities present in the aqueous solution can also be eluted in the mixed aqueous solution. Therefore, when it is desired to collect and analyze only the metal impurities on the substrate surface, it is preferable to use a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide solution or a mixed aqueous solution of hydrofluoric acid, hydrochloric acid and hydrogen peroxide solution. In addition, when it is desired to collect and analyze metal impurities present on the substrate surface and in the vicinity of the substrate, it is preferable to use a mixed aqueous solution of hydrofluoric acid, nitric acid and hydrochloric acid.

また、開口部34に注入する回収液の量は、開口部34から露出した分析対象基板Wの特定部位の大きさや、分析対象基板Wの種類に応じて定める。具体的には、特定部位が大きいほど、回収液の量を多くする。また、分析対象基板Wが、シリコン基板など疎水性の表面を有した基板の場合には、炭化シリコン基板など親水性の表面を有した基板の場合に比べて、回収液の量を多くする。これによって、表面張力の影響で基板表面に薄く広がりにくい疎水性の基板表面に対して、回収液を確実に供給できる。   The amount of the recovery liquid injected into the opening 34 is determined according to the size of the specific part of the analysis target substrate W exposed from the opening 34 and the type of the analysis target substrate W. Specifically, the larger the specific part, the greater the amount of the collected liquid. In addition, when the analysis target substrate W is a substrate having a hydrophobic surface such as a silicon substrate, the amount of the recovered liquid is increased as compared with a substrate having a hydrophilic surface such as a silicon carbide substrate. As a result, the recovered liquid can be reliably supplied to the hydrophobic substrate surface that is difficult to spread thinly on the substrate surface due to the influence of the surface tension.

回収液を注入した後、その回収液が、開口部34に露出した基板表面に満遍なく行き渡るよう撹拌し、所定時間(例えば5分)静置する。これによって、基板表面又は表面近傍(表面を含む)に存在する金属不純物を回収液中に溶出(回収)できる。また、開口部34の内面は上述の表面溶融加工及び表面研磨の処理が施されているので、リング部材3内に存在する金属不純物が回収液中に溶出してしまうのを抑制できる。また、基板表面から回収液中に溶出された金属不純物が、開口部34に吸着してしまうのを抑制できる。   After injecting the recovery liquid, the recovery liquid is stirred so as to spread evenly over the substrate surface exposed to the opening 34, and is allowed to stand for a predetermined time (for example, 5 minutes). Thereby, metal impurities existing on the substrate surface or in the vicinity of the surface (including the surface) can be eluted (recovered) into the recovery liquid. Further, since the inner surface of the opening 34 has been subjected to the above-described surface melting processing and surface polishing processing, it is possible to suppress the metal impurities present in the ring member 3 from being eluted into the recovered liquid. Moreover, it can suppress that the metal impurity eluted in the collection | recovery liquid from the substrate surface adsorb | sucks to the opening part 34. FIG.

さらに、分析対象基板Wの裏面全面が支持皿2に支持されており、分析対象基板Wの外周部が支持皿2及びリング部材3とで挟み込まれているので、開口部34に注入された回収液が、開口部34外(例えば分析対象基板Wの外周部や裏面)に回り込んでしまうのを抑制できる。つまり、回収液を開口部34内に確実に保持できる。以上より、分析対象基板Wの表面又は表面近傍に存在する金属不純物のみを正確に回収液に回収できる。   Further, since the entire back surface of the analysis target substrate W is supported by the support tray 2 and the outer peripheral portion of the analysis target substrate W is sandwiched between the support tray 2 and the ring member 3, the recovery injected into the opening 34. It can suppress that a liquid wraps around the opening part 34 (for example, the outer peripheral part and back surface of the analysis object board | substrate W). That is, the recovered liquid can be reliably held in the opening 34. As described above, only the metal impurities existing on the surface of the analysis target substrate W or in the vicinity of the surface can be accurately recovered in the recovery liquid.

その後、回収治具1を傾けて、開口部34から回収液を取り出し、取り出した回収液中の金属不純物を、ICP−MS、ICP−OES、原子吸光分析法(AAS)などで測定する。これにより、分析対象基板Wの表面又は表面近傍に存在する金属不純物を正確に分析できる。   Thereafter, the recovery jig 1 is tilted to extract the recovery liquid from the opening 34, and the metal impurities in the extracted recovery liquid are measured by ICP-MS, ICP-OES, atomic absorption spectrometry (AAS) or the like. Thereby, the metal impurity which exists in the surface of the analysis object board | substrate W or the surface vicinity can be analyzed correctly.

以下、本発明の実施例を示して本発明をより具体的に説明する。
(実施例1)
本発明では、先ず、テストピースを用いて、テストピースの表面状態及び表面加工粗さと、テストピースから回収液への金属不純物溶出量及び回収液からテストピースへの金属不純物吸着量との関連についての調査を以下のように行った。テストピースの材質はPTFEとした。その調査結果をもとに、リング部材の開口部内面の最適加工条件を見出した。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention.
Example 1
In the present invention, first, using a test piece, the relationship between the surface condition and surface processing roughness of the test piece, the amount of metal impurities eluted from the test piece to the recovery liquid, and the amount of metal impurity adsorption from the recovery liquid to the test piece The following survey was conducted. The material of the test piece was PTFE. Based on the investigation results, the optimum machining conditions for the inner surface of the opening of the ring member were found.

先ず、PTFE製のテストピース(25mm×35mm×2mm)を切削加工(Ra=1200nm)で複数個作製し、そのうちの一部のテストピースはさらに表面加工粗さを小さくするため表面を研磨し、粗さ(Ra)を200nmにした。また、切削加工したテストピースに340℃〜380℃で表面溶融加工したもの(Ra=450nm)、さらに溶融加工後に表面研磨したもの(Ra=200nm)を準備した。つまり、切削加工のみのテストピース、切削加工+表面研磨の加工を施したテストピース、切削加工+表面溶融加工を施したテストピース、切削加工+表面溶融加工+表面研磨の加工を施したテストピースの4種類のテストピースを準備した。準備した各テストピースを用いて以下の工程を実施した。   First, a plurality of test pieces made of PTFE (25 mm × 35 mm × 2 mm) were produced by cutting (Ra = 1200 nm), and some of the test pieces were polished on the surface to further reduce the surface processing roughness, The roughness (Ra) was 200 nm. Moreover, what cut the surface of the cut test piece at 340 ° C. to 380 ° C. (Ra = 450 nm) and further polished the surface after melt processing (Ra = 200 nm) were prepared. In other words, a test piece with cutting only, a test piece with cutting + surface polishing, a test piece with cutting + surface melting, a test piece with cutting + surface melting + surface polishing 4 types of test pieces were prepared. The following processes were implemented using each prepared test piece.

<工程1:テストピースの表面金属不純物汚染除去>
テストピース作製加工時に付着した金属不純物を除去するため、フッ酸+硝酸+塩酸+水の混合溶液(フッ酸約10%、硝酸約12%、塩酸約7%)を入れたPFA(テトラフルオロエチレン〜パーフルオロアルキルビニルエーテル共重合体)製ビーカーにテストピースを入れ、ホットプレートで80℃、2時間加熱し、超純水で水洗する工程を複数回繰り返した。
<Process 1: Removal of surface metal impurities from test piece>
PFA (tetrafluoroethylene) containing a mixed solution of hydrofluoric acid + nitric acid + hydrochloric acid + water (hydrofluoric acid approx. 10%, nitric acid approx. 12%, hydrochloric acid approx. 7%) to remove metal impurities adhering during test piece fabrication The test piece was placed in a beaker made of (~ perfluoroalkyl vinyl ether copolymer), heated on a hot plate at 80 ° C for 2 hours, and washed with ultrapure water several times.

<工程2:テストピースからの金属不純物溶出量調査>
フッ酸+硝酸+塩酸+水の混合溶液(フッ酸約10%、硝酸約12%、塩酸約7%)50mLを不純物溶出がなくなるまで充分洗浄したPFA製ビーカーに入れ、同様に不純物溶出がなくなるまで充分洗浄した直径5mmのPFA製の球をビーカー内に入れた。ここで、テストピース(平板)をビーカーにそのまま投入すると、テストピースの平面がビーカーの底面に貼り付いてしまい、混合溶液が十分にテストピース表面に行き渡らない。PFA製の球を入れることで、テストピースの一部がPFA製の球に乗り、ビーカー底から浮くため、混合溶液をテストピース表面の隅々まで行き渡らせることができる。
<Process 2: Investigation of metal impurity elution amount from test piece>
Put 50 mL of a mixed solution of hydrofluoric acid + nitric acid + hydrochloric acid + water (about 10% hydrofluoric acid, about 12% nitric acid, about 7% hydrochloric acid) into a well-washed PFA beaker until there is no impurity elution. A PFA ball having a diameter of 5 mm that had been thoroughly washed was placed in a beaker. Here, when the test piece (flat plate) is put into the beaker as it is, the flat surface of the test piece sticks to the bottom surface of the beaker, and the mixed solution does not sufficiently reach the surface of the test piece. By inserting a PFA ball, a part of the test piece rides on the PFA ball and floats from the bottom of the beaker, so that the mixed solution can be spread all over the surface of the test piece.

次に、工程1を実施した後のテストピース1枚をビーカー内に入れ、80℃で20分間加熱し、テストピースから金属不純物を溶出させた。溶出した金属不純物量をICP−MSで測定した。この工程をテストピースの枚数繰り返した。   Next, one test piece after performing Step 1 was put in a beaker and heated at 80 ° C. for 20 minutes to elute metal impurities from the test piece. The amount of eluted metal impurities was measured by ICP-MS. This process was repeated for the number of test pieces.

各テストピースから溶出した金属不純物量の測定結果を図3に示す。図3では、金属不純物の種類(Na、Mg、Al等)ごとに上記4種類のテストピース(図3では、A、B、C、Dとして示す)から溶出された金属不純物量を示している。また、図3において、E(薬液ブランク)の結果は、金属不純物の溶出に用いた混合水溶液中にもともと存在していた金属不純物量を示している。よって、A〜Dの結果からEの結果を引いた値が、テストピースから混合溶液中に溶出された金属不純物量を示している。   The measurement result of the amount of metal impurities eluted from each test piece is shown in FIG. FIG. 3 shows the amount of metal impurities eluted from the four types of test pieces (shown as A, B, C, and D in FIG. 3) for each type of metal impurity (Na, Mg, Al, etc.). . In FIG. 3, the result of E (chemical blank) shows the amount of metal impurities originally present in the mixed aqueous solution used for elution of metal impurities. Therefore, the value obtained by subtracting the result of E from the results of A to D indicates the amount of metal impurities eluted from the test piece into the mixed solution.

図3のAとそれ以外(B、C、D)の結果から、表面加工粗さが大きいほど金属不純物溶出量が多いことが判る。また、BとCの結果から、表面溶融加工をすると、金属不純物溶出量が、表面研磨のみ行ったときと同等かそれより少なくなることが判る。さらに、A〜Dの結果を比較すると、いずれの金属不純物においてもDの結果が最も金属不純物溶出量が少なくなっている。つまり、表面溶融加工を行い、その後、表面を平滑にすることで、金属不純物溶出量が大幅に減少することが判る。   From the results of A in FIG. 3 and the other cases (B, C, D), it can be seen that the larger the surface processing roughness is, the more metal impurities are eluted. From the results of B and C, it can be seen that when surface melting is performed, the amount of metal impurities eluted is equal to or less than that obtained when only surface polishing is performed. Furthermore, when the results of A to D are compared, the result of D is the smallest metal impurity elution amount in any metal impurity. That is, it can be seen that the amount of elution of metal impurities is greatly reduced by performing surface melting and then smoothing the surface.

<工程3:テストピース表面への金属不純物吸着量調査>
フッ酸+塩酸+過酸化水素水+水の混合溶液(フッ酸約8%、塩酸約4%、過酸化水素水約7%)50mLを不純物溶出がなくなるまで充分洗浄したPFA製ビーカーに入れ、同様に不純物溶出がなくなるまで充分洗浄した直径5mmのPFA製の球をビーカー内に入れた。次に、工程1を実施した後のテストピース1枚をビーカー内に入れ、常温で5分間浸漬する。続いてテストピースを取り出し、純水で充分水洗した。浸漬した混合溶液中の金属不純物量をICP−MSで測定し、汚染液浸漬前の値とした。
<Process 3: Investigation of metal impurity adsorption amount on test piece surface>
Put 50 mL of a mixed solution of hydrofluoric acid + hydrochloric acid + hydrogen peroxide water + water (hydrofluoric acid about 8%, hydrochloric acid about 4%, hydrogen peroxide water about 7%) into a PFA beaker that has been thoroughly washed until no impurities are eluted. Similarly, a PFA ball having a diameter of 5 mm, which was thoroughly washed until no impurities were eluted, was placed in a beaker. Next, one test piece after step 1 is put into a beaker and immersed for 5 minutes at room temperature. Subsequently, the test piece was taken out and thoroughly washed with pure water. The amount of metal impurities in the soaked mixed solution was measured by ICP-MS, and was taken as the value before soaking the contaminated liquid.

次にNa、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、Wがそれぞれ10ng/ml含まれた常温の5%硝酸溶液中に、フッ酸+塩酸+過酸化水素水+水の混合溶液に浸漬後のテストピースを10分間浸漬し、テストピース表面に金属不純物を吸着させた。次にテストピースを取り出し超純水で充分水洗した。この水洗を行う理由は、この吸着量調査では、水洗工程を実施しても除去されない(吸着された)金属不純物の影響について考えているためである。また、フッ酸+塩酸+過酸化水素水+水の混合溶液(フッ酸約8%、塩酸約4%、過酸化水素水約7%)50mLを不純物溶出がなくなるまで充分洗浄したPFA製ビーカーに入れ、同様に不純物溶出がなくなるまで充分洗浄した直径5mmのPFA製の球をビーカー内に入れた。次に汚染液浸漬後のテストピースをこのビーカー内に入れ、常温で5分間浸漬した。続いてテストピースを取り出し、純水で充分水洗した。浸漬した混合溶液中の金属不純物量をICP−MSで測定し、汚染液浸漬後の値とした。同一テストピースにおける、汚染液浸漬前後の値の差を金属不純物吸着量とした。   Next, in a 5% nitric acid solution at room temperature containing 10 ng / ml of Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Mo, Sn, and W, respectively, hydrofluoric acid + hydrochloric acid + excess The test piece after being immersed in a mixed solution of hydrogen oxide water and water was immersed for 10 minutes to adsorb metal impurities on the surface of the test piece. Next, the test piece was taken out and thoroughly washed with ultrapure water. The reason for performing this water washing is that in this adsorption amount investigation, the influence of metal impurities that are not removed (adsorbed) even if the water washing process is performed is considered. In a PFA beaker, 50 mL of a mixed solution of hydrofluoric acid + hydrochloric acid + hydrogen peroxide water + water (hydrofluoric acid approximately 8%, hydrochloric acid approximately 4%, hydrogen peroxide solution approximately 7%) was thoroughly washed until no impurities were eluted. In the same manner, a PFA ball having a diameter of 5 mm, which was sufficiently washed until no impurities were eluted, was placed in a beaker. Next, the test piece after immersion in the contaminated liquid was placed in this beaker and immersed at room temperature for 5 minutes. Subsequently, the test piece was taken out and thoroughly washed with pure water. The amount of metal impurities in the soaked mixed solution was measured by ICP-MS, and the value after immersion in the contaminated liquid was taken. The difference in values before and after the immersion of the contaminated liquid in the same test piece was defined as the amount of adsorbed metal impurities.

各テストピースの金属不純物吸着量の測定結果を図4に示す。図4では、金属不純物の種類(Na、Mg、Al等)ごとに上記4種類のテストピース(図4では、A、B、C、Dとして示す)の金属不純物吸着量を示している。図4のAとそれ以外(B、C、D)の結果から、表面加工粗さが大きいほど金属不純物吸着量が多いことが判る。また、BとCの結果から、表面溶融加工をすると、Naを除く金属不純物の吸着量が、表面研磨のみ行ったときよりも少なくなることが判る。さらに、A〜Dの結果を比較すると、いずれの金属不純物においてもDの結果が最も金属不純物吸着量が少なくなっている。つまり、表面溶融加工を行い、その後、表面を平滑にすることで、金属不純物吸着量が大幅に減少することが判る。   The measurement result of the metal impurity adsorption amount of each test piece is shown in FIG. FIG. 4 shows the amount of metal impurities adsorbed by the above four types of test pieces (shown as A, B, C, and D in FIG. 4) for each type of metal impurity (Na, Mg, Al, etc.). From the results of A in FIG. 4 and other cases (B, C, D), it can be seen that the larger the surface processing roughness is, the more metal impurities are adsorbed. From the results of B and C, it can be seen that when surface melting is performed, the amount of adsorption of metal impurities excluding Na is smaller than when only surface polishing is performed. Furthermore, when the results of AD are compared, the result of D is the smallest metal impurity adsorption amount in any metal impurity. That is, it can be seen that the amount of metal impurity adsorption is greatly reduced by performing surface melting and then smoothing the surface.

以上の結果から、フッ素樹脂(PTFE)製のリング部材の開口部内面を、340℃〜380℃で表面溶融加工を行い(Ra=450nm)、その後、表面粗さRaが200nm以下となるように表面研磨するのが適切であることが判った。   From the above results, the inner surface of the opening of the ring member made of fluororesin (PTFE) is subjected to surface melting processing at 340 ° C. to 380 ° C. (Ra = 450 nm), and then the surface roughness Ra is set to 200 nm or less. It has been found that surface polishing is appropriate.

(実施例2)
100mm径のSiC基板に合わせたPTFE製の支持皿2とPTFE製のリング部材3(340℃〜380℃で表面溶融加工し(Ra=450nm)、さらに表面研磨したもの(Ra=200nm))とを備えた回収治具1(図1参照)を準備した。リング部材3は支持皿2にねじ込むことでリング部材3とSiC基板は密着し、リング部材3の開口部34内に回収液を注入してもその回収液は開口部34内に留まり、SiC基板外周部や裏面に回り込まない。
(Example 2)
PTFE support pan 2 and PTFE ring member 3 (surface-melted at 340 ° C. to 380 ° C. (Ra = 450 nm) and further polished (Ra = 200 nm)) matched to a SiC substrate having a diameter of 100 mm A recovery jig 1 (see FIG. 1) provided with The ring member 3 is screwed into the support plate 2 so that the ring member 3 and the SiC substrate are brought into close contact with each other. Even if the recovery liquid is injected into the opening 34 of the ring member 3, the recovery liquid remains in the opening 34, and the SiC substrate Do not wrap around the periphery or back.

リング部材3の開口部34内(SiC基板上)に回収液(フッ酸+塩酸+過酸化水素水+水の混合溶液(フッ酸約8%、塩酸約4%、過酸化水素水約7%))を5mL注入し、回収液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具1を傾けて回収液を取り出し、ICP−MSで金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。その測定結果を図5に示す。なお、図5において、E(薬液ブランク)の結果は、金属不純物の溶出に用いた混合溶液中にもともと存在していた金属不純物量を示している。よって、Dの結果からEの結果を引いた値が、SiC基板から混合溶液中に溶出された金属不純物量を示している。   In the opening 34 of the ring member 3 (on the SiC substrate), a recovered solution (hydrofluoric acid + hydrochloric acid + hydrogen peroxide solution + water mixed solution (hydrofluoric acid approximately 8%, hydrochloric acid approximately 4%, hydrogen peroxide solution approximately 7%) )) Was injected in 5 mL, stirred so that the recovered solution was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the recovery jig 1 is tilted and the recovery liquid is taken out, and measurement of metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Mo, Sn, W) is performed by ICP-MS. went. The measurement results are shown in FIG. In FIG. 5, the result of E (chemical solution blank) indicates the amount of metal impurities originally present in the mixed solution used for elution of metal impurities. Therefore, the value obtained by subtracting the result of E from the result of D indicates the amount of metal impurities eluted from the SiC substrate into the mixed solution.

(実施例2の比較例)
100mm径のSiC基板に合わせたPTFE製の支持皿5とPTFE製のリング部材6(切削加工のみ(Ra=1200nm))とを備えた回収治具4(図11参照)を準備した。この回収治具4は、リング部材6の開口部61の内面が切削加工のみである点で、図1の回収治具1と異なっており、それ以外は回収治具1と同じである。リング部材6は支持皿5にねじ込むことでリング部材6とSiC基板は密着し、リング部材6の開口部61内に回収液を注入してもその回収液は開口部61内に留まり、SiC基板外周部や裏面に回り込まない。
(Comparative example of Example 2)
A recovery jig 4 (see FIG. 11) provided with a PTFE support tray 5 and a PTFE ring member 6 (cutting only (Ra = 1200 nm)) matched to a 100 mm diameter SiC substrate was prepared. The recovery jig 4 is different from the recovery jig 1 of FIG. 1 in that the inner surface of the opening 61 of the ring member 6 is only cut, and the rest is the same as the recovery jig 1. The ring member 6 is screwed into the support plate 5 so that the ring member 6 and the SiC substrate are brought into close contact with each other. Do not wrap around the periphery or back.

開口部61内(SiC基板上)に回収液(フッ酸+塩酸+過酸化水素水+水の混合溶液(フッ酸約8%、塩酸約4%、過酸化水素水約7%))を5mL注入し、回収液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具4を傾けて回収液を取り出し、ICP−MSで金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。その測定結果を図6に示す。なお、図6において、E(薬液ブランク)の結果は、金属不純物の溶出に用いた混合溶液中にもともと存在していた金属不純物量を示している。よって、Aの結果からEの結果を引いた値が、SiC基板から混合溶液中に溶出された金属不純物量を示している。   5 mL of collected liquid (hydrofluoric acid + hydrochloric acid + hydrogen peroxide solution + water mixed solution (hydrofluoric acid approximately 8%, hydrochloric acid approximately 4%, hydrogen peroxide solution approximately 7%)) in the opening 61 (on the SiC substrate) The mixture was poured and stirred so that the recovered solution was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the recovery jig 4 is tilted to extract the recovered liquid, and the measurement of metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Mo, Sn, W) is performed by ICP-MS. went. The measurement results are shown in FIG. In FIG. 6, the result of E (chemical blank) shows the amount of metal impurities originally present in the mixed solution used for elution of metal impurities. Therefore, the value obtained by subtracting the result of E from the result of A indicates the amount of metal impurities eluted from the SiC substrate into the mixed solution.

図5と図6の結果を比較すると、いずれの金属不純物においても、図5の結果のほうが図6の結果よりも金属不純物量が少なくなっている。これは、切削加工のみの表面粗さが大きい(Ra=1200nm)リング部材を用いた回収治具で金属不純物回収操作を行うと、リング部材(開口部内面)からの金属不純物溶出やリング部材への金属不純物の吸着の影響があり、常に状態が安定しないためである(図6)。一方、表面溶融加工+表面研磨(Ra=200nm)を行ったリング部材を用いた回収治具で金属不純物回収操作を行うと、リング部材からの金属不純物溶出やリング部材への金属不純物の吸着の影響が少なく、状態が安定し、精度の高い分析が可能となる(図5)。   Comparing the results of FIG. 5 and FIG. 6, the amount of metal impurities in the result of FIG. 5 is smaller than the result of FIG. This is because metal impurities are eluted from the ring member (the inner surface of the opening) and the ring member is removed when a metal impurity recovery operation is performed with a recovery jig using a ring member having a large surface roughness only by cutting (Ra = 1200 nm). This is because the state is not always stable due to the influence of adsorption of metal impurities (FIG. 6). On the other hand, when a metal impurity recovery operation is performed with a recovery jig using a ring member subjected to surface melting processing + surface polishing (Ra = 200 nm), elution of metal impurities from the ring member and adsorption of metal impurities to the ring member There is little influence, the state is stable, and highly accurate analysis is possible (FIG. 5).

(実施例3)
200mm径のシリコン基板に合わせた図1の回収治具1を準備した。リング部材3の開口部34内(シリコン基板上)に回収液(フッ酸+過酸化水素水+水の混合溶液(フッ酸約2%、過酸化水素水約5%))を20mL注入し、回収液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具1を傾けて回収液を取り出し、回収液の液量を測定後、ICP−MSで回収液中の金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。回収液の注入量と回収量から算出した回収率を表1(表1の「表面溶融+表面研磨」/「表面」の欄)に、ICP−MSによる金属不純物測定結果を図7に示す。

Figure 2016119332
(Example 3)
A recovery jig 1 shown in FIG. 1 was prepared in accordance with a 200 mm diameter silicon substrate. 20 mL of a recovery liquid (hydrofluoric acid + hydrogen peroxide solution + water mixed solution (hydrofluoric acid approximately 2%, hydrogen peroxide solution approximately 5%)) is injected into the opening 34 of the ring member 3 (on the silicon substrate), The recovered liquid was stirred so that it was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the collection jig 1 is tilted to take out the collected liquid, and after measuring the volume of the collected liquid, the metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, etc.) in the collected liquid are measured by ICP-MS. Cu, Zn, Mo, Sn, W) were measured. The recovery rate calculated from the injection amount of the recovered liquid and the recovery rate is shown in Table 1 ("Surface Melting + Surface Polishing" / "Surface" column in Table 1), and the metal impurity measurement results by ICP-MS are shown in FIG.
Figure 2016119332

(実施例4)
200mm径のシリコン基板に合わせた図1の回収治具1を準備した。リング部材3の開口部34内(シリコン基板上)に回収液としてのエッチング液(フッ酸+硝酸+塩酸+水の混合溶液(フッ酸約2%、硝酸約25%、塩酸約4%))を20mL注入し、エッチング液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具1を傾けてエッチング液を取り出し、エッチング液の液量を測定後、ICP−MSでエッチング液中の金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。エッチング液の注入量と回収量から算出した回収率を上記表1(表1の「表面溶融+表面研磨」/「表面近傍」の欄)に、ICP−MSによる金属不純物測定結果を図8に示す。
Example 4
A recovery jig 1 shown in FIG. 1 was prepared in accordance with a 200 mm diameter silicon substrate. Etching solution (hydrofluoric acid + nitric acid + hydrochloric acid + water mixed solution (hydrofluoric acid approximately 2%, nitric acid approximately 25%, hydrochloric acid approximately 4%) as a recovery solution in the opening 34 of the ring member 3 (on the silicon substrate)) 20 mL was injected, stirred so that the etching solution was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the recovery jig 1 is tilted to take out the etching solution, and after measuring the amount of the etching solution, metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, etc.) in the etching solution are measured by ICP-MS. Cu, Zn, Mo, Sn, W) were measured. The recovery rate calculated from the injection amount and the recovery amount of the etching solution is shown in Table 1 above (in the column of “Surface Melting + Surface Polishing” / “Near Surface” in Table 1), and the metal impurity measurement result by ICP-MS is shown in FIG. Show.

(実施例3の比較例)
200mm径のシリコン基板に合わせた図11の回収治具4を準備した。リング部材6の開口部61内(シリコン基板上)に回収液(フッ酸+過酸化水素水+水の混合溶液(フッ酸約2%、過酸化水素水約5%))を20mL注入し、回収液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具4を傾けて回収液を取り出し、回収液の液量を測定後、ICP−MSで回収液中の金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。回収液の注入量と回収量から算出した回収率を上記表1(表1の「切削加工のみ」/「表面」の欄)に、ICP−MSによる金属不純物測定結果を図9に示す。
(Comparative example of Example 3)
A recovery jig 4 shown in FIG. 11 was prepared in accordance with a 200 mm diameter silicon substrate. 20 mL of a recovery liquid (hydrofluoric acid + hydrogen peroxide solution + water mixed solution (hydrofluoric acid approximately 2%, hydrogen peroxide solution approximately 5%)) is injected into the opening 61 of the ring member 6 (on the silicon substrate), The recovered liquid was stirred so that it was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the collection jig 4 is tilted to take out the collected liquid, and after measuring the volume of the collected liquid, the metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, etc.) in the collected liquid are measured by ICP-MS. Cu, Zn, Mo, Sn, W) were measured. The recovery rate calculated from the injected amount of recovered liquid and the recovery rate is shown in Table 1 above (column of “cutting only” / “surface” in Table 1), and the metal impurity measurement results by ICP-MS are shown in FIG.

(実施例4の比較例)
200mm径のシリコン基板に合わせた図11の回収治具4を準備した。リング部材6の開口部61内(シリコン基板上)に回収液としてのエッチング液(フッ酸+硝酸+塩酸+水の混合溶液(フッ酸約2%、硝酸約25%、塩酸約4%))を20mL注入し、エッチング液が満遍なく行き渡るように撹拌し、5分間静置した。その後、回収治具4を傾けてエッチング液を取り出し、エッチング液の液量を測定後、ICP−MSでエッチング液中の金属不純物(Na、Mg、Al、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Mo、Sn、W)の測定を行った。エッチング液の注入量と回収量から算出した回収率を上記表1(表1の「切削加工のみ」/「表面近傍」の欄)に、ICP−MSによる金属不純物測定結果を図10に示す。
(Comparative example of Example 4)
A recovery jig 4 shown in FIG. 11 was prepared in accordance with a 200 mm diameter silicon substrate. Etching solution (hydrofluoric acid + nitric acid + hydrochloric acid + water mixed solution (hydrofluoric acid approximately 2%, nitric acid approximately 25%, hydrochloric acid approximately 4%)) as a recovery liquid in the opening 61 of the ring member 6 (on the silicon substrate) 20 mL was injected, stirred so that the etching solution was evenly distributed, and allowed to stand for 5 minutes. Thereafter, the recovery jig 4 is tilted to take out the etching solution, and after measuring the amount of the etching solution, metal impurities (Na, Mg, Al, Ca, Ti, Cr, Fe, Ni, etc.) in the etching solution are measured by ICP-MS. Cu, Zn, Mo, Sn, W) were measured. The recovery rate calculated from the injection amount and the recovery amount of the etching solution is shown in Table 1 above (column of “cutting only” / “near the surface” in Table 1), and the metal impurity measurement result by ICP-MS is shown in FIG.

図7〜図10において、E(薬液ブランク)の結果は、金属不純物の溶出に用いた混合溶液中にもともと存在していた金属不純物量を示している。よって、D又はAの結果からEの結果を引いた値が、シリコン基板から混合溶液中に溶出された金属不純物量を示している。   7 to 10, the result of E (chemical solution blank) indicates the amount of metal impurities originally present in the mixed solution used for elution of metal impurities. Therefore, the value obtained by subtracting the result of E from the result of D or A indicates the amount of metal impurities eluted from the silicon substrate into the mixed solution.

実施例3、4(図7、図8)とそれらの比較例(図9、図10)との比較から、切削加工のみの表面粗さが大きい(Ra=1200nm)リング部材を用いた回収治具で金属不純物回収操作を行うと、リング部材からの金属不純物溶出やリング部材への金属不純物の吸着の影響があり、表面溶融加工+表面研磨のリング部材を用いた場合に比べて、金属不純物の回収量が多くなっている。つまり、切削加工のみのリング部材を用いると、常に状態が安定しないことが判る。また、表1に示すように、切削加工のみのリング部材を用いると、リング部材と半導体基板の接液部(開口部内面)に回収液が残留するため、回収率が低下することが判る。   From a comparison between Examples 3 and 4 (FIGS. 7 and 8) and comparative examples (FIGS. 9 and 10), recovery treatment using a ring member having a large surface roughness only by cutting (Ra = 1200 nm). When metal tools are used to collect metal impurities, there is an effect of elution of metal impurities from the ring member and adsorption of metal impurities to the ring member. Compared to the case of using a ring member with surface melting and surface polishing, metal impurities The amount of recovered is increasing. That is, it can be seen that the state is not always stable when a ring member only for cutting is used. Further, as shown in Table 1, it can be seen that when a ring member only for cutting is used, the recovery rate decreases because the recovery liquid remains in the liquid contact portion (opening portion inner surface) of the ring member and the semiconductor substrate.

一方、表面溶融加工+表面研磨(Ra=200nm)を行ったリング部材を用いた回収治具で金属不純物回収操作を行うと、リング部材からの金属不純物溶出やリング部材への金属不純物の吸着の影響が少なく、状態が安定する。また、表1に示すように、表面溶融加工+表面研磨のリング部材を用いると、リング部材と半導体基板の接液部(開口部内面)に回収液の残留が見られず、回収率が100%近くまで向上することが判る。この結果、精度の高い分析が可能となる。   On the other hand, when a metal impurity recovery operation is performed with a recovery jig using a ring member subjected to surface melting processing + surface polishing (Ra = 200 nm), elution of metal impurities from the ring member and adsorption of metal impurities to the ring member There is little influence and the state is stable. Further, as shown in Table 1, when a ring member of surface melting processing + surface polishing is used, no recovery liquid remains in the liquid contact portion (inner surface of the opening) between the ring member and the semiconductor substrate, and the recovery rate is 100. It turns out that it improves to near%. As a result, highly accurate analysis is possible.

さらに、図7と図8の結果を比較すると、図8の結果のほうが図7の結果よりも、金属不純物量が多くなっている。このことから、回収液としてフッ酸+硝酸+塩酸+水の混合溶液を用いることで、基板表面だけでなく表面近傍の基板内の金属不純物も回収し分析できていることが判る。一方、回収液としてフッ酸+過酸化水素水+水の混合溶液を用いることで、基板表面のみの金属不純物を回収し分析できるといえる。   Further, comparing the results of FIG. 7 and FIG. 8, the result of FIG. 8 has a larger amount of metal impurities than the result of FIG. From this, it can be seen that by using a mixed solution of hydrofluoric acid + nitric acid + hydrochloric acid + water as the recovery liquid, not only the substrate surface but also metal impurities in the substrate near the surface can be recovered and analyzed. On the other hand, it can be said that by using a mixed solution of hydrofluoric acid + hydrogen peroxide water + water as the recovery liquid, it is possible to recover and analyze metal impurities only on the substrate surface.

以上説明したように、本実施形態では、リング部材の接液部に対して、340℃〜380℃で表面溶融加工を行い、さらに、表面粗さが200nm以下となるように表面研磨を行い、そのリング部材を用いて金属不純物回収操作を行うので、リング部材−回収液間の金属不純物の溶出、吸着を抑制でき、基板表面の金属不純物を正確に回収し分析できる。また、リング部材と半導体基板の接液部に回収液の残留が見られず、回収液(金属不純物)の回収率を向上できる。また、親水性の表面を有した基板(SiC基板)と、疎水性の表面を有した基板(シリコン基板)のそれぞれに対して金属不純物を回収し分析できる。   As described above, in the present embodiment, surface melt processing is performed at 340 ° C. to 380 ° C. for the liquid contact portion of the ring member, and surface polishing is performed so that the surface roughness is 200 nm or less. Since the metal member is recovered using the ring member, elution and adsorption of the metal impurity between the ring member and the recovered liquid can be suppressed, and the metal impurity on the substrate surface can be accurately recovered and analyzed. In addition, no recovery liquid remains in the liquid contact portion between the ring member and the semiconductor substrate, and the recovery rate of the recovery liquid (metal impurities) can be improved. Further, metal impurities can be collected and analyzed for each of a substrate having a hydrophilic surface (SiC substrate) and a substrate having a hydrophobic surface (silicon substrate).

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。例えば、上記実施形態では、フッ素樹脂(PTFE)製の回収治具を用いた例を説明したが、他の樹脂製の回収治具を用いて金属不純物の回収操作を行っても良い。この場合であっても、回収治具の接液部に、表面溶融加工+表面研磨を施すことで、基板表面の金属不純物の回収精度を向上できる。なお、他の樹脂製の回収治具を用いた場合には、その樹脂の特性に応じた表面溶融加工(加熱温度)、表面研磨を行えばよい。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope. For example, in the above-described embodiment, an example in which a fluororesin (PTFE) recovery jig is used has been described. However, a metal impurity recovery operation may be performed using another resin recovery jig. Even in this case, the recovery accuracy of metal impurities on the surface of the substrate can be improved by subjecting the liquid contact portion of the recovery jig to surface melting processing and surface polishing. When another resin recovery jig is used, surface melting processing (heating temperature) and surface polishing according to the characteristics of the resin may be performed.

また、上記実施形態では、支持皿とリング部材とを備えた回収治具を用いた例を説明したが、回収液が接触する接液部を有するのであれば、他の構造の回収治具(例えば上記特許文献1、2に記載の支持容器)を用いて金属不純物の回収操作を行っても良い。この場合であっても、接液部に表面溶融加工+表面研磨を施すことで、基板表面の金属不純物の回収精度を向上できる。   Moreover, although the said embodiment demonstrated the example using the collection | recovery jig | tool provided with the support plate and the ring member, if it has the liquid-contacting part which collection | recovery liquid contacts, the collection | recovery jig | tool of another structure ( For example, the metal impurities may be collected using the support container described in Patent Documents 1 and 2 above. Even in this case, it is possible to improve the recovery accuracy of the metal impurities on the surface of the substrate by subjecting the wetted part to surface melting and surface polishing.

また、上記実施形態では、SiC基板、シリコン基板の金属不純物分析に本発明を適用した例を説明したが、他の半導体基板の金属不純物分析に本発明を適用しても良い。   Moreover, although the said embodiment demonstrated the example which applied this invention to the metal impurity analysis of a SiC substrate and a silicon substrate, you may apply this invention to the metal impurity analysis of another semiconductor substrate.

1 回収治具
2 支持皿
3 リング部材
34 開口部
DESCRIPTION OF SYMBOLS 1 Recovery jig | tool 2 Supporting plate 3 Ring member 34 Opening part

Claims (12)

半導体基板の表面に存在する金属不純物の回収時に用いられ、前記回収時に前記表面に供給された回収液が接触する接液部を有した回収器具の製造方法であって、
前記接液部を有した形状に成形された樹脂製の成形品を準備する準備工程と、
前記成形品における前記接液部の表面を溶融加工する溶融工程と、
前記溶融工程を実施した後に前記接液部の表面研磨を行う研磨工程と、
を含むことを特徴とする回収器具の製造方法。
A method of manufacturing a recovery instrument having a liquid contact portion that is used when recovering metal impurities present on the surface of a semiconductor substrate and that contacts the recovery liquid supplied to the surface during the recovery,
A preparation step of preparing a resin molded product molded into a shape having the liquid contact part;
A melting step of melting the surface of the wetted part in the molded product;
A polishing step of performing surface polishing of the wetted part after performing the melting step;
The manufacturing method of the collection | recovery instrument characterized by including.
前記回収器具は、前記回収時に前記半導体基板の表面側に配置されて、その配置の際に前記半導体基板の表面の特定部位を露出させる前記接液部としてのリング状の開口部を有し、前記開口部に前記回収液が注入されることを特徴とする請求項1に記載の回収器具の製造方法。   The collection device is arranged on the surface side of the semiconductor substrate at the time of collection, and has a ring-shaped opening as the liquid contact portion that exposes a specific part of the surface of the semiconductor substrate at the time of the arrangement, The method for manufacturing a recovery instrument according to claim 1, wherein the recovery liquid is injected into the opening. 前記準備工程では、フッ素樹脂の前記成形品を準備することを特徴とする請求項1又は2に記載の回収器具の製造方法。   The method for manufacturing a recovery tool according to claim 1 or 2, wherein in the preparation step, the molded product of a fluororesin is prepared. 前記フッ素樹脂の種類がポリテトラフルオロエチレンであることを特徴とする請求項3に記載の回収器具の製造方法。   The method for producing a recovery instrument according to claim 3, wherein the type of the fluororesin is polytetrafluoroethylene. 前記溶融工程では、340℃〜380℃で前記接液部の表面溶融加工を行うことを特徴とする請求項3又は4に記載の回収器具の製造方法。   5. The method for manufacturing a recovery tool according to claim 3, wherein in the melting step, surface melting processing of the wetted part is performed at 340 ° C. to 380 ° C. 5. 前記研磨工程では、表面粗さRaが200nm以下となるように前記接液部の表面研磨を行うことを特徴とする請求項3〜5のいずれか1項に記載の回収器具の製造方法。   In the said grinding | polishing process, the surface grinding | polishing of the said liquid contact part is performed so that surface roughness Ra may be 200 nm or less, The manufacturing method of the collection | recovery instrument of any one of Claims 3-5 characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載の製造方法により得られた回収器具を用いて、半導体基板の表面に回収液を供給することにより該表面に存在する金属不純物を回収することを特徴とする金属不純物の回収方法。   Using the recovery tool obtained by the manufacturing method according to any one of claims 1 to 6, recovering metal impurities present on the surface by supplying a recovery liquid to the surface of the semiconductor substrate. A method for recovering metal impurities. 前記回収器具は、前記半導体基板の表面側に配置されて、その配置の際に前記半導体基板の表面の特定部位を露出させる前記接液部としてのリング状の開口部を有し、
前記回収器具と、前記半導体基板の裏面を支持する平坦な支持面を有した裏面側支持部材とにより、前記半導体基板を挟み込むように支持した状態で、前記開口部に前記回収液を注入することを特徴とする請求項7に記載の金属不純物の回収方法。
The collection device is disposed on the surface side of the semiconductor substrate, and has a ring-shaped opening as the liquid contact portion that exposes a specific part of the surface of the semiconductor substrate during the arrangement,
Injecting the recovery liquid into the opening in a state in which the semiconductor substrate is sandwiched and supported by the recovery tool and a back-side support member having a flat support surface that supports the back surface of the semiconductor substrate. The method for recovering metal impurities according to claim 7.
前記半導体基板が炭化シリコン基板であることを特徴とする請求項7又は8に記載の金属不純物の回収方法。   9. The method for recovering metal impurities according to claim 7, wherein the semiconductor substrate is a silicon carbide substrate. 前記半導体基板がシリコン基板であることを特徴とする請求項7又は8に記載の金属不純物の回収方法。   9. The method for recovering metal impurities according to claim 7, wherein the semiconductor substrate is a silicon substrate. 前記回収液は、フッ酸と過酸化水素水の混合水溶液、フッ酸と塩酸と過酸化水素水の混合水溶液又はフッ酸と硝酸と塩酸の混合水溶液であることを特徴とする請求項7〜10のいずれか1項に記載の金属不純物の回収方法。   11. The recovered liquid is a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide solution, a mixed aqueous solution of hydrofluoric acid, hydrochloric acid and hydrogen peroxide solution, or a mixed aqueous solution of hydrofluoric acid, nitric acid and hydrochloric acid. The method for recovering metal impurities according to any one of the above. 請求項7〜11のいずれか1項に記載の回収方法を実施した後、前記回収液中の金属不純物量を測定することを特徴とする金属不純物の分析方法。   A metal impurity analysis method, comprising: measuring the amount of metal impurities in the recovered liquid after performing the recovery method according to any one of claims 7 to 11.
JP2014256457A 2014-12-18 2014-12-18 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity Active JP6354563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256457A JP6354563B2 (en) 2014-12-18 2014-12-18 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256457A JP6354563B2 (en) 2014-12-18 2014-12-18 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity

Publications (2)

Publication Number Publication Date
JP2016119332A true JP2016119332A (en) 2016-06-30
JP6354563B2 JP6354563B2 (en) 2018-07-11

Family

ID=56243071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256457A Active JP6354563B2 (en) 2014-12-18 2014-12-18 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity

Country Status (1)

Country Link
JP (1) JP6354563B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186948A (en) * 2019-05-10 2020-11-19 三菱マテリアル株式会社 Method for analyzing metal impurities on polycrystal silicon ingot surface
JP2021196190A (en) * 2020-06-10 2021-12-27 株式会社Sumco Analysis container, method for analyzing semiconductor sample, and method for manufacturing semiconductor substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459023B1 (en) * 2018-10-11 2022-10-25 주식회사 엘지화학 Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes
CN109632934B (en) * 2018-12-29 2021-10-01 上海微谱化工技术服务有限公司 Method for analyzing compatibility of sufentanil citrate and production system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085526A (en) * 1994-06-21 1996-01-12 Hitachi Ltd Jig for sampling solution sample
JP2005326240A (en) * 2004-05-13 2005-11-24 Toshiba Corp Analyzing container and method for analyzing very small amount of element
JP2006140195A (en) * 2004-11-10 2006-06-01 Toshiba Ceramics Co Ltd Method of analyzing impurity of silicon wafer and vapor phase cracker of silicon wafer used for it
JP2007207783A (en) * 2006-01-30 2007-08-16 Toshiba Corp Etching method and inspection method of silicon wafer
JP2011140147A (en) * 2010-01-06 2011-07-21 Shin Etsu Handotai Co Ltd Method for manufacturing fluororesin molded object, resin container for analysis and element analytical method
JP2013115261A (en) * 2011-11-29 2013-06-10 Sumitomo Electric Ind Ltd Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085526A (en) * 1994-06-21 1996-01-12 Hitachi Ltd Jig for sampling solution sample
JP2005326240A (en) * 2004-05-13 2005-11-24 Toshiba Corp Analyzing container and method for analyzing very small amount of element
JP2006140195A (en) * 2004-11-10 2006-06-01 Toshiba Ceramics Co Ltd Method of analyzing impurity of silicon wafer and vapor phase cracker of silicon wafer used for it
JP2007207783A (en) * 2006-01-30 2007-08-16 Toshiba Corp Etching method and inspection method of silicon wafer
JP2011140147A (en) * 2010-01-06 2011-07-21 Shin Etsu Handotai Co Ltd Method for manufacturing fluororesin molded object, resin container for analysis and element analytical method
JP2013115261A (en) * 2011-11-29 2013-06-10 Sumitomo Electric Ind Ltd Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186948A (en) * 2019-05-10 2020-11-19 三菱マテリアル株式会社 Method for analyzing metal impurities on polycrystal silicon ingot surface
JP7303662B2 (en) 2019-05-10 2023-07-05 高純度シリコン株式会社 Method for analyzing metal impurities on the surface of polycrystalline silicon chunks
JP2021196190A (en) * 2020-06-10 2021-12-27 株式会社Sumco Analysis container, method for analyzing semiconductor sample, and method for manufacturing semiconductor substrate

Also Published As

Publication number Publication date
JP6354563B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6354563B2 (en) Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity
JP6118031B2 (en) Impurity analysis apparatus and method
TW200807562A (en) Baking method of quartz products, computer program and storage medium
JP5343449B2 (en) Cleaning method for fluoropolymer parts
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
TWI635275B (en) Deterioration evaluation method, washing condition determining method, and manufacturing method of germanium wafer
US9412639B2 (en) Method of using separate wafer contacts during wafer processing
JP2011140147A (en) Method for manufacturing fluororesin molded object, resin container for analysis and element analytical method
WO2013084948A1 (en) Container, vapor phase cracking method, vapor phase cracking device, analysis method, and analysis device
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2012181092A (en) Heating concentrator, and heating concentration method
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP2011082338A (en) Analyzing method and analyzing device for semiconductor substrate
JP3292355B2 (en) Sampling cup and manufacturing method thereof
JP2015073947A (en) Metal impurity removal method of fluorine resin
JP3894133B2 (en) Metal impurity evaluation method and evaluation substrate manufacturing method
JP2019169515A (en) Method for etching boron-doped p-type silicon wafer, method for evaluating metal pollution and manufacturing method
JP5152860B2 (en) Surface analysis method for quartz glass products
JP2021196190A (en) Analysis container, method for analyzing semiconductor sample, and method for manufacturing semiconductor substrate
JP2010145150A (en) Tool for analyzing surface of plate-like body, and metal analysis method using the same
CN113770570B (en) Welding process for thin-walled part of beryllium material and stainless steel
JP2011194380A (en) Method of removing metal impurities
JPH07280708A (en) Silicon wafer surface treatment solution and recovery method of fine quantity of metal using this treatment solution
JP2010145170A (en) Method for analysis of silicon wafer
Tan et al. Contamination‐Free Manufacturing: Tool Component Qualification, Verification and Correlation with Wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250