JP2013115261A - Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity - Google Patents

Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity Download PDF

Info

Publication number
JP2013115261A
JP2013115261A JP2011260675A JP2011260675A JP2013115261A JP 2013115261 A JP2013115261 A JP 2013115261A JP 2011260675 A JP2011260675 A JP 2011260675A JP 2011260675 A JP2011260675 A JP 2011260675A JP 2013115261 A JP2013115261 A JP 2013115261A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
etching solution
impurity
solution
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011260675A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kawabata
計博 川端
Noboru Yamazaki
暢 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011260675A priority Critical patent/JP2013115261A/en
Publication of JP2013115261A publication Critical patent/JP2013115261A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method of impurity on a semiconductor substrate surface, allowing contacting to etching liquid only by one surface of a semiconductor substrate, being the entire said surface, with no contamination of impurity from other than the semiconductor substrate, and to provide a quantitative analysis method of impurity on the semiconductor substrate surface which uses said recovery method of the impurity.SOLUTION: In the recovery method of impurity on a semiconductor substrate surface, an etching liquid 2 is added to a support container 1 which has a flat bottom surface, a semiconductor substrate 3 which is to be analysed is placed on it, and after being left out for a time period required for dissolving of a surface of the semiconductor substrate 3 in the etching liquid 2, the etching liquid 2 is recovered. With the assumption that a diameter of the semiconductor substrate 3 is X cm, the amount of etching liquid 2 that is added to the support container 1 is 2×(X/5)ml to 3×(X/2)ml, and a contact angle between the support container 1 and the etching liquid 2 is 65° or larger. The present invention also relates to the quantitative analysis method of impurity on the semiconductor substrate surface which uses the stated recovery method of impurity.

Description

本発明は、半導体基板の表面近傍に含まれる不純物の定量分析に使用される半導体基板表面の不純物の回収方法、及び、この回収方法を使用する定量分析方法に関する。   The present invention relates to a method for collecting impurities on the surface of a semiconductor substrate used for quantitative analysis of impurities contained in the vicinity of the surface of the semiconductor substrate, and a quantitative analysis method using this collection method.

半導体基板の表面近傍に含まれる金属等の不純物は、半導体デバイスの特性を劣化させ、又半導体デバイス製造の歩留まりを低下させる。そこで、半導体基板の不純物による汚染を防ぐ対策が重要な課題となっている。そして、その対策を実施するため、半導体基板の表面近傍に含まれる不純物を超高感度で定量する分析が必要である。   Impurities such as metals contained in the vicinity of the surface of the semiconductor substrate deteriorate the characteristics of the semiconductor device and reduce the yield of semiconductor device manufacturing. Therefore, measures to prevent contamination of the semiconductor substrate by impurities have become an important issue. In order to implement the countermeasure, it is necessary to analyze the impurities contained in the vicinity of the surface of the semiconductor substrate with ultra-high sensitivity.

半導体基板の表面近傍に含まれる金属等の不純物の分析方法として、原子吸収法(AAS)あるいは、誘導結合プラズマ発光分光分析法(ICP−OES)、誘導結合プラズマ質量分析法(ICP−MS)等が知られている。これらの分析では、半導体基板表面の所定面積を半導体が可溶な液(エッチング液)と接触させて表面近傍の半導体及び不純物を溶解(エッチング)し、このようにして得た液を洗浄等により回収して、測定対象の試料溶液を得ている。   As an analysis method for impurities such as metals contained in the vicinity of the surface of a semiconductor substrate, an atomic absorption method (AAS), an inductively coupled plasma emission spectroscopy (ICP-OES), an inductively coupled plasma mass spectrometry (ICP-MS), etc. It has been known. In these analyses, a predetermined area on the surface of the semiconductor substrate is brought into contact with a liquid in which the semiconductor is soluble (etching liquid) to dissolve (etch) the semiconductor and impurities in the vicinity of the surface, and the liquid thus obtained is washed or the like. It collect | recovers and the sample solution of a measuring object is obtained.

エッチング液と接触する所定面積の表面を、半導体基板の一方の表面(片面)全体とすれば、その面積を明確に把握することができる。そこで、半導体基板の片面全体をエッチング液に接触させて溶解させ、定量分析用の試料溶液を作製する方法が種々提案されている。   If the surface of a predetermined area in contact with the etching solution is the entire one surface (one side) of the semiconductor substrate, the area can be clearly grasped. Accordingly, various methods have been proposed for preparing a sample solution for quantitative analysis by bringing one whole surface of a semiconductor substrate into contact with an etching solution and dissolving it.

例えば、特許文献1には、中央部に向って湾曲したくぼみを有し、ウエハ(半導体基板)と同じサイズの耐酸性容器に酸(エッチング液)を入れ、この容器の周囲に形成されたウエハの形状に合った段差の上にウエハを置いて、酸とウエハを接触させる方法が記載されている。又、特許文献2には、シリコンウェーハ(半導体基板の1種)表面を薬液(エッチング液)に接触させる方法として、シリコンウェーハがちょうど収まる大きさのトレーに希王水(薬液)の適容量を入れ、この希王水に表面が接液するようにシリコンウェーハを静かに載せる方法が記載されている。さらに、特許文献3には、半導体基板の表面に濃硫酸等の回収液(エッチング液)を供給し、該回収液を半導体基板との間に挟むように疎水性部材を配置し、該回収液を前記半導体基板に広く接触させる方法が記載されている。   For example, Patent Document 1 discloses a wafer that has a dent that is curved toward the center, and that contains an acid (etching solution) in an acid-resistant container having the same size as the wafer (semiconductor substrate), and is formed around the container. A method is described in which a wafer is placed on a step corresponding to the shape of the substrate and the acid is brought into contact with the wafer. Patent Document 2 discloses a method for bringing the surface of a silicon wafer (a type of semiconductor substrate) into contact with a chemical solution (etching solution) and providing an appropriate volume of dilute water (chemical solution) on a tray that is just large enough to contain a silicon wafer. A method is described in which a silicon wafer is gently placed so that the surface comes into contact with this dilute water. Further, in Patent Document 3, a recovery liquid (etching liquid) such as concentrated sulfuric acid is supplied to the surface of a semiconductor substrate, and a hydrophobic member is disposed so that the recovery liquid is sandwiched between the semiconductor substrate and the recovery liquid. Describes a method of widely contacting the semiconductor substrate with the semiconductor substrate.

特開平10−64966号公報JP-A-10-64966 特開2001−77158号公報JP 2001-77158 A 特開2011−82338号公報JP 2011-82338 A

しかし、特許文献1や特許文献2に記載の試料溶液の作製方法では、半導体基板と同じサイズ、形状の専用容器が必要である。専用容器は使いまわしが求められるので、使いまわしの際専用容器に不純物が混入(コンタミ)しやすい。そこで、容器を清浄に保つための専用容器の洗浄および管理が必要となり、このための手間を要するとの問題がある。   However, the sample solution preparation methods described in Patent Document 1 and Patent Document 2 require a dedicated container having the same size and shape as the semiconductor substrate. Since the special container is required to be reused, impurities are easily mixed (contaminated) in the special container when it is reused. Therefore, it is necessary to clean and manage the dedicated container for keeping the container clean, and there is a problem that it takes time and effort for this purpose.

さらに、半導体基板のサイズが専用容器と僅かでも異なると、半導体基板の裏面に酸が回り込み、裏面を溶解する。半導体基板に欠けが生じている場合も、裏面に酸が回り込み裏面を溶解する。正確な定量分析のためには、エッチング液を接触する半導体基板の面積を正確に把握する必要があるが、裏面が溶解されるとその面積の正確な把握ができず、従って正確な測定ができないとの問題もある。   Further, if the size of the semiconductor substrate is slightly different from that of the dedicated container, the acid flows around the back surface of the semiconductor substrate and dissolves the back surface. Even when the semiconductor substrate is chipped, acid flows around the back surface and dissolves the back surface. For accurate quantitative analysis, it is necessary to accurately grasp the area of the semiconductor substrate in contact with the etching solution, but if the back surface is dissolved, the area cannot be accurately grasped, and therefore accurate measurement cannot be performed. There is also a problem.

又、特許文献3に記載の方法では、疎水性部材の重量とエッチング液量および濃度の範囲を厳しく限定しないと、ウエハ全面を均一にエッチング液に接触できない、エッチング液をこぼして不純物を全て回収できない等の問題が生じ、正確な測定ができないとの問題が生じる。又、特許文献3では、金属不純物の濃硫酸中への溶解を促進するため、100〜290℃程度で加熱することが好ましいと述べられているが、加熱することで、疎水性部材の重量とエッチング液量および濃度のバランスが崩れ、いっそうウエハ片面全体をエッチングすることが困難になる。   Further, in the method described in Patent Document 3, the entire surface of the wafer cannot be uniformly contacted with the etching solution unless the range of the weight of the hydrophobic member and the amount and concentration of the etching solution are strictly limited. The problem that it is impossible, etc. arises and the problem that an exact measurement cannot be performed arises. In Patent Document 3, it is stated that heating at about 100 to 290 ° C. is preferable in order to promote dissolution of metal impurities in concentrated sulfuric acid. The balance between the amount and concentration of the etching solution is lost, and it becomes more difficult to etch the entire wafer surface.

本発明は、半導体基板の一方の表面(片面)のみかつ当該表面の全体をエッチング液に接触でき、半導体基板以外からの不純物の混入(コンタミ)がない半導体基板表面の不純物の回収方法を提供することを課題とする。本発明は、又、前記不純物の回収方法を使用する半導体基板表面の不純物の定量分析方法を提供する。   The present invention provides a method for recovering impurities on the surface of a semiconductor substrate in which only one surface (one surface) of the semiconductor substrate and the entire surface can be in contact with the etching solution and no impurities are contaminated (contamination) from other than the semiconductor substrate. This is the issue. The present invention also provides a method for quantitative analysis of impurities on the surface of a semiconductor substrate using the impurity recovery method.

本発明者は、検討の結果、平坦な底面を有する支持容器に、エッチング液の液滴を滴下し、当該液滴上に半導体基板を載せて浮かせたとき、液滴量を所定の範囲内にすれば、半導体基板の片面の全体でかつ当該片面のみで、エッチング液との接触が生じることを見出した。そして、この方法によれば、半導体基板と同じサイズの専用容器を必要とせず、簡易に半導体基板の片面のみを全体的かつ均一にエッチングすることができ、エッチングによる溶解液を回収・分析することで不純物を定量的に高い精度で分析できることを見出し、本発明と完成した。すなわち、前記の課題は、以下に示す構成により達成される。   As a result of the study, the inventor has dropped a droplet amount of the etching solution on a support container having a flat bottom surface, and when the semiconductor substrate is placed on the droplet and floated, the droplet amount falls within a predetermined range. Then, it has been found that contact with the etching solution occurs on one side of the entire semiconductor substrate and only on one side. According to this method, a dedicated container having the same size as that of the semiconductor substrate is not required, and only one surface of the semiconductor substrate can be easily and entirely etched, and the solution dissolved by etching can be collected and analyzed. Thus, the present invention has been completed by finding that impurities can be analyzed quantitatively with high accuracy. That is, the said subject is achieved by the structure shown below.

請求項1に記載の発明は、平坦な底面を有する支持容器にエッチング液を添加し、その上に分析対象の半導体基板を載せて半導体基板表面のエッチング液への溶解に要する時間放置後、当該エッチング液を回収する方法であって、半導体基板の直径をXcmとしたとき、支持容器に添加されるエッチング液の量が、2×(X/5)ml以上、3×(X/2)ml以下であり、かつ支持容器とエッチング液の接触角が65°以上であることを特徴とする半導体基板表面の不純物の回収方法である。 According to the first aspect of the present invention, an etching solution is added to a support container having a flat bottom surface, a semiconductor substrate to be analyzed is placed thereon, and after being left for a time required for dissolution in the etching solution of the semiconductor substrate surface, A method for recovering an etching solution, wherein when the diameter of the semiconductor substrate is Xcm, the amount of the etching solution added to the support container is 2 × (X / 5) 2 ml or more, 3 × (X / 2) A method for recovering impurities on the surface of a semiconductor substrate, wherein the contact angle is 2 ml or less and the contact angle between a support container and an etching solution is 65 ° or more.

支持容器は、平坦な表面を有する半導体基板がエッチング液上に浮かべたとき、支持容器の底面と半導体基板の接触が生じないように、平坦な底面を有するものである。半導体基板を浮かべて広がったエッチング液がその周囲よりこぼれないように、その周囲に鍔(つば)を有するものが好ましい。   The support container has a flat bottom surface so that contact between the bottom surface of the support container and the semiconductor substrate does not occur when a semiconductor substrate having a flat surface floats on the etching solution. In order to prevent the etching solution that floats off the semiconductor substrate from spilling out from the periphery, it is preferable to have a collar around the periphery.

支持容器は、エッチング液との接触角が65°以上となる材質から形成される。接触角が65°未満となる材質から形成された支持容器を用いると半導体基板の裏面に酸が回り込み裏面の溶解が生じやすくなる。   The support container is formed of a material having a contact angle with the etching solution of 65 ° or more. When a support container made of a material having a contact angle of less than 65 ° is used, acid flows around the back surface of the semiconductor substrate and the back surface is likely to be dissolved.

支持容器は、エッチング液により溶解されない耐食性を有し、かつその表面に定量分析の測定結果に影響を与える不純物を有しない清浄なものが使用される。例えば、エッチング液としては王水等の強酸が使用される場合は、耐酸性のあるガラス製やフッ素樹脂製のシャーレ等が用いられる、   As the support container, a clean container having corrosion resistance that is not dissolved by the etching solution and having no impurities that affect the measurement results of the quantitative analysis on the surface thereof is used. For example, when a strong acid such as aqua regia is used as an etchant, an acid-resistant glass or petri dish made of fluororesin is used.

支持容器の大きさは、その底面が半導体基板含むことができる大きさであればよく、半導体基板と同じサイズとする必要はない。その底面が半導体基板より大きい限りは、半導体基板の種類やサイズが異なっても使用することができるので、特定の半導体基板のエッチング用の専用容器を用いる必要はない。従って、専用容器の使いまわしは不要であり、前回エッチング時からの汚染(コンタミ)を気にすることなく、半導体基板のエッチング(定量分析)に使用することができる。   The size of the support container may be any size as long as the bottom surface can contain the semiconductor substrate, and does not have to be the same size as the semiconductor substrate. As long as the bottom surface is larger than the semiconductor substrate, it can be used even if the type and size of the semiconductor substrate is different, so that it is not necessary to use a dedicated container for etching a specific semiconductor substrate. Therefore, it is not necessary to reuse the dedicated container, and it can be used for etching (quantitative analysis) of the semiconductor substrate without worrying about contamination (contamination) from the previous etching.

本発明の方法は、半導体基板の直径をXcmとしたとき、支持容器に添加されるエッチング液の量が、2×(X/5)ml以上、3×(X/2)ml以下であることを特徴とする。すなわち、エッチング液の量を前記の範囲とすることにより、半導体基板の片面の全体にわたって、かつ当該片面のみをエッチング液と接触できる。そして、半導体基板に欠けがある場合も、半導体基板の裏面に酸が回り込むことなく、片面のみをエッチング液と接触できる。 In the method of the present invention, when the diameter of the semiconductor substrate is Xcm, the amount of the etching solution added to the support container is 2 × (X / 5) 2 ml or more and 3 × (X / 2) 2 ml or less. It is characterized by being. That is, by setting the amount of the etching solution within the above range, only one side of the semiconductor substrate can be in contact with the etching solution. And even when there is a chip in the semiconductor substrate, only one surface can be in contact with the etching solution without acid flowing around the back surface of the semiconductor substrate.

その結果、エッチング液と接触する半導体基板の面積を正確に把握でき、正確な定量分析を可能にする。エッチング液の量が、2×(X/5)ml未満の場合、半導体基板の片面の全面をエッチング液と接触させることはできず、一部に接触しない部分を生じる。一方、エッチング液の量が、3×(X/5)mlを超える場合、半導体基板の裏面にエッチング液が回り込み、裏面を溶解する。 As a result, the area of the semiconductor substrate in contact with the etching solution can be accurately grasped, and accurate quantitative analysis can be performed. When the amount of the etching solution is less than 2 × (X / 5) 2 ml, the entire surface of one side of the semiconductor substrate cannot be brought into contact with the etching solution, and a portion that does not come into contact with a part is generated. On the other hand, when the amount of the etching solution exceeds 3 × (X / 5) 2 ml, the etching solution flows around the back surface of the semiconductor substrate and dissolves the back surface.

半導体基板とは、半導体素子の製造に使用される半導体でできた薄い基板であり、ウエハ、ウェーハ等と呼ばれているものである。本発明の方法の適用される半導体基板としては、シリコンウェーハ、GaAsウエハ、GaNウエハ、InPウエハ、SiCウエハ、AlNウエハ等を挙げることができる。また、本発明は、原理上、半導体基板以外にも平坦な物質であれば、適用することが出来る。   The semiconductor substrate is a thin substrate made of a semiconductor used for manufacturing a semiconductor element, and is called a wafer, a wafer or the like. Examples of the semiconductor substrate to which the method of the present invention is applied include silicon wafers, GaAs wafers, GaN wafers, InP wafers, SiC wafers, AlN wafers and the like. In addition, the present invention can be applied to any flat substance other than the semiconductor substrate in principle.

本発明の方法では、半導体基板が支持容器と接触しないように、半導体基板をエッチング液上に浮かす必要があるが、半導体基板の厚みが限界厚み以下であれば、表面張力により、エッチング液上に浮かすことができる。従って、本発明が適用されるのは、限界厚み以下の厚みを有する半導体基板である。限界厚みとは、1/(ρ−ρ0)×(2γρ0/g)0.5で表される厚みであり、ここで、ρは半導体基板の密度、ρ0はエッチング液の密度、γはエッチング液の表面張力、gは重力加速度(0.98m/秒)を表わす。限界厚みは、GaAsは0.93mm、GaNは0.78mm、InPは1.05mm程度であり、通常の半導体ウエハの厚みは0.1〜0.5mm程度であり限界厚みよりはるかに薄く、本発明の方法を充分適用できる。 In the method of the present invention, it is necessary to float the semiconductor substrate on the etching solution so that the semiconductor substrate does not come into contact with the support container. Can float. Therefore, the present invention is applied to a semiconductor substrate having a thickness equal to or less than a limit thickness. The limit thickness is a thickness represented by 1 / (ρ−ρ0) × (2γρ0 / g) 0.5 , where ρ is the density of the semiconductor substrate, ρ0 is the density of the etching solution, and γ is the etching solution. The surface tension, g, represents the gravitational acceleration (0.98 m / sec 2 ). The limit thickness is 0.93 mm for GaAs, 0.78 mm for GaN, and about 1.05 mm for InP. The thickness of a normal semiconductor wafer is about 0.1 to 0.5 mm, which is much thinner than the limit thickness. The method of the invention is fully applicable.

半導体基板の表面は、エッチング液上に浮かしたときに支持容器と接触しない平坦さである限りは、鏡面/非鏡面の違いがあっても、本発明の方法を適用できる。   As long as the surface of the semiconductor substrate is flat so as not to come into contact with the support container when it floats on the etching solution, the method of the present invention can be applied even if there is a difference between a mirror surface and a non-mirror surface.

以上述べたように、本発明の半導体基板表面の不純物の回収方法は、底面の平坦な支持容器上に滴下されたエッチング液の液滴上に半導体基板を置き、その平坦さとエッチング液の表面張力を利用することで、半導体基板をエッチング液の液滴上に浮かせることを特徴とし、半導体基板の片面のみを全体的かつ均一にエッチング液に接触させて、片面の近傍にある不純物を全て回収できる方法である。   As described above, the method for recovering impurities on the surface of a semiconductor substrate according to the present invention places a semiconductor substrate on a droplet of an etching solution dropped on a flat support container on the bottom surface, and the flatness and surface tension of the etching solution. By using this, the semiconductor substrate is floated on the droplet of the etching solution, and only one side of the semiconductor substrate is brought into contact with the etching solution uniformly and entirely, so that all impurities in the vicinity of the one side can be recovered. Is the method.

請求項2に記載の発明は、前記エッチング液が、希王水を超純水で希釈してなり、前記希王水:超純水が体積比で、1:1〜49であることを特徴とする請求項1に記載の半導体基板表面の不純物の回収方法である。エッチング液としては、塩酸、硝酸、硫酸、リン酸、フッ酸、過酸化水素水、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を挙げることができるが、半導体を溶解する強酸の水溶液が好ましく用いられる場合が多い。中でも、半導体基板がGaAsウエハ、GaNウエハ、InPウエハ等の場合は、希王水、塩酸、硝酸を超純水で希釈したものが好ましい。ここで、希王水とは、37質量%塩酸と60質量%硝酸の体積比で3:1の混液を言う。超純水とは、定量分析を阻害する又は分析結果に影響を与える不純物を含まない水を言う。   The invention according to claim 2 is characterized in that the etching solution is obtained by diluting rare aqua regia with ultrapure water, and the dilute aqua regia: ultra pure water is 1: 1 to 49 in volume ratio. The method for recovering impurities on the surface of a semiconductor substrate according to claim 1. Examples of the etching solution include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrogen peroxide solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, and the like, but an aqueous solution of a strong acid that dissolves the semiconductor is preferably used. There are many cases. In particular, when the semiconductor substrate is a GaAs wafer, a GaN wafer, an InP wafer, or the like, a dilute aqua regia, hydrochloric acid, nitric acid diluted with ultrapure water is preferable. Here, dilute aqua regia refers to a 3: 1 mixture of 37% by mass hydrochloric acid and 60% by mass nitric acid. Ultrapure water refers to water that does not contain impurities that hinder quantitative analysis or affect analysis results.

次に、請求項1又は請求項2に半導体基板表面の不純物の回収方法の各工程について説明する。   Next, each step of the method for recovering impurities on the surface of the semiconductor substrate will be described in claim 1 or claim 2.

先ず、底面が半導体基板より大きい支持容器を用意する。支持容器は、定量分析の結果に影響を与えるような不純物が付着しないように、又エッチング液との接触角が65°以上となるように、充分清浄にする必要がある。この支持容器の底部上に、前記の所定の範囲内の量のエッチング液を滴下する。エッチング液は、できる限り支持容器底部の中央部近傍に滴下することが好ましい。中央部から離れた位置に滴下すると、半導体基板を載せたときにエッチング液が半導体基板片面の全面に広がらない場合が生じやすくなる。   First, a support container having a bottom surface larger than the semiconductor substrate is prepared. The support container needs to be sufficiently cleaned so that impurities that affect the results of quantitative analysis do not adhere and the contact angle with the etching solution is 65 ° or more. An etching solution in an amount within the predetermined range is dropped on the bottom of the support container. It is preferable that the etching solution is dropped as close as possible to the central portion of the bottom of the support container. If the liquid is dropped at a position away from the central portion, the etching liquid may not spread over the entire surface of one side of the semiconductor substrate when the semiconductor substrate is placed.

エッチング液を滴下した後、そのエッチング液上に半導体基板を載せる。半導体基板を載せると、半導体基板の重量によりエッチング液は押し広げられ、半導体基板の片面全体がエッチング液と接触し、エッチング液上にその表面張力により半導体基板が浮いた状態になる。エッチング液の量が2×(X/5)ml以上であれば、半導体基板の片面の全体をエッチング液と接触させることができる。又、エッチング液の量が3×(X/5)ml以下であれば、半導体基板の裏面にエッチング液が回り込み裏面を溶解することはない。又、半導体基板の厚みが限界厚み以下であれば、半導体基板をエッチング液上に浮かすことができ、半導体基板と支持容器が接触することはない。 After dropping the etching solution, a semiconductor substrate is placed on the etching solution. When the semiconductor substrate is placed, the etching solution is spread by the weight of the semiconductor substrate, the entire surface of the semiconductor substrate comes into contact with the etching solution, and the semiconductor substrate floats on the etching solution due to its surface tension. If the amount of the etching solution is 2 × (X / 5) 2 ml or more, the entire one surface of the semiconductor substrate can be brought into contact with the etching solution. Further, when the amount of the etching solution is 3 × (X / 5) 2 ml or less, the etching solution does not enter the back surface of the semiconductor substrate and dissolve the back surface. Moreover, if the thickness of a semiconductor substrate is below a limit thickness, a semiconductor substrate can be floated on etching liquid and a semiconductor substrate and a support container will not contact.

エッチング液上に分析対象の半導体基板を載せた後は、半導体基板表面のエッチング液への溶解に要する時間放置する。この放置は、好ましくは、不純物が含まれていると考えられる半導体基板の部分(通常、表面近傍)が全て溶解されるまで行われる。又は、半導体基板の所定の部分(表面からの所定の厚さ)のみを溶解して不純物量の定量により、他の部分における不純物量が推定できる場合は、当該所定の部分が溶解されるまでの時間放置される。   After the semiconductor substrate to be analyzed is placed on the etching solution, the semiconductor substrate surface is left for a time required for dissolution in the etching solution. This leaving is preferably carried out until all of the portion of the semiconductor substrate (usually near the surface) that is considered to contain impurities is dissolved. Alternatively, if only a predetermined part (a predetermined thickness from the surface) of the semiconductor substrate is dissolved and the amount of impurities in another part can be estimated by quantifying the amount of impurities, the process until the predetermined part is dissolved Left for hours.

放置後、半導体を溶解したエッチング液が回収される。エッチング液は全量回収される方が好ましい。そこで、例えば、半導体基板及び支持容器を超純水により洗浄し、その洗浄液全量を回収して、定量分析用の試料溶液とする。   After leaving, the etching solution in which the semiconductor is dissolved is collected. It is preferable to collect the entire amount of the etching solution. Therefore, for example, the semiconductor substrate and the support container are washed with ultrapure water, and the entire amount of the washing solution is collected to obtain a sample solution for quantitative analysis.

請求項3に記載の発明は、請求項1又は請求項2に半導体基板表面の不純物の回収方法を実施した後、回収されたエッチング液を超純水で希釈されてなる試料溶液中の不純物量を測定することを特徴とする半導体基板表面の不純物の定量分析方法である。   According to a third aspect of the present invention, the amount of impurities in a sample solution obtained by diluting the collected etching solution with ultrapure water after performing the method for collecting impurities on the surface of the semiconductor substrate according to the first or second aspect. This is a method for quantitatively analyzing impurities on the surface of a semiconductor substrate.

回収されたエッチング液とは、半導体を溶解したエッチング液及び支持容器及び半導体基板に付着しているエッチング液を超純水で洗浄したときの洗浄液をあわせたものである。この洗浄を充分行うことにより、半導体を溶解したエッチング液の全量を回収することができる。エッチング液の全量を回収した後、好ましくは一定体積に定容して試料溶液とする。定容は、例えば、回収したエッチング液の全量をメスフラスコ等に移した後、超純水で希釈して一定体積とし、震盪して均一にすることにより行われる。   The recovered etching solution is a combination of the etching solution in which the semiconductor is dissolved and the cleaning solution obtained when the etching solution adhering to the support container and the semiconductor substrate is washed with ultrapure water. By sufficiently performing this cleaning, the entire amount of the etching solution in which the semiconductor is dissolved can be recovered. After the entire amount of the etching solution is recovered, the sample solution is preferably fixed to a constant volume to obtain a sample solution. The constant volume is performed, for example, by transferring the entire amount of the collected etching solution to a volumetric flask or the like, then diluting with ultrapure water to make a constant volume, and shaking to make it uniform.

定容して得られた試料溶液は、定量分析に供せられ、その測定値から、不純物の含有量が計算される。不純物の含有量は、通常微量であるので、定量分析の方法としては、微量の定量を可能とするAAS、ICP−OES、ICP−MS等を好ましい例として挙げることができる。なお、回収されたエッチング液(洗浄液も含む)の全量が正確に把握できる場合は、定容を行わずに、回収されたエッチング液を超音波等により充分撹拌して均一にした後、前記の分析を行い、その測定値と回収されたエッチング液の量から、不純物の含有量を求めてもよい。   The sample solution obtained by constant volume is subjected to quantitative analysis, and the content of impurities is calculated from the measured value. Since the content of impurities is usually a trace amount, preferred examples of quantitative analysis include AAS, ICP-OES, ICP-MS and the like that enable a trace amount of quantification. In addition, when the total amount of the collected etching solution (including the cleaning solution) can be accurately grasped, the collected etching solution is sufficiently agitated by ultrasonic waves or the like without performing a constant volume, Analysis may be performed to determine the impurity content from the measured value and the amount of the recovered etching solution.

本発明の半導体基板表面の不純物の回収方法によれば、半導体基板以外から不純物を混入(コンタミ)させることなく、半導体基板表面の近傍にある不純物を定量分析用の試料溶液中に回収することができる。又、エッチング液に接触するのは、半導体基板の片面全体であり、一方、裏面等、当該片面以外の部分の接触はないので、接触面積を正確に把握できる。従って、本発明の回収方法により得られた試料溶液により、半導体基板表面近傍にある不純物を高い精度で定量分析することができる。   According to the method for recovering impurities on the surface of the semiconductor substrate of the present invention, impurities in the vicinity of the surface of the semiconductor substrate can be recovered in the sample solution for quantitative analysis without introducing (contamination) impurities from other than the semiconductor substrate. it can. In addition, the entire surface of the semiconductor substrate contacts the etching solution. On the other hand, the contact area can be accurately grasped because there is no contact on the other side of the semiconductor substrate other than the one surface. Therefore, impurities in the vicinity of the semiconductor substrate surface can be quantitatively analyzed with high accuracy using the sample solution obtained by the recovery method of the present invention.

本発明の半導体基板表面の不純物の回収方法の一例の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of an example of the recovery method of the impurity of the semiconductor substrate surface of this invention. 本発明の半導体基板表面の不純物の回収方法の一例の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of an example of the recovery method of the impurity of the semiconductor substrate surface of this invention. 本発明の半導体基板表面の不純物の回収方法の一例の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of an example of the recovery method of the impurity of the semiconductor substrate surface of this invention.

以下、本発明の実施の形態について図に基づき説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明の趣旨を損ねない範囲内において種々の変更を加えることが可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments. Various modifications can be made without departing from the spirit of the present invention.

図1は、本発明の半導体基板表面の不純物の回収方法の一例の一工程を模式的に示す断面図であり、支持容器にエッチング液の液滴が滴下された様子、及び当該液滴の上に載せようとしている半導体基板を表わす。図1中、1は平坦な底面1aと鍔1bを有する支持容器を表わし、2はエッチング液を表わす。又、3は、半導体基板を表わし、4は半導体基板3の保持手段である。保持手段4としては、真空ピペット等を挙げることができるが、粘着テープ等により作製された持ち手等でもよく、半導体基板3を保持できるものであれば特に限定されない。   FIG. 1 is a cross-sectional view schematically showing one step of an example of a method for collecting impurities on the surface of a semiconductor substrate of the present invention. Represents a semiconductor substrate to be mounted on the substrate. In FIG. 1, 1 represents a support container having a flat bottom surface 1a and a flange 1b, and 2 represents an etching solution. Reference numeral 3 represents a semiconductor substrate, and reference numeral 4 represents a holding means for the semiconductor substrate 3. The holding means 4 may be a vacuum pipette or the like, but may be a handle made of an adhesive tape or the like, and is not particularly limited as long as it can hold the semiconductor substrate 3.

エッチング液2は、ピペット等により、支持容器1の底面の中央部近傍に滴下され、図1に示すような液滴を形成する。半導体基板3は、保持手段4により保持されて、図中の矢印で示すように移動して、エッチング液2の液滴上に載せられる。   The etching solution 2 is dropped near the center of the bottom surface of the support container 1 by a pipette or the like to form droplets as shown in FIG. The semiconductor substrate 3 is held by the holding means 4, moves as indicated by an arrow in the figure, and is placed on the droplet of the etching solution 2.

図2は、半導体基板3がエッチング液2の液滴上に載せられたときの様子を示す。エッチング液2は半導体基板3の重量により広げられ、半導体基板3が、エッチング液2上に浮かんだ状態となっている。図2(a)は、エッチング液2の量が、半導体基板3の直径をXcmとしたとき、2×(X/5)ml以上、3×(X/2)ml以下であり、かつ支持容器1とエッチング液2の接触角が65°以上である場合を示す。図2(a)に示されているように、半導体基板3の片面3b(図中の下面)の全体がエッチング液2と接触しており、一方、他の表面3a(裏面、図中の上面)には、エッチング液2と接触する部分はない。 FIG. 2 shows a state when the semiconductor substrate 3 is placed on the droplet of the etching solution 2. The etching solution 2 is spread by the weight of the semiconductor substrate 3, and the semiconductor substrate 3 is in a state of floating on the etching solution 2. FIG. 2A shows that the amount of the etching solution 2 is 2 × (X / 5) 2 ml or more and 3 × (X / 2) 2 ml or less when the diameter of the semiconductor substrate 3 is Xcm. The case where the contact angle between the support container 1 and the etching solution 2 is 65 ° or more is shown. As shown in FIG. 2A, the entire one surface 3b (lower surface in the drawing) of the semiconductor substrate 3 is in contact with the etching solution 2, while the other surface 3a (back surface, upper surface in the drawing). ) Has no portion in contact with the etching solution 2.

エッチング液2の量が、半導体基板3の直径をXcmとしたとき、3×(X/2)mlを超える場合は、エッチング液2の量が多すぎ、図2(b)に示すように、半導体基板3の裏面3bもエッチング液2と接触し、正確な定量分析を可能とする試料溶液は得られない。又、エッチング液2の接触角が65°未満の場合は、エッチング液2の表面張力により半導体基板3をエッチング液2上に浮かすことができず、その結果、半導体基板3の裏面3aもエッチング液2と接触するようになる、あるいは、半導体基板3bが支持容器1aに接触することになり、正確な定量分析を可能とする試料溶液は得られない。 When the amount of the etching solution 2 exceeds 3 × (X / 2) 2 ml when the diameter of the semiconductor substrate 3 is Xcm, the amount of the etching solution 2 is too large, as shown in FIG. The back surface 3b of the semiconductor substrate 3 is also in contact with the etching solution 2 and a sample solution that enables accurate quantitative analysis cannot be obtained. When the contact angle of the etching solution 2 is less than 65 °, the semiconductor substrate 3 cannot be floated on the etching solution 2 due to the surface tension of the etching solution 2, and as a result, the back surface 3 a of the semiconductor substrate 3 is also etched. 2 or the semiconductor substrate 3b comes into contact with the support container 1a, and a sample solution that enables accurate quantitative analysis cannot be obtained.

エッチング液2の量が、半導体基板3の直径をXcmとしたとき、2×(X/2)ml未満の場合は、エッチング液2の量が少なすぎ、図2(c)に示すように、半導体基板3の片面3bの全面をエッチング液2と接触させることができず、正確な定量分析を可能とする試料溶液は得られない。 When the amount of the etching solution 2 is less than 2 × (X / 2) 2 ml when the diameter of the semiconductor substrate 3 is Xcm, the amount of the etching solution 2 is too small, as shown in FIG. The entire surface of one side 3b of the semiconductor substrate 3 cannot be brought into contact with the etching solution 2, and a sample solution that enables accurate quantitative analysis cannot be obtained.

図2(a)に示す状態に所定時間放置し、エッチング液2に半導体基板3の表面近傍を溶解させた後、半導体基板3はエッチング液2上から除去される。放置時間は、InPウエハを10倍希釈の希王水により常温で溶解する場合は、数分から数日であるが、溶解を促進するために本発明の趣旨を損ねない範囲で加熱してもよい。   2A, the semiconductor substrate 3 is removed from the etching solution 2 after being left for a predetermined time in the state shown in FIG. The standing time is several minutes to several days when the InP wafer is melted at room temperature with 10-fold diluted aqua regia, but it may be heated within a range that does not impair the spirit of the present invention in order to promote dissolution. .

エッチング液2上から除去される際、半導体基板3の片面3bにはエッチング液2が付着しているので、当該片面を超純水で洗浄し、洗浄後の洗浄液は、エッチング液2と合体される。図3は、半導体基板3の片面3bを超純水で洗浄する様子及びその洗浄液がエッチング液2と合体され、試料溶液原液5となる様子を模式的に示す断面図である。図中、6は超純水を表わし、図に示すように、超純水6は、半導体基板3の片面3bに付着するエッチング液2を洗浄し、洗浄液7となってエッチング液2と合体し試料溶液原液5を生成する。   When the etching solution 2 is removed from the top surface, the etching solution 2 adheres to the one surface 3b of the semiconductor substrate 3. Therefore, the one surface is washed with ultrapure water, and the washed cleaning solution is combined with the etching solution 2. The FIG. 3 is a cross-sectional view schematically showing how the one surface 3b of the semiconductor substrate 3 is cleaned with ultrapure water and how the cleaning solution is combined with the etching solution 2 to form the sample solution stock solution 5. In the figure, 6 represents ultrapure water, and as shown in the figure, the ultrapure water 6 cleans the etching solution 2 adhering to one side 3b of the semiconductor substrate 3 and becomes the cleaning solution 7 to be combined with the etching solution 2. A sample solution stock solution 5 is generated.

得られた試料溶液原液5は、メスフラスコ等の定容手段に移され、超純水を加えて所定の体積とし、均一溶液をすることにより、定量分析用の試料溶液が得られる。均一溶液をする方法としては、震盪等により撹拌する方法、超音波を照射する方法等を挙げることができる。このようにして得られた試料溶液を、AASやICP−OES、ICP−MS等により測定することにより、不純物の定量分析を行うことができる。   The obtained sample solution undiluted solution 5 is transferred to a constant volume means such as a volumetric flask, and ultrapure water is added to make a predetermined volume, thereby obtaining a sample solution for quantitative analysis. Examples of a method for forming a uniform solution include a method of stirring by shaking and the like, a method of irradiating ultrasonic waves, and the like. By measuring the sample solution thus obtained by AAS, ICP-OES, ICP-MS, etc., quantitative analysis of impurities can be performed.

本発明の方法により定量分析される不純物としては、Ca、Cr、Cu、Fe、Ni、Zn等を挙げることができる。   Examples of impurities quantitatively analyzed by the method of the present invention include Ca, Cr, Cu, Fe, Ni, and Zn.

[標準試料の作製]
直径2インチ(5cm)、厚み360μmのInPウエハの片面上にCa、Cr、Cu、Fe、Ni、Znをそれぞれ50μg溶解する標準溶液を加え、常温で1日乾燥して、片面がCa、Cr、Cu、Fe、Ni、Znのそれぞれ50μgで汚染されているInPウエハの標準試料を作製した。
[Preparation of standard sample]
A standard solution in which 50 μg of Ca, Cr, Cu, Fe, Ni, and Zn are dissolved on one side of an InP wafer having a diameter of 2 inches (5 cm) and a thickness of 360 μm is added and dried at room temperature for one day. A standard sample of InP wafer contaminated with 50 μg each of Cu, Fe, Ni, and Zn was prepared.

実施例1
底面が平坦で直径が約10cmのテフロン(登録商標)製シャーレ(支持容器:下記、エッチング液との接触角70°)を充分清浄にし、その中央部に、ピペットを用いて、37質量%塩酸と60質量%硝酸の質量比で3:1の混液を超純水で10倍に希釈したエッチング液を2.5ml滴下した。滴下により形成された液滴上に、前記の標準試料を、汚染された片面が液滴に接するように載せたところ、標準試料はエッチング液上に浮き、当該片面全体がエッチング液と接触した。一方、標準試料の裏面がエッチング液と接触することはなかった。
Example 1
A Teflon (registered trademark) petri dish with a flat bottom surface and a diameter of about 10 cm (support container: 70 ° contact angle with an etching solution below) is sufficiently cleaned, and a 37 mass% hydrochloric acid is pipetted at the center using a pipette. Then, 2.5 ml of an etching solution obtained by diluting a mixed solution of 3: 1 with a mass ratio of nitric acid and 60 mass% nitric acid 10 times with ultra pure water was dropped. When the above-mentioned standard sample was placed on the droplet formed by dripping so that the contaminated one side was in contact with the droplet, the standard sample floated on the etching solution, and the entire one side was in contact with the etching solution. On the other hand, the back surface of the standard sample was not in contact with the etching solution.

標準試料はエッチング液上に浮かした状態で、常温で1日放置した。その後、図3に示すように、標準試料をエッチング液上から移動し、当該片面を超純水で洗浄し、洗浄液をエッチング液と合体させた。このようにして得られた試料溶液原液の全量をメスフラスコに写し、超純水を加えて定容し、震盪させて均一にして試料溶液を得た。得られた試料溶液をICP−MSで測定し、標準試料の片面を汚染するCa、Cr、Cu、Fe、Ni、Znのそれぞれについて定量値M(μg)を得た。同様な操作を3回(N=3)行い、それぞれ定量値M(μg)を得た。   The standard sample was left on the etching solution for 1 day at room temperature. Thereafter, as shown in FIG. 3, the standard sample was moved from above the etching solution, the one surface was washed with ultrapure water, and the washing solution was combined with the etching solution. The total amount of the sample solution stock solution thus obtained was transferred to a volumetric flask, and ultrapure water was added to make a constant volume, and the mixture was shaken and homogenized to obtain a sample solution. The obtained sample solution was measured by ICP-MS, and a quantitative value M (μg) was obtained for each of Ca, Cr, Cu, Fe, Ni, and Zn that contaminates one side of the standard sample. The same operation was performed three times (N = 3) to obtain a quantitative value M (μg).

表1に、このようにして得られた定量値M(μg)の実際の汚染量(50μg)に対する割合(回収率):(M/50)×100(%)を、3回の操作及びCa、Cr、Cu、Fe、Ni、Znのそれぞれについて示す。表1に示されているように、3回の操作間のばらつきは小さいこと、いずれの汚染元素についても97%以上の回収率が得られており、本発明の方法の有効性が確認された。   Table 1 shows the ratio (recovery rate) of the quantitative value M (μg) thus obtained to the actual amount of contamination (50 μg) (recovery rate): (M / 50) × 100 (%) for three operations and Ca , Cr, Cu, Fe, Ni, Zn are shown. As shown in Table 1, the variation between the three operations was small, and a recovery rate of 97% or more was obtained for any contaminating element, confirming the effectiveness of the method of the present invention. .

Figure 2013115261
Figure 2013115261

実施例2
厚みが、それぞれ、300μm、500μm、1000μm、1050μm、1200μmである以外は、前記標準試料と同じInPウエハを作製し、実施例1と同様にしてエッチング液上に載せたところ、厚みが300μm、500μm、1000μmのInPウエハは、エッチング液上に浮いたが、厚みが1050μm、1200μmのInPウエハは、エッチング液上に浮かず、ウエハ底面がシャーレの底面と接触した。又、InPウエハの裏面(上面)もエッチング液と接触した。この結果よりInPウエハの場合、限界厚み(ウエハがエッチング液に浮く最大の厚み)は約1000〜1050μm間にあり、1000μmの厚みであれば本発明の方法が適用できることが示されている。
Example 2
Except for the thicknesses of 300 μm, 500 μm, 1000 μm, 1050 μm, and 1200 μm, respectively, the same InP wafer as that of the standard sample was prepared and placed on the etching solution in the same manner as in Example 1. The thickness was 300 μm and 500 μm. The InP wafer having a thickness of 1050 μm and 1200 μm did not float on the etching solution, and the bottom surface of the wafer was in contact with the bottom surface of the petri dish. Further, the back surface (upper surface) of the InP wafer was also in contact with the etching solution. From this result, in the case of an InP wafer, the limit thickness (the maximum thickness at which the wafer floats in the etching solution) is between about 1000 to 1050 μm, and it is shown that the method of the present invention can be applied if the thickness is 1000 μm.

実施例3
シャーレ(支持容器)の材質を、エッチング液(希釈王水)との接触角が40°、60°、90°、110°とした以外は実施例1と同様の標準試料を用い、同様にしてInPウエハ(標準試料)をエッチング液上に載せたところ、接触角が40°の場合及び60°の場合は、InPウエハ(標準試料)がエッチング液上に浮かず、ウエハ底面がシャーレの底面と接触した。一方、90°、110°の場合は、70°(実施例1)の場合と同様に、InPウエハ(標準試料)はエッチング液上に浮んだ。この結果より、本発明の方法を有効に実施するためには、支持容器とエッチング液との接触角は、65°程度以上とする必要があることが示されている。
Example 3
The same standard sample as in Example 1 was used except that the petri dish (support container) was made to have a contact angle of 40 °, 60 °, 90 °, and 110 ° with the etching solution (diluted aqua regia). When the InP wafer (standard sample) was placed on the etching solution, when the contact angle was 40 ° and 60 °, the InP wafer (standard sample) did not float on the etching solution, and the bottom surface of the wafer and the bottom surface of the petri dish Contacted. On the other hand, in the case of 90 ° and 110 °, the InP wafer (standard sample) floated on the etching solution as in the case of 70 ° (Example 1). This result shows that the contact angle between the support container and the etching solution needs to be about 65 ° or more in order to effectively carry out the method of the present invention.

実施例4
エッチング液量を、1.5ml、2.0ml、3.0ml、3.5mlとした以外は実施例1と同様の操作を行い、Cuについての回収率を求めた。その回収率及びエッチング液上にInPウエハ(標準試料)を載せたときの様子を表2に示す。
Example 4
The recovery rate for Cu was determined in the same manner as in Example 1 except that the amount of the etching solution was 1.5 ml, 2.0 ml, 3.0 ml, and 3.5 ml. Table 2 shows the recovery rate and how the InP wafer (standard sample) is placed on the etching solution.

Figure 2013115261
Figure 2013115261

実施例5
InPウエハとして直径が4インチ(10cm)のものを用いて実施例1の標準試料と同様にして試験用試料(半導体基板)を作製、直径15cmのシャーレ(支持容器)を用い、エッチング液量を、6ml、8ml、12ml、14mlとした以外は実施例1と同様の操作を行い、Cuについての回収率を求めた。その回収率及びエッチング液上にInPウエハ(標準試料)を載せたときの様子を表3に示す。
Example 5
A test sample (semiconductor substrate) was prepared in the same manner as the standard sample of Example 1 using an InP wafer having a diameter of 4 inches (10 cm), and a petri dish (supporting container) having a diameter of 15 cm was used. , 6 ml, 8 ml, 12 ml, and 14 ml were used in the same manner as in Example 1 to obtain the recovery rate for Cu. Table 3 shows the recovery rate and how the InP wafer (standard sample) is placed on the etching solution.

Figure 2013115261
Figure 2013115261

表2及び表3の結果より、W/(X/5)が、1.5の場合は、ウエハの片面全体がエッチング液と接触せず、不純物の回収率が低く、正確な定量分析が行えないことが示されている。一方、W/(X/5)が、1.5の場合は、ウエハの裏面もエッチング液と接触し、正確な定量分析が行えないことが示されている。一方、W/(X/5)が2〜3の範囲では、ウエハの片面全体がエッチング液と接触し、一方ウエハの裏面はエッチング液と接触しない。そしてCuの回収率も99%以上又は100%であり、エッチング液量がこの範囲であれば、本発明の方法が充分有効に適用できることが示されている。 From the results of Table 2 and Table 3, when W / (X / 5) 2 is 1.5, the entire surface of one side of the wafer is not in contact with the etching solution, the impurity recovery rate is low, and accurate quantitative analysis is possible. It has been shown that this is not possible. On the other hand, when W / (X / 5) 2 is 1.5, it is indicated that the back surface of the wafer is also in contact with the etching solution, and accurate quantitative analysis cannot be performed. On the other hand, when W / (X / 5) 2 is in the range of 2 to 3, the entire one surface of the wafer is in contact with the etching solution, while the back surface of the wafer is not in contact with the etching solution. The recovery rate of Cu is 99% or more or 100%, and it is shown that the method of the present invention can be applied sufficiently effectively if the amount of the etching solution is within this range.

1. 支持容器
2. エッチング液
3. 半導体基板
4. 保持手段
5. 試料溶液原液
6. 超純水
7. 洗浄液
1. 1. Support container 2. Etching solution 3. Semiconductor substrate 4. holding means 5. Sample solution stock solution 6. Ultrapure water Cleaning liquid

Claims (3)

平坦な底面を有する支持容器にエッチング液を添加し、その上に分析対象の半導体基板を載せて、半導体基板表面のエッチング液への溶解に要する時間放置後、当該エッチング液を回収する方法であって、半導体基板の直径をXcmとしたとき、支持容器に添加されるエッチング液の量が、2×(X/5)ml以上、3×(X/2)ml以下であり、かつ支持容器とエッチング液の接触角が65°以上であることを特徴とする半導体基板表面の不純物の回収方法。 In this method, an etching solution is added to a support container having a flat bottom surface, a semiconductor substrate to be analyzed is placed on the support vessel, and the etching solution is recovered after leaving the semiconductor substrate surface for a time required for dissolution in the etching solution. Then, when the diameter of the semiconductor substrate is Xcm, the amount of the etching solution added to the support container is 2 × (X / 5) 2 ml or more and 3 × (X / 2) 2 ml or less, and the support A method for recovering impurities on the surface of a semiconductor substrate, wherein the contact angle between the container and the etching solution is 65 ° or more. 前記エッチング液が、希王水を超純水で希釈してなり、前記希王水:超純水が体積比で、1:1〜49であることを特徴とする請求項1に記載の半導体基板表面の不純物の回収方法。   2. The semiconductor according to claim 1, wherein the etching solution is obtained by diluting dilute aqua regia with ultrapure water, and the dilute aqua regia: ultra pure water is 1: 1 to 49 in a volume ratio. A method for collecting impurities on the substrate surface. 請求項1又は請求項2に半導体基板表面の不純物の回収方法を実施した後、回収されたエッチング液を超純水で希釈されてなる試料溶液中の不純物量を測定することを特徴とする半導体基板表面の不純物の定量分析方法。   3. The semiconductor according to claim 1, wherein after performing the method for collecting impurities on the surface of the semiconductor substrate, the amount of impurities in a sample solution obtained by diluting the collected etching solution with ultrapure water is measured. Quantitative analysis method for impurities on substrate surface.
JP2011260675A 2011-11-29 2011-11-29 Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity Pending JP2013115261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260675A JP2013115261A (en) 2011-11-29 2011-11-29 Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260675A JP2013115261A (en) 2011-11-29 2011-11-29 Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Publications (1)

Publication Number Publication Date
JP2013115261A true JP2013115261A (en) 2013-06-10

Family

ID=48710527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260675A Pending JP2013115261A (en) 2011-11-29 2011-11-29 Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Country Status (1)

Country Link
JP (1) JP2013115261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119332A (en) * 2014-12-18 2016-06-30 信越半導体株式会社 Manufacturing method of recovery instrument, recovery method of metal impurity, and analysis method of metal impurity
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119332A (en) * 2014-12-18 2016-06-30 信越半導体株式会社 Manufacturing method of recovery instrument, recovery method of metal impurity, and analysis method of metal impurity
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination

Similar Documents

Publication Publication Date Title
US9721817B2 (en) Apparatus for measuring impurities on wafer and method of measuring impurities on wafer
JP3116871B2 (en) Pretreatment method and apparatus for semiconductor substrate surface analysis
KR102594202B1 (en) Method of determining a concentration of a material not dissolved by silicon etchants contaminating a product
TW201527731A (en) Method for determining a concentration of metal impurities contaminating a silicon product
JP2013115261A (en) Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity
JP2882377B2 (en) Metal recovery container and metal recovery method
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
CN111198116A (en) Target detection method
JP4450117B2 (en) Water quality evaluation method for silicon substrate cleaning ultrapure water
JP2018021852A (en) Method for measuring concentration of metal impurity in polycrystalline silicon
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP5083089B2 (en) Method for analyzing metal impurities in the surface layer of silicon material
JP2001077158A (en) Analyzing method of metallic contamination on surface of silicon wafer
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP3890047B2 (en) Method for analyzing metal in quartz and jig for analysis
JPH02272359A (en) Method for measuring quantity of impurity on wafer surface
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JPH085526A (en) Jig for sampling solution sample
JP2008311597A (en) Method for analyzing impurity in depth direction of silicon wafer
JPH1137992A (en) Method for analyzing surface layer of silicon wafer
JP2009519449A (en) Measuring method of surface filling amount of quartz glass member
JPH07130808A (en) Analysis of impurity in wafer surface
JP5152860B2 (en) Surface analysis method for quartz glass products