JP2001077158A - Analyzing method of metallic contamination on surface of silicon wafer - Google Patents

Analyzing method of metallic contamination on surface of silicon wafer

Info

Publication number
JP2001077158A
JP2001077158A JP24769199A JP24769199A JP2001077158A JP 2001077158 A JP2001077158 A JP 2001077158A JP 24769199 A JP24769199 A JP 24769199A JP 24769199 A JP24769199 A JP 24769199A JP 2001077158 A JP2001077158 A JP 2001077158A
Authority
JP
Japan
Prior art keywords
silicon wafer
aqua regia
chemical solution
metal
wafer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24769199A
Other languages
Japanese (ja)
Other versions
JP3439395B2 (en
Inventor
Shizuo Oguro
志津夫 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24769199A priority Critical patent/JP3439395B2/en
Publication of JP2001077158A publication Critical patent/JP2001077158A/en
Application granted granted Critical
Publication of JP3439395B2 publication Critical patent/JP3439395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve accuracy in analysis of metallic contamination, like platinum on a surface of a silicon wafer. SOLUTION: A surface of a wafer 1 is dipped in a diluted aqua regia 3 made of aqua regia diluted in pure water for a given time, and the diluted aqua regia 3 is recollected. The aqua regia 3 is vaporized to dried, solidified, and resolved in a nitric acid. Then, the metallic contamination on the surface of the silicon wafer 1 is analyzed by inductively coupled plasma mass spectrometry (ICP-MS) or atom absorption spectrometry(AAS).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンウェーハの
金属汚染分析方法に関し、特にシリコンウェーハ表面の
白金族元素を含む重金属の分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing metal contamination on a silicon wafer, and more particularly to a method for analyzing heavy metals containing a platinum group element on the surface of a silicon wafer.

【0002】[0002]

【従来の技術】電子工業分野では、半導体デバイスの微
細化、高密度化に伴い、材料や製造プロセスに起因する
汚染の低減が重要な課題となっている。特に、重金属汚
染は半導体デバイスの性能を著しく劣化させるため極力
排除しなければならない。そして、この問題を解決する
ために金属汚染検出のためのシリコンウェーハ表面の超
高感度分析が必要となっている。
2. Description of the Related Art In the field of the electronics industry, as semiconductor devices become finer and higher in density, reduction of contamination due to materials and manufacturing processes has become an important issue. In particular, heavy metal contamination must be eliminated as much as possible because it significantly degrades the performance of semiconductor devices. In order to solve this problem, ultra-high sensitivity analysis of the silicon wafer surface for detecting metal contamination is required.

【0003】従来シリコンウェーハ表面の金属汚染分析
には弗酸等の酸(例えば特開平11―37992号公報
等参照)で分解して回収する方法が採用されていたが、
シリコンよりもイオン化傾向の小さい金(Au),白金
(Pt),銅(Cu)等の金属が半導体装置に使用され
るに従い、弗酸(HF)等の酸では、シリコンよりもイ
オン化傾向の小さい金属の分解回収が困難になってき
た。
Conventionally, a method of decomposing and recovering with an acid such as hydrofluoric acid (see, for example, Japanese Patent Application Laid-Open No. 11-37992) has been adopted for analyzing metal contamination on the surface of a silicon wafer.
As metals such as gold (Au), platinum (Pt), and copper (Cu) having a lower ionization tendency than silicon are used in semiconductor devices, acids such as hydrofluoric acid (HF) have a lower ionization tendency than silicon. Decomposition and recovery of metals has become difficult.

【0004】シリコンウェーハ表面のシリコンよりもイ
オン化傾向の小さい金属による金属汚染分析の分解回収
液には酸化力の大きな王水が使用され(例えば、特開平
5―218164号公報,特開平5―226443号公
報等参照)、効果を上げている。
[0004] Aqua regia, which has a large oxidizing power, is used as a decomposition and recovery solution for analyzing metal contamination with a metal having a lower ionization tendency than silicon on the surface of a silicon wafer (for example, JP-A-5-218164, JP-A-5-226443). Issue, etc.), and the effect is improved.

【0005】[0005]

【発明が解決しようとする課題】上記のように、シリコ
ンウェーハ表面のシリコンよりもイオン化傾向の小さい
金属の分析用の回収液として王水が用いられているが、
この王水を使用した分析方法には次のような問題点があ
った。 (1)図3に示すように、王水4の自然反応による発泡
が著しいため、気泡5がシリコン(Si)ウェーハ1の
表面にとりつき、その箇所における金属の回収率が低下
する。さらに、気泡5の滞留時間はSiウェーハ1面内
でばらつきがあるため、面内の回収が不均一なものとな
る。このため、Siウェーハ1に付着した金属不純物の
分析に関し、その分析精度は十分とは言えない。 (2)シリコンよりもイオン化傾向の小さく王水におい
ても溶解しづらい白金族元素(Pt,Ir,Ru等)に
おいては、放置時間を長時間にする必要があるが、王水
の場合、その溶液の劣化が著しく、何度にも分けて回収
操作する必要があり、回収時間と回収液量の増加による
測定精度の低下をもたらしている。
As described above, aqua regia is used as a recovery liquid for analyzing metals having a lower ionization tendency than silicon on the surface of a silicon wafer.
The analysis method using the aqua regia has the following problems. (1) As shown in FIG. 3, since the foaming due to the natural reaction of the aqua regia 4 is remarkable, the bubbles 5 stick to the surface of the silicon (Si) wafer 1, and the metal recovery rate at that location decreases. Furthermore, since the residence time of the bubbles 5 varies within the surface of the Si wafer 1, the collection within the surface becomes uneven. Therefore, the analysis accuracy of the metal impurities attached to the Si wafer 1 is not sufficient. (2) Platinum group elements (Pt, Ir, Ru, etc.), which have a lower ionization tendency than silicon and are difficult to dissolve even in aqua regia, require a long standing time. Is significantly deteriorated, and it is necessary to perform the collecting operation over and over again, resulting in a decrease in measurement accuracy due to an increase in the collecting time and the amount of the collected liquid.

【0006】本発明の主な目的の一つは、ウェーハ表面
の汚染金属である白金族元素を含む重金属の精度の高
く、回収時間の短時間化された分析方法を提供すること
にある。
One of the main objects of the present invention is to provide a method for analyzing a heavy metal containing a platinum group element, which is a contaminant metal on a wafer surface, with high accuracy and a short collection time.

【0007】[0007]

【課題を解決するための手段】本発明は、シリコンウェ
ーハ表面を薬液に接液させて該薬液中に該シリコンウェ
ーハ表面の金属汚染物質を溶解して回収し、前記薬液中
の前記金属汚染物質濃度を定量分析するシリコンウェー
ハ表面の金属汚染分析方法において、前記薬液として純
水で希釈した王水を使用することを特徴として構成され
る。
SUMMARY OF THE INVENTION According to the present invention, a metal contaminant on a silicon wafer surface is dissolved and recovered in the chemical solution by contacting the surface of the silicon wafer with a chemical solution. A metal contamination analysis method for a silicon wafer surface for quantitatively analyzing a concentration, characterized in that aqua regia diluted with pure water is used as the chemical solution.

【0008】本発明の上記構成において、前純水で希釈
した王水の各成分の37重量%塩酸(HCl),70重
量%硝酸(HNO3),純水の割合は体積比で3:1:
x(ただし、xは2〜8の正数)で表される。純水の割
合を示すxの値が2よりも小さくなると薬液の自然分解
と発泡が起きやすくなり、またxが8よりも大きくなる
と白金族元素金属の溶解速度が低下するのでxは上記の
範囲に保たれる。
In the above-mentioned structure of the present invention, the ratio of 37% by weight hydrochloric acid (HCl), 70% by weight nitric acid (HNO 3 ) and pure water of each component of the aqua regia diluted with pure water is 3: 1 by volume. :
x (where x is a positive number from 2 to 8). When the value of x indicating the ratio of pure water is smaller than 2, spontaneous decomposition and foaming of the chemical solution are likely to occur, and when x is larger than 8, the dissolution rate of the platinum group metal decreases. Is kept.

【0009】前記薬液に前記シリコンウェーハ表面を接
液させる際に、前記薬液を加温することによりシリコン
ウェーハ表面の汚染金属の溶解を促進でき、回収時間を
短縮できる。加温の好ましい温度は50〜80℃であ
る。温度が80℃を超えると薬液の自然分解と発泡が起
きやすくなり、また温度が50℃より低くなると白金族
元素金属の溶解速度が低下し、回収時間が増加する。
When the surface of the silicon wafer is brought into contact with the chemical solution, by heating the chemical solution, the dissolution of the contaminated metal on the surface of the silicon wafer can be promoted, and the recovery time can be reduced. The preferred temperature for the heating is 50 to 80 ° C. If the temperature exceeds 80 ° C., spontaneous decomposition and foaming of the chemical solution tend to occur, and if the temperature is lower than 50 ° C., the dissolution rate of the platinum group metal decreases, and the recovery time increases.

【0010】また、本発明では、前記薬液に前記シリコ
ンウェーハ表面を接液させる際に、前記薬液または前記
シリコンウェーハを超音波振動させることによりさらに
シリコンウェーハ表面の汚染金属の溶解速度を高める効
果がある。
Further, in the present invention, when the surface of the silicon wafer is brought into contact with the chemical, the chemical or the silicon wafer is ultrasonically vibrated to further increase the dissolution rate of the contaminant metal on the silicon wafer surface. is there.

【0011】このように回収液に希王水を用いること
は、回収液の自然反応による発泡を抑え、気泡によるウ
ェーハ面内の回収率の不均一化を抑えるという役目を果
たす。さらに、加熱昇温することは、溶解しづらい元素
においても、その溶解速度を増加し、短時間での回収が
可能となる。
As described above, the use of dilute aqua regia as a recovery liquid has a role of suppressing foaming due to a natural reaction of the recovery liquid and suppressing unevenness of the recovery rate within the wafer surface due to bubbles. Further, heating and raising the temperature increases the dissolution rate of even the elements that are difficult to dissolve, and enables recovery in a short time.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態のシリ
コンウェーハ表面の金属汚染分析方法について図面を参
照して説明する。
Next, a method for analyzing metal contamination on a silicon wafer surface according to an embodiment of the present invention will be described with reference to the drawings.

【0013】図1は本発明の第1の実施の形態のシリコ
ンウェーハ表面の金属汚染分析方法を説明するための装
置の断面図である。まず、分析するシリコンウェーハ1
がちょうど収まる大きさのフッ素樹脂製等のトレー2に
37重量%塩酸(HCl),70重量%硝酸(HN
3)と純水(H2O)の体積比3:1:4で混合した希
釈王水溶液(希王水)3を適容量を入れ、この希王水3
に表面が接液するようにシリコン(Si)ウェーハ1を
静かに載せる。例えば、6インチウェーハの分析では5
ml、8インチウェーハでは10ml程度の希王水3ト
レー2に入れる。
FIG. 1 is a sectional view of an apparatus for explaining a method for analyzing metal contamination on a silicon wafer surface according to a first embodiment of the present invention. First, the silicon wafer 1 to be analyzed
37% hydrochloric acid (HCl), 70% nitric acid (HN)
O 3 ) and pure water (H 2 O) mixed at a volume ratio of 3: 1: 4, and an appropriate volume of diluted aqua regia (aqueous aqua regia) 3 was added thereto.
The silicon (Si) wafer 1 is gently placed so that the surface comes into contact with the liquid. For example, in the analysis of a 6-inch wafer, 5
For an 8-inch or 8-inch wafer, about 10 ml is placed in a tray 2 of rare aqua regia.

【0014】希王水3にシリコンウェーハ1を約5分間
接液後、シリコンウェーハ1を取り除き、希王水3を回
収する。
After the silicon wafer 1 is indirectly applied to the rare aqua regia 3 for about 5 minutes, the silicon wafer 1 is removed and the rare aqua regia 3 is recovered.

【0015】次に、この回収した希王水の溶液をホット
プレート等用いて蒸発乾固して液体成分を蒸発させ、そ
の残渣を、適当な定容積の溶液に再溶解し、誘導結合型
プラズマ質量分析(ICP−MS:Inductive
ly Coupled Plasma−Mass Sp
ectrometry)や原子吸光分析(AAS:At
omic Absorption Spectrome
try)等で分析する。
Next, the recovered dilute aqua regia solution is evaporated to dryness using a hot plate or the like to evaporate the liquid component, and the residue is redissolved in an appropriate constant volume solution to obtain an inductively coupled plasma. Mass spectrometry (ICP-MS: Inductive)
ly Coupled Plasma-Mass Sp
astrometry) and atomic absorption spectrometry (AAS: At)
omic Absorption Spectrome
try)).

【0016】以下に、実際にシリコンウェーハ表面の金
属汚染分析に適用した例を示す。
Hereinafter, an example in which the present invention is applied to the analysis of metal contamination on the surface of a silicon wafer will be described.

【0017】8インチSiウェーハ表面に白金(Pt)
を1×1012atoms/cm2程度等しく付着させた
白金汚染Siウェーハ試料を複数枚準備した。本試料を
図1に示すように、HCl(37重量%):HNO
3(70重量%):H2O=3:1:4の割合で混合した
希王水をトレー内に10ml投入し、その上にウェーハ
の分析する面を下にして静かに載せる。その状態で5分
間放置後、ウェーハを取り除き、残った希王水を回収し
た。
Platinum (Pt) on the surface of an 8-inch Si wafer
, A plurality of platinum-contaminated Si wafer samples having approximately 1 × 10 12 atoms / cm 2 attached thereto were prepared. As shown in FIG. 1, this sample was prepared using HCl (37% by weight): HNO
3 (70% by weight): 10 ml of rare aqua regia mixed in a ratio of H 2 O = 3: 1: 4 is poured into the tray, and gently placed on the tray with the surface to be analyzed facing down. After standing for 5 minutes in that state, the wafer was removed, and the remaining rare water was recovered.

【0018】従来例として、回収操作時に使用する王水
を希釈せず、つまり、37重量%HCl:70重量%H
NO3:H2O=3:1:0の割合(体積比)の濃王水を
用いて同様の回収操作も行った。これらの回収操作後、
ホットプレートを用いて蒸発乾固し、1重量%HNO3
の0.5mlで定容積に再溶解した後、その溶液をIC
P−MSで分析した。
As a conventional example, aqua regia used in the recovery operation is not diluted, that is, 37% by weight of HCl: 70% by weight of H
The same recovery operation was performed using concentrated aqua regia in the ratio (volume ratio) of NO 3 : H 2 O = 3: 1: 0. After these recovery operations,
Evaporate to dryness using a hot plate and add 1% by weight HNO 3
After re-dissolving to a constant volume with 0.5 ml of
Analyzed by P-MS.

【0019】その結果、本発明の方法では、平均値=
1.18×1012atoms/cm2、ばらつき3σ=
0.10×1012atoms/cm2(試料数10枚)
の白金が検出された。一方、従来の方法では、平均値=
1.02×1012atoms/cm2、3σ=0.45
×1012atoms/cm2(試料数10枚)であっ
た。
As a result, in the method of the present invention, the average value =
1.18 × 10 12 atoms / cm 2 , variation 3σ =
0.10 × 10 12 atoms / cm 2 (10 samples)
Of platinum was detected. On the other hand, in the conventional method, the average value =
1.02 × 10 12 atoms / cm 2 , 3σ = 0.45
× 10 12 atoms / cm 2 (10 samples).

【0020】この様に、本発明の方法を用いることによ
り、測定ばらつきが少なく安定した結果が得られること
がわかる。さらに、平均値を比較することにより、従来
の方法に比べて回収量も向上していることがわかる。
As described above, it can be seen that the use of the method of the present invention can provide stable results with little measurement variation. Further, by comparing the average values, it can be seen that the recovery amount is improved as compared with the conventional method.

【0021】本発明では、金属不純物を溶解回収するた
めの回収液に希王水を用いているため、回収液の自然反
応による発泡が少なくなる。従って、希釈していない王
水(濃王水)を用いた場合のような、気泡による金属不
純物の回収率のウェーハ面内不均一化が抑えられるとい
う効果がもたらされ、さらに、回収率も向上する。
In the present invention, since dilute aqua regia is used as the recovery liquid for dissolving and recovering the metal impurities, foaming due to the natural reaction of the recovery liquid is reduced. Therefore, it is possible to suppress the non-uniformity in the recovery rate of metal impurities due to bubbles in the wafer surface as in the case where undiluted aqua regia (concentrated aqua regia) is used. improves.

【0022】上記実施の形態では、希王水作成時の純水
(H2O)の割合xを4としたが、x=2〜8の値であ
れば同様の効果が得られる。また、回収液量や回収時の
放置時間も上記の実施の形態の値に限定されるものでは
ない。
In the above embodiment, the ratio x of the pure water (H 2 O) at the time of making the rare water was set to 4, but the same effect can be obtained if x = 2 to 8. Further, the amount of the collected liquid and the standing time at the time of collection are not limited to the values in the above-described embodiment.

【0023】さらに、再溶解用の溶液は純水、王水、H
NO3、HCl、HF、HFとH2 2の混液等があげら
れるが、これらに限定されるものではない。
Further, the solution for re-dissolution is pure water, aqua regia, H
NOThree, HCl, HF, HF and HTwoO TwoA mixture of
However, the present invention is not limited to these.

【0024】次に本発明の第2の実施の形態のシリコン
ウェーハ表面の金属汚染分析方法について説明する。上
記の第1の実施の形態では、希王水は加温していなかっ
たが、本実施の形態では、希王水を昇温加熱した。図2
は加温した希王水でシリコンウェーハ表面を処理する本
発明の第2の実施の形態のシリコンウェーハ表面の金属
汚染分析方法を説明するための装置の断面図である。本
図において、図1の構成全体をホットプレート6を用い
て昇温加熱している。
Next, a method for analyzing metal contamination on the surface of a silicon wafer according to a second embodiment of the present invention will be described. In the above-described first embodiment, the rare aqua regia was not heated, but in the present embodiment, the rare aqua regia was heated and heated. FIG.
FIG. 4 is a cross-sectional view of an apparatus for explaining a method for analyzing metal contamination on a silicon wafer surface according to a second embodiment of the present invention, in which the surface of the silicon wafer is treated with heated dilute aqua regia. In this figure, the entire structure of FIG. 1 is heated and heated using a hot plate 6.

【0025】以下に、実際にシリコンウェーハ表面の金
属汚染分析に適用した例を示す。
Hereinafter, an example in which the present invention is applied to metal contamination analysis on the surface of a silicon wafer will be described.

【0026】上記の第1の実施形態と同様に、8インチ
Siウェーハ表面にPtを1×10 12atoms/cm
2程度等しく付着させた試料を複数枚準備し、本発明の
方法による表面汚染量の分析例を示す。
As in the first embodiment, 8 inches
1 × 10 Pt on Si wafer surface 12atoms / cm
TwoPrepare a plurality of samples with the same degree of adhesion, and
The analysis example of the amount of surface contamination by the method is shown.

【0027】本試料のPt汚染分析の前処理時における
回収操作の際、図2に示すように、HCl(37重量
%),HNO3(70重量%),H2O(純水)を体積比
で3:1:4の割合で混合して調製した希王水をトレー
内に10ml投入し、トレーごと75℃に加熱昇温す
る。その上にウェーハの分析する面を下にして静かに載
せ、その状態で一定時間放置後、ウェーハを取り除き、
残った希王水を回収、分析する。回収から分析までの工
程は上記の第1の実施の形態と同様である。
As shown in FIG. 2, during the recovery operation during the pretreatment of Pt contamination analysis of this sample, HCl (37% by weight), HNO 3 (70% by weight), and H 2 O (pure water) 10 ml of diluted aqua regia prepared by mixing at a ratio of 3: 1: 4 is charged into the tray, and the temperature of the entire tray is raised to 75 ° C. Place the wafer gently on it with the surface to be analyzed facing down, leave it in that state for a certain period of time, remove the wafer,
The remaining rare water is collected and analyzed. The steps from collection to analysis are the same as in the first embodiment.

【0028】放置時間2分で回収処理を行った場合で
も、平均値=1.16×1012atoms/cm2、ば
らつき3σ=0.12×1012atoms/cm2(試
料数10枚)検出され、5分間放置の前実施例と大差な
い結果が得られた。
Even when the collection process is performed for 2 minutes, the average value is detected as 1.16 × 10 12 atoms / cm 2 and the variation 3σ is 0.12 × 10 12 atoms / cm 2 (10 samples). The result was not much different from that of the previous example in which the sample was left for 5 minutes.

【0029】本実施の形態では、金属不純物の溶解回収
時に昇温しているため、溶解速度が上昇するため、回収
にかける時間を短縮することができる。
In the present embodiment, since the temperature is raised at the time of dissolving and recovering the metal impurities, the dissolving speed increases, so that the time required for the recovery can be reduced.

【0030】上記第2の実施の形態では、回収時の昇温
温度を75℃としたが、50〜80℃でも同様の効果が
得られる。また、加熱方法はホットプレートによるもの
に限定されるものではない。また、希王水作成時の純水
(H2O)の割合xや回収液量、再溶解用の溶液も、上
記第1の実施の形態と同様な条件が適用できる。
In the second embodiment, the temperature is raised to 75 ° C. at the time of recovery. However, the same effect can be obtained at 50 to 80 ° C. Further, the heating method is not limited to a method using a hot plate. The same conditions as in the first embodiment can be applied to the ratio x of the pure water (H 2 O), the amount of the recovered liquid, and the solution for re-dissolution at the time of the preparation of the dilute aqua regia.

【0031】上記の実施の形態では、シリコンウェーハ
表面の汚染金属として白金について説明したが、白金の
他のIr,Os,Ru,RhやPdの白金族元素や金や
銅等の重金属の分析にも適用できる。また上記の実施の
形態において、シリコンウェーハまたは希王水を超音波
振動させることにより、汚染金属の回収時間を短縮する
ことができる。
In the above embodiment, platinum was described as a contaminant metal on the surface of a silicon wafer. However, platinum, a platinum group element such as Ir, Os, Ru, Rh and Pd, and heavy metals such as gold and copper are also analyzed. Can also be applied. In the above-described embodiment, the time for collecting the contaminated metal can be reduced by ultrasonically oscillating the silicon wafer or the rare aqua regia.

【0032】[0032]

【発明の効果】以上説明したように、本発明ではシリコ
ンウェーハ表面の汚染金属を希釈した王水により回収し
て分析することにより、次のような効果を得ることがで
きる。 (1)シリコンウェーハ表面から汚染金属を回収する際
に、回収液が発泡しないために、シリコン表面から均一
に汚染金属を回収でき、汚染金属の分析精度が向上す
る。 (2)シリコンウェーハ表面の白金族金属の汚染濃度の
分析精度が向上する。 (3)分析するシリコンウェーハと回収液の入った装置
全体を加熱することにより、回収時間の短縮が可能であ
る。
As described above, according to the present invention, the following effects can be obtained by collecting and analyzing the contaminated metal on the silicon wafer surface with diluted aqua regia. (1) When the contaminated metal is collected from the silicon wafer surface, the collected liquid does not foam, so that the contaminated metal can be uniformly collected from the silicon surface, and the analysis accuracy of the contaminated metal is improved. (2) The accuracy of analyzing the concentration of platinum group metal contamination on the silicon wafer surface is improved. (3) By heating the entire apparatus containing the silicon wafer to be analyzed and the recovery liquid, the recovery time can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態のシリコンウェーハ
表面の金属汚染分析方法を説明するための装置の断面図
である。
FIG. 1 is a sectional view of an apparatus for explaining a method for analyzing metal contamination on a silicon wafer surface according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態のシリコンウェーハ
表面の金属汚染分析方法を説明するための装置の断面図
である。
FIG. 2 is a cross-sectional view of an apparatus for explaining a method for analyzing metal contamination on a silicon wafer surface according to a second embodiment of the present invention.

【図3】従来の王水を使用してシリコンウェーハ表面の
汚染金属を回収する分析方法を説明するための装置の断
面図である。
FIG. 3 is a cross-sectional view of an apparatus for explaining a conventional analysis method for recovering a contaminated metal on a silicon wafer surface using aqua regia.

【符号の説明】[Explanation of symbols]

1 シリコンウェーハ 2 トレー 3 希王水 4 王水 5 気泡 6 ホットプレート Reference Signs List 1 silicon wafer 2 tray 3 dilute aqua regia 4 aqua regia 5 bubble 6 hot plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウェーハ表面を薬液に接液させ
て該薬液中に該シリコンウェーハ表面の金属汚染物質を
溶解して回収し、前記薬液中の前記金属汚染物質濃度を
定量分析するシリコンウェーハ表面の金属汚染分析方法
において、前記薬液として純水で希釈した王水を使用す
ることを特徴とするシリコンウェーハ表面の金属汚染分
析方法。
1. A silicon wafer surface for bringing a silicon wafer surface into contact with a chemical solution, dissolving and collecting a metal contaminant on the silicon wafer surface in the chemical solution, and quantitatively analyzing a concentration of the metal contaminant in the chemical solution. The method for analyzing metal contamination of a silicon wafer according to claim 1, wherein aqua regia diluted with pure water is used as said chemical solution.
【請求項2】 前記薬液の希釈王水中の37重量%塩酸
(HCl),70重量%硝酸(HNO3),純水の体積
比が3:1:x(ただし、xは2〜8の正数)で表され
る請求項1記載のシリコンウェーハ表面の金属汚染分析
方法。
2. A volume ratio of 37% by weight hydrochloric acid (HCl), 70% by weight nitric acid (HNO 3 ) in pure aqua regia and pure water of 3: 1: x (where x is a positive 2 to 8). 2. The method for analyzing metal contamination on the surface of a silicon wafer according to claim 1, wherein the method is expressed by:
【請求項3】 前記薬液に前記シリコンウェーハ表面を
接液させる際に、前記薬液を加温することを特徴とする
請求項1記載のシリコンウェーハ表面の金属汚染分析方
法。
3. The method according to claim 1, wherein the chemical is heated when the surface of the silicon wafer is brought into contact with the chemical.
【請求項4】 前記薬液の前記加温温度が50〜80℃
である請求項3記載のシリコンウェーハ表面の金属汚染
分析方法。
4. The heating temperature of the chemical solution is 50 to 80 ° C.
4. The method for analyzing metal contamination on a silicon wafer surface according to claim 3, wherein:
【請求項5】 前記シリコンウェーハ表面の前記金属汚
物質が白金族元素金属である請求項1記載のシリコンウ
ェーハ表面の金属汚染分析方法。
5. The method according to claim 1, wherein the metallic contaminant on the silicon wafer surface is a platinum group metal.
【請求項6】 前記シリコンウェーハ表面の前記金属汚
物質が金および銅である請求項1記載のシリコンウェー
ハ表面の金属汚染分析方法。
6. The method according to claim 1, wherein the metallic contaminants on the silicon wafer surface are gold and copper.
【請求項7】 前記薬液に前記シリコンウェーハ表面を
接液させる際に、前記薬液または前記シリコンウェーハ
を超音波振動させることを特徴する請求項1記載のシリ
コンウェーハ表面の金属汚染分析方法。
7. The method according to claim 1, wherein when the silicon wafer surface is brought into contact with the chemical solution, the chemical solution or the silicon wafer is ultrasonically vibrated.
JP24769199A 1999-09-01 1999-09-01 Metal contamination analysis method for silicon wafer surface Expired - Fee Related JP3439395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24769199A JP3439395B2 (en) 1999-09-01 1999-09-01 Metal contamination analysis method for silicon wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24769199A JP3439395B2 (en) 1999-09-01 1999-09-01 Metal contamination analysis method for silicon wafer surface

Publications (2)

Publication Number Publication Date
JP2001077158A true JP2001077158A (en) 2001-03-23
JP3439395B2 JP3439395B2 (en) 2003-08-25

Family

ID=17167219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24769199A Expired - Fee Related JP3439395B2 (en) 1999-09-01 1999-09-01 Metal contamination analysis method for silicon wafer surface

Country Status (1)

Country Link
JP (1) JP3439395B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036135A1 (en) * 2003-10-08 2005-04-21 Tokyo Electron Limited Inspection method and inspection assisting device of quartz product in semiconductor processing system
WO2005052552A1 (en) * 2003-11-26 2005-06-09 Mitsubishi Denki Kabushiki Kaisha Method of analyzing minute quantity of content
US8021623B2 (en) 2003-10-08 2011-09-20 Tokyo Electron Limited Examination method and examination assistant device for quartz product of semiconductor processing apparatus
WO2016039032A1 (en) * 2014-09-11 2016-03-17 株式会社 イアス Silicon substrate analysis method
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination
WO2019212624A1 (en) * 2018-05-04 2019-11-07 Applied Materials, Inc. Nanoparticle measurement for processing chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106841364A (en) * 2015-12-03 2017-06-13 有研半导体材料有限公司 A kind of VPD metal recovery liquid and its compound method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036135A1 (en) * 2003-10-08 2005-04-21 Tokyo Electron Limited Inspection method and inspection assisting device of quartz product in semiconductor processing system
US8021623B2 (en) 2003-10-08 2011-09-20 Tokyo Electron Limited Examination method and examination assistant device for quartz product of semiconductor processing apparatus
WO2005052552A1 (en) * 2003-11-26 2005-06-09 Mitsubishi Denki Kabushiki Kaisha Method of analyzing minute quantity of content
WO2005052551A1 (en) * 2003-11-26 2005-06-09 Mitsubishi Denki Kabushiki Kaisha Method of analyzing trace component
EP1688730A1 (en) * 2003-11-26 2006-08-09 Mitsubishi Denki Kabushiki Kaisha Method of analyzing minute quantity of content
EP1688730A4 (en) * 2003-11-26 2010-04-14 Mitsubishi Electric Corp Method of analyzing minute quantity of content
US8796033B2 (en) 2003-11-26 2014-08-05 Mitsubishi Denki Kabushiki Kaisha Method of determining minute amounts of additives in polymers
JP2016057230A (en) * 2014-09-11 2016-04-21 株式会社 イアス Analytic method of silicon substrate
WO2016039032A1 (en) * 2014-09-11 2016-03-17 株式会社 イアス Silicon substrate analysis method
US9658203B2 (en) 2015-01-15 2017-05-23 Kabushiki Kaisha Toshiba Metal collection solution and method of analyzing substrate contamination
WO2019212624A1 (en) * 2018-05-04 2019-11-07 Applied Materials, Inc. Nanoparticle measurement for processing chamber
US10636642B2 (en) * 2018-05-04 2020-04-28 Applied Materials, Inc. Nanoparticle measurement for processing chamber
TWI708051B (en) * 2018-05-04 2020-10-21 美商應用材料股份有限公司 Nanoparticle measurement for processing chamber
CN111954801A (en) * 2018-05-04 2020-11-17 应用材料公司 Nanoparticle measurement for process chamber
KR20200131353A (en) * 2018-05-04 2020-11-23 어플라이드 머티어리얼스, 인코포레이티드 Nanoparticle measurement for processing chambers
JP2021522505A (en) * 2018-05-04 2021-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Nanoparticle measurement for processing chamber
JP7228600B2 (en) 2018-05-04 2023-02-24 アプライド マテリアルズ インコーポレイテッド Nanoparticle measurement for process chambers
KR102519011B1 (en) * 2018-05-04 2023-04-05 어플라이드 머티어리얼스, 인코포레이티드 Nanoparticle Measurement for Processing Chambers
CN111954801B (en) * 2018-05-04 2023-12-01 应用材料公司 Nanoparticle measurement for a processing chamber

Also Published As

Publication number Publication date
JP3439395B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
JPH1095696A (en) Recovery of metal surface contaminant from silicon
JP3439395B2 (en) Metal contamination analysis method for silicon wafer surface
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP3358604B2 (en) Platinum group impurity recovery liquid and its recovery method
JP2003133381A (en) Method and apparatus for etching silicon wafer and impurity analyzing method
TW201617616A (en) Silicon substrate analysis method
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP3436123B2 (en) Method for analyzing metal impurities on silicon wafer surface and method for pretreatment thereof
JP4078980B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP2843600B2 (en) Method for measuring the amount of impurities on the wafer surface
JP2950310B2 (en) Method for analyzing metal impurities on semiconductor substrate surface and substrate
JP3286215B2 (en) Surface analysis method for silicon wafer
JP5083089B2 (en) Method for analyzing metal impurities in the surface layer of silicon material
JP4166883B2 (en) Electrolytic cleaning method for sintered silicon carbide
JP3051787B2 (en) Silicon wafer surface treatment method
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP2906755B2 (en) Chemical purity evaluation method
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JPH0539532A (en) Method for recovering cu on semiconductor wafer surface
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP3292355B2 (en) Sampling cup and manufacturing method thereof
JP2013115261A (en) Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

LAPS Cancellation because of no payment of annual fees