JP5152860B2 - Surface analysis method for quartz glass products - Google Patents

Surface analysis method for quartz glass products Download PDF

Info

Publication number
JP5152860B2
JP5152860B2 JP2008254725A JP2008254725A JP5152860B2 JP 5152860 B2 JP5152860 B2 JP 5152860B2 JP 2008254725 A JP2008254725 A JP 2008254725A JP 2008254725 A JP2008254725 A JP 2008254725A JP 5152860 B2 JP5152860 B2 JP 5152860B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass product
amount
solution
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008254725A
Other languages
Japanese (ja)
Other versions
JP2010085252A (en
Inventor
智明 高田
雅尚 東南
敏彦 荒川
秀次 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2008254725A priority Critical patent/JP5152860B2/en
Publication of JP2010085252A publication Critical patent/JP2010085252A/en
Application granted granted Critical
Publication of JP5152860B2 publication Critical patent/JP5152860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、石英ガラス素材から最終製品に至る石英ガラス製品の表面または内部(以下、表層という)に含有される金属等の分析方法に関する。   The present invention relates to a method for analyzing a metal or the like contained in the surface or inside (hereinafter referred to as a surface layer) of a quartz glass product from a quartz glass material to a final product.

石英ガラス製品、例えば、半導体ウエハ基板の熱処理に用いられる炉心管、反応管など、マスク基板などの液晶用材料の熱処理や半導体材料、特に、ウエハの気相蒸着、酸化・拡散、CVDやプラズマ処理等の熱処理装置にはベルジャーやチャンバー、炉心管、反応管等として用途に応じて様々な形状の石英ガラス管が使用されている。   Quartz glass products, such as furnace core tubes and reaction tubes used for heat treatment of semiconductor wafer substrates, heat treatment of liquid crystal materials such as mask substrates, and semiconductor materials, in particular, vapor deposition, oxidation / diffusion, CVD and plasma treatment of wafers In various heat treatment apparatuses such as bell jars, chambers, reactor core tubes, and reaction tubes, quartz glass tubes of various shapes are used depending on the application.

石英ガラス管などの石英ガラス製品中には金属等が含まれており、その金属等は石英ガラス素材に含有されているもの、あるいは石英ガラス素材の加工段階で混入したものと考えられている。このように金属等が含有される石英ガラス製品を用いて例えば半導体ウエハのような被処理物に対し熱処理等の各種の処理をおこなうと、石英ガラス製品から被処理物に金属等が転写する可能性がある。この金属等の汚染が被処理物の仕様に影響するため、石英ガラス製品の表層の金属等の濃度を予め調べ、これらの被処理物の仕様を保証する必要がある。   A quartz glass product such as a quartz glass tube contains a metal or the like, and it is considered that the metal or the like is contained in the quartz glass material or mixed in the processing stage of the quartz glass material. When various treatments such as heat treatment are performed on a workpiece such as a semiconductor wafer using a quartz glass product containing metal or the like in this way, the metal or the like can be transferred from the quartz glass product to the workpiece. There is sex. Since the contamination of the metal or the like affects the specifications of the objects to be processed, it is necessary to check the concentration of the metal or the like on the surface layer of the quartz glass product in advance to guarantee the specifications of these objects to be processed.

また、石英ガラス製品が素材の加工段階で金属等の汚染に曝される場合、汚染原因となる工程を把握することが重要であり、素材から最終製品までの加工工程における石英ガラス製品の表層に含有される金属等の定量が必要である。   In addition, when quartz glass products are exposed to metal contamination at the material processing stage, it is important to understand the process that causes the contamination, and the surface layer of the quartz glass product in the processing process from the material to the final product is important. Quantification of contained metals and the like is necessary.

しかしながら、分析対象となる石英ガラス製品の中にはサイズが大きいものや、面形状が複雑で被分析面が平面、曲面、または段差のある面等様々な形状を有するものがある。
従来は前記のような石英ガラス製品を分析可能なサイズの試料片に切り出し分析していたため、金属等の分析のために完成品または半完成品の石英ガラス製品を消費しており、無駄があった。また、製品から試料片を切り出す際に金属等の汚染を被る危険性も挙げられる。更に、石英ガラス製品は非常に高価なものが多く、石英ガラス製品を非破壊で分析することが切望されており、石英ガラス管などの石英ガラス製品中に含有される金属を定量する分析方法が特許文献1(特開2005−114582号公報)等で提案されている。
However, some quartz glass products to be analyzed include those having a large size and those having various shapes such as a complicated surface shape and a surface to be analyzed which is a flat surface, a curved surface, or a stepped surface.
Conventionally, quartz glass products as described above were cut and analyzed into sample pieces of a size that can be analyzed, and therefore, finished or semi-finished quartz glass products are consumed for the analysis of metals and the like. It was. In addition, there is a risk of being contaminated with metal or the like when cutting a sample piece from a product. Further, many quartz glass products are very expensive, and it is desired to analyze the quartz glass products in a non-destructive manner. There is an analysis method for quantifying metals contained in quartz glass products such as quartz glass tubes. This is proposed in Patent Document 1 (Japanese Patent Laid-Open No. 2005-114582).

特開2005−114582号公報JP 2005-114582 A

特許文献1に開示された方法では、石英ガラス管の被分析面の形状に対応させた環状部材(治具)を作製し、被分析面と治具との間に隙間ができないように密接載置することによりエッチング液の貯留空間を形成しているが、この方法ではエッチング液の保持治具である環状部材と石英ガラス製品の被分析面との接触面が完全にシールされていないため、形成した貯留空間からエッチング液が漏れ易く、エッチング液を保持することができないといった問題があった。   In the method disclosed in Patent Document 1, an annular member (jig) corresponding to the shape of the surface to be analyzed of the quartz glass tube is produced, and is closely mounted so that there is no gap between the surface to be analyzed and the jig. However, in this method, the contact surface between the annular member, which is a holding jig for the etching solution, and the surface to be analyzed of the quartz glass product is not completely sealed. There has been a problem that the etching solution easily leaks from the formed storage space and the etching solution cannot be held.

本発明はこのような事情に基づいてなされたものであり、石英ガラス素材から最終製品に至る石英ガラス製品の表層に含有される金属等をエッチング液または抽出液(以下、エッチング液等という)に接触させて非破壊的方法で分析する方法において、エッチング液等が貯留空間から漏出しないようにすることである。   The present invention has been made based on such circumstances, and the metal or the like contained in the surface layer of the quartz glass product from the quartz glass material to the final product is used as an etching solution or an extraction solution (hereinafter referred to as an etching solution). In the method of contacting and analyzing by a non-destructive method, it is to prevent the etchant from leaking out of the storage space.

本発明者らは、エッチング液等の貯留空間を形成するための部材と石英ガラス製品の被分析面との接触面をシールする方法を見出すべく、鋭意検討を重ねた結果、エッチング液等を保持する部材を石英ガラス製品の被分析面に溶着させることにより液が漏れない貯留空間を形成し、石英ガラス製品の表層に含有される金属等が分析できるようにしたものである。   As a result of intensive investigations to find a method for sealing a contact surface between a member for forming a storage space for an etching solution and the analysis surface of the quartz glass product, the inventors have retained the etching solution and the like. The member to be welded to the surface to be analyzed of the quartz glass product forms a storage space where the liquid does not leak, and the metal contained in the surface layer of the quartz glass product can be analyzed.

エッチング液等の貯留空間を形成するために対象の石英ガラス製品表面に溶着する部材の形状は特に限定されないが、図1に示すように環状のものが好ましく、また、部材の材質は、石英ガラス表面に溶着しエッチング液等の貯留空間を形成することができ、エッチング液等に侵されない材料が好ましい。また、この部材には含有される金属不純物の少ない材料が好ましく、特に限定されないが、金属不純物濃度がppbレベルまたはそれ以下のものを使用するのが好ましい。更に、使用前に部材を洗浄し、エッチング液等との接触中に部材からの金属溶出分が検出されないものを使用することが好ましい。   The shape of the member welded to the surface of the target quartz glass product in order to form a storage space for the etching solution or the like is not particularly limited, but an annular shape is preferable as shown in FIG. 1, and the material of the member is quartz glass. A material that can be deposited on the surface to form a storage space for an etching solution or the like and is not affected by the etching solution or the like is preferable. In addition, a material containing less metal impurities is preferable for the member, and although not particularly limited, it is preferable to use a material having a metal impurity concentration of ppb level or lower. Furthermore, it is preferable to clean the member before use and use a member in which metal elution from the member is not detected during contact with the etching solution or the like.

前記の条件を兼ね備えた材料として例えば熱可塑性樹脂が挙げられるがこれに限定されるものではない。熱可塑性樹脂として、フッ素樹脂、ポリエチレン樹脂、ポリプロピレン樹脂が好ましく、比較的融点の低い低密度ポリエチレン樹脂が更に好ましい。   Examples of the material having the above conditions include, but are not limited to, thermoplastic resins. As the thermoplastic resin, a fluororesin, a polyethylene resin and a polypropylene resin are preferable, and a low density polyethylene resin having a relatively low melting point is more preferable.

エッチング液は、石英ガラスをエッチングする液であれば特に限定されないが、例えばフッ化水素酸単独、またはフッ化水素酸と他の酸水溶液との混合液が挙げられる。また、エッチング液の代わりに石英ガラスは溶解しないが目的成分は溶解する抽出液を用いることができる。分析用途には石英ガラスの表面に付着した成分の分析が挙げられるが、その場合、石英ガラスを溶解する必要がないのでエッチング液の代わりに目的成分を溶解する液体、例えば超純水などの抽出液を選択する。   The etching solution is not particularly limited as long as it is a solution for etching quartz glass, and examples thereof include hydrofluoric acid alone or a mixed solution of hydrofluoric acid and another aqueous acid solution. Further, instead of the etching solution, an extract solution that does not dissolve quartz glass but dissolves the target component can be used. Analytical applications include analysis of components adhering to the surface of quartz glass. In that case, it is not necessary to dissolve quartz glass, so extraction of a liquid that dissolves the target component instead of an etching solution, such as ultrapure water Select the solution.

部材を石英ガラス表面に溶着するという操作は、部材をその融点以上に加熱溶融し石英ガラス表面に接合して一体化することを指す。接合温度及び加熱保持時間は、材質及び形状により異なるが、樹脂の融点以上に石英ガラスを加熱し、樹脂の形状が保持できる時間内で加熱する。部材の加熱方法としては、ラバーヒーターによる加熱方法が、石英ガラス製品全体を覆うことができるので、均一加熱することができる。
溶着が不十分であると液漏れが生じるため、超純水を空間内に注入して液漏れの有無によって溶着が完全であることを確認する。
The operation of welding the member to the surface of the quartz glass indicates that the member is heated and melted to a temperature equal to or higher than its melting point and bonded to the surface of the quartz glass to be integrated. The bonding temperature and the heating and holding time vary depending on the material and shape, but the quartz glass is heated to a temperature equal to or higher than the melting point of the resin, and is heated within a time during which the shape of the resin can be held. As a method for heating the member, since the heating method using a rubber heater can cover the entire quartz glass product, uniform heating can be performed.
Insufficient welding causes liquid leakage, so ultra-pure water is injected into the space and it is confirmed that the welding is complete depending on whether there is liquid leakage.

石英ガラス製品は、石英ガラス素材から最終製品までの各工程における半製品をも含むものである。また、石英ガラス製品の被分析面の形状については、部材が溶着可能な面であれば特に限定されるものではなく、例えば図2に示す平面状20、曲面21、または段差22などを挙げることができる。本願による加熱溶着法により、こうした曲面、段差面をも含む被分析面形状であっても分析が可能となる。
石英ガラス管の内面表層における金属等の量を分析する場合は、図3に示すように、石英ガラス管3の被分析面にポリエチレン樹脂製のリング状の部材10を載置し、ホットプレート4によって加熱して溶融させて表面に溶着一体化してエッチング液等の貯留空間を形成する。
The quartz glass product includes a semi-finished product in each process from the quartz glass material to the final product. Further, the shape of the surface to be analyzed of the quartz glass product is not particularly limited as long as the member can be welded. For example, the planar shape 20, the curved surface 21, or the step 22 shown in FIG. Can do. By the heat welding method according to the present application, it is possible to analyze even an analysis target surface shape including such a curved surface and a step surface.
When analyzing the amount of metal or the like on the inner surface of the quartz glass tube, a ring-shaped member 10 made of polyethylene resin is placed on the surface to be analyzed of the quartz glass tube 3 as shown in FIG. To form a storage space for an etching solution or the like by fusing and integrating with the surface.

本発明の石英ガラス製品の金属分析方法は、部材を石英ガラス製品の被分析面に溶着し、エッチング液の貯留空間を形成する工程、この貯留空間にエッチング液を供給して被分析面にエッチング液を一定時間接触し溶解液を得る工程、エッチングした石英ガラス量を求める工程と、溶解液を加熱濃縮する工程、前工程で得た濃縮残渣に回収液を添加し該濃縮残渣を溶解する工程、回収液中に含有される金属量を定量する工程からなるものである。   The metal analysis method for a quartz glass product according to the present invention includes a step of welding a member to a surface to be analyzed of a quartz glass product to form a storage space for an etching solution, and supplying an etching solution to the storage space to etch the surface to be analyzed. A step of contacting the solution for a certain period of time to obtain a solution, a step of obtaining the amount of etched quartz glass, a step of concentrating the solution by heating, a step of adding the recovered solution to the concentrated residue obtained in the previous step and dissolving the concentrated residue The method comprises quantifying the amount of metal contained in the recovered liquid.

被分析面にエッチング液を接触する時間は、予め石英ガラステストピースなどを用いて実測したエッチング速度に基づいて、目的のエッチング深さに対応する時間接触させるのが好ましい。エッチングする面及び深さを制御することで、石英ガラス製品の被分析位置を3次元で選択することが可能である。   The time for contacting the etching solution with the surface to be analyzed is preferably contacted for a time corresponding to the target etching depth based on an etching rate measured in advance using a quartz glass test piece or the like. By controlling the etching surface and depth, the analysis position of the quartz glass product can be selected in three dimensions.

エッチングした石英ガラス量を求める方法として、石英ガラス製品の被分析面をエッチング液にて溶解した液から一部採取し、そのケイ素量を原子吸光法または誘導結合プラズマ発光分析法にて定量して石英ガラス量に換算する方法が挙げられる。あるいは、エッチング前後の石英ガラス製品の重量差によってエッチングした石英ガラス量を求めてもよい。   As a method for determining the amount of etched quartz glass, a portion of the surface to be analyzed of the quartz glass product is taken from the solution dissolved in the etching solution, and the amount of silicon is quantified by atomic absorption spectrometry or inductively coupled plasma emission spectrometry. The method of converting into the amount of quartz glass is mentioned. Or you may obtain | require the amount of quartz glass etched by the weight difference of the quartz glass product before and behind an etching.

濃縮残渣を溶解する回収液として、濃縮残渣の目的金属成分を溶解することができれば特に限定されないが、無機酸単独、または複数の無機酸の混合液を使用するのが好ましく、希硝酸を使用するのが更に好ましい。   The recovery liquid for dissolving the concentrated residue is not particularly limited as long as the target metal component of the concentrated residue can be dissolved. However, it is preferable to use an inorganic acid alone or a mixed liquid of a plurality of inorganic acids, and dilute nitric acid is used. Is more preferable.

回収液中に含有される金属量を分析する装置として、原子吸光分析装置、誘導結合プラズマ発光分析装置、または誘導結合プラズマ質量分析装置が挙げられる。定量した石英ガラスの量と金属の量から、石英ガラス製品の被分析位置の金属濃度を算出する。   Examples of an apparatus for analyzing the amount of metal contained in the recovered liquid include an atomic absorption spectrometer, an inductively coupled plasma emission spectrometer, and an inductively coupled plasma mass spectrometer. From the quantified amount of quartz glass and the amount of metal, the metal concentration at the analysis position of the quartz glass product is calculated.

本発明により、石英ガラス管などの曲面の分析面を有する石英ガラス製品の表面に漏れの生じないエッチング液等の貯留空間を形成することができるため、石英ガラス製品の表層に含有される金属等の濃度を非破壊で正確に分析することが可能となった。また、エッチング液の代わりに石英ガラスは溶解しないが目的成分は溶解する抽出液を用いることにより、石英ガラスの試料最表面に付着した成分の分析が可能となった。   According to the present invention, it is possible to form a storage space for an etchant or the like that does not leak on the surface of a quartz glass product having a curved analysis surface such as a quartz glass tube. It has become possible to accurately analyze the concentration of non-destructive. In addition, by using an extract that does not dissolve quartz glass but dissolves the target component in place of the etching solution, it becomes possible to analyze the component adhering to the outermost surface of the sample of quartz glass.

次に、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited at all by these Examples.

実施例1
表面を洗浄した直径150mmの高純度の透明合成石英ガラスウエハを準備した。内径60mmの低密度ポリエチレン容器を輪切りに切断し、ウエハとの接触面側をウエハ表面形状に合わせ切断してポリエチレン製の環状部材を作製した。この環状部材をフッ化水素酸と硝酸との混酸に1日以上全面浸漬させた後、超純水で洗浄した。洗浄した環状部材をウエハの片面中央部に載置し、ホットプレートで加熱溶着してエッチング液の貯留空間を形成した。
エッチング液の濃度と温度、及び石英ガラスの材質と表面粗さによってエッチング速度が変わってくる。このため予め諸条件におけるエッチング速度を測定しておき、所定のエッチング深さとなるように条件を設定する。
形成した貯留空間にフッ化水素酸を注いで貯留し、石英ガラスの被分析面と所定時間接触させて深さ1μm相当を溶解した。この溶解液から試料を一部採取し、誘導結合プラズマ発光分析法にて溶解した石英ガラス量を定量した。また、残りの溶解液を蒸発乾固後、蒸発残渣を希硝酸で溶解し回収液を得た。また、この回収液中の金属量を誘導結合プラズマ質量分析法により定量した。同試験を3回繰り返し実施した結果を表1に示す。分析した全ての元素の定量値が測定装置の定量下限値以下であることが判明した。なお、測定装置の定量下限値は標準溶液のブランクを10回測定し、その定量値の10σとした。(σは定量値の標準偏差である。)
Example 1
A high-purity transparent synthetic quartz glass wafer having a diameter of 150 mm with a cleaned surface was prepared. A low-density polyethylene container having an inner diameter of 60 mm was cut into round pieces, and the contact surface side with the wafer was cut according to the wafer surface shape to produce a polyethylene annular member. The entire annular member was immersed in a mixed acid of hydrofluoric acid and nitric acid for one day or more, and then washed with ultrapure water. The cleaned annular member was placed on the center of one side of the wafer and heated and welded with a hot plate to form an etching solution storage space.
The etching rate varies depending on the concentration and temperature of the etching solution and the material and surface roughness of the quartz glass. For this reason, the etching rate under various conditions is measured in advance, and the conditions are set so as to obtain a predetermined etching depth.
Hydrofluoric acid was poured and stored in the formed storage space, and contacted with the surface to be analyzed of quartz glass for a predetermined time to dissolve a depth equivalent to 1 μm. A part of the sample was taken from this solution, and the amount of quartz glass dissolved by inductively coupled plasma emission spectrometry was quantified. Further, the remaining solution was evaporated to dryness, and the evaporation residue was dissolved with dilute nitric acid to obtain a recovered solution. Further, the amount of metal in the recovered liquid was quantified by inductively coupled plasma mass spectrometry. Table 1 shows the results of repeating the test three times. It was found that the quantitative values of all the analyzed elements were below the lower limit of quantification of the measuring device. Note that the lower limit of quantification of the measuring device was measured 10 times for a blank of the standard solution, and the quantified value was 10σ. (σ is the standard deviation of the quantitative value.)

Figure 0005152860
Figure 0005152860

実施例2
直径150mmの高純度合成石英ガラスウエハの片面中央部に、表2に記載の各金属元素0.5ngを含む硝酸液を滴下した後、清浄な空気で乾燥し汚染試料を作製した。この汚染試料を用いて実施例1と同様の方法で金属量を計測した。測定値から算出した回収率[(定量値/添加量)×100]を表2に示す。表2から明らかなように、添加した全ての金属元素がほぼ100%回収されている。
Example 2
A nitric acid solution containing 0.5 ng of each metal element shown in Table 2 was dropped onto the center of one surface of a high-purity synthetic quartz glass wafer having a diameter of 150 mm, and then dried with clean air to prepare a contaminated sample. Using this contaminated sample, the amount of metal was measured in the same manner as in Example 1. Table 2 shows the recovery rate [(quantitative value / added amount) × 100] calculated from the measured values. As is apparent from Table 2, almost 100% of all added metal elements are recovered.

Figure 0005152860
Figure 0005152860

比較例1
ポリエチレン製の環状部材10を被分析面に溶着せず手で押し付けた他は実施例1と同様に試験した。被分析面にエッチング液を一定時間接触する工程でエッチング液が漏れたため金属の定量ができなかった。
Comparative Example 1
A test was conducted in the same manner as in Example 1 except that the polyethylene annular member 10 was pressed by hand without being welded to the surface to be analyzed. The amount of metal could not be determined because the etchant leaked in the process of contacting the etchant with the surface to be analyzed for a certain time.

実施例3
表面を洗浄した150mm角の溶融石英平板ガラスの片面(分析面)をフッ化水素酸に一定時間浸漬させることにより1μm相当を溶解した。この溶解液から一部採取し、誘導結合プラズマ発光分析法にて溶解した石英ガラス量を定量した。また、残りの溶解液を蒸発乾固後、蒸発残渣を希硝酸で溶解し回収液を得た。この回収液中の金属量を誘導結合プラズマ質量分析法により定量した。定量した金属量を石英ガラス量で除することにより、溶融石英平板ガラス表層中の金属濃度を算出した。
Example 3
One surface (analytical surface) of a 150 mm square fused quartz flat glass whose surface was washed was immersed in hydrofluoric acid for a certain period of time to dissolve 1 μm equivalent. A portion of this dissolved solution was sampled and the amount of quartz glass dissolved by inductively coupled plasma optical emission spectrometry was quantified. Further, the remaining solution was evaporated to dryness, and the evaporation residue was dissolved with dilute nitric acid to obtain a recovered solution. The amount of metal in the recovered liquid was quantified by inductively coupled plasma mass spectrometry. The metal concentration in the surface layer of the fused silica flat glass was calculated by dividing the determined amount of metal by the amount of quartz glass.

同試料を超純水にて洗浄後、同試料同分析面に対し実施例1と同様の方法で金属量を計測した。定量した金属量を石英ガラス量で除することにより、金属濃度を算出した。
従来の分析方法と本発明に係る分析方法との差異を表3に示す。
表3に示すように従来の分析方法と同等の分析値が得られており、本発明に係る分析方法により精度良く分析できることが確認された。
After washing the sample with ultrapure water, the amount of metal was measured on the same analysis surface of the sample by the same method as in Example 1. The metal concentration was calculated by dividing the determined amount of metal by the amount of quartz glass.
Table 3 shows the difference between the conventional analysis method and the analysis method according to the present invention.
As shown in Table 3, analysis values equivalent to those of the conventional analysis method were obtained, and it was confirmed that the analysis method according to the present invention can be analyzed with high accuracy.

Figure 0005152860
Figure 0005152860

実施例4
表面を洗浄したφ200×300mmの石英ガラス管3の内面に対し実施例1と同様に試験した(n=3)。定量した金属量を石英ガラス量で除して、金属濃度を算出した。得られた定量値を表4に示した。
被分析面が曲面であっても非破壊で含有金属量を分析できることが実証でき、また測定した4元素全てが定量的に精度良く分析できることが判明した。
Example 4
The inner surface of the quartz glass tube 3 having a φ200 × 300 mm whose surface was cleaned was tested in the same manner as in Example 1 (n = 3). The metal concentration was calculated by dividing the determined amount of metal by the amount of quartz glass. The obtained quantitative values are shown in Table 4.
It was proved that even if the surface to be analyzed is a curved surface, the amount of contained metal can be analyzed non-destructively, and all four elements measured can be analyzed quantitatively with high accuracy.

Figure 0005152860
Figure 0005152860

エッチング液等の貯留空間を形成するための部材の斜視図と断面図。The perspective view and sectional drawing of the member for forming storage spaces, such as etching liquid. 石英ガラス製品の表面の形状例。Example of surface shape of quartz glass product. 部材を石英ガラス管に載置する例を示す斜視図と断面図。The perspective view and sectional drawing which show the example which mounts a member in a quartz glass tube.

符号の説明Explanation of symbols

10 環状部材
20 平面状石英ガラス製品
21 曲面状石英ガラス製品
22 段差を有する石英ガラス製品
3 石英ガラス管
4 ホットプレート
10 annular member 20 flat quartz glass product 21 curved quartz glass product 22 quartz glass product 3 having a step 3 quartz glass tube 4 hot plate

Claims (6)

石英ガラス製品の被分析面にエッチング液または抽出液の貯留空間を形成する熱可塑性樹脂材料部材を石英ガラス製品の表面に設置し、ラバーヒーターを石英ガラス製品に密着させて加熱し、熱可塑性樹脂材料部材を石英ガラス製品に溶着させることを特徴とする石英ガラス製品の表層分析方法。 A thermoplastic resin material member that forms a storage space for the etching solution or extract on the surface to be analyzed of the quartz glass product is placed on the surface of the quartz glass product, and a rubber heater is brought into close contact with the quartz glass product to heat it. A method for analyzing a surface layer of a quartz glass product, comprising welding a material member to the quartz glass product. 請求項1において、貯留空間内に超純水を注いで液漏れがないことを確認した後、エッチング液または抽出液を注ぐことを特徴とする石英ガラス製品の表層分析方法。 2. The method for analyzing a surface layer of a quartz glass product according to claim 1, wherein after the ultrapure water is poured into the storage space and it is confirmed that there is no liquid leakage, the etching liquid or the extraction liquid is poured. 請求項1または2において、熱可塑性樹脂がフッ素樹脂、ポリエチレン樹脂、またはポリプロピレン樹脂のいずれかであることを特徴とする石英ガラス製品の表層分析方法。 3. The method for analyzing a surface layer of a quartz glass product according to claim 1, wherein the thermoplastic resin is any one of a fluororesin, a polyethylene resin, and a polypropylene resin. 請求項1〜3のいずれかにおいて、石英ガラス製品に形成した貯留空間にエッチング液を注いで一定時間接触させて溶解液を得る工程、エッチングした石英ガラス量を求める工程、溶解液を加熱濃縮する工程、前工程で得た濃縮残渣に回収液を添加して濃縮残渣を溶解する工程、回収液中に含有される金属量を求める工程からなる石英ガラス製品の表層分析方法。 4. The method according to any one of claims 1 to 3, wherein a step of pouring an etching solution into a storage space formed in a quartz glass product and bringing the solution into contact for a certain time to obtain a solution, a step of obtaining an amount of etched quartz glass, and heating and concentrating the solution A method for analyzing a surface layer of a quartz glass product comprising a step, a step of adding a recovered liquid to the concentrated residue obtained in the previous step to dissolve the concentrated residue, and a step of determining the amount of metal contained in the recovered liquid. 請求項4において、回収液中に含有される金属量を求める工程が、原子吸光分析法、誘導結合プラズマ発光分析法、または誘導結合プラズマ質量分析法のいずれかにより行われることを特徴とする石英ガラス製品の表層分析方法。 5. The quartz according to claim 4, wherein the step of obtaining the amount of metal contained in the recovered liquid is performed by any of atomic absorption spectrometry, inductively coupled plasma emission spectrometry, or inductively coupled plasma mass spectrometry. Surface analysis method for glass products. 請求項5において、エッチングした石英ガラス量を求める工程が、エッチング溶解液中の石英ガラス量を原子吸光法、または誘導結合プラズマ発光分析法によるか、もしくは、エッチング前後の石英ガラス製品の重量差を求めるかのいずれかによりおこなうものである石英ガラス製品の表層分析方法。 6. The process of obtaining the amount of etched quartz glass according to claim 5, wherein the amount of quartz glass in the etching solution is determined by atomic absorption or inductively coupled plasma emission spectrometry, or the weight difference between the quartz glass products before and after etching. A method for analyzing the surface layer of a quartz glass product, which is carried out according to any of the demands.
JP2008254725A 2008-09-30 2008-09-30 Surface analysis method for quartz glass products Active JP5152860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254725A JP5152860B2 (en) 2008-09-30 2008-09-30 Surface analysis method for quartz glass products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254725A JP5152860B2 (en) 2008-09-30 2008-09-30 Surface analysis method for quartz glass products

Publications (2)

Publication Number Publication Date
JP2010085252A JP2010085252A (en) 2010-04-15
JP5152860B2 true JP5152860B2 (en) 2013-02-27

Family

ID=42249352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254725A Active JP5152860B2 (en) 2008-09-30 2008-09-30 Surface analysis method for quartz glass products

Country Status (1)

Country Link
JP (1) JP5152860B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103304A3 (en) * 1999-11-29 2003-06-25 Becton, Dickinson and Company Self-venting reagent vessel and method of delivering a reagent to an analyzing instrument or other apparatus
JP4151879B2 (en) * 2002-02-21 2008-09-17 日東電工株式会社 Chip filter and manufacturing method thereof
JP3890047B2 (en) * 2003-10-08 2007-03-07 東京エレクトロン株式会社 Method for analyzing metal in quartz and jig for analysis
TW200643396A (en) * 2005-03-14 2006-12-16 Nipro Corp Specimen material collection liquid container

Also Published As

Publication number Publication date
JP2010085252A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4992246B2 (en) Method for evaluating Cu in silicon wafer
JP2000077381A (en) Etching method, etching device, and analysis method
US7601538B2 (en) Method for analyzing impurity
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP5152860B2 (en) Surface analysis method for quartz glass products
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2006214877A (en) Vapor phase decomposition device, sample pretreatment device using the same, and x-ray fluorescence analytical system
JP4073138B2 (en) Method for analyzing metals contained in quartz
JP5083089B2 (en) Method for analyzing metal impurities in the surface layer of silicon material
JP2012181092A (en) Heating concentrator, and heating concentration method
JP3890047B2 (en) Method for analyzing metal in quartz and jig for analysis
KR100459078B1 (en) An etcher for analysis of metal impurities near bulk in silicon wafer
Tan et al. Contamination‐Free Manufacturing: Tool Component Qualification, Verification and Correlation with Wafers
JP2010145150A (en) Tool for analyzing surface of plate-like body, and metal analysis method using the same
JP2013115261A (en) Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP2019066262A (en) Method of impurity analysis of quartz crucible and impurity recovery jig used for the same
JP2007243107A (en) Metallic pollution analyzing method for semiconductor wafer housing container
KR100962728B1 (en) Method for analyzing contaminants in quartz member
JP2010145170A (en) Method for analysis of silicon wafer
JPH085526A (en) Jig for sampling solution sample
JP2003185543A (en) Tool for analyzing impurity in semiconductor wafer, and impurity analysis method of semiconductor wafer using the tool
JPH1114618A (en) Analytical equipment and analytical method of impurities of semiconductor wafer
JP2008300592A (en) Method of determining etching amount of semiconductor device
JPH08148536A (en) Sampling cap and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250