JP3894133B2 - Metal impurity evaluation method and evaluation substrate manufacturing method - Google Patents

Metal impurity evaluation method and evaluation substrate manufacturing method Download PDF

Info

Publication number
JP3894133B2
JP3894133B2 JP2003043933A JP2003043933A JP3894133B2 JP 3894133 B2 JP3894133 B2 JP 3894133B2 JP 2003043933 A JP2003043933 A JP 2003043933A JP 2003043933 A JP2003043933 A JP 2003043933A JP 3894133 B2 JP3894133 B2 JP 3894133B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
atoms
evaluation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003043933A
Other languages
Japanese (ja)
Other versions
JP2004253690A (en
Inventor
崇史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003043933A priority Critical patent/JP3894133B2/en
Publication of JP2004253690A publication Critical patent/JP2004253690A/en
Application granted granted Critical
Publication of JP3894133B2 publication Critical patent/JP3894133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体基板の製造工程中で種々加工を施した際に、基板内部が金属不純物で汚染されるのを定量的に評価する方法に関し、CuやFeと作用して基板内部のボロンに偏析するため前記評価が困難なp型低抵抗半導体基板において、金属不純物汚染の評価を可能にした半導体基板の加工工程中の金属不純物評価方法及び評価用基板製造方法に関する。
【0002】
【従来の技術】
半導体基板の製造工程において、加工される半導体基板が雰囲気や装置などからのCuやFeなどの金属にて汚染されることが知られている。この半導体基板製造工程での金属不純物汚染の評価方法は、従来工程で得られた製品基板自体の金属不純物を評価する方法であった。
【0003】
例えば、加工工程を経て得られた半導体基板製品を、全反射蛍光X線分光分析装置(TXRF)にてその表面金属不純物濃度を評価する方法、気相分解法にて半導体基板表面上の金属不純物を酸溶液にて回収してフレームレス原子吸光光度計(AAS)や誘導結合プラズマ質量分析計(ICP−MS)にて金属不純物濃度を評価する方法、DLTS法(Deep‐Level Transient Spectroscopy)やSPV法(Surface Photo Voltage Method)による電気的測定による評価方法が採用されてきた。
【0004】
一方、近年では、半導体基板内部の金属不純物汚染防止への厳しい要求があり、半導体基板製造工程から半導体基板内部への金属不純物による汚染評価を行うことは、半導体基板の品質向上に不可避であるとされている。(特開2002−40009号参照)
【0005】
【発明が解決しようとする課題】
しかし、前記従来の方法、TXRFや気相分解法は、半導体基板表面の金属不純物濃度しか評価できない。また、電気的測定のDLTS法やSPV法では、1Ω・cm以下の低抵抗半導体基板内部の金属不純物分析はできなかつた。
【0006】
p型低抵抗半導体基板は、ドーバント剤としてボロンが約1×1018atoms/cm以上の高濃度で添加されている。この高濃度ボロンはCuやFeといった半導体基板の特性に悪影響を与える金属と相互作用するため、金属不純物は容易に半導体基板内部のボロンに偏析する。従って、半導体基板は容易に金属不純物にて汚染されることになる。
【0007】
この発明は、半導体基板の製造工程、特にp型低抵抗半導体基板の製造工程において、汚染される金属不純物量を正確に評価することが可能な半導体基板製造工程中の金属不純物評価方法及び評価用基板製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
発明者らは、金属汚染されたp型低抵抗半導体基板を用いた場合、この基板の製造工程の金属不純物汚染量を定量的に評価することが困難であることに着目し、評価される基板側の金属不純物量について種々検討した結果、半導体基板内部の金属不純物量を1×1011atoms/cm以下すると、製造工程、例えばエッチング工程やミラーポリッシュ工程での金属不純物汚染を定量的に評価できることを知見し、この発明を完成した。
【0009】
すなわち、この発明は、ボロンが1×10 18 atoms/cm 以上添加されたp型低抵抗半導体基板を、洗浄液に浸漬又は洗浄液を噴射しながら基板温度を300℃〜500℃に加熱することにより基板内部の金属不純物を1×1011atoms/cm以下にした後、前記半導体基板を加工し、前記加工により汚染された半導体基板内の金属不純物をフレームレス原子吸光光度計又は誘導結合プラズマ質量分析計により評価する属不純物評価方法である。
【0010】
また、この発明は、ボロンが1×1018atoms/cm以上添加されたp型低抵抗半導体基板を、洗浄液に浸漬又は洗浄液を噴射しながら基板温度を300℃〜500℃に加熱し、基板内部の金属不純物を1×1011atoms/cm以下にする属不純物評価用基板製造方法である。
【0011】
【発明の実施の形態】
この発明は、半導体基板で基板内部に金属不純物が1×1011atoms/cm以下の半導体基板を作製することを要旨とする。半導体基板は、いずれの抵抗値、表面性状のものも対象となるが、特に従来評価が困難であったドーバント剤としてボロンが1×1018atoms/cm以上の高濃度で添加された1Ω・cm以下のp型低抵抗半導体基板が適している。また、半導体基板の表面状態は、ミラーポリッシュ仕上げの他、エッチング仕上げやラッピング仕上げなど半導体表面状態を問わない。
【0012】
この発明において、評価対象となる半導体基板の製造工程は、スライス工程、ラッビング工程、面取り工程、エッチング工程、ミラーポリッシュ工程、洗浄工程、熱処理工程、エピタキシャル成長工程など、半導体基板の製造に関わるいずれの工程にも適用可能である。
【0013】
この発明において、熱処理方法は、ランプやヒーターにより半導体基板温度を300℃〜500℃に加熱し、例えば1〜20時間保持して、該基板内部より金属不純物を表面に拡散させ、その後、酸洗浄などで表面より除去することで基板内部の金属不純物量を1×1011atoms/cm以下にすることができる。
【0014】
また、熱処理方法として、硫酸などの洗浄液に浸漬してランプで加熱したり、あるいは洗浄液を噴射しながらランプで加熱して該基板温度を300℃〜500℃に加熱することで、基板内部の金属不純物量を1×1011atoms/cm以下にすることが可能である。
【0015】
この発明において、半導体基板の加熱温度は、300℃未満では、半導体基板中のボロンに偏折している金属不純物を基板表面に拡散させる効果がなく、500℃を超えると、基板中の金属固溶度が上昇して、1×1011atoms/cm以下にすることが困難となるため、300℃〜500℃が好ましい。また、保持時間は、1〜20時間が好ましい。さらに、洗浄液としては、硫酸が最適である。
【0016】
前記熱処理で基板内部の金属不純物量を1×1011atoms/cm以下にした評価用半導体基板を、評価対象となる半導体基板の製造工程に投入した後、金属不純物の汚染を評価する方法は、半導体基板の表面にある金属不純物を酸洗浄で除去した後、当該基板を弗酸/硝酸の蒸気で分解し、分解後の該基板の残渣を酸溶液で処理し、この残渣中の金属不純物を、ICPM−MS、AASなどで定量評価する方法が採用できる。
【0017】
【実施例】
実施例1
以下に、この発明による評価用基板をミラーポリッシュ工程に投入して金属不純物汚染を評価する例について説明する。まずエッチング工程を経たp型低抵抗半導体基板、結晶方位(100)、抵抗値:0.008Ω・cm、酸素濃度:1.3×1018atoms/cm (ASTM F‐121 1979)を用意した。
【0018】
この半導体基板を硫酸中に浸漬し、赤外線にて該基板を400℃になるよう加熱した。加熱後、純水にて該基板をリンスした。基板内部の金属不純物を除去した前記評価用基板を、弗酸/硝酸の蒸気で分解させた後、その残渣中の金属不純物をICP‐MSにて定量評価したところ、該基板内部の金属不純物Fe,Ni,Cu,Cr,Alが1×1011atoms/cm以下であることを確認した。
【0019】
上記工程で得た評価用基板を、一般的な半導体基板製造工程におけるミラーポリッシュ工程で加工を行つた。ミラーポリッシュ加工後、アルカリ洗浄及び酸洗浄で半導体基板表面の金属不純物を除去し、該評価用基板を弗酸/硝酸の蒸気で分解し、その残渣中の金属不純物をICP‐MSで定量評価した。
【0020】
金属不純物のうちFe,Ni,Cr,Alは、1×1011atoms/cm以下とこのミラーポリッシュ工程での半導体基板内部への汚染が無いことを評価できた。また、Cuは5×1011atoms/cmとミラーポリッシュ工程でCu汚染があることとその定量的な評価が可能であることを確認した。
【0021】
実施例2
エッチング工程を経たp型高抵抗半導体基板を実施例1と同様にミラーポリッシュ工程に投入して金属不純物汚染を評価した。結晶方位(100)、抵抗値:10Ω・cm、酸素濃度:1.3×1018atoms/cm (ASTM F‐121 1979)のp型高抵抗半導体基板を用意した。次に実施例1と同様に熱処理して該基板内部の金属不純物Fe,Ni,Cu,Cr,Alが1×1011atoms/cm以下である評価用基板を作製した。
【0022】
この評価用基板を、一般的な半導体基板製造工程におけるミラーポリッシュ工程で加工を行つた。その後実施例1と同様に金属不純物をICP‐MSで定量評価したところ、Fe,Ni,Cu,Cr,Al量は、ミラーポリッシュ加工後で増加がなく、p型高抵抗半導体基板内部へのミラーポリッシュ加工工程で金属不純物の汚染がないことが評価できた。
【0023】
実施例3
以下に、この発明による評価用基板をラッピング工程に投入して金属不純物汚染を評価する例について説明する。まずスライス工程を経たp型低抵抗半導体基板、結晶方位(100)、抵抗値:0.009Ω・cm、酸素濃度:1.3×1018atoms/cm (ASTM F‐121 1979)を用意した。次に実施例1と同様に熱処理して該基板内部の金属不純物Fe,Ni,Cu,Cr,Alが1×1011atoms/cm以下である評価用基板を作製した。
【0024】
この評価用基板を、一般的な半導体基板製造工程におけるラッピング工程で加工を行つた。その後実施例1と同様に金属不純物をICP‐MSで定量評価したところ、Ni,Cu,Cr,Alは1×1011atoms/cm以下とこのラッピング工程での汚染がないことを確認した。Feについては5×1011atoms/cmとラッピング工程でのFe汚染を定量的に評価できた。
【0025】
実施例4
スライス工程を経たp型高抵抗半導体基板を実施例1と同様にラッピング工程に投入して金属不純物汚染を評価した。結晶方位(100)、抵抗値:10Ω・cm、酸素濃度:1.3×1018atoms/cm (ASTM F‐121 1979)のp型高抵抗半導体基板を用意した。次に実施例1と同様に熱処理して該基板内部の金属不純物Fe,Ni,Cu,Cr,Alが1×1011atoms/cm以下である評価用基板を作製した。
【0026】
この評価用基板を、一般的な半導体基板製造工程におけるラッピング工程で加工を行った。その後実施例1と同様に金属不純物をICP‐MSで定量評価したところ、Fe,Ni,Cu,Cr,Al量は、ラッピング加工後で増加がなく、p型高抵抗半導体基板内部へのラッピング加工工程で金属不純物の汚染がないことが評価できた。
【0027】
【発明の効果】
この発明は、実施例に示すごとくラッピング工程やミラーポリッシュ工程などの半導体基板の製造工程において、特にp型低抵抗半導体基板であっても、汚染される金属不純物量を正確に評価することができる。
【0028】
すなわち、この発明は、いずれの抵抗値の半導体基板であっても、加熱処理を施して基板内部の金属不純物量を1×1011atoms/cm以下にしたこの発明による評価用基板を製造工程中に投入して他基板と同様に加工を施すことで、当該製造工程中の金属不純物の汚染量を定量的に評価可能にした。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for quantitatively evaluating that the inside of a substrate is contaminated with metal impurities when various processes are performed during the manufacturing process of a semiconductor substrate, and acts on Cu and Fe to boron inside the substrate. in difficult p-type low resistance semiconductor substrate wherein the evaluation is to segregate a process for the preparation of metallic impurities evaluation method and evaluation substrate during processing step of the semiconductor substrate that enables evaluation of the metallic impurity contamination.
[0002]
[Prior art]
In a semiconductor substrate manufacturing process, it is known that a semiconductor substrate to be processed is contaminated with a metal such as Cu or Fe from an atmosphere or an apparatus. The method for evaluating metal impurity contamination in this semiconductor substrate manufacturing process is a method for evaluating metal impurities in the product substrate itself obtained in the conventional process.
[0003]
For example, a method of evaluating the surface metal impurity concentration of a semiconductor substrate product obtained through a processing process using a total reflection X-ray fluorescence spectrometer (TXRF), a metal impurity on the surface of a semiconductor substrate by a vapor phase decomposition method Is collected in an acid solution, and a metal impurity concentration is evaluated by a flameless atomic absorption photometer (AAS) or inductively coupled plasma mass spectrometer (ICP-MS), a DLTS method (Deep-Level Transient Spectroscopy) or SPV An evaluation method based on electrical measurement using a surface photo voltage method has been adopted.
[0004]
On the other hand, in recent years, there is a strict demand for prevention of metal impurity contamination inside the semiconductor substrate, and it is inevitable to improve the quality of the semiconductor substrate to perform contamination assessment from the semiconductor substrate manufacturing process to the inside of the semiconductor substrate due to metal impurities. Has been. (See JP 2002-40009)
[0005]
[Problems to be solved by the invention]
However, the conventional method, TXRF and vapor phase decomposition method can only evaluate the metal impurity concentration on the surface of the semiconductor substrate. Moreover, the DLTS method and the SPV method for electrical measurement have failed to analyze metal impurities inside a low-resistance semiconductor substrate of 1 Ω · cm or less.
[0006]
In the p-type low resistance semiconductor substrate, boron is added at a high concentration of about 1 × 10 18 atoms / cm 3 or more as a dopant. Since this high-concentration boron interacts with a metal that adversely affects the characteristics of the semiconductor substrate, such as Cu and Fe, the metal impurities are easily segregated into boron inside the semiconductor substrate. Therefore, the semiconductor substrate is easily contaminated with metal impurities.
[0007]
The present invention relates to a method for evaluating a metal impurity in a semiconductor substrate manufacturing process and an evaluation method capable of accurately evaluating the amount of contaminated metal impurities in a manufacturing process of a semiconductor substrate, particularly a manufacturing process of a p-type low resistance semiconductor substrate. It aims at providing the manufacturing method of a board | substrate.
[0008]
[Means for Solving the Problems]
The inventors pay attention to the fact that, when a metal-contaminated p-type low-resistance semiconductor substrate is used, it is difficult to quantitatively evaluate the amount of metal impurity contamination in the manufacturing process of this substrate, and the substrate to be evaluated As a result of various studies on the amount of metal impurities on the side, if the amount of metal impurities inside the semiconductor substrate is 1 × 10 11 atoms / cm 3 or less, the metal impurity contamination in the manufacturing process, for example, the etching process or the mirror polishing process is quantitatively evaluated. We have found out that this is possible and have completed the present invention.
[0009]
That is, according to the present invention, a p-type low resistance semiconductor substrate to which boron is added at 1 × 10 18 atoms / cm 3 or more is heated to 300 ° C. to 500 ° C. while the substrate temperature is immersed in the cleaning solution or sprayed with the cleaning solution. after the metallic impurities inside the substrate below 1 × 10 11 atoms / cm 3 , wherein the processing the semiconductor substrate, flameless atomic absorption photometer or an inductively coupled plasma mass of metal impurities in a semiconductor substrate which has been contaminated by the working a metallic impurities evaluation method of evaluating by the spectrometer.
[0010]
The present invention also provides a p-type low resistance semiconductor substrate to which boron is added at 1 × 10 18 atoms / cm 3 or more, and the substrate temperature is heated to 300 ° C. to 500 ° C. while being immersed in the cleaning solution or sprayed with the cleaning solution. the interior of the metal impurities is 1 × 10 11 atoms / cm 3 manufacturing method of metallic impurities evaluation substrate to below.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The gist of the present invention is that a semiconductor substrate having a metal impurity of 1 × 10 11 atoms / cm 3 or less is produced inside the substrate. Semiconductor substrates of any resistance value and surface texture are targeted, but in particular, boron is added at a high concentration of 1 × 10 18 atoms / cm 3 or more as a dopant that has been difficult to evaluate in the past. A p-type low-resistance semiconductor substrate of cm or less is suitable. Further, the surface state of the semiconductor substrate may be any semiconductor surface state such as etching finish or lapping finish in addition to mirror polish finish.
[0012]
In this invention, the manufacturing process of the semiconductor substrate to be evaluated is any process related to semiconductor substrate manufacturing, such as a slicing process, a rubbing process, a chamfering process, an etching process, a mirror polishing process, a cleaning process, a heat treatment process, and an epitaxial growth process. It is also applicable to.
[0013]
In this invention, the heat treatment method is such that the temperature of the semiconductor substrate is heated to 300 ° C. to 500 ° C. with a lamp or a heater, and held for 1 to 20 hours, for example, to diffuse metal impurities from the inside of the substrate to the surface, The amount of metal impurities inside the substrate can be reduced to 1 × 10 11 atoms / cm 3 or less by removing the surface from the surface.
[0014]
Further, as a heat treatment method, the metal inside the substrate is heated by being immersed in a cleaning solution such as sulfuric acid and heated by a lamp, or by heating with a lamp while spraying the cleaning solution and heating the substrate temperature to 300 ° C. to 500 ° C. The amount of impurities can be 1 × 10 11 atoms / cm 3 or less.
[0015]
In the present invention, when the heating temperature of the semiconductor substrate is less than 300 ° C., there is no effect of diffusing metal impurities that are bent in the boron in the semiconductor substrate to the substrate surface. Since it becomes difficult to raise the solubility to 1 × 10 11 atoms / cm 3 or less, 300 ° C. to 500 ° C. is preferable. The holding time is preferably 1 to 20 hours. Further, sulfuric acid is optimal as the cleaning liquid.
[0016]
A method for evaluating contamination of metal impurities after a semiconductor substrate for evaluation in which the amount of metal impurities inside the substrate is reduced to 1 × 10 11 atoms / cm 3 or less by the heat treatment is introduced into a manufacturing process of a semiconductor substrate to be evaluated. After removing the metal impurities on the surface of the semiconductor substrate by acid cleaning, the substrate is decomposed with hydrofluoric acid / nitric acid vapor, and the residue of the substrate after the decomposition is treated with an acid solution. It is possible to adopt a method for quantitative evaluation of ICP-MS, AAS, or the like.
[0017]
【Example】
Example 1
Hereinafter, an example in which the evaluation substrate according to the present invention is introduced into a mirror polishing process to evaluate metal impurity contamination will be described. First, a p-type low-resistance semiconductor substrate subjected to an etching process, crystal orientation (100), resistance value: 0.008 Ω · cm, oxygen concentration: 1.3 × 10 18 atoms / cm 3 (ASTM F-121 1979) were prepared. .
[0018]
This semiconductor substrate was immersed in sulfuric acid and heated to 400 ° C. with infrared rays. After heating, the substrate was rinsed with pure water. The evaluation substrate from which the metal impurities inside the substrate had been removed was decomposed with hydrofluoric acid / nitric acid vapor, and then the metal impurities in the residue were quantitatively evaluated by ICP-MS. , Ni, Cu, Cr, Al were confirmed to be 1 × 10 11 atoms / cm 3 or less.
[0019]
The evaluation substrate obtained in the above process was processed in a mirror polishing process in a general semiconductor substrate manufacturing process. After mirror polishing, metal impurities on the surface of the semiconductor substrate were removed by alkali cleaning and acid cleaning, the substrate for evaluation was decomposed with hydrofluoric acid / nitric acid vapor, and the metal impurities in the residue were quantitatively evaluated by ICP-MS. .
[0020]
Among metal impurities, Fe, Ni, Cr, and Al were 1 × 10 11 atoms / cm 3 or less, and it was evaluated that there was no contamination inside the semiconductor substrate in this mirror polishing process. Further, it was confirmed that Cu was contaminated by 5 × 10 11 atoms / cm 3 in the mirror polishing process and quantitative evaluation thereof was possible.
[0021]
Example 2
The p-type high-resistance semiconductor substrate that had undergone the etching process was put into a mirror polishing process in the same manner as in Example 1 to evaluate metal impurity contamination. A p-type high-resistance semiconductor substrate having a crystal orientation (100), a resistance value: 10 Ω · cm, and an oxygen concentration: 1.3 × 10 18 atoms / cm 3 (ASTM F-121 1979) was prepared. Next, heat treatment was performed in the same manner as in Example 1 to produce a substrate for evaluation in which the metal impurities Fe, Ni, Cu, Cr, and Al in the substrate were 1 × 10 11 atoms / cm 3 or less.
[0022]
This evaluation substrate was processed in a mirror polishing process in a general semiconductor substrate manufacturing process. Thereafter, the metal impurities were quantitatively evaluated by ICP-MS in the same manner as in Example 1. As a result, the amount of Fe, Ni, Cu, Cr, and Al did not increase after mirror polishing, and the mirror inside the p-type high-resistance semiconductor substrate. It was evaluated that there was no contamination of metal impurities in the polishing process.
[0023]
Example 3
Hereinafter, an example in which the evaluation substrate according to the present invention is introduced into the lapping process and metal impurity contamination is evaluated will be described. First, a p-type low-resistance semiconductor substrate subjected to a slicing process, crystal orientation (100), resistance value: 0.009 Ω · cm, oxygen concentration: 1.3 × 10 18 atoms / cm 3 (ASTM F-121 1979) was prepared. . Next, heat treatment was performed in the same manner as in Example 1 to produce a substrate for evaluation in which the metal impurities Fe, Ni, Cu, Cr, and Al in the substrate were 1 × 10 11 atoms / cm 3 or less.
[0024]
This evaluation substrate was processed in a lapping process in a general semiconductor substrate manufacturing process. Thereafter, metal impurities were quantitatively evaluated by ICP-MS in the same manner as in Example 1. As a result, it was confirmed that Ni, Cu, Cr, and Al were 1 × 10 11 atoms / cm 3 or less and there was no contamination in this lapping step. Regarding Fe, 5 × 10 11 atoms / cm 3 and Fe contamination in the lapping process could be quantitatively evaluated.
[0025]
Example 4
The p-type high-resistance semiconductor substrate that had undergone the slicing process was put into a lapping process in the same manner as in Example 1 to evaluate metal impurity contamination. A p-type high-resistance semiconductor substrate having a crystal orientation (100), a resistance value: 10 Ω · cm, and an oxygen concentration: 1.3 × 10 18 atoms / cm 3 (ASTM F-121 1979) was prepared. Next, heat treatment was performed in the same manner as in Example 1 to produce a substrate for evaluation in which the metal impurities Fe, Ni, Cu, Cr, and Al in the substrate were 1 × 10 11 atoms / cm 3 or less.
[0026]
This evaluation substrate was processed in a lapping process in a general semiconductor substrate manufacturing process. Thereafter, the metal impurities were quantitatively evaluated by ICP-MS in the same manner as in Example 1. As a result, the amounts of Fe, Ni, Cu, Cr, and Al did not increase after the lapping process, and the lapping process into the p-type high resistance semiconductor substrate was performed. It was evaluated that there was no contamination with metal impurities in the process.
[0027]
【The invention's effect】
As shown in the embodiments, the present invention can accurately evaluate the amount of contaminated metal impurities in a semiconductor substrate manufacturing process such as a lapping process or a mirror polish process, even in the case of a p-type low resistance semiconductor substrate. .
[0028]
That is, the present invention provides a process for producing a substrate for evaluation according to the present invention, in which a semiconductor substrate having any resistance value is subjected to heat treatment so that the amount of metal impurities inside the substrate is 1 × 10 11 atoms / cm 3 or less. The amount of contamination of metal impurities during the manufacturing process can be quantitatively evaluated by putting it in and processing it like other substrates.

Claims (2)

ボロンが1×10 18 atoms/cm 以上添加されたp型低抵抗半導体基板を、洗浄液に浸漬又は洗浄液を噴射しながら基板温度を300℃〜500℃に加熱することにより基板内部の金属不純物を1×1011atoms/cm以下にした後、前記半導体基板を加工し、前記加工により汚染された半導体基板内の金属不純物をフレームレス原子吸光光度計又は誘導結合プラズマ質量分析計により評価する金属不純物評価方法。 A p-type low-resistance semiconductor substrate to which boron is added at 1 × 10 18 atoms / cm 3 or more is heated in a substrate temperature at 300 ° C. to 500 ° C. while immersing or spraying the cleaning solution to remove metal impurities inside the substrate. after below 1 × 10 11 atoms / cm 3 , wherein the processing the semiconductor substrate, a metal assessed by flameless atomic absorption photometer or an inductively coupled plasma mass spectrometer metal impurities in a semiconductor substrate which has been contaminated by the working Impurity evaluation method. ボロンが1×1018atoms/cm以上添加されたp型低抵抗半導体基板を、洗浄液に浸漬又は洗浄液を噴射しながら基板温度を300℃〜500℃に加熱し、基板内部の金属不純物を1×1011atoms/cm以下にする金属不純物評価用基板の製造方法。A p-type low-resistance semiconductor substrate to which boron is added at 1 × 10 18 atoms / cm 3 or more is heated in a substrate temperature of 300 ° C. to 500 ° C. while being immersed in the cleaning solution or sprayed with the cleaning solution. The manufacturing method of the board | substrate for a metal impurity evaluation made into x10 < 11 > atoms / cm < 3 > or less.
JP2003043933A 2003-02-21 2003-02-21 Metal impurity evaluation method and evaluation substrate manufacturing method Expired - Lifetime JP3894133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043933A JP3894133B2 (en) 2003-02-21 2003-02-21 Metal impurity evaluation method and evaluation substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043933A JP3894133B2 (en) 2003-02-21 2003-02-21 Metal impurity evaluation method and evaluation substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2004253690A JP2004253690A (en) 2004-09-09
JP3894133B2 true JP3894133B2 (en) 2007-03-14

Family

ID=33026784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043933A Expired - Lifetime JP3894133B2 (en) 2003-02-21 2003-02-21 Metal impurity evaluation method and evaluation substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3894133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354638C (en) * 2004-09-22 2007-12-12 中国科学院半导体研究所 Measuring device of deep energy level transient state spectrum having external magnetic field and measuring method
JP6003447B2 (en) * 2012-09-20 2016-10-05 株式会社Sumco Method for evaluating metal contamination of semiconductor substrate and method for manufacturing semiconductor substrate
KR101540565B1 (en) * 2013-09-24 2015-08-06 주식회사 엘지실트론 Method for analyzing bulk metallic impurities in semiconductor wafer

Also Published As

Publication number Publication date
JP2004253690A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP5720297B2 (en) Method for analyzing metal contamination of silicon wafers
Ishizaka et al. Low temperature surface cleaning of silicon and its application to silicon MBE
US7892862B2 (en) Method of evaluating thermal treatment and method of manufacturing semiconductor wafer
CN107210222B (en) Epitaxially coated semiconductor wafer and method for producing an epitaxially coated semiconductor wafer
JP6631498B2 (en) Method of evaluating silicon material manufacturing process and method of manufacturing silicon material
JP2019195020A (en) Metal impurity removing method of semiconductor silicon wafer
TW201021234A (en) Method for the treatment of substrates, substrate and treatment device for carrying out the method
JP3894133B2 (en) Metal impurity evaluation method and evaluation substrate manufacturing method
JPWO2011083719A1 (en) Silicon wafer surface layer etching method and etching apparatus, and silicon wafer metal contamination analysis method
JP2009248021A (en) Cleaning process of silicon boat, silicon boat, heat treating method of silicon wafer, and silicon wafer
TWI547975B (en) Method for treating a substrate in a process chamber, method and apparatus for treating a substrate, method for preparing a substrate for deposition in a process chamber and semiconductor structure
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP3575644B2 (en) Silicon wafer manufacturing method
JP4487753B2 (en) Alkaline etching solution for silicon wafer and etching method using the etching solution
JP6569628B2 (en) Degradation evaluation method and silicon material manufacturing method
JP2004335954A (en) Method for collecting metal impurities from silicon substrate
JP6529715B2 (en) Method of manufacturing silicon wafer
JPWO2019188912A1 (en) Polycrystalline silicon cleaning method, manufacturing method and cleaning apparatus
US10727071B2 (en) Method of analyzing metal contamination of silicon wafer and method of manufacturing silicon wafer
EP1548817A1 (en) Method of eliminating boron contamination of annealed wafer
KR100901823B1 (en) Method of testing defect of silicon wafer
JP7131513B2 (en) Silicon sample pretreatment method, silicon sample metal contamination evaluation method, single crystal silicon ingot growth process evaluation method, single crystal silicon ingot manufacturing method, and silicon wafer manufacturing method
JP5074831B2 (en) Method of depositing impurity metal in bulk of semiconductor wafer, method of analyzing semiconductor wafer, and method of manufacturing semiconductor wafer free of impurity Cu in bulk
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JP6980621B2 (en) Method for preparing samples for analysis of silicon crystals and method for quantifying trace impurities in silicon crystals

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term