KR102459023B1 - Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes - Google Patents

Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes Download PDF

Info

Publication number
KR102459023B1
KR102459023B1 KR1020180120963A KR20180120963A KR102459023B1 KR 102459023 B1 KR102459023 B1 KR 102459023B1 KR 1020180120963 A KR1020180120963 A KR 1020180120963A KR 20180120963 A KR20180120963 A KR 20180120963A KR 102459023 B1 KR102459023 B1 KR 102459023B1
Authority
KR
South Korea
Prior art keywords
cnt
present
sample
metal
content
Prior art date
Application number
KR1020180120963A
Other languages
Korean (ko)
Other versions
KR20200041038A (en
Inventor
김미경
강슬기
원정혜
윤현경
정민환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180120963A priority Critical patent/KR102459023B1/en
Publication of KR20200041038A publication Critical patent/KR20200041038A/en
Application granted granted Critical
Publication of KR102459023B1 publication Critical patent/KR102459023B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명은 탄소 나노튜브(carbon nanotube, CNT) 표면에서 해리되어 나오는 금속 불순물의 함량을 정량분석하는 방법에 관한 것으로, 제품 적용 시 실제로 영향을 미칠 수 있는 CNT 표면에서 해리되는 금속 불순물의 함량을 정량분석할 수 있다. The present invention relates to a method for quantitative analysis of the content of metal impurities dissociated from the surface of carbon nanotube (CNT), and quantification of the content of metal impurities dissociated from the surface of CNTs that can actually affect product application can be analyzed.

Description

탄소 나노튜브 표면에서 해리될 수 있는 금속 함량의 분석방법 {METHOD FOR ANALYZING CONTENTS OF METALS DISSOCIABLE FROM SURFACES OF CARBON NANOTUBES}Method for analyzing the content of metals that can be dissociated from the surface of carbon nanotubes

본 발명은 탄소 나노튜브(carbon nanotube, CNT) 표면에서 해리되어 나올 수 있는 금속 함량을 분석하는 방법, 구체적으로는 CNT 표면에서 해리되어 제품 적용 시 영향을 미칠 수 있는 금속 불순물의 함량을 정량분석하는 방법에 관한 것이다.The present invention is a method for analyzing the content of metal that can be dissociated from the surface of carbon nanotube (CNT), specifically, quantitative analysis of the content of metal impurities that can be dissociated from the surface of CNT and affect product application. it's about how

탄소 나노튜브(carbon nanotube, CNT)는 나노미터(nm) 직경의 튜브 형상 탄소 동소체로서 전기적, 열적, 기계적 특성과 전계방출 특성이 우수하고 고효율의 수소 저장 매체 특성을 지닌다.Carbon nanotube (CNT) is a nanometer (nm) diameter tube-shaped carbon allotrope, which has excellent electrical, thermal and mechanical properties and field emission properties, and has the properties of a high-efficiency hydrogen storage medium.

그런데, CNT 내 불순물은 리튬이온전지 및 플라스틱 컴파운드 등의 제품으로 적용되었을 때 성능 저하의 원인이 될 수 있어 불순물 수준을 관리하는 것이 중요하다. 종래의 CNT 내 불순물 함량 분석은 일반적으로 전기로에서의 회화(탄화), 및 산처리(acid digestion) 방법을 통하여 이루어졌다. 그러나, 최근 CNT를 이용한 제품 생산에 있어서, CNT 내에 포함된 실제 불순물의 농도가 제품으로 적용되었을 때 제품 성능에 영향을 미칠 수 있는 금속 함량과 일치하는 지에 대한 의문이 제기되고 있다. 따라서, CNT를 실제로 제품에 적용하였을 때 CNT 표면에서 해리되어 나올 수 있는 금속 불순물의 함량을 분석하는 방법을 확립하여 제품에 영향을 미치는 정도를 확인하는 분석법이 필요하다.However, impurities in CNTs can cause performance degradation when applied to products such as lithium ion batteries and plastic compounds, so it is important to manage the level of impurities. Conventional analysis of impurity content in CNTs was generally performed through incineration (carbonization) in an electric furnace, and acid digestion (acid digestion) methods. However, recently, in the production of products using CNTs, questions are being raised as to whether the actual concentration of impurities contained in CNTs matches the metal content that can affect product performance when applied to products. Therefore, it is necessary to establish a method for analyzing the content of metal impurities that can be dissociated from the surface of CNTs when CNTs are actually applied to products and to check the degree of influence on the products.

이에, 본 발명에서는 CNT 표면에서 해리되어 제품 적용 시 실제로 영향을 미칠 수 있는 금속 불순물의 함량을 정량분석하는 방법을 제공하게 되었다.Accordingly, the present invention provides a method for quantitative analysis of the content of metal impurities that are dissociated from the CNT surface and can actually affect the product application.

본 발명의 목적은 CNT 표면에서 해리되어 제품 적용 시 실제로 영향을 미칠 수 있는 금속 불순물의 함량을 정량분석하는 것이다.An object of the present invention is to quantitatively analyze the content of metal impurities that dissociate from the surface of CNTs and can actually affect product application.

상기 목적을 달성하기 위하여, 본 발명은 CNT 내부의 모든 금속 함량이 아닌 CNT 표면 용출에 의해 해리되는 금속 함량의 정량분석방법을 제공한다.In order to achieve the above object, the present invention provides a method for quantitative analysis of the metal content dissociated by the elution of the CNT surface rather than all the metal content inside the CNT.

구체적으로, 본 발명은Specifically, the present invention

(A) CNT 시료에 초순수를 넣고 물중탕하는 단계;(A) adding ultrapure water to the CNT sample and taking a water bath;

(B) 상기 단계(A)로부터의 용액에 질산과 표준물질을 넣는 단계; 및(B) adding nitric acid and a standard to the solution from step (A); and

(C) 상기 단계(B)로부터의 용액을 필터로 여과하여 얻은 여과액을 유도 결합 플라즈마 분광법(inductively coupled plasma optical emission spectrometry, ICP-OES)으로 분석하여 금속 함량을 측정하는 단계를 포함하는, CNT 표면 용출 금속의 정량분석방법을 제공한다.(C) analyzing the filtrate obtained by filtering the solution from step (B) with a filter by inductively coupled plasma optical emission spectrometry (ICP-OES) to measure the metal content, CNT A method for quantitative analysis of surface-eluted metals is provided.

본 발명의 한 실시양태에 따르면, 전체 공정은 코니컬 튜브(conical tube) 내에서 실행되며, 폴리프로필렌, 폴리에틸렌 또는 폴리테트라플루오로에틸렌(테플론) 소재의 용기가 사용될 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the entire process is carried out in a conical tube, and a container made of polypropylene, polyethylene or polytetrafluoroethylene (Teflon) may be used, but is not limited thereto. .

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 CNT 시료에 대한 초순수의 사용량은 CNT 시료 100g을 기준으로 초순수 4 내지 6L이다.According to one embodiment of the present invention, the amount of ultrapure water used for the CNT sample in step (A) is 4 to 6L of ultrapure water based on 100 g of the CNT sample.

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 물중탕 온도는 60 내지 80℃이다.According to one embodiment of the present invention, the water bath temperature in step (A) is 60 to 80 ℃.

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 물중탕 시간은 3 내지 5시간이다.According to one embodiment of the present invention, the water bath time in step (A) is 3 to 5 hours.

본 발명의 한 실시양태에 따르면, 상기 단계(B)에서 질산의 사용량은 CNT 시료 100g을 기준으로 0.05 내지 0.2L이다.According to one embodiment of the present invention, the amount of nitric acid used in step (B) is 0.05 to 0.2L based on 100 g of the CNT sample.

본 발명의 한 실시양태에 따르면, 상기 단계(B)에서 표준물질로서 스칸듐(Sc), 이트륨(Y) 등을 사용할 수 있다.According to one embodiment of the present invention, scandium (Sc), yttrium (Y), etc. may be used as a standard material in the step (B).

본 발명의 분석법을 통해 CNT 표면 용출 처리로 CNT 내부의 모든 금속 함량이 아닌 CNT 표면에서 해리되어 제품 적용 시 실제로 영향을 미칠 수 있는 금속 불순물의 함량을 정량분석할 수 있다.Through the analysis method of the present invention, it is possible to quantitatively analyze the content of metal impurities that are dissociated from the CNT surface rather than all metal content inside the CNT by the CNT surface elution treatment and can actually affect the application of the product.

도 1은 완전 용해된 배터리(battery, BT)용 CNT와 컴파운드(compound, CP)용 CNT 내 금속 함량, 및 본 발명의 일 실시양태에 따라 표면 용출 처리된 CP용 CNT와 BT용 CNT 내 금속 함량의 비교 그래프를 나타낸 것이다.1 is a completely dissolved battery (battery, BT) and CNT for compound (CP) metal content in CNT, and surface eluted according to an embodiment of the present invention CNT for CP and CNT for BT metal content A comparison graph of

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments will be described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

합성 상태의 CNT에는 탄소 불순물과 합성에 사용된 촉매로 인한 금속 불순물이 존재한다. 상기 금속 성분은 주로 Fe, Co, Ni 등의 전이금속 성분이며, CNT-금속 나노복합체 형태인 경우에는 Cu, Ag, Al 등의 금속도 존재한다. CNT의 금속 불순물은 재료의 열적 안정성을 감소시키고 고부가가치 응용(예: 리튬이온 배터리, 초고압케이블 등)에서 제품의 성능을 크게 저하시킬 수 있다. 따라서, CNT 내 금속 불순물 함량을 분석하는 방법들이 당업계에 잘 알려져 있다. 종래 이러한 방법들은 대개 회화(탄화) 과정과 산처리 과정을 거쳐 맑게 용해시켜 분석하는 방법들로서, CNT 내부의 모든 금속 불순물의 함량을 분석하게 된다.CNTs in the synthetic state contain carbon impurities and metal impurities due to the catalyst used in the synthesis. The metal component is mainly a transition metal component such as Fe, Co, and Ni, and in the case of a CNT-metal nanocomposite form, metals such as Cu, Ag, and Al are also present. Metallic impurities in CNTs can reduce the thermal stability of the material and significantly degrade the product's performance in high value-added applications (e.g. lithium-ion batteries, ultra-high voltage cables, etc.). Accordingly, methods for analyzing the content of metal impurities in CNTs are well known in the art. Conventionally, these methods are usually methods for clear dissolution and analysis through an incineration (carbonization) process and an acid treatment process, and the content of all metal impurities inside the CNT is analyzed.

그런데, CNT를 이용하여 실제 제품을 생산하는 경우, CNT에 포함된 모든 금속 불순물의 농도가 실제로 제품 성능에 영향을 미칠 수 있는 금속 불순물의 함량인지에 대한 의문이 제기되고 있다. However, when an actual product is produced using CNTs, a question is being raised as to whether the concentration of all metal impurities contained in CNTs is actually a content of metal impurities that can affect product performance.

이에, 본 발명의 발명자들은 CNT를 실제로 제품에 적용하였을 때 CNT 표면에서 해리되어 나올 수 있는 금속 불순물의 함량을 분석하는 방법을 확립하여 제품에 영향을 미치는 정도를 확인하고자 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention have completed the present invention in order to confirm the degree of influence on the product by establishing a method for analyzing the content of metal impurities that can be dissociated from the CNT surface when CNT is actually applied to the product.

이를 위해, 본 발명은,To this end, the present invention

(A) CNT 시료에 초순수를 넣고 물중탕하는 단계;(A) adding ultrapure water to the CNT sample and taking a water bath;

(B) 상기 단계(A)로부터의 용액에 질산과 표준물질을 넣는 단계; 및(B) adding nitric acid and a standard to the solution from step (A); and

(C) 상기 단계(B)로부터의 용액을 필터로 여과하여 얻은 여과액을 유도 결합 플라즈마 분광법(inductively coupled plasma optical emission spectrometry, ICP-OES)으로 분석하여 금속 함량을 측정하는 단계를 포함하는, CNT 표면 용출 금속의 정량분석방법을 제공한다. (C) analyzing the filtrate obtained by filtering the solution from step (B) with a filter by inductively coupled plasma optical emission spectrometry (ICP-OES) to measure the metal content, CNT A method for quantitative analysis of surface-eluted metals is provided.

ICP를 이용하여 무기물 분석을 하기 위해서는 산 분해 또는 용출 방법을 통해 시료를 투명 용액으로 분해시켜야 한다. 이 때, 분석할 원소의 손실 및 외부로부터의 오염 없이 산 분해 또는 용출을 하는데, 산 분해를 할 경우 CNT 내 유기물을 열처리하여 날려보낸 후 무기물을 산처리하여 전처리하는 방법을 사용한다. 하지만, CNT 내부에 있는 전체 불순물이 아닌 표면에서 해리되어 나오는 금속 이온 함량을 분석하기 위해서는 CNT를 증류수에서 물중탕하여 표면 금속을 용출시키고 질산을 첨가하여 용출된 금속을 가용성 염으로 만들어 정량분석하기 용이하도록 하는 것이 필요하다. 일반적으로 Na, K, Mg 및 NH4의 염은 가용성이고, 음이온의 염 중 질산염은 모두 가용성이다. 몇 가지 예외를 제외하고는 염화물, 황산염, 과염소산염 등은 모두 가용성이다. 물에 용해되면 특별한 경우가 아닌 한 다음의 처리를 필요로 하지 않으므로 약간의 산을 가한 후 분석하면 된다. 이 때, 질산 또는 염산을 사용할 수 있지만 CNT에는 유기물이 존재하고 있으므로 질산을 사용하는 것이 전처리에 적합하고 황산이나 인산 등의 경우 점도가 높아져 결과값에 오차가 커지는 단점이 있다.In order to analyze inorganic substances using ICP, the sample must be decomposed into a clear solution through acid decomposition or elution method. At this time, acid decomposition or elution is performed without loss of the element to be analyzed and contamination from the outside. In case of acid decomposition, the organic matter in the CNT is heat-treated and blown away, and then the inorganic material is acid-treated and pre-treated. However, in order to analyze the metal ion content dissociated from the surface rather than the total impurities inside the CNT, the surface metal is eluted by bathing the CNT in distilled water, and nitric acid is added to make the eluted metal into a soluble salt for quantitative analysis. it is necessary to do In general, salts of Na, K, Mg and NH 4 are soluble, and nitrates among salts of anions are all soluble. With a few exceptions, chlorides, sulfates, and perchlorates are all soluble. If it dissolves in water, it does not require the following treatment unless there is a special case, so it can be analyzed after adding a little acid. At this time, nitric acid or hydrochloric acid can be used, but since organic matter is present in CNTs, using nitric acid is suitable for pretreatment, and in the case of sulfuric acid or phosphoric acid, the viscosity increases, which increases the error in the result value.

본 발명의 한 실시양태에 따르면, 전체 공정은 코니컬 튜브(conical tube) 내에서 실행되며, 폴리프로필렌, 폴리에틸렌 또는 폴리테트라플루오로에틸렌(테플론) 소재의 용기가 사용될 수 있으나, 이에 한정되는 것은 아니다. According to one embodiment of the present invention, the entire process is carried out in a conical tube, and a container made of polypropylene, polyethylene or polytetrafluoroethylene (Teflon) may be used, but is not limited thereto. .

본 발명의 한 실시양태에 따르면, CNT 시료는 펠렛 형태일 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the CNT sample may be in the form of a pellet, but is not limited thereto.

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 CNT 시료에 대한 초순수의 사용량은 CNT 시료 100g을 기준으로 초순수 4 내지 6L, 예컨대 4.5 내지 5.5L이다.According to one embodiment of the present invention, the amount of ultrapure water used for the CNT sample in step (A) is 4 to 6L, such as 4.5 to 5.5L, of ultrapure water based on 100g of the CNT sample.

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 물중탕 온도는 60 내지 80℃, 예컨대 65 내지 75℃이다.According to one embodiment of the present invention, the water bath temperature in step (A) is 60 to 80 ℃, such as 65 to 75 ℃.

본 발명의 한 실시양태에 따르면, 상기 단계(A)에서 물중탕 시간은 3 내지 5시간, 예컨대 3.5 내지 4.5시간이다.According to one embodiment of the present invention, the water bath time in step (A) is 3 to 5 hours, such as 3.5 to 4.5 hours.

본 발명의 한 실시양태에 따르면, 상기 단계(B)에서 질산의 사용량은 CNT 시료 100g을 기준으로 0.05 내지 0.2L, 예컨대 0.08 내지 0.15L이다.According to one embodiment of the present invention, the amount of nitric acid used in step (B) is 0.05 to 0.2L, such as 0.08 to 0.15L, based on 100 g of the CNT sample.

산을 이용한 전처리 용액은 CNT 시료 전체 표면을 대변하기 위하여 충분히 사용되어야 하는데, CNT 시료량이 너무 많을 경우 CNT가 응집되어 전처리 용액을 필터링하기 어려운 단점이 있으며, CNT 시료량이 너무 적은 경우 CNT 시료 전체 표면을 대변하기 어렵고 희석배수가 커져 검출한계(Detection limit)가 높아져 미량 분석이 어려워지는 단점이 있다. 본 발명에 따른 상기한 범위의 시료량에 대한 질산의 사용량은 위에 언급한 단점들을 회피할 수 있다.The acid pretreatment solution should be sufficiently used to represent the entire surface of the CNT sample. If the amount of CNT sample is too large, CNTs aggregate and it is difficult to filter the pretreatment solution. If the amount of CNT sample is too small, the entire surface of the CNT sample There is a disadvantage that it is difficult to represent, and the detection limit is increased due to a large dilution factor, making it difficult to analyze trace amounts. The amount of nitric acid used for the sample amount in the above range according to the present invention can avoid the above-mentioned disadvantages.

본 발명의 한 실시양태에 따르면, 상기 단계(B)에서 표준물질로서 스칸듐(Sc), 이트륨(Y) 등을 사용할 수 있다.According to one embodiment of the present invention, scandium (Sc), yttrium (Y), etc. may be used as a standard material in the step (B).

본 발명의 한 실시양태에 따르면, 상기 단계(C)에서 ICP-OES 기기로는 퍼킨엘머(PerkinElmer)사의 옵티마(Optima™) 시리즈, 예컨대 옵티마 5300DV를 사용할 수 있으나, 이에 한정되는 것은 아니다. According to one embodiment of the present invention, as the ICP-OES device in step (C), PerkinElmer's Optima™ series, such as Optima 5300DV, may be used, but is not limited thereto.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.

실시예Example

1. CNT 표면 용출 분석을 위한 전처리 방법1. Pretreatment method for CNT surface dissolution analysis

(1) CNT 시료 약 0.5g을 정확히 측정하여 코닝 튜브(Corning™ tube)에 넣었다. (1) About 0.5 g of a CNT sample was accurately measured and placed in a Corning™ tube.

(2) 상기 (1)의 시료에 초순수 25mL를 넣고 튜브를 밀폐시킨 후 70℃에서 4시간 동안 물중탕하였다.(2) 25 mL of ultrapure water was added to the sample of (1), the tube was sealed, and then water bathed at 70° C. for 4 hours.

(3) 상기 (2)의 용액에 질산 0.5mL 및 표준물질 스칸듐(Sc)을 넣어 섞어 혼합액을 만들었다.(3) 0.5 mL of nitric acid and scandium (Sc) standard were added to the solution of (2) and mixed to prepare a mixed solution.

(4) 상기 (3)의 혼합액을 필터로 여과하여 녹지 않은 CNT 성분을 걸러내고 여과액을 ICP-OES(Optima™ 5300DV)로 분석하였다.(4) The mixed solution of (3) was filtered through a filter to filter out undissolved CNT components, and the filtrate was analyzed by ICP-OES (Optima™ 5300DV).

2. ICP-OES를 사용한 분석 데이터2. Analysis data using ICP-OES

배터리(battery, BT)용 CNT와 컴파운드(compound, CP)용 CNT 샘플에 대하여 열처리를 통하여 각각의 CNT 샘플 내 유기물을 날려 보내고 남은 무기물을 황산으로 처리하여 맑은 용액으로 완전히 용해시킨 후 CNT 내 금속 함량을 ICP-OES(Optima™ 5300DV)로 분석하였다.For CNT for battery (BT) and CNT for compound (CP) sample, through heat treatment, organic matter in each CNT sample is blown away, and the remaining inorganic material is treated with sulfuric acid to completely dissolve it in a clear solution, was analyzed by ICP-OES (Optima™ 5300DV).

한편, 위와 동일한 사양의 CNT 샘플에 대하여 각각 위의 "1. CNT 표면 용출 분석을 위한 전처리 방법"에 기재한 과정에 따라 전처리한 후 ICP-OES(Optima™ 5300DV)로 분석하였다. 이와 같이 표면 전처리된 CP용 CNT 및 BT용 CNT의 분석 결과로부터 얻은 알루미늄(Al) 및 코발트(Co)의 함량을 아래 표에 기재한다:Meanwhile, CNT samples having the same specifications as above were pre-treated according to the procedure described in "1. Pretreatment method for CNT surface dissolution analysis" above, respectively, and then analyzed by ICP-OES (Optima™ 5300DV). The content of aluminum (Al) and cobalt (Co) obtained from the analysis results of CNT for CP and CNT for BT, which were surface pretreated as described above, are described in the table below:

Figure 112018100020084-pat00001
Figure 112018100020084-pat00001

또한, 완전 용해된 BT용 CNT 및 CP용 CNT의 분석 결과를 표면 전처리된 CP CNT 및 BT CNT의 분석 결과와 함께 도 1에 나타냈다.In addition, the analysis results of completely dissolved CNTs for BT and CNTs for CP are shown in FIG. 1 together with the analysis results of surface-pretreated CP CNTs and BT CNTs.

도 1을 참조하면, 완전 용해된 BT용 CNT(도 1의 "BT완전용해") 및 CP용 CNT(도 1의 "CP완전용해") 내의 알루미늄(Al) 및 코발트(Co)의 함량과 비교하여 표면 전처리된 CP용 CNT(도 1의 "CP표면") 및 BT용 CNT(도 1의 "BT표면") 내의 알루미늄(Al) 및 코발트(Co)의 함량은 3% 수준임을 확인할 수 있다.1, compared with the content of aluminum (Al) and cobalt (Co) in completely dissolved CNT for BT (“BT completely dissolved” in FIG. 1) and CNT for CP (“CP completely dissolved” in FIG. 1) Thus, it can be confirmed that the content of aluminum (Al) and cobalt (Co) in the surface pretreated CNT for CP (“CP surface” in FIG. 1) and CNT for BT (“BT surface” in FIG. 1) is 3% level.

또한, 반도체 등에 적용되어 보다 금속에 예민한 CP용 CNT의 표면에서 해리되어 나올 수 있는 금속 함량이 BT용 CNT의 표면에서 해리되어 나올 수 있는 금속 함량보다 적은 수준임을 확인할 수 있다. In addition, it can be confirmed that the metal content that can be dissociated from the surface of the CNT for CP, which is more sensitive to metal when applied to semiconductors, is at a lower level than the metal content that can be dissociated from the surface of the CNT for BT.

따라서, 본 발명의 방법에 따르면, CNT를 이용하여 배터리나 플라스틱 컴파운드와 같은 제품을 생산하는 생산자에게 제품 성능에 영향을 미치는 CNT 내 금속 불순물의 함량 정보를 제공할 수 있으며, CNT 내 불순물 수준을 관리하는 데에도 적합하다.Therefore, according to the method of the present invention, it is possible to provide information on the content of metal impurities in CNTs that affect product performance to producers who produce products such as batteries or plastic compounds using CNTs, and manage the level of impurities in CNTs It is also suitable for

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (7)

(A) 탄소 나노튜브(carbon nanotube, CNT) 시료에 초순수를 넣고 물중탕하는 단계;
(B) 상기 단계(A)로부터의 용액에 질산과 표준물질을 넣는 단계; 및
(C) 상기 단계(B)로부터의 용액을 필터로 여과하여 얻은 여과액을 유도 결합 플라즈마 분광법(inductively coupled plasma optical emission spectrometry, ICP-OES)으로 분석하여 금속 함량을 측정하는 단계를 포함하고,
상기 단계(B)에서 질산의 사용량이 CNT 시료 100g을 기준으로 0.05 내지 0.2L인, CNT 표면 용출 금속의 정량분석방법.
(A) adding ultrapure water to a carbon nanotube (CNT) sample and bathing in a water bath;
(B) adding nitric acid and a standard to the solution from step (A); and
(C) measuring the metal content by analyzing the filtrate obtained by filtering the solution from step (B) with a filter by inductively coupled plasma optical emission spectrometry (ICP-OES),
In the step (B), the amount of nitric acid used is 0.05 to 0.2L based on 100 g of the CNT sample, a quantitative analysis method of metal eluted from the surface of CNTs.
제1항에 있어서, 상기 전체 공정은 코니컬 튜브(conical tube) 내에서 실행되는 것인, CNT 표면 용출 금속의 정량분석방법.The method of claim 1, wherein the entire process is carried out in a conical tube. 제1항에 있어서, 상기 단계(A)에서 CNT 시료에 대한 초순수의 사용량이 CNT 시료 100g을 기준으로 초순수 4 내지 6L인 것인, CNT 표면 용출 금속의 정량분석방법.The method of claim 1, wherein the amount of ultrapure water used for the CNT sample in step (A) is 4 to 6L of ultrapure water based on 100 g of the CNT sample. 제1항에 있어서, 상기 단계(A)에서 물중탕 온도가 60 내지 80℃인 것인, CNT 표면 용출 금속의 정량분석방법.According to claim 1, wherein the water bath temperature in the step (A) is 60 to 80 ℃, the quantitative analysis method of CNT surface eluted metal. 제4항에 있어서, 상기 물중탕 시간은 3 내지 5시간인 것인, CNT 표면 용출 금속의 정량분석방법.The method of claim 4, wherein the water bath time is 3 to 5 hours. 삭제delete 제1항에 있어서, 상기 단계(B)에서 표준물질로서 스칸듐(Sc) 또는 이트륨(Y)을 사용하는 것인, CNT 표면 용출 금속의 정량분석방법.The method of claim 1, wherein scandium (Sc) or yttrium (Y) is used as a standard material in step (B).
KR1020180120963A 2018-10-11 2018-10-11 Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes KR102459023B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180120963A KR102459023B1 (en) 2018-10-11 2018-10-11 Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180120963A KR102459023B1 (en) 2018-10-11 2018-10-11 Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes

Publications (2)

Publication Number Publication Date
KR20200041038A KR20200041038A (en) 2020-04-21
KR102459023B1 true KR102459023B1 (en) 2022-10-25

Family

ID=70456334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180120963A KR102459023B1 (en) 2018-10-11 2018-10-11 Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes

Country Status (1)

Country Link
KR (1) KR102459023B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101400A (en) 2005-10-05 2007-04-19 Toyota Motor Corp Method of quantitative determination of impurity in carbon nanotube
JP2013205160A (en) 2012-03-28 2013-10-07 Sumitomo Metal Mining Co Ltd Arsenic quantification method
JP6115730B2 (en) * 2014-01-10 2017-04-19 住友金属鉱山株式会社 Liquid analysis method, metal recovery method, and scale regeneration suppression method
US20180017473A1 (en) 2015-03-03 2018-01-18 King Abdullah University Of Science And Technology Methods of analyzing carbon nanostructures, methods of preparation of analytes from carbon nanostructures, and systems for analyzing carbon nanostructures
JP6354563B2 (en) 2014-12-18 2018-07-11 信越半導体株式会社 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101400A (en) 2005-10-05 2007-04-19 Toyota Motor Corp Method of quantitative determination of impurity in carbon nanotube
JP2013205160A (en) 2012-03-28 2013-10-07 Sumitomo Metal Mining Co Ltd Arsenic quantification method
JP6115730B2 (en) * 2014-01-10 2017-04-19 住友金属鉱山株式会社 Liquid analysis method, metal recovery method, and scale regeneration suppression method
JP6354563B2 (en) 2014-12-18 2018-07-11 信越半導体株式会社 Method for manufacturing recovery instrument, method for recovering metal impurity, and method for analyzing metal impurity
US20180017473A1 (en) 2015-03-03 2018-01-18 King Abdullah University Of Science And Technology Methods of analyzing carbon nanostructures, methods of preparation of analytes from carbon nanostructures, and systems for analyzing carbon nanostructures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mary-Luyza Avramescu 외 2명. Determination of Metal Impurities in Carbon Nanotubes Sampled Using Surface Wipes, Journal of Analytical Methods in Chemistry. Volume 2016, 2016.11.16.*

Also Published As

Publication number Publication date
KR20200041038A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
González et al. Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: new insights on the reaction mechanism
Ananthanarayanan et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing
Hanlon et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics
Puchades et al. Mechanism of chemical doping in electronic-type-separated single wall carbon nanotubes towards high electrical conductivity
Donato et al. Graphene oxide classification and standardization
CN107108226B (en) Method for preparing graphene by utilizing high-speed homogenization pretreatment and high-pressure homogenization
Ma et al. Room temperature ferromagnetism in Teflon due to carbon dangling bonds
Pumera et al. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for “electrocatalytic” effect of carbon nanotubes
Chua et al. Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals
CN106660800A (en) Aqueous and organic suspensions of exfoliated nanocarbon materials, method for making same and uses thereof
Marulanda Carbon Nanotubes: Applications on Electron Devices
CN104609404A (en) Method for preparing graphene and composite material through sunlight reduction or laser reduction
Liu et al. Room-temperature magnetism in carbon dots and enhanced ferromagnetism in carbon dots-polyaniline nanocomposite
Taklimi et al. Chemical functionalization of helical carbon nanotubes: influence of sonication time and concentrations of sulfuric and nitric acids with 3: 1 mixing ratio
Yan et al. Proton-free electron-trapping feature of titanium dioxide nanoparticles without the characteristic blue color
Xin et al. Preparation of polyaniline/Au0 nanocomposites modified electrode and application for hydrazine detection
Das et al. Positron annihilation studies of defects and fine size effects in nanocrystalline nickel oxide
KR102459023B1 (en) Method for analyzing contents of metals dissociable from surfaces of carbon nanotubes
Zhang et al. On-chip surface modified nanostructured ZnO as functional pH sensors
Lin et al. Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals
Wang et al. Facile purification of CsPbX3 (X= Cl−, Br−, I−) perovskite nanocrystals
Safavi et al. Hydroxyapatite wrapped multiwalled carbon nanotubes/ionic liquid composite electrode: A high performance sensor for trace determination of lead ions
Guo et al. Evidencing contributions arising from disorder-rich rhombohedral stacking-order regions in S-doped carbon nanotube buckypapers
Doshi et al. Functionalized semiconducting carbon nanotube arrays for gas phase explosives detection
Antony et al. Resonance Raman spectroscopic study for radial vibrational modes in ultra‐thin walled TiO2 nanotubes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant