JP2011194380A - Method of removing metal impurities - Google Patents

Method of removing metal impurities Download PDF

Info

Publication number
JP2011194380A
JP2011194380A JP2010067155A JP2010067155A JP2011194380A JP 2011194380 A JP2011194380 A JP 2011194380A JP 2010067155 A JP2010067155 A JP 2010067155A JP 2010067155 A JP2010067155 A JP 2010067155A JP 2011194380 A JP2011194380 A JP 2011194380A
Authority
JP
Japan
Prior art keywords
fluororesin
cleaning
acid solution
metal impurities
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010067155A
Other languages
Japanese (ja)
Inventor
Katsuhiro Nakagawa
克広 中川
Hikaru Honjo
光 本荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010067155A priority Critical patent/JP2011194380A/en
Publication of JP2011194380A publication Critical patent/JP2011194380A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of removing metal impurities, which can remove efficiently metal impurities adhering to experimental instruments made of a fluororesin, etc. in a short time.SOLUTION: An ultrasonic cleaning of an acid solution in which an object to be cleaned made of the fluororesin is immersed is carried out in a warming state. Further, the method comprises a first cleaning process of immersing the object to be cleaned made of the fluororesin in a first acid solution to carry out the ultrasonic cleaning in the warming state, and a second cleaning process of immersing the object to be cleaned made of the fluororesin which finishes the first cleaning process in a second acid solution to carry out the ultrasonic cleaning in the warming state.

Description

本発明は、金属不純物の除去方法に関し、詳しくは、フッ素樹脂に付着した金属不純物を除去する方法に関する。   The present invention relates to a method for removing metal impurities, and more particularly, to a method for removing metal impurities attached to a fluororesin.

溶液中の極微量金属成分を定量する場合は、既知濃度の金属成分を含む金属標準溶液を複数個作製し、これらの溶液を誘導結合プラズマ質量分析計(ICP−MS)、誘導結合プラズマ発光分析計(ICP−OES)等の元素分析計で測定することにより検量線を作成し、未知試料の濃度を算出している。ICP−MSは、溶液中に含まれる金属成分をppm〜pptレベルまで検出できる性能を有するが、ppbレベルより低濃度の測定を行う場合には、正確な定量を行うために検量線作成試料や未知試料の汚染を防止することが重要である。汚染原因は、前処理環境、溶液、実験器具等様々である。   When quantifying trace metal components in a solution, multiple metal standard solutions containing metal components of known concentrations are prepared, and these solutions are used for inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectrometry. A calibration curve is created by measuring with an element analyzer such as an ICP-OES meter, and the concentration of the unknown sample is calculated. ICP-MS has the ability to detect metal components contained in a solution from ppm to ppt level, but when measuring at a concentration lower than the ppb level, a calibration curve preparation sample or It is important to prevent contamination of unknown samples. There are various causes of contamination such as pretreatment environments, solutions, and laboratory instruments.

極微量金属成分を定量する際に使用する実験器具は、白金製や石英ガラス製と比較して、一般的に金属不純物の溶出が少ないフッ素樹脂製の実験器具を用いる場合が多い。フッ素樹脂製の実験器具も、初期には微量の金属不純物が溶出してくる可能性があるので、そこからの汚染を防止するために、従来は、超純水や酸溶液で実験器具をすすぎ洗いによる洗浄を行ったり、それらの溶液に一定期間浸漬させて金属不純物を除去するようにしている。   As a laboratory instrument used for quantifying a trace amount of a metal component, a laboratory instrument made of a fluororesin is generally used, which generally has less elution of metal impurities than platinum or quartz glass. In laboratory equipment made of fluororesin, trace amounts of metal impurities may be eluted in the initial stage, so to prevent contamination from there, conventionally, the laboratory equipment was rinsed with ultrapure water or acid solution. The metal impurities are removed by washing or immersing them for a certain period of time.

一方、石英ガラスの洗浄方法として、フッ酸や硝酸、フッ硝酸、塩酸等を用いて酸洗浄した後に、30〜70 ℃ の純水中で超音波洗浄を行うことにより、石英ガラス製被洗浄物の表面から、酸洗浄で残留した金属不純物を除去することが行われている(例えば、特許文献1参照。)。   On the other hand, as a method for cleaning quartz glass, after cleaning with acid using hydrofluoric acid, nitric acid, hydrofluoric acid, hydrochloric acid or the like, ultrasonic cleaning is performed in pure water at 30 to 70 ° C. The metal impurities remaining by acid cleaning are removed from the surface of the substrate (for example, see Patent Document 1).

特開2006−188419号公報JP 2006-188419 A

従来のフッ素樹脂製被洗浄物の洗浄方法では、酸洗浄工程や超純水洗浄工程等で多くの溶液を消費したり、酸溶液や超純水に被洗浄物を長時間浸漬させたりする必要があり、金属不純物を除去するのに長時間を要するという問題があった。また、すすぎ洗浄や酸溶液に浸漬させるだけでは金属不純物を十分に除去できない場合があり、金属不純物を十分に除去するために超音波洗浄を組み入れて被洗浄物の洗浄を行ってきた。   In conventional methods for cleaning fluororesin objects, it is necessary to consume a large amount of solution in the acid cleaning process or ultrapure water cleaning process, or to immerse the object in acid solution or ultrapure water for a long time. There is a problem that it takes a long time to remove metal impurities. In addition, metal impurities may not be sufficiently removed only by rinsing or immersing in an acid solution. In order to sufficiently remove metal impurities, ultrasonic cleaning has been incorporated to clean the object to be cleaned.

しかし、単に超音波洗浄を組み入れただけでは、サブppbレベルの金属不純物を完全には除去できない場合があり、浸漬時間を延長したり、超音波洗浄を繰り返したりすることで、被洗浄物表面から金属不純物量を徐々に減らすようにしてきたが、この作業に多大な時間、例えば1週間以上を要したり、多大な労力を要したりしていた。   However, there are cases where sub-ppb level metal impurities cannot be completely removed by simply incorporating ultrasonic cleaning. By extending the immersion time or repeating ultrasonic cleaning, the surface of the object to be cleaned can be removed. Although the amount of metal impurities has been gradually reduced, this work has required a lot of time, for example, one week or more, or a lot of labor.

また、石英ガラス製被洗浄物の表面に付着した金属不純物はフッ酸等を使用した酸洗浄によって十分に除去することができ、酸洗浄後の加温超純水超音波洗浄によって残留物も十分に除去することはできるが、フッ素樹脂製被洗浄物に付着したCa、Fe、Znなどの極微量の金属不純物は、酸洗浄と加温超純水超音波洗浄との組み合わせでは十分に除去することができなかった。   In addition, metal impurities adhering to the surface of quartz glass to be cleaned can be sufficiently removed by acid cleaning using hydrofluoric acid, etc., and residues can also be sufficiently removed by warming ultrapure water ultrasonic cleaning after acid cleaning. However, trace amounts of metal impurities such as Ca, Fe, and Zn adhering to the fluororesin to-be-cleaned object cannot be sufficiently removed by a combination of acid cleaning and heated ultrapure water ultrasonic cleaning. It was.

そこで本発明は、溶液中の極微量金属成分の測定を行う際に使用するフッ素樹脂製の実験器具に付着している金属不純物を短時間で効率良く除去することができる金属不純物の除去方法を提供することを目的としている。   Therefore, the present invention provides a method for removing metal impurities that can efficiently remove metal impurities adhering to a fluororesin experimental instrument used when measuring trace metal components in a solution in a short time. It is intended to provide.

上記目的を達成するため、本発明の金属不純物の除去方法は、フッ素樹脂製被洗浄物の表面に付着した金属不純物を除去する方法であって、前記フッ素樹脂製被洗浄物を浸漬した酸溶液を加温状態で超音波洗浄することを特徴としている。   In order to achieve the above object, the method for removing metal impurities of the present invention is a method for removing metal impurities adhering to the surface of a fluororesin to-be-cleaned object, wherein the acid solution in which the fluororesin to-be-cleaned object is immersed It is characterized by ultrasonic cleaning in a heated state.

また、本発明の金属不純物の除去方法は、フッ素樹脂製被洗浄物の表面に付着した金属不純物を除去する方法であって、前記フッ素樹脂製被洗浄物を第一の酸溶液に浸漬して加温状態で超音波洗浄する第1洗浄工程と、該第1洗浄工程を終えた前記フッ素樹脂製被洗浄物を第二の酸溶液に浸漬して加温状態で超音波洗浄する第2洗浄工程とを含むことを特徴としている。   The method for removing metal impurities of the present invention is a method for removing metal impurities adhering to the surface of a fluororesin to-be-cleaned object, wherein the fluororesin to-be-cleaned object is immersed in a first acid solution. A first cleaning step for ultrasonic cleaning in a warmed state, and a second cleaning for ultrasonic cleaning in a warmed state by immersing the fluororesin cleaning object after the first cleaning step in a second acid solution And a process.

本発明の金属不純物の除去方法によれば、従来は1週間以上を要していたフッ素樹脂製被洗浄物の洗浄を半日程度で行うことができ、フッ素樹脂製被洗浄物に付着したNa、Mg、Al、Ca、Cr、Mn、Fe、Ni、Cu、Zn等の金属不純物をサブppb以下に除去することが可能となる。   According to the method for removing metal impurities of the present invention, it is possible to perform cleaning of a fluororesin to-be-cleaned object that has conventionally required one week or more in about half a day, and Na adhered to the fluororesin object to be cleaned, It becomes possible to remove metal impurities such as Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, and Zn to sub ppb or less.

本発明の金属不純物の除去方法は、例えば、ICP−MSやICP−OES等の元素分析計で検量線を作成するための金属標準溶液や極微量金属成分を定量する試料が接触する容器等のフッ素樹脂製実験器具器具の表面に付着した金属不純物を除去する方法であって、フッ素樹脂製実験器具器具(フッ素樹脂製被洗浄物)を酸溶液に浸漬するとともに、前記酸溶液をあらかじめ設定された温度に加温した状態で超音波洗浄する洗浄工程を少なくとも1回行うものである。   The method for removing metal impurities according to the present invention includes, for example, a metal standard solution for preparing a calibration curve with an element analyzer such as ICP-MS or ICP-OES, or a container in contact with a sample for quantifying a trace metal component. A method of removing metal impurities adhering to the surface of a fluororesin experimental instrument, wherein the fluororesin experimental instrument (fluorine resin wash object) is immersed in an acid solution, and the acid solution is set in advance. The cleaning step of ultrasonic cleaning in a state heated to a certain temperature is performed at least once.

前記洗浄工程で使用する酸溶液は、フッ素樹脂製被洗浄物に悪影響を与えなければ任意の酸を任意の濃度で使用することが可能であるが、通常は、塩酸、硝酸等の従来からフッ素樹脂製被洗浄物の洗浄に用いていた酸を用い、従来の酸洗浄で使用していた酸濃度、例えば1〜10%の濃度とすることができる。   As the acid solution used in the washing step, any acid can be used at any concentration as long as it does not adversely affect the fluororesin to-be-washed object. The acid concentration used in the conventional acid cleaning, for example, a concentration of 1 to 10%, can be obtained by using the acid used for cleaning the resin workpiece.

洗浄工程での酸溶液の温度は、40〜70℃の範囲が好ましく、40℃未満の場合は、超音波が吸収減衰されるので洗浄効果が十分に得られにくく、逆に70℃を超えると、大粒の気泡が発生して超音波の伝達の障害になり、洗浄効果が薄れるとともに、加温に要するエネルギーも無駄となる。   The temperature of the acid solution in the washing step is preferably in the range of 40 to 70 ° C. When the temperature is lower than 40 ° C, the ultrasonic wave is absorbed and attenuated, so that it is difficult to obtain a sufficient cleaning effect. Large bubbles are generated, obstructing the transmission of ultrasonic waves, the cleaning effect is diminished, and the energy required for heating is wasted.

また、前記洗浄工程を複数回繰り返すことによって洗浄効果を更に向上させることができる。洗浄工程を複数回繰り返す場合、同一組成の酸溶液を使用して同一温度で各洗浄工程を実施することもできるが、通常は、各洗浄工程における酸溶液の酸の種類や酸の濃度等の条件を、除去する金属不純物の種類や量に応じて異なる条件とすることができる。例えば、酸溶液として、1回目の洗浄工程では5%塩酸溶液を、2回目の洗浄工程では5%硝酸溶液を使用するなど、適宜な組み合わせを選択することができる。   Further, the cleaning effect can be further improved by repeating the cleaning step a plurality of times. When the washing process is repeated multiple times, each washing process can be carried out at the same temperature using an acid solution having the same composition, but usually the acid type and acid concentration of the acid solution in each washing process, etc. The conditions can be different depending on the type and amount of metal impurities to be removed. For example, as the acid solution, an appropriate combination can be selected, such as using a 5% hydrochloric acid solution in the first washing step and a 5% nitric acid solution in the second washing step.

洗浄工程の時間は、酸溶液の種類や量、フッ素樹脂製被洗浄物の形状や大きさなどに応じて任意に設定することが可能であるが、30分〜3時間の範囲、通常は、1時間程度で十分な洗浄効果を期待することができる。   The time of the washing step can be arbitrarily set according to the type and amount of the acid solution, the shape and size of the fluororesin to-be-washed object, and the range of 30 minutes to 3 hours, usually, A sufficient cleaning effect can be expected in about one hour.

また、洗浄工程の前後には、従来と同様の超純水を使用したすすぎ洗浄を行えばよく、さらに、前記特許文献1に記載されているような超音波洗浄を併用することも可能である。   In addition, before and after the cleaning step, the same rinsing cleaning using ultrapure water as in the prior art may be performed, and ultrasonic cleaning as described in Patent Document 1 may be used in combination. .

フッ素樹脂製被洗浄物として、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)製の200mL蓋付き容器を用い、実験には2個ずつを使用した。酸溶液としては、高純度塩酸を超純水で希釈した5%塩酸溶液と同じく高純度硝酸を超純水で希釈した5%硝酸溶液とを用意した。また、対象金属は、Na、Mg、Al、Ca、Cr、Mn、Fe、Ni、Cu、Znの10種の金属とし、各洗浄工程を終えた前記容器内に高純度塩酸を超純水で希釈した2%塩酸溶液を100mlそれぞれ注入し、クリーンドラフト内に密封して1日静置させた後、2%塩酸溶液中に溶出した各金属元素の量を誘導結合プラズマ質量分析計により測定した。なお、超音波洗浄は、酸溶液を充填した密閉容器内に前記容器を浸漬して密閉し、この密閉容器を超音波洗浄器の水中に投入した状態で行った。   A 200 mL lidded container made of PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) was used as an object to be cleaned made of fluororesin, and two containers were used in the experiment. As the acid solution, a 5% nitric acid solution in which high purity nitric acid was diluted with ultrapure water was prepared in the same manner as a 5% hydrochloric acid solution in which high purity hydrochloric acid was diluted with ultrapure water. The target metal is 10 kinds of metals such as Na, Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, and Zn, and high purity hydrochloric acid is added with ultrapure water in the container after each cleaning step. Each 100 ml of diluted 2% hydrochloric acid solution was injected, sealed in a clean draft and allowed to stand for 1 day, and then the amount of each metal element eluted in the 2% hydrochloric acid solution was measured with an inductively coupled plasma mass spectrometer. . In addition, ultrasonic cleaning was performed in the state which immersed the said container in the airtight container filled with the acid solution, was sealed, and this airtight container was thrown into the water of the ultrasonic cleaner.

実験1は超純水を60℃に加温して超音波洗浄した容器、実験2は5%硝酸溶液中に2週間浸漬させた容器、実験3は常温の超純水を用いて超音波洗浄を1時間行った容器、実験4は常温の超純水を用いて超音波洗浄を1時間ずつ2回繰り返した容器、実験5は常温の5%塩酸溶液を用いて超音波洗浄を1時間行った容器、実験6は5%塩酸溶液を60℃に加温した状態で超音波洗浄を1時間行った容器、実験7は5%塩酸溶液を60℃に加温した状態で超音波洗浄を1時間行った後(第1洗浄工程)、超純水ですすぎ洗浄を行ってから5%硝酸溶液を60℃に加温した状態で超音波洗浄を1時間行った容器である。結果を表1に示す。

Figure 2011194380
Experiment 1 is a container that is ultrasonically cleaned by heating ultrapure water to 60 ° C., Experiment 2 is a container immersed in a 5% nitric acid solution for 2 weeks, and Experiment 3 is ultrasonically cleaned using ultrapure water at room temperature. For 1 hour, Experiment 4 is a container in which ultrasonic cleaning is repeated twice for 1 hour using ultrapure water at room temperature, and Experiment 5 is ultrasonic cleaning is performed for 1 hour using 5% hydrochloric acid solution at room temperature. Experiment 6 is a container in which 5% hydrochloric acid solution is heated to 60 ° C. and ultrasonic cleaning is performed for 1 hour, and Experiment 7 is an ultrasonic cleaning in which 5% hydrochloric acid solution is heated to 60 ° C. The container was subjected to ultrasonic cleaning for 1 hour in a state where the 5% nitric acid solution was heated to 60 ° C. after rinsing with ultrapure water after performing the time (first cleaning step). The results are shown in Table 1.
Figure 2011194380

表1の結果から、5%塩酸溶液を60℃に加温した状態で超音波洗浄を1時間行った実験6の容器は、実験1〜5の各容器に比べて各金属元素を効率よく除去できていることがわかる。さらに、実験7では、実験6で僅かに検出されたAl、Fe、Znについても検出限界以下にまで除去できたことがわかる。   From the results in Table 1, the container of Experiment 6 which was ultrasonically cleaned for 1 hour with a 5% hydrochloric acid solution heated to 60 ° C. removed each metal element more efficiently than the containers of Experiments 1 to 5. You can see that it is made. Furthermore, in Experiment 7, it can be seen that Al, Fe, and Zn slightly detected in Experiment 6 could be removed to below the detection limit.

Claims (2)

フッ素樹脂製被洗浄物の表面に付着した金属不純物を除去する方法であって、前記フッ素樹脂製被洗浄物を浸漬した酸溶液を加温状態で超音波洗浄することを特徴とする金属不純物の除去方法。   A method for removing metal impurities adhering to the surface of an object to be cleaned made of fluororesin, wherein the acid solution in which the object to be cleaned made of fluororesin is immersed is ultrasonically cleaned in a heated state. Removal method. フッ素樹脂製被洗浄物の表面に付着した金属不純物を除去する方法であって、前記フッ素樹脂製被洗浄物を第一の酸溶液に浸漬して加温状態で超音波洗浄する第1洗浄工程と、該第1洗浄工程を終えた前記フッ素樹脂製被洗浄物を第二の酸溶液に浸漬して加温状態で超音波洗浄する第2洗浄工程とを含むことを特徴とする金属不純物の除去方法。   A method of removing metal impurities adhering to the surface of a fluororesin object to be cleaned, wherein the fluororesin object to be cleaned is immersed in a first acid solution and ultrasonically cleaned in a heated state. And a second cleaning step of immersing the fluororesin cleaning object after the first cleaning step in a second acid solution and ultrasonically cleaning it in a heated state. Removal method.
JP2010067155A 2010-03-24 2010-03-24 Method of removing metal impurities Pending JP2011194380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067155A JP2011194380A (en) 2010-03-24 2010-03-24 Method of removing metal impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067155A JP2011194380A (en) 2010-03-24 2010-03-24 Method of removing metal impurities

Publications (1)

Publication Number Publication Date
JP2011194380A true JP2011194380A (en) 2011-10-06

Family

ID=44873252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067155A Pending JP2011194380A (en) 2010-03-24 2010-03-24 Method of removing metal impurities

Country Status (1)

Country Link
JP (1) JP2011194380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237429A (en) * 2013-06-18 2014-12-24 天士力制药集团股份有限公司 Method for measuring content of sodium element in compound salvia miltiorrhiza extract
US20180223450A1 (en) * 2015-09-15 2018-08-09 Shin-Etsu Chemical Co., Ltd. Resin material, vinyl bag, polycrystalline silicon rod, polycrystalline silicon mass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049997A1 (en) * 1998-03-25 1999-10-07 Daikin Industries, Ltd. Method of cleaning fluororubber molded product for semiconductor fabrication device and cleaned molded product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049997A1 (en) * 1998-03-25 1999-10-07 Daikin Industries, Ltd. Method of cleaning fluororubber molded product for semiconductor fabrication device and cleaned molded product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237429A (en) * 2013-06-18 2014-12-24 天士力制药集团股份有限公司 Method for measuring content of sodium element in compound salvia miltiorrhiza extract
CN104237429B (en) * 2013-06-18 2017-06-09 天士力制药集团股份有限公司 A kind of method of sodium element content in measure compound Salviae Miltiorrhizae extract
US20180223450A1 (en) * 2015-09-15 2018-08-09 Shin-Etsu Chemical Co., Ltd. Resin material, vinyl bag, polycrystalline silicon rod, polycrystalline silicon mass
US11230796B2 (en) * 2015-09-15 2022-01-25 Shin-Etsu Chemical Co., Ltd. Resin material, vinyl bag, polycrystalline silicon rod, polycrystalline silicon mass

Similar Documents

Publication Publication Date Title
JP4785039B2 (en) Silicon wafer lifetime measurement method
CN106498399B (en) A kind of fine aluminium grain size corrosive agent and preparation method thereof corrodes process for show
JP2011194380A (en) Method of removing metal impurities
JP2016528146A (en) How to treat glass surface
JP5515588B2 (en) Wafer cleaning water and wafer cleaning method
CN111198116A (en) Target detection method
JP2008244434A (en) Method for removing bulk metal contamination from iii-v semiconductor substrate
JP6269709B2 (en) Cleanliness evaluation method, cleaning condition determination method, and silicon wafer manufacturing method
JP2007234964A (en) Washing method for semiconductor substrate
JP3804864B2 (en) Impurity analysis method
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP4825591B2 (en) Scale removal method
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2008153272A (en) Method of cleaning semiconductor device manufacturing component, and cleaning solution composition
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP2002200463A (en) Method for cleaning fluororesin-made instrument
CN107755343B (en) Method for cleaning quartz glass substrate for total reflection X-ray fluorescence analysis
JP3867014B2 (en) Semiconductor wafer metal contamination evaluation method, semiconductor wafer manufacturing method, these apparatuses and dummy wafer
WO2016152142A1 (en) Cleaning method
JP3649534B2 (en) Silicon wafer and silicon oxide cleaning solution
JP2007243107A (en) Metallic pollution analyzing method for semiconductor wafer housing container
JPH0562958A (en) Purity evaluation method of chemical liquid
CN113311057A (en) Method for testing trace pollution on surface of semiconductor manufacturing equipment component
JP2010165801A (en) Defect detecting method of surface of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617