JP2001213694A - Semiconductor wafer with low copper content - Google Patents

Semiconductor wafer with low copper content

Info

Publication number
JP2001213694A
JP2001213694A JP2000018846A JP2000018846A JP2001213694A JP 2001213694 A JP2001213694 A JP 2001213694A JP 2000018846 A JP2000018846 A JP 2000018846A JP 2000018846 A JP2000018846 A JP 2000018846A JP 2001213694 A JP2001213694 A JP 2001213694A
Authority
JP
Japan
Prior art keywords
wafer
copper
semiconductor wafer
copper content
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000018846A
Other languages
Japanese (ja)
Inventor
Kenji Tomizawa
憲治 冨澤
Kei Komatsu
圭 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000018846A priority Critical patent/JP2001213694A/en
Publication of JP2001213694A publication Critical patent/JP2001213694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor wafer which has lower copper content, higher device property, and higher yield in device manufacturing. SOLUTION: The copper contained in the silicon wafer is diffused by heating the wafer 400 deg.C, collected on the wafer surface, dissolved in the fluoric acid containing recovery liquid dropped on the wafer surface, and removed from the surface. Therefore, the copper content in the wafer is reduced to 1.1×1011cm-2 or less. As a result, the higher device property is obtained and yield in device manufacturing is heightened. Adopting the copper content reducing method based on the LTD method, the semiconductor wafer with lower copper density, 1.1×1011cm-2 or less, can be efficiently produced in high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は低銅濃度半導体ウ
ェーハ、詳しくは半導体ウェーハの表面および内部の銅
の濃度が低く、高いデバイス特性が得られる低銅濃度半
導体ウェーハに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low copper concentration semiconductor wafer, and more particularly, to a low copper concentration semiconductor wafer having a low concentration of copper on the surface and inside of the semiconductor wafer and having high device characteristics.

【0002】[0002]

【従来の技術】従来より、シリコンウェーハの表面に存
在する銅がゲート酸化膜耐圧に影響することは、知られ
ていた。ところが、シリコンウェーハの内部に存在する
銅がゲート酸化膜耐圧に影響を与えるか否かについての
知見は存在しなかった。また、シリコンウェーハの内部
の銅の濃度を高感度で測定する方法は知られていなかっ
た。そこで、特開平9−64133号公報において示す
ように、シリコンウェーハの内部に存在する銅の濃度を
測定する方法が本願出願人により提案された。これがL
TD(Low Temperature Diffus
ion)法である。LTD法では、半導体ウェーハを数
百℃に加熱してウェーハ内部の銅を拡散させ、ウェーハ
内部に存在する銅をウェーハ表面に集める。その後、こ
のウェーハ表面にHF溶液またはHF/Hの混合
溶液からなる回収液を少量滴下して、この回収液中にウ
ェーハ表面に集められた銅を溶かして回収する。そし
て、その回収液をTXRF(全反射蛍光X線分析)また
はAAS(原子吸光分析)によって分析して、回収液中
の銅の量を測定する。
2. Description of the Related Art It has been known that copper existing on the surface of a silicon wafer affects the gate oxide film breakdown voltage. However, there was no knowledge as to whether or not copper existing inside the silicon wafer affected the gate oxide film breakdown voltage. Further, a method of measuring the concentration of copper inside a silicon wafer with high sensitivity has not been known. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 9-64133, a method for measuring the concentration of copper present inside a silicon wafer has been proposed by the present applicant. This is L
TD (Low Temperature Diffuse)
ion) method. In the LTD method, a semiconductor wafer is heated to several hundred degrees Celsius to diffuse copper inside the wafer, and copper existing inside the wafer is collected on the wafer surface. Thereafter, a small amount of a recovery solution composed of an HF solution or a mixed solution of HF / H 2 O 2 is dropped on the wafer surface, and copper collected on the wafer surface is dissolved and recovered in the recovery solution. Then, the recovered liquid is analyzed by TXRF (total reflection X-ray fluorescence analysis) or AAS (atomic absorption analysis) to measure the amount of copper in the recovered liquid.

【0003】[0003]

【発明が解決しようとする課題】そこで、発明者が、L
TD法により検出したシリコンウェーハの内部およびそ
の表面に存在する銅の濃度と、ゲート酸化膜耐圧との関
係について調べたところ、これらの間に良い相関がある
ことが判明した。また、このLTD法によれば、ウェー
ハの表面のみならず、その内部を含めた銅の濃度を正確
に測定することができ、この銅の濃度の測定値を用いる
ことによりシリコンウェーハの良否の判定を行うことが
できることを知見した。このような知見に基づいて、発
明者はこの発明を完成させた。
SUMMARY OF THE INVENTION Then, the inventor sets L
When the relationship between the concentration of copper present inside and on the surface of the silicon wafer detected by the TD method and the breakdown voltage of the gate oxide film was examined, it was found that there was a good correlation between these. Further, according to the LTD method, it is possible to accurately measure the concentration of copper not only on the surface of the wafer but also on the inside thereof, and to judge the quality of the silicon wafer by using the measured value of the copper concentration. It was found that it was possible to do. Based on such knowledge, the inventor has completed the present invention.

【0004】[0004]

【発明の目的】この発明は、高いデバイス特性およびデ
バイス作製での高歩留まりが得られる低銅濃度半導体ウ
ェーハを提供することを、その目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-copper-concentration semiconductor wafer capable of obtaining high device characteristics and a high yield in device fabrication.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、半導体ウェーハをLTD法で測定した場合、その銅
の濃度が1.1×1011cm−2以下である低銅濃度
半導体ウェーハである。対象となる半導体ウェーハの種
類は限定されない。例えばシリコンウェーハ,張り合わ
せウェーハ,SOI(Silicon on Insu
lator)ウェーハ,エピタキシャルウェーハでもよ
い。銅濃度が1.1×1011cm−2以下の半導体ウ
ェーハを作製する方法は限定されない。要は、LTD法
で半導体ウェーハの銅の濃度を測定した場合、その値が
1.1×1011cm−2以下であればよい。1.1×
1011cm−2以下とした理由は、以下の通りであ
る。すなわち、ウェーハとしての合否を判断する場合、
特にCMOSデバイスを含む場合には、その酸化膜耐圧
の良品率により判断することが一般的に行われている。
酸化膜耐圧の良品率のどこで合否を判断するかは、対象
とするデバイスにより異なるため、一義的には決められ
ない。ここでは、100%の良品率に対して一般的に合
格ラインと考えられている75%を合否の判断基準とし
たものである。1.1×1011cm−2以下であれ
ば、この良品率が75%を越えるからである。
According to the first aspect of the present invention, there is provided a low-concentration semiconductor wafer having a copper concentration of 1.1 × 10 11 cm −2 or less when a semiconductor wafer is measured by an LTD method. It is. The type of the target semiconductor wafer is not limited. For example, silicon wafers, bonded wafers, SOI (Silicon on Insu)
Later wafers and epitaxial wafers may be used. The method for producing a semiconductor wafer having a copper concentration of 1.1 × 10 11 cm −2 or less is not limited. In short, when the copper concentration of the semiconductor wafer is measured by the LTD method, the value may be 1.1 × 10 11 cm −2 or less. 1.1 ×
The reason for setting it to 10 11 cm −2 or less is as follows. That is, when judging the pass or fail of the wafer,
In particular, when a CMOS device is included, it is generally performed based on the yield rate of the oxide film breakdown voltage.
Since the pass / fail judgment of the non-defective product ratio of the oxide film breakdown voltage differs depending on the target device, it cannot be uniquely determined. Here, 75%, which is generally regarded as a passing line for a non-defective product rate of 100%, is used as a pass / fail judgment criterion. If the density is 1.1 × 10 11 cm −2 or less, the yield rate exceeds 75%.

【0006】請求項2に記載の発明は、上記半導体ウェ
ーハが、鏡面研磨したシリコンウェーハである請求項1
に記載の低銅濃度半導体ウェーハである。この鏡面研磨
ウェーハにはデバイスが形成されることとなる。
According to a second aspect of the present invention, the semiconductor wafer is a mirror-polished silicon wafer.
2. The low copper concentration semiconductor wafer described in 1. above. Devices are formed on the mirror-polished wafer.

【0007】請求項3に記載の発明は、上記半導体ウェ
ーハが、SOIウェーハである請求項1に記載の低銅濃
度半導体ウェーハである。SOIウェーハの作製方法と
しては、張り合わせ法、SIMOX法などのいずれであ
ってもよい。
According to a third aspect of the present invention, there is provided the low copper concentration semiconductor wafer according to the first aspect, wherein the semiconductor wafer is an SOI wafer. As a method for manufacturing the SOI wafer, any of a bonding method, a SIMOX method, and the like may be used.

【0008】請求項4に記載の発明は、上記半導体ウェ
ーハが、エピタキシャルウェーハである請求項1に記載
の低銅濃度半導体ウェーハである。
According to a fourth aspect of the invention, there is provided the low copper concentration semiconductor wafer according to the first aspect, wherein the semiconductor wafer is an epitaxial wafer.

【0009】[0009]

【作用】この発明によれば、半導体ウェーハの表面およ
びその内部に含まれる銅の濃度が、1.1×1011
−2以下と低いので、例えばこの半導体ウェーハの表
面にCMOS構造のデバイスを作製する際、ゲート酸化
膜に銅が侵入してゲート酸化膜の酸化膜耐圧を劣化させ
るなどの不都合がなくなる。その結果、この半導体ウェ
ーハに形成したデバイスは高いデバイス特性が得られ
て、デバイス作製の歩留りを大きくすることができる。
また、LTD法を用いれば、シリコンウェーハの作製工
程における各工程(エッチング、研磨、酸化、拡散な
ど)での銅による汚染量を正確に測定することが可能で
ある。この結果、汚染源の特定が可能となり、また、プ
ロセス条件の変更による汚染の低減が可能となる。ま
た、各工程で使用する装置などの変更が銅汚染を招くか
否か、また、その影響の程度を具体的に把握することが
可能となる。
According to the present invention, the concentration of copper contained in the surface of a semiconductor wafer and the inside thereof is 1.1 × 10 11 c
Since m -2 or less and low, for example, this making the device of the CMOS structure on the surface of a semiconductor wafer, an inconvenience such as eliminating degrade the oxide dielectric breakdown voltage of the gate oxide film of copper enters the gate oxide film. As a result, the device formed on the semiconductor wafer has high device characteristics, and can increase the yield of device fabrication.
Further, if the LTD method is used, it is possible to accurately measure the amount of copper contamination in each step (etching, polishing, oxidation, diffusion, and the like) in a silicon wafer manufacturing process. As a result, the contamination source can be specified, and the contamination due to the change in the process conditions can be reduced. In addition, it is possible to specifically determine whether or not a change in equipment used in each step causes copper contamination and the degree of the influence.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施例を図面を
参照して説明する。図1は、この発明の一実施例に係る
半導体ウェーハの表面および内部の銅の濃度を測定する
ためのLTD法を示すフローシートである。図2はLT
D法による銅の回収率を示すグラフである。まず、図1
を参照してLTD法について説明する。まず、バルク中
に銅汚染が生じているシリコンウェーハPWを準備す
る。このシリコンウェーハを、その鏡面側(表面側)を
上にして、清浄なシリコンウェーハ上に載せる。この清
浄なシリコンウェーハはホットプレート(表面はセラミ
ックス製)上に載置されているものとする。このシリコ
ンウェーハがP型の場合、大気中で400℃で30分間
の加熱を行う。N型の場合、400℃で1時間の加熱を
行う。この加熱処理はウェーハを汚染しないクリーンル
ーム内で行う。ホットプレートに代えて熱処理炉でシリ
コンウェーハを加熱してもよい。この場合、大気中、N
/Oガス、または、Ar/Oガス雰囲気中で加熱
する。この熱処理の結果、バルク中のほとんどの銅は表
裏面側へそれぞれ拡散により移動する。特に、80%以
上の銅が表面側に移動する。次に、シリコンウェーハの
表面にHF(2%)またはHF(2%)/H(2
%)混合溶液を100〜200μlだけ滴下し、その回
収液で表面およびその近傍の銅を回収する。すなわち、
このウェーハ表面上で雫状になった回収液滴を転がすよ
うに移動させることで、このウェーハ表面に集められた
銅をこの液の中に溶かし込み、それを回収する。なお、
裏面側の銅も同様の方法により回収することもできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow sheet showing an LTD method for measuring the concentration of copper on the surface and inside of a semiconductor wafer according to one embodiment of the present invention. Figure 2 shows LT
It is a graph which shows the collection rate of copper by the D method. First, FIG.
The LTD method will be described with reference to FIG. First, a silicon wafer PW having copper contamination in the bulk is prepared. This silicon wafer is placed on a clean silicon wafer with its mirror side (front side) facing up. This clean silicon wafer is assumed to be mounted on a hot plate (the surface is made of ceramics). When the silicon wafer is a P-type, heating is performed at 400 ° C. for 30 minutes in the air. In the case of N-type, heating is performed at 400 ° C. for one hour. This heat treatment is performed in a clean room that does not contaminate the wafer. The silicon wafer may be heated in a heat treatment furnace instead of the hot plate. In this case, in the atmosphere, N
Heating is performed in a 2 / O 2 gas or Ar / O 2 gas atmosphere. As a result of this heat treatment, most of the copper in the bulk moves to the front and back sides by diffusion, respectively. In particular, 80% or more of the copper moves to the surface side. Next, HF (2%) or HF (2%) / H 2 O 2 (2
%) The mixed solution is dropped by 100 to 200 μl, and copper on the surface and in the vicinity thereof is recovered with the recovered liquid. That is,
The copper droplets collected on the surface of the wafer are dissolved in the liquid by moving the collected droplets, which have been dropped on the surface of the wafer, so as to roll, and are collected. In addition,
Copper on the back side can also be recovered by the same method.

【0011】図2に示すように、LTD法による、2%
HF溶液、HF(2%)/H(2%)溶液での回
収の場合、ウェーハ表面からの銅の回収率はそれぞれ略
100%である。なお、低温加熱を行わない場合に比べ
てその回収率がきわめて高いことが明らかである。
As shown in FIG. 2, 2%
In the case of recovery using an HF solution or an HF (2%) / H 2 O 2 (2%) solution, the recovery rate of copper from the wafer surface is approximately 100%. It is clear that the recovery rate is extremely high as compared with the case where low-temperature heating is not performed.

【0012】[0012]

【表1】 [Table 1]

【0013】表1には、LTD法に基づき銅の濃度を測
定したこの発明に係る低銅濃度シリコンウェーハの酸化
膜耐圧良品率を比較例とともに示す。酸化膜耐圧良品率
は、実施例に係るシリコンウェーハに形成したゲート酸
化膜の酸化膜耐圧の試験データで判定したものである。
実施例1,比較例1,2は、サンプルウェーハとして張
り合わせSOIウェーハを、実施例2と比較例4は鏡面
シリコンウェーハを使用した。比較例3と実施例3はと
もにPウェーハ上に、抵抗値10ΩcmのP型エピタ
キシャル層を10μm成長させた場合である。比較例3
ではエピタキシャル工程以降で銅汚染が発生したため6
9.4%と酸化膜耐圧の良品率が低く、実施例3では銅
汚染がなかったため、酸化膜耐圧の良品率が98.6%
と高くなった。比較例4は実施例2に比較してCu濃度
が高く良品率を悪くしている。Cu汚染の発生した工程
は研磨工程である。張り合わせSOIウェーハの詳細は
以下の通りである。すなわち、口径:6インチ,活性層
N型シリコン,抵抗値5〜10Ωcm,厚さ10μm,
埋め込み酸化膜厚さ1μm,支持基板P型,抵抗値1〜
30Ωcm,厚さ625μmである。また、鏡面ウェー
ハの詳細は以下の通りである。すなわち、口径:6イン
チ,N型シリコン,抵抗値5〜10Ωcm,厚さ625
μmである。また、エピタキシャルウェーハの詳細は以
下の通りである。すなわち、口径:6インチの抵抗値1
0〜14ΩcmのP型鏡面シリコンウェーハに抵抗値
9.5〜10.5ΩcmのP型エピタキシャル層を10
μm成長させた。エピタキシャル成長に使用した炉はロ
ードロック機構付の枚葉炉である。また、ゲート酸化膜
の面積は1×10−2cm で、膜厚は25nmであ
る。良品率は、このゲート酸化膜に、判定電流を10
−4Aに設定し、8MV/cmの電圧をかけた際のゲー
ト酸化膜が破壊された割合を調べた。この検査は、TZ
DB(Time Zero Dielectric B
reakdown)に基づく。表1から明らかなよう
に、LTD法によるシリコンウェーハの銅の濃度が1.
1×1011cm−2を超える比較例1,比較例2およ
び比較例3に比べて、銅の濃度が1.1×1011cm
−2以下の実施例のウェーハでは、酸化膜耐圧の良品率
が高まった。
Table 1 shows the oxide film breakdown voltage non-defective rate of the low copper concentration silicon wafer according to the present invention, in which the copper concentration was measured based on the LTD method, together with comparative examples. The oxide film breakdown voltage non-defective rate is determined based on the test data of the oxide film breakdown voltage of the gate oxide film formed on the silicon wafer according to the example.
In Example 1 and Comparative Examples 1 and 2, a bonded SOI wafer was used as a sample wafer, and in Example 2 and Comparative Example 4, a mirror-finished silicon wafer was used. Comparative Example 3 and Example 3 are both cases where a P-type epitaxial layer having a resistance value of 10 Ωcm was grown on a P wafer by 10 μm. Comparative Example 3
Since copper contamination occurred after the epitaxial process,
The non-defective product with an oxide film withstand voltage of 9.4% was low, and no copper contamination was observed in Example 3, so that the non-defective product with an oxide film withstand voltage was 98.6%.
And higher. Comparative Example 4 has a higher Cu concentration than Example 2 and deteriorates the yield rate. The process where Cu contamination occurs is a polishing process. Details of the bonded SOI wafer are as follows. That is, diameter: 6 inches, active layer N-type silicon, resistance value: 5 to 10 Ωcm, thickness: 10 μm,
Embedded oxide film thickness 1 μm, support substrate P type, resistance value 1
The thickness is 30 Ωcm and the thickness is 625 μm. The details of the mirror wafer are as follows. That is, diameter: 6 inches, N-type silicon, resistance value: 5 to 10 Ωcm, thickness: 625
μm. The details of the epitaxial wafer are as follows. That is, a resistance value of 6 inches is 1
A P-type epitaxial layer having a resistance value of 9.5 to 10.5 Ωcm is formed on a P-type mirror-finished silicon wafer having a resistance of 0 to 14 Ωcm.
μm was grown. The furnace used for the epitaxial growth is a single-wafer furnace with a load lock mechanism. The area of the gate oxide film is 1 × 10 −2 cm 2 and the thickness is 25 nm. The non-defective rate indicates that the judgment current is 10
-4 A, and the rate at which the gate oxide film was destroyed when a voltage of 8 MV / cm was applied was examined. This test is TZ
DB (Time Zero Dielectric B)
leakdown). As is clear from Table 1, when the copper concentration of the silicon wafer by the LTD method is 1.
Compared with Comparative Example 1, Comparative Example 2 and Comparative Example 3 exceeding 1 × 10 11 cm −2 , the copper concentration is 1.1 × 10 11 cm −2.
-2 In the wafers of the examples below, the yield rate of the oxide film withstand voltage was increased.

【0014】[0014]

【発明の効果】この発明によれば、低銅濃度半導体ウェ
ーハの表面にデバイスを作製した場合、このデバイスの
電気的特性、特に酸化膜耐圧を高めることができる。こ
れによりデバイス作製の歩留りを大きくすることができ
る。
According to the present invention, when a device is manufactured on the surface of a low copper concentration semiconductor wafer, the electrical characteristics of the device, particularly the withstand voltage of the oxide film, can be increased. As a result, the yield of device fabrication can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係るLTD法を説明する
ためのフローシートである。
FIG. 1 is a flow sheet for explaining an LTD method according to an embodiment of the present invention.

【図2】この発明の一実施例に係るLTD法による銅の
回収率を示すグラフである。
FIG. 2 is a graph showing a recovery rate of copper by an LTD method according to one embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェーハをLTD法で測定した場
合、その銅の濃度が1.1×1011cm−2以下であ
る低銅濃度半導体ウェーハ。
1. A low copper concentration semiconductor wafer having a copper concentration of 1.1 × 10 11 cm −2 or less when the semiconductor wafer is measured by an LTD method.
【請求項2】 上記半導体ウェーハが、鏡面研磨したシ
リコンウェーハである請求項1に記載の低銅濃度半導体
ウェーハ。
2. The low copper concentration semiconductor wafer according to claim 1, wherein the semiconductor wafer is a mirror-polished silicon wafer.
【請求項3】 上記半導体ウェーハが、SOIウェーハ
である請求項1に記載の低銅濃度半導体ウェーハ。
3. The low copper concentration semiconductor wafer according to claim 1, wherein the semiconductor wafer is an SOI wafer.
【請求項4】 上記半導体ウェーハが、エピタキシャル
ウェーハである請求項1に記載の低銅濃度半導体ウェー
ハ。
4. The low copper concentration semiconductor wafer according to claim 1, wherein said semiconductor wafer is an epitaxial wafer.
JP2000018846A 2000-01-27 2000-01-27 Semiconductor wafer with low copper content Pending JP2001213694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018846A JP2001213694A (en) 2000-01-27 2000-01-27 Semiconductor wafer with low copper content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018846A JP2001213694A (en) 2000-01-27 2000-01-27 Semiconductor wafer with low copper content

Publications (1)

Publication Number Publication Date
JP2001213694A true JP2001213694A (en) 2001-08-07

Family

ID=18545635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018846A Pending JP2001213694A (en) 2000-01-27 2000-01-27 Semiconductor wafer with low copper content

Country Status (1)

Country Link
JP (1) JP2001213694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884634B2 (en) 2002-09-27 2005-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Specifying method for Cu contamination processes and detecting method for Cu contamination during reclamation of silicon wafers, and reclamation method of silicon wafers
US7699997B2 (en) 2003-10-03 2010-04-20 Kobe Steel, Ltd. Method of reclaiming silicon wafers
JP2010114282A (en) * 2008-11-07 2010-05-20 Sumco Corp Method for evaluation of metal pollution in semiconductor substrate
JP2017084895A (en) * 2015-10-26 2017-05-18 株式会社Sumco Method for inspecting silicon wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884634B2 (en) 2002-09-27 2005-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Specifying method for Cu contamination processes and detecting method for Cu contamination during reclamation of silicon wafers, and reclamation method of silicon wafers
US7699997B2 (en) 2003-10-03 2010-04-20 Kobe Steel, Ltd. Method of reclaiming silicon wafers
JP2010114282A (en) * 2008-11-07 2010-05-20 Sumco Corp Method for evaluation of metal pollution in semiconductor substrate
JP2017084895A (en) * 2015-10-26 2017-05-18 株式会社Sumco Method for inspecting silicon wafer

Similar Documents

Publication Publication Date Title
TW201039397A (en) Methods of integrated circuit manufacturing
EP2075839B1 (en) Method for evaluating soi wafer
TW200845257A (en) Evaluation method of silicon wafer
US20030113941A1 (en) Method of manufacturing semiconductor device for evaluation capable of evaluating crystal defect using in-line test by avoiding using preferential etching process
JPH1050715A (en) Silicon wafer and manufacture thereof
JP2001213694A (en) Semiconductor wafer with low copper content
Zhang et al. Influence of rapid thermal annealing on Ge-Si interdiffusion in epitaxial multilayer Ge0. 3Si0. 7/Si superlattices with various GeSi thicknesses
US6258613B1 (en) Control methods of semiconductor manufacturing process, semiconductor manufacturing equipment, and semiconductor manufacturing environment
US8089274B2 (en) Method for evaluating SOI wafer
JP4061418B2 (en) Silicon substrate and manufacturing method thereof
US9935021B2 (en) Method for evaluating a semiconductor wafer
US6803242B2 (en) Evaluation method of IG effectivity in semiconductor silicon substrates
JP5561245B2 (en) Semiconductor substrate evaluation method
JP2011021898A (en) Standard sample for scanning probe microscope and carrier concentration measurement method
JP2005223098A (en) Evaluation method and measuring method of dopant contamination, and managing method of thermal treatment process
EP1391931A1 (en) Soi substrate
KR100969190B1 (en) Method for evaluation of bonded wafer
JP5003434B2 (en) Evaluation method of wafer for device formation
Nolot et al. Laser scattering: A fast, sensitive, in‐line technique for advanced process development and monitoring
Khorasani Carrier lifetime measurement for characterization of ultraclean thin p/p+ silicon epitaxial layers
Van Zeijl et al. Electrical detection and simulation of stress in silicon nitride spacer technology
Lotfi et al. Fabrication and characterization of 150-mm silicon-on-polycrystalline silicon carbide substrates
Waliullah Electrical Reliability of Twinned Metallic Nanowires
JP2001077168A (en) Method for evaluating semiconductor substrate, semiconductor substrate and semiconductor device
Yamabe et al. Effect of SiO2 thickness on dielectric breakdown defect density due to surface crystal-originated particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061113

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070704

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070803