JP2010111925A - スラグの流出検知方法 - Google Patents

スラグの流出検知方法 Download PDF

Info

Publication number
JP2010111925A
JP2010111925A JP2008286259A JP2008286259A JP2010111925A JP 2010111925 A JP2010111925 A JP 2010111925A JP 2008286259 A JP2008286259 A JP 2008286259A JP 2008286259 A JP2008286259 A JP 2008286259A JP 2010111925 A JP2010111925 A JP 2010111925A
Authority
JP
Japan
Prior art keywords
slag
molten steel
radiant energy
steel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286259A
Other languages
English (en)
Other versions
JP5444692B2 (ja
Inventor
Masatsugu Yakabe
正嗣 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008286259A priority Critical patent/JP5444692B2/ja
Publication of JP2010111925A publication Critical patent/JP2010111925A/ja
Application granted granted Critical
Publication of JP5444692B2 publication Critical patent/JP5444692B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

【課題】 転炉から取鍋に出鋼口を介して溶鋼を排出するときに、溶鋼の排出の末期、溶鋼に混入して流出するスラグを、測定される見掛け上の溶鋼及びスラグの放射エネルギーが外乱によって変化しても的確に検知する。
【解決手段】 転炉3の出鋼口12から流出する出鋼流1Aを赤外線カメラ6で撮影し、赤外線カメラで測定される出鋼流中の溶鋼1の放射エネルギーと出鋼流中のスラグ2の放射エネルギーとのエネルギー差に基づいて溶鋼とスラグとを判別し、前記出鋼口から流出する溶鋼に混合して流出するスラグを検知するにあたり、その時点までに前記赤外線カメラで測定された所定の複数回以上の出鋼流全体の放射エネルギー測定値の移動平均法による平均値をその時点での出鋼流全体の放射エネルギー値と定め、この移動平均法による出鋼流全体の放射エネルギー値が所定の値以上変化したときに、スラグ流出と判定する。
【選択図】 図1

Description

本発明は、転炉側壁に設置された出鋼口を介して転炉から取鍋に溶鋼を排出する際に、溶鋼の排出の末期、溶鋼に巻き込まれて流出するスラグを検知する方法に関するものである。
転炉を用いた溶銑の脱炭精錬工程においては、精錬剤として生石灰(CaO)やドロマイト(MgCO3・CaCO3)などの造滓剤を添加したり、副原料としてマンガン鉱石を添加したり、また、除去された溶銑中の不純物自体がスラグになったりし、更には、酸化精錬であることに起因して鉄の酸化物が不可避的に発生することから、スラグをなくすることは不可能であり、脱炭精錬終了後の溶鋼上にはスラグが形成される。形成されたスラグは、転炉から取鍋への出鋼過程の末期、転炉内の溶鋼が少なくなってくると、溶鋼に形成される渦流によって溶鋼に巻き込まれ、溶鋼とともに取鍋内に排出される。
このスラグは鉄酸化物及びマンガン酸化物などの酸素ポテンシャルの高い、所謂「低級酸化物」を含んでいるので、大量のスラグが取鍋内に流出した場合には、溶鋼を脱酸するために添加した溶鋼中のAlとスラグ中の低級酸化物とが反応して溶鋼中にアルミナが形成され、清浄性の高い鋼を得ることができなくなるという問題が発生する。また、取鍋の耐火物がスラグによって溶損し、取鍋耐火物の寿命が低下するという問題も発生する。
そこで、スラグの流出を防止するための多数の提案がなされている。例えば、特許文献1には、転炉から出鋼口を介して取鍋へ溶鋼を出鋼する際に、転炉からの出鋼流を赤外線カメラで監視し、赤外線カメラで検知される流体が溶鋼からスラグに変わった時点で転炉を傾転(直立)させて出鋼を終了し、スラグの取鍋への流出を防止する方法が開示されている。
また、特許文献2には、溶融金属容器の流出孔を流下する溶融金属流に混入して前記溶融金属容器から流出するスラグの検知方法において、前記溶融金属流を赤外線カメラで撮影し、撮影した画像の各画素を、溶融金属及びスラグの輝度エネルギー差を利用して溶融金属とスラグとに判別し、スラグと判別された画素の数を撮影毎に積算し、スラグと判別された画素の数の積算値に基づいてスラグの流出を判定し、その時点で流出孔を閉鎖してスラグの流出を防止する方法が開示されている。
特開2001−107127号公報 特開2007−197738号公報
特許文献1及び特許文献2ともに、溶鋼よりもスラグの方が、放射率が大きいこと、つまり放射エネルギーが大きいことを利用して溶鋼とスラグとを判別しているが、これらの従来技術には、次のような問題点がある。
即ち、特許文献1及び特許文献2ともに、溶鋼とスラグとを判別する際に、或る一定の放射エネルギー値を、溶融金属とスラグとを判別するための閾値(以下、「エネルギー閾値」と記す)として設定し、検出される放射エネルギーがエネルギー閾値を越えたときにスラグと判別し、エネルギー閾値以下の場合を溶鋼と判別しており、このエネルギー閾値を固定(但し、煩雑ではあるが測定間では変更することは可能)していることである。
転炉からの出鋼時には粉塵が舞い上がり、転炉近傍に設置した、スラグ流出を感知するための赤外線カメラのカメラケース或いはカメラのレンズに、粉塵が付着する。放射エネルギーつまり輝度が同一のスラグを測定した場合でも、粉塵の付着量に応じて見掛け上の輝度が低下していき、付着量が増加した場合には、スラグの見掛け上の輝度がエネルギー閾値以下になってしまうことも発生する。また、赤外線カメラの画像信号伝達機器やケーブルの外気温度などの影響による機器特性により、観測輝度にドリフトが発生し、固定したエネルギー閾値では誤検知する可能性がある。
現在、前者の問題については、オペレーターによる定期的な清掃などによる粉塵除去によって回避し、後者の問題については、基準輝度を設けその輝度との比較による自己点検回路を付与してドリフトの影響を回避している。
しかしながら、エネルギー閾値を固定している特許文献1及び特許文献2では、外乱(測定機器を含む)による見掛け上の輝度変化の問題が根本的に潜在しており、検出精度を維持するためには、それ相応の保守点検が必要となる。
本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉から取鍋に出鋼口を介して溶鋼を排出するときに、溶鋼の排出の末期、溶鋼に混入して流出するスラグを溶鋼の放射エネルギーとスラグの放射エネルギーとの差から検知するにあたり、測定される見掛け上の溶鋼及びスラグの放射エネルギーが外乱によって変化しても、的確にスラグを検知することができ、スラグの流出量をばらつきなく所定量に制御することのできるスラグの流出検知方法を提供することである。
上記課題を解決するための本発明に係るスラグの流出検知方法は、転炉の出鋼口から流出する出鋼流を赤外線カメラで撮影し、赤外線カメラで測定される出鋼流中の溶鋼の放射エネルギーと出鋼流中のスラグの放射エネルギーとのエネルギー差に基づいて溶鋼とスラグとを判別し、前記出鋼口から流出する溶鋼に混合して流出するスラグを検知するスラグの流出検知方法であって、その時点までに前記赤外線カメラで測定された所定の複数回以上の出鋼流全体の放射エネルギー測定値の移動平均法による平均値をその時点での出鋼流全体の放射エネルギー値と定め、この移動平均法による出鋼流全体の放射エネルギー値が所定の値以上変化したときに、スラグ流出と判定することを特徴とするものである。
本発明によれば、溶鋼の放射エネルギーとスラグの放射エネルギーとのエネルギー差から出鋼流中のスラグ流出を判定するにあたり、測定される放射エネルギーの絶対値ではなく、その時点までに測定された所定の複数回以上の出鋼流全体の放射エネルギー測定値の移動平均法による平均値をその時点での出鋼流全体の放射エネルギー値と定め、この移動平均法による出鋼流全体の放射エネルギー値が所定の値以上変化したときに、スラグ流出と判定するので、仮に外乱によって測定される見掛け上の溶鋼及びスラグの放射エネルギーが変化しても、溶鋼とスラグとの相対的な放射エネルギー差は依然として存在し、また、この相対的な放射エネルギー差は移動平均法によって容易に識別することが可能であり、従って、的確にスラグを検知することができ、スラグの流出量をばらつきなく所定量に制御することが実現される。
以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態例であって、転炉から取鍋への出鋼流に本発明を適用した1例を示す概略断面図である。
図1に示すように、外殻を鉄皮10とし、鉄皮10の内側に耐火物11が施工された転炉3の側壁には、溶鋼1を取鍋4に排出するための出鋼口12が設置されている。この転炉3の出鋼口12の近傍には、スラグストッパー9が設置されており、スラグストッパー9は、転炉3とは距離を隔てた位置に設置されるスラグストッパー制御装置8によって制御されている。また、出鋼口12を介して転炉3から取鍋4へ出鋼される出鋼流1Aに混合して流出するスラグ2を検知するために、赤外線カメラ6及び検知部7からなるスラグ検知装置5が設置されている。尚、出鋼流1Aには、溶鋼1のみならず、スラグ2も溶鋼1に混合して存在するが、通常、出鋼口12から排出されるもの全てを「出鋼流」と称している。
赤外線カメラ6は、出鋼流1A及びその背景を二次元で撮影し、撮影した二次元画像全体の放射エネルギー総量値を測定するとともに、各被写体の個別の放射エネルギーつまり輝度を測定し且つ各被写体の放射エネルギーを表示する装置である。出鋼流1Aを測定する場合には、二次元画像全体の放射エネルギー総量値は、溶鋼1及びスラグ2を含めた出鋼流全体の放射エネルギー値に相当する。赤外線カメラ6により測定された、二次元画像全体の放射エネルギー総量値つまり出鋼流全体の放射エネルギー値、及び各被写体の個別の放射エネルギーは、検知部7に送られる。
検知部7は、赤外線カメラ6から送られた上記情報に基づいて、スラグ流出の検知並びにスラグ流出の判定を行う装置である。具体的には、赤外線カメラ6から送られた出鋼流全体の放射エネルギー値を、移動平均法によって平準化し、この平準化した出鋼流全体の放射エネルギー値に基づいて、スラグ流出の検知並びにスラグ流出の判定を行う装置である。また、検知部7は、平準化した出鋼流全体の放射エネルギー値に基づいて、溶鋼1とスラグ2とを判別するためのエネルギー閾値を決定する機能をも備えている。検知部7の機能については、後段で更に詳しく説明する。検知部7の信号は、スラグストッパー制御装置8に入力されている。
尚、赤外線カメラ6でなくても例えばCCDカメラなどでも、被写体の放射エネルギーを計測することは可能であるが、検出感度が高いことから本発明では赤外線カメラ6を使用している。但し、赤外線カメラ6の代わりにCCDカメラを使用しても、本発明を実施することは可能である。
スラグストッパー9は、回転自在なアーム13と、アーム13の先端部に取り付けられた鋳鉄製の止め栓部14と、アーム13を駆動するための油圧シリンダー15と、から構成されており、油圧シリンダー15が作動することにより、アーム13の先端部の止め栓部14が出鋼口12に嵌合するようになっている。この止め栓部14には、止め栓部14の中心部を貫通してガス吹込み孔(図示せず)が設けられ、このガス吹込み孔から供給される窒素ガスが、止め栓部14を出鋼口12に嵌合させたときに、出鋼口12の流路内に噴射されるようになっている。ガス吹込み孔を流れる窒素ガス流量及び油圧シリンダー15を作動するための作動油は、スラグストッパー制御装置8によって制御されている。尚、図1では、油圧シリンダー15に接続する油圧配管、ガス吹込み孔に接続するガス供給管及び流量調整弁などは省略している。
このような構成の転炉3及びスラグ検知装置5を用いて、次のようにして本発明を適用する。
転炉3に溶銑を装入し、更に、生石灰、焼成ドロマイト、蛍石などの造滓剤を装入して、上吹きランス(図示せず)または底吹き羽口(図示せず)若しくは双方から酸素ガスを溶銑に供給して脱炭精錬を実施する。溶銑は脱炭精錬されて溶鋼1が溶製され、造滓剤は溶融してスラグ2が生成される。溶製した溶鋼1を取鍋4に出鋼するにあたり、出鋼口12が下面側に位置するように、直立していた転炉3を傾動させる。転炉3の傾動により、溶鋼1は出鋼口12を通過する出鋼流1Aとなって取鍋4に流下する。溶鋼1の出鋼が進み、転炉3に滞留する溶鋼1が少なくなると、溶鋼1に渦流が形成され、この渦流によって溶鋼1の上に浮遊するスラグ2が溶鋼1に巻き込まれ、出鋼流1Aに混入して取鍋4に流出する。
この出鋼流1Aを赤外線カメラ6で連続して監視し、一定周期で出鋼流1Aの二次元画像を撮影し、二次元画像全体の放射エネルギー総量値つまり出鋼流全体の放射エネルギー値を測定するとともに、撮影した二次元画像の各位置の放射エネルギーを測定する。測定された出鋼流全体の放射エネルギー値及び各位置の放射エネルギー値は検知部7に送られる。尚、赤外線カメラ6は、一般に、市販のものであっても1秒間に10〜30回のサンプリング周期で二次元画像を撮影可能であり、特殊仕様であればそれ以上のサンプリング周期で撮影することも可能な装置である。
ここで、赤外線カメラ6による出鋼流1Aのスラグ検知方法の原理を説明する。図2は、或る時刻において赤外線カメラ6により測定された出鋼流1A及び背景の放射エネルギー値の二次元画像の例を示す図である。図2において、「Z」として示す放射エネルギー値の極めて低い部分(以下、「範囲(Z)」と記す)は出鋼流1Aの背景であり、「X」として示す放射エネルギーレベルの高い部分(以下、「範囲(X)」と記す)が、出鋼流1Aの溶鋼1の部分であり、出鋼流1Aのなかで放射エネルギーレベルの更に高い「Y」として示す部分(以下、「範囲(Y)」と記す)が、スラグ2の部分である。
撮影した二次元画像を、範囲(X)、範囲(Y)及び範囲(Z)の3つの範囲に判別する方法を、図3を用いて説明する。図3は、図2に示すA−A’線上の放射エネルギー値の分布を示す概略図である。背景つまり範囲(Z)の部分は、放射エネルギー値が極めて低く、出鋼流1Aの部分、つまり範囲(X)及び範囲(Y)とは明確に判別することができる。出鋼流1Aの部分において、溶鋼1の放射エネルギー値はEmであり、スラグ2の放射エネルギー値は溶鋼1の放射エネルギーEmよりも高いEsであるので、溶鋼1とスラグ2とを判別することができる。具体的には、図3に示すように、Emよりも大きく且つEsよりも小さい所定のエネルギー閾値Ecを設定しておき、計測される放射エネルギーレベルがエネルギー閾値Ecを越えた範囲をスラグ2、つまり範囲(Y)とし、それ以外を溶鋼1、つまり範囲(X)として判別することができる。
これは、赤外線波長領域におけるスラグ2の放射率は、溶鋼1の放射率の1.2〜1.5倍であり、これによって測定される放射エネルギーレベルに差が発生するので、赤外線カメラ6を使用することによって、出鋼流1Aにおける溶鋼1とスラグ2とを明確に区別することが可能となる。尚、図3は、出鋼流1Aにスラグ2が混入した状態を示しており、スラグ2が混入していない場合には、画像は範囲(X)と範囲(Z)とで構成され、出鋼流1Aが全てスラグ2の場合には、画像は範囲(Y)と範囲(Z)とで構成される。
検知部7におけるスラグ2の検知方法は、出鋼流1Aの面積(=範囲(X)+範囲(Y))における範囲(Y)の比率(Y/(X+Y))を連続的に測定し、範囲(Y)の比率が所定の値になった時点を「スラグ流出時点」と判定することもできるが、出鋼流1Aにおける範囲(Y)の比率が高くなるほど、出鋼流全体の放射エネルギー値が増加することから、図4に示すように、出鋼流全体の放射エネルギー値が或るエネルギー閾値Ec´を超えた時点を「スラグ流出時点」と判定することが主に行われている。エネルギー閾値Ec´をEmとEsとの間で上下に変動させることは、範囲(Y)の比率を変動させることと一致する。尚、図4は、スラグ流出の判定方法の例を示す概略図であり、図中のEmは溶鋼1の放射エネルギー、Esはスラグ2の放射エネルギーである。
但し、前述したように、赤外線カメラ6のレンズへのダストなどの付着や、測定機器の外気温度の影響による観測輝度のドリフトなどの外乱により、計測される見掛けの放射エネルギーレベルは、Em及びEsよりも低下する。外乱が大きくなると、従来のように、エネルギー閾値を固定した場合には、付着量の増加などに伴って遂にはスラグ2の見掛けの放射エネルギーがエネルギー閾値以下になってしまい、スラグ検知が不可能になる。
本発明者らは、外乱によって溶鋼1及びスラグ2の見掛け上の放射エネルギーレベルが低下しても、溶鋼1の見掛け上の放射エネルギーレベルとスラグ2の見掛け上の放射エネルギーレベルとでは、その差は減少するものの、依然としてエネルギー差が存在し、このエネルギー差を利用すれば、見掛け上の放射エネルギーレベルがどのように変化してもスラグ2の検知が可能であることを見出した。但し、この場合には、出鋼流1Aの測定毎に、溶鋼1の見掛け上の放射エネルギーレベルを正確に把握する必要がある。
そこで、本発明においては、検知部7は、赤外線カメラ6から送られてくる出鋼流全体の放射エネルギー値を移動平均法によって平準化し、平準化されたデータに基づいて、スラグ流出の検知並びにスラグ流出の判定を行う。つまり、移動平均法による平均値をその時点における出鋼流全体の放射エネルギー値として判定する。尚、移動平均法とは、或る固定された時間区間上の時系列のデータの平均値を、その時点での平均値とする手法であり、時系列のデータを滑らかにするのに一般的に使用される手法である。
ここで、移動平均法の対象とするデータ数は、その時点での測定値を含め、直前のデータの所定の複数回以上とする。例えば、1秒間に10〜30回のサンプリング周期で測定する赤外線カメラ6の場合には、その時点での測定値を含め、直前のデータの10以上とすることが好ましい。10以上の測定値を対象とすることにより、個々の出鋼流全体の放射エネルギー値にばらつきがあっても、移動平均法により平準化され、溶鋼1の放射エネルギーレベルとスラグ2の放射エネルギーレベルとを正確に判別することが可能となる。但し、赤外線カメラ6のサンプリング周期によっては、10回の測定間隔では測定期間が長くなり過ぎたり、逆に短すぎたりすることもあるので、赤外線カメラ6のサンプリング周期に応じて移動平均法の対象とするデータ数を設定すればよい。
例えば、移動平均法で対象とする測定値の数を10とした場合、1秒間に10回のサンプリング周期で二次元画像を撮影可能な赤外線カメラ6であれば、移動平均で対象とするデータはその時点から1秒間前までのデータとなり、1秒間に30回のサンプリング周期で二次元画像を撮影可能な赤外線カメラ6であれば0.33秒間前までを対象とすることになる。移動平均法で対象とする測定値の数の上限値は特に規定する必要はないが、3秒間程度の測定数に相当するデータ数とすればよい。5秒間以上の測定数を対象とすると、平準化されすぎてスラグ2の検出を誤る可能性もあり、またスラグ流出からスラグ検知までの判定時間が長くなるため、好ましくない。つまり、およそ0.3秒間前までからおよそ3秒間前までの範囲の測定データを用いて移動平均法により平準化処理できるように、赤外線カメラ6のサンプリング周期に応じて、移動平均法の対象とするデータ数を設定すればよい。
検知部7において、スラグ2の流出を検知する方法は、次の2つの方法で行うことができる。1つの方法は、移動平均法で平準化した、出鋼流全体の放射エネルギー値が上昇を開始し、その後、それ以前よりも高いレベルで出鋼流全体の放射エネルギー値が維持された時点、つまり前述した図4に「t1」として示す時点を、「スラグ流出時点」と判定する方法である。
他の1つの方法は、移動平均法で平準化した、出鋼流全体の放射エネルギー値が、上昇を開始して所定の値に達した時点、つまり前述した図4に「t2」として示す時点を、「スラグ流出時点」と判定する方法である。この場合には、エネルギー閾値Ec´を予め設定する必要がある。エネルギー閾値Ec´を設定するには、出鋼流1Aにスラグ2が混入しない出鋼初期の段階で測定した出鋼流1Aの全体の放射エネルギー値を基準とし、これにEsを超えない範囲の所定の値を加えた値をエネルギー閾値Ec´とすればよい。一般的に、出鋼開始から2分間程度経過するまでは、出鋼流1Aにスラグ2が混入しないので、その時点までに測定した出鋼流1Aの全体の放射エネルギー値を基準とすればよい。このエネルギー閾値Ec´は出鋼毎に設定することになる。
そして、検知部7は、「スラグ流出」を判定したなら、その判定信号をスラグストッパー制御装置8に出力する。この場合、スラグ2の流出を可能な限り少なくしたい場合には、エネルギー閾値Ec´を小さくし、一方、転炉3に残留する溶鋼1を少なくしたい場合には、エネルギー閾値Ec´を大きくするなど、溶製される溶鋼1の品質レベルなどに応じて判定する。
このように、赤外線カメラ6で測定される二次元画像全体の放射エネルギー総量値つまり出鋼流全体の放射エネルギー値に応じてスラグ2の流出を判定することになるが、本発明においては、赤外線カメラ6で測定される二次元画像全体の放射エネルギー総量値が同一であっても、外乱による影響に応じて、溶鋼1と判定したり或いはスラグ2と判定したりすることになる。尚、エネルギー閾値を一定値とする従来の検知方法では、放射エネルギー総量値に基づき一義的に溶鋼1かスラグ2かに判別される。
検知部7からスラグ流出の判定信号を受けたスラグストッパー制御装置8は、アーム13の先端に設置した止め栓部14によって出鋼口12が閉塞されるように油圧シリンダー15を作動させると同時に、止め栓部14の先端部から窒素ガスが流出するように電磁弁(図示せず)を制御する。出鋼流1Aは止め栓部14によって止められるのみならず、出鋼口12の内部に噴射される窒素ガスによって、出鋼口12の内部の溶鋼1及びスラグ2は転炉3の内部に押し戻される。これにより、出鋼口12の溶鋼1による閉塞は防止される。転炉3は、スラグストッパー9の作動と同時にまたは作動直後に、炉口が上となるように傾動し、その後、出鋼口12が上面側に位置するように更に傾動し、スラグ2は炉口からスラグポット(図示せず)に排出される。
このように、本発明によれば、測定される放射エネルギーの絶対値ではなく、その時点までに測定された所定の複数回以上の出鋼流全体の放射エネルギー測定値の移動平均法による平均値をその時点での出鋼流全体の放射エネルギー値と定め、この移動平均法による出鋼流全体の放射エネルギー値が所定の値以上変化したときに、スラグ流出と判定するので、仮に外乱によって測定される見掛け上の溶鋼1及びスラグ2の放射エネルギーが変化しても、溶鋼1とスラグ2との相対的な放射エネルギー差は依然として存在し、また、この相対的な放射エネルギー差は移動平均法によって容易に識別することが可能であり、従って、的確にスラグ2を検知することができ、スラグ2の流出量をばらつきなく所定量に制御することが実現される。また、出鋼流全体の放射エネルギー値を定めるにあたり、移動平均法を用いているので、発煙などによる瞬間の輝度変化の影響を防止することができる。
尚、本発明は上記説明に限るものではなく種々の変更が可能である。例えば、スラグストッパー9の構造は上記に限るものではなく、出鋼口12を閉塞することができる限り、どのような構造であっても構わない。また、スラグストッパー9を使用することなく、検知部7がスラグ流出を判定した時点で、転炉3を直立するように傾動させて出鋼口12からの流出を停止するようにしてもよい。また更に、上記説明は、本発明を溶銑の脱炭精錬に適用した場合を説明したが、精錬反応は、例えばクロム鉱石の還元による高クロム鋼の精錬反応など、どのような精錬反応であっても構わず、要は、転炉出鋼口から溶鋼を出鋼する場合の全てに、本発明を適用することができる。
図1に示す構成の転炉及びスラグ検知装置を用いて、転炉から取鍋への出鋼流のスラグ流出検知及びスラグストッパーよるスラグ流出防止を実施した。用いた赤外線カメラは1秒間に30回のサンプリング周期で二次元画像を撮影可能な赤外線カメラであり、この赤外線カメラによる30回の出鋼流全体の放射エネルギー測定値を移動平均法によって処理し、移動平均法による処理後のデータをその時点での出鋼流全体の放射エネルギー値とした。そして、出鋼流全体の放射エネルギー値が上昇を開始し、その後、それ以前よりも高いレベルで出鋼流全体の放射エネルギー値が維持された時点、つまり前述した図4に「t1」として示す時点を「スラグ流出時点」と判定した(本発明法)。
また、比較のために固定したエネルギー閾値を用い、出鋼流全体の放射エネルギー測定値が設定したエネルギー閾値を越えた時点を「スラグ流出時点」と判定する方法も実施した(従来法)。用いた転炉は、容量が250トンの上底吹き転炉である。
図5に、赤外線カメラによる出鋼流全体の放射エネルギー測定値(輝度)を移動平均法により処理した後のデータを示し、図6に、同一チャージの赤外線カメラによる出鋼流全体の放射エネルギー測定値(輝度)を示す。図5及び図6に示すように、移動平均法を用いて測定データを平準化することで、測定データのばらつきが大幅に減少し、溶鋼とスラグとを精度良く判別することが可能となることが分かる。尚、図5及び図6において、出鋼末期に輝度が急激に低下しているのは、スラグストッパーを作動させたためである。
赤外線カメラ設置後、1週間経過した時点で従来法ではスラグ検知率が80%に低下したが、本発明法ではスラグ検知率の低下は発生せず、100%のスラグ検知率を維持することができた。
転炉から取鍋への出鋼流に本発明を適用した1例を示す概略断面図である。 赤外線カメラにより測定された出鋼流の二次元画像の例を示す図である。 図2に示すA−A’線上の放射エネルギー値の分布を示す概略図である。 スラグ流出の判定方法の例を示す概略図である。 赤外線カメラによる測定値を移動平均法により平準化処理した後のデータを示す図である。 赤外線カメラによる測定値を示す図である。
符号の説明
1 溶鋼
1A 出鋼流
2 スラグ
3 転炉
4 取鍋
5 スラグ検知装置
6 赤外線カメラ
7 検知部
8 スラグストッパー制御装置
9 スラグストッパー
10 鉄皮
11 耐火物
12 出鋼口
13 アーム
14 止め栓部
15 油圧シリンダー

Claims (1)

  1. 転炉の出鋼口から流出する出鋼流を赤外線カメラで撮影し、赤外線カメラで測定される出鋼流中の溶鋼の放射エネルギーと出鋼流中のスラグの放射エネルギーとのエネルギー差に基づいて溶鋼とスラグとを判別し、前記出鋼口から流出する溶鋼に混合して流出するスラグを検知するスラグの流出検知方法であって、その時点までに前記赤外線カメラで測定された所定の複数回以上の出鋼流全体の放射エネルギー測定値の移動平均法による平均値をその時点での出鋼流全体の放射エネルギー値と定め、この移動平均法による出鋼流全体の放射エネルギー値が所定の値以上変化したときに、スラグ流出と判定することを特徴とする、スラグの流出検知方法。
JP2008286259A 2008-11-07 2008-11-07 スラグの流出検知方法 Active JP5444692B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286259A JP5444692B2 (ja) 2008-11-07 2008-11-07 スラグの流出検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286259A JP5444692B2 (ja) 2008-11-07 2008-11-07 スラグの流出検知方法

Publications (2)

Publication Number Publication Date
JP2010111925A true JP2010111925A (ja) 2010-05-20
JP5444692B2 JP5444692B2 (ja) 2014-03-19

Family

ID=42300708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286259A Active JP5444692B2 (ja) 2008-11-07 2008-11-07 スラグの流出検知方法

Country Status (1)

Country Link
JP (1) JP5444692B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899442A (zh) * 2012-08-15 2013-01-30 天津市三特电子有限公司 转炉出钢过程检测与控制装置
KR101249802B1 (ko) * 2010-12-21 2013-04-05 재단법인 포항산업과학연구원 카메라를 이용한 슬래그 유출 감지방법
WO2018151075A1 (ja) * 2017-02-14 2018-08-23 新日鐵住金株式会社 溶鋼流中のスラグ検出方法
JPWO2018151078A1 (ja) * 2017-02-14 2019-12-19 日本製鉄株式会社 溶鋼流中のスラグ検出方法
CN114774617A (zh) * 2022-04-11 2022-07-22 武汉钢铁有限公司 钢包底吹氩控制方法、装置、设备及介质
JP2022124231A (ja) * 2021-02-15 2022-08-25 Jfeスチール株式会社 スラグ流出判定方法、転炉操業方法、溶鋼製造方法、スラグ流出判定装置、転炉操業設備、及び溶鋼製造設備
WO2024057758A1 (ja) * 2022-09-15 2024-03-21 日本製鉄株式会社 排滓量の推定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121524A (en) * 1974-08-19 1976-02-20 Nippon Steel Corp Renzokuidokoonbutsuno seibunhenkakenshutsusochi
JPH09174228A (ja) * 1995-12-26 1997-07-08 Tokai Carbon Co Ltd スラグ流出検知方法
JP2003183720A (ja) * 2001-12-20 2003-07-03 Jfe Engineering Kk スラグ検出方法及びその装置
JP2007113095A (ja) * 2005-10-24 2007-05-10 Jfe Steel Kk スラグの流出防止方法
JP2007197738A (ja) * 2006-01-24 2007-08-09 Jfe Steel Kk スラグの流出検知方法
JP2008208422A (ja) * 2007-02-27 2008-09-11 Jfe Steel Kk 転炉からの出鋼方法
JP2009287097A (ja) * 2008-05-30 2009-12-10 Jfe Steel Corp スラグの流出検知方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121524A (en) * 1974-08-19 1976-02-20 Nippon Steel Corp Renzokuidokoonbutsuno seibunhenkakenshutsusochi
JPH09174228A (ja) * 1995-12-26 1997-07-08 Tokai Carbon Co Ltd スラグ流出検知方法
JP2003183720A (ja) * 2001-12-20 2003-07-03 Jfe Engineering Kk スラグ検出方法及びその装置
JP2007113095A (ja) * 2005-10-24 2007-05-10 Jfe Steel Kk スラグの流出防止方法
JP2007197738A (ja) * 2006-01-24 2007-08-09 Jfe Steel Kk スラグの流出検知方法
JP2008208422A (ja) * 2007-02-27 2008-09-11 Jfe Steel Kk 転炉からの出鋼方法
JP2009287097A (ja) * 2008-05-30 2009-12-10 Jfe Steel Corp スラグの流出検知方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249802B1 (ko) * 2010-12-21 2013-04-05 재단법인 포항산업과학연구원 카메라를 이용한 슬래그 유출 감지방법
CN102899442A (zh) * 2012-08-15 2013-01-30 天津市三特电子有限公司 转炉出钢过程检测与控制装置
WO2018151075A1 (ja) * 2017-02-14 2018-08-23 新日鐵住金株式会社 溶鋼流中のスラグ検出方法
TWI667088B (zh) * 2017-02-14 2019-08-01 日商日本製鐵股份有限公司 熔鋼流中的熔渣檢測方法
JPWO2018151075A1 (ja) * 2017-02-14 2019-11-21 日本製鉄株式会社 溶鋼流中のスラグ検出方法
JPWO2018151078A1 (ja) * 2017-02-14 2019-12-19 日本製鉄株式会社 溶鋼流中のスラグ検出方法
JP2022124231A (ja) * 2021-02-15 2022-08-25 Jfeスチール株式会社 スラグ流出判定方法、転炉操業方法、溶鋼製造方法、スラグ流出判定装置、転炉操業設備、及び溶鋼製造設備
JP7444098B2 (ja) 2021-02-15 2024-03-06 Jfeスチール株式会社 スラグ流出判定方法、転炉操業方法、溶鋼製造方法、スラグ流出判定装置、転炉操業設備、及び溶鋼製造設備
CN114774617A (zh) * 2022-04-11 2022-07-22 武汉钢铁有限公司 钢包底吹氩控制方法、装置、设备及介质
CN114774617B (zh) * 2022-04-11 2024-03-01 武汉钢铁有限公司 钢包底吹氩控制方法、装置、设备及介质
WO2024057758A1 (ja) * 2022-09-15 2024-03-21 日本製鉄株式会社 排滓量の推定方法

Also Published As

Publication number Publication date
JP5444692B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5444692B2 (ja) スラグの流出検知方法
JP6602238B2 (ja) 竪型炉における溶融物レベルの推定方法
JP4747855B2 (ja) スラグの流出検知方法
EP3012331B1 (en) Method for detecting abnormality in blast furnace, and method for operating blast furnace
TWI739364B (zh) 轉爐之噴濺預測方法、轉爐之作業方法及轉爐之噴濺預測系統
JP6164173B2 (ja) 転炉排出流判定装置、転炉排出流判定方法、溶銑予備処理方法、及び転炉予備処理の操業方法
JP6179286B2 (ja) 高炉の操業状況判定方法
JP2015052148A (ja) 高炉の操業状況判定に基づく制御方法
KR101839841B1 (ko) 탕면높이 측정장치 및 측정방법
CN106795573B (zh) 用于确定氧气吹炼过程中的点火时间点的方法和设备
JP4419861B2 (ja) 転炉出鋼時のスラグ検出方法及び装置
CN107110605B (zh) 收集和分析与顶部浸没式喷射注射器反应器系统操作状况有关的数据的系统和方法
JP5417738B2 (ja) スラグの流出検知方法
JP4742805B2 (ja) スラグの流出防止方法
JP5003204B2 (ja) 転炉からの出鋼方法
JP7036142B2 (ja) 転炉のスロッピング予知方法、転炉の操業方法及び転炉のスロッピング予知システム
JP4542471B2 (ja) 高炉出銑口径の測定方法及び測定装置
JP5228414B2 (ja) スラグの流出検知方法
JP6515342B2 (ja) 高炉羽口閉塞除去装置及び高炉羽口閉塞除去方法
JP2017049204A (ja) 転炉底吹きノズル監視装置
JP4032582B2 (ja) 製錬炉のランス管理方法及び管理装置
KR102065222B1 (ko) 용선 공취 상태 모니터링 장치
JP4315122B2 (ja) コークス充填式竪型炉のレースウエイ深度測定方法および深度測定装置
JP2008156717A (ja) 転炉出鋼口の補修時期判定方法
WO2024057758A1 (ja) 排滓量の推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250