JP2010103080A - Electroconductive fine particles, anisotropic electroconductive material and connecting structure - Google Patents
Electroconductive fine particles, anisotropic electroconductive material and connecting structure Download PDFInfo
- Publication number
- JP2010103080A JP2010103080A JP2009079911A JP2009079911A JP2010103080A JP 2010103080 A JP2010103080 A JP 2010103080A JP 2009079911 A JP2009079911 A JP 2009079911A JP 2009079911 A JP2009079911 A JP 2009079911A JP 2010103080 A JP2010103080 A JP 2010103080A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- conductive fine
- nickel layer
- alkyl group
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、信頼性が高い電気接続ができる導電性微粒子に関する。また、該導電性微粒子を含有する異方性導電材料、及び、該導電性微粒子又は該異方性導電材料によって接続された接続構造体に関する。 The present invention relates to conductive fine particles that can be electrically connected with high reliability. The present invention also relates to an anisotropic conductive material containing the conductive fine particles, and a connection structure connected by the conductive fine particles or the anisotropic conductive material.
絶縁性のバインダー樹脂に導電性微粒子が分散されている異方性導電材料は、電極接続材料として使用されている。異方性導電材料は、異方性導電フィルム、異方性導電シート、異方性導電接着剤等が挙げられる。例えば、異方性導電材料は、基板に形成されている電極を電気的に接続するために、基板や電子部品の電極間に挟み込んで使用される。特に、異方性導電材料は液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器に広く用いられている。 An anisotropic conductive material in which conductive fine particles are dispersed in an insulating binder resin is used as an electrode connecting material. Examples of the anisotropic conductive material include an anisotropic conductive film, an anisotropic conductive sheet, and an anisotropic conductive adhesive. For example, an anisotropic conductive material is used by being sandwiched between electrodes of a substrate or an electronic component in order to electrically connect electrodes formed on the substrate. In particular, anisotropic conductive materials are widely used in electronic devices such as liquid crystal displays, personal computers, and mobile phones.
従来、導電性微粒子として、表面に金めっき層が形成された導電性微粒子が用いられている。特許文献1には、非金属材料の芯材粉体の表面に無電解めっき層が形成され、無電解めっき層として、最上層に位置する金めっき層と該層に隣接するニッケル層とを含む多層構造が形成された導電性無電解めっき粉体が開示されている。このような導電性無電解めっき粉体を用いれば、対向する電極間を導通させることができることが開示されている。 Conventionally, conductive fine particles having a gold plating layer formed on the surface have been used as the conductive fine particles. In Patent Document 1, an electroless plating layer is formed on the surface of a non-metallic material core material powder, and the electroless plating layer includes a gold plating layer positioned at the uppermost layer and a nickel layer adjacent to the gold plating layer. A conductive electroless plating powder having a multilayer structure is disclosed. It is disclosed that the use of such a conductive electroless plating powder allows electrical conduction between opposing electrodes.
しかしながら、表面に金めっき層が形成された導電性微粒子が分散した異方性導電材料を用いて基板や電子部品の電極間を接続すると、導電性微粒子と電極との間に絶縁性のバインダー樹脂が残留するという問題があった。また、表面に金めっき層が形成された導電性微粒子は、電極の表面に形成された酸化被膜を突き破ることができず、電極間の接続抵抗値が高くなることがあるという問題があった。これらの問題は、金が比較的柔らかい金属であるためと考えられる。 However, when an anisotropic conductive material in which conductive fine particles having a gold plating layer formed on the surface are dispersed is used to connect between electrodes of a substrate or an electronic component, an insulating binder resin is formed between the conductive fine particles and the electrodes. There was a problem that remained. Further, the conductive fine particles having the gold plating layer formed on the surface cannot break through the oxide film formed on the surface of the electrode, and there is a problem that the connection resistance value between the electrodes may be increased. These problems are considered because gold is a relatively soft metal.
そこで、金よりも硬い金属で形成された導電層を有する導電性微粒子が検討されている。特許文献2には、芯材粉体の表面に無電解めっき法により、ニッケル被膜を形成した導電性無電解めっき粉体が開示されている。しかしながら、ニッケルは金より酸化されやすいため、このような導電性無電解めっき粉体は信頼性が高い電気接続ができないという問題があった。 Therefore, conductive fine particles having a conductive layer formed of a metal harder than gold have been studied. Patent Document 2 discloses a conductive electroless plating powder in which a nickel coating is formed on the surface of a core powder by an electroless plating method. However, since nickel is more easily oxidized than gold, such a conductive electroless plating powder has a problem that electrical connection with high reliability cannot be achieved.
本発明は、信頼性が高い電気接続ができる導電性微粒子を提供することを目的とする。また、本発明は、該導電性微粒子を含有する異方性導電材料、及び、該導電性微粒子又は該異方性導電材料によって接続された接続構造体を提供することを目的とする。 An object of this invention is to provide the electroconductive fine particles which can perform electrical connection with high reliability. Another object of the present invention is to provide an anisotropic conductive material containing the conductive fine particles, and a connection structure connected by the conductive fine particles or the anisotropic conductive material.
本発明は、基材微粒子の表面にニッケル層が形成されている導電性微粒子であって、前記ニッケル層のニッケル含有率が96重量%以上であり、水に対する表面接触角が90°以上、かつ、体積抵抗率が0.0030Ω・cm以下である導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle having a nickel layer formed on the surface of the base particle, wherein the nickel layer has a nickel content of 96% by weight or more, a surface contact angle with water of 90 ° or more, and The conductive fine particles have a volume resistivity of 0.0030 Ω · cm or less.
The present invention is described in detail below.
本発明者は、基材微粒子の表面にニッケル層が形成されている導電性微粒子であっても、水に対する表面接触角が90°以上となるように表面処理を施すことにより、ニッケル層の酸化を防止できることを見出した。これは、水に対する表面接触角を一定以上とすることにより、酸化の原因となる水分の接触を最低限に抑えることができるためと考えられる。しかしながら、表面接触角を調整するために表面処理を施こす場合、導電接続性を損なうこともある。本発明者は、水に対する表面接触角が90°以上となると同時に、体積抵抗率が0.0030Ω・cm以下となるような表面処理を施すことにより、酸化の抑制と導電接続性とを両立して、信頼性が高い電気接続を行うことができることを見出し、本発明を完成した。 The present inventor conducted the surface treatment so that the surface contact angle with respect to water is 90 ° or more even when the conductive fine particles have a nickel layer formed on the surface of the substrate fine particles. It was found that can be prevented. This is considered to be because the contact of moisture that causes oxidation can be minimized by setting the surface contact angle to water to a certain level or more. However, when surface treatment is performed to adjust the surface contact angle, the conductive connectivity may be impaired. The inventor achieves both suppression of oxidation and conductive connectivity by performing a surface treatment such that the surface contact angle with respect to water is 90 ° or more and the volume resistivity is 0.0030 Ω · cm or less. Thus, the inventors have found that electrical connection with high reliability can be performed, and completed the present invention.
本発明の導電性微粒子は、基材微粒子の表面にニッケル層が形成されており、水に対する表面接触角の下限が90°である。水に対する表面接触角が90°未満であると、ニッケル層が酸化しやすくなり、信頼性が高い電気接続を行うことができない。水に対する表面接触角の好ましい下限は100°であり、より好ましい下限は110°である。水に対する表面接触角の上限は特にないが、実質的には160°程度が上限である。 The conductive fine particles of the present invention have a nickel layer formed on the surface of the substrate fine particles, and the lower limit of the surface contact angle with water is 90 °. When the surface contact angle with respect to water is less than 90 °, the nickel layer is likely to be oxidized, and highly reliable electrical connection cannot be performed. A preferable lower limit of the surface contact angle with respect to water is 100 °, and a more preferable lower limit is 110 °. Although there is no particular upper limit for the surface contact angle with water, the upper limit is substantially about 160 °.
導電性微粒子の水に対する表面接触角は、例えば、全自動接触角測定装置(データフィジックス社製「OCA35」)を用いて測定することができる。導電性微粒子1gをスライドガラス上に置き、ニードルを導電性微粒子表面に近づけ、ニードルを用いて純水3μLを導電性微粒子表面に付着させる。純水が付着した導電性微粒子を撮影した画像を解析し、表面接触角を測定できる。 The surface contact angle of the conductive fine particles with respect to water can be measured using, for example, a fully automatic contact angle measuring device (“OCA35” manufactured by Data Physics Co., Ltd.). 1 g of conductive fine particles are placed on a slide glass, the needle is brought close to the surface of the conductive fine particles, and 3 μL of pure water is attached to the surface of the conductive fine particles using the needle. The surface contact angle can be measured by analyzing an image obtained by photographing conductive fine particles to which pure water is adhered.
本発明の導電性微粒子は、体積抵抗率が0.0030Ω・cm以下である。体積抵抗率が0.0030Ωを超えると、信頼性の高い電気接続を行うことができない。体積抵抗率の好ましい上限は0.0025Ω・cmである。体積抵抗率の下限は特にないが、実質的には0.0010Ω・cm程度が下限である。 The conductive fine particles of the present invention have a volume resistivity of 0.0030 Ω · cm or less. When the volume resistivity exceeds 0.0030Ω, highly reliable electrical connection cannot be performed. A preferable upper limit of the volume resistivity is 0.0025 Ω · cm. There is no particular lower limit for the volume resistivity, but the lower limit is substantially about 0.0010 Ω · cm.
本明細書において体積抵抗率は、三菱化学社製「粉体抵抗率測定システム」を用いて測定できる。なお、体積抵抗率とは、導電性微粒子2.5gに20kNの荷重を与えた際の体積抵抗率を意味する。 In the present specification, the volume resistivity can be measured using a “powder resistivity measurement system” manufactured by Mitsubishi Chemical Corporation. The volume resistivity means the volume resistivity when a load of 20 kN is applied to 2.5 g of conductive fine particles.
上記基材微粒子は特に限定されず、例えば、樹脂微粒子、無機微粒子、有機無機ハイブリッド微粒子、金属微粒子等が挙げられる。
上記樹脂微粒子は特に限定されず、例えば、ポリオレフィン樹脂、アクリル樹脂、ポリアルキレンテレフタレート樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等で構成される樹脂微粒子が挙げられる。
上記ポリオレフィン樹脂は特に限定されず、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、ポリブタジエン樹脂等が挙げられる。上記アクリル樹脂は特に限定されず、例えば、ポリメチルメタクリレート樹脂、ポリメチルアクリレート樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
The substrate fine particles are not particularly limited, and examples thereof include resin fine particles, inorganic fine particles, organic-inorganic hybrid fine particles, and metal fine particles.
The resin fine particles are not particularly limited, and include, for example, polyolefin resin, acrylic resin, polyalkylene terephthalate resin, polysulfone resin, polycarbonate resin, polyamide resin, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and the like. Resin fine particles.
The polyolefin resin is not particularly limited, and examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, polyisobutylene resin, and polybutadiene resin. The acrylic resin is not particularly limited, and examples thereof include polymethyl methacrylate resin and polymethyl acrylate resin. These resins may be used alone or in combination of two or more.
上記無機微粒子は特に限定されず、例えば、シリカ、アルミナ等の金属酸化物で構成される微粒子が挙げられる。上記有機無機ハイブリッド微粒子は特に限定されず、例えば、オルガノシロキサン骨格の中にアクリルポリマーを含有するハイブリッド微粒子が挙げられる。上記金属微粒子は特に限定されず、例えば、銅を含有する金属微粒子等が挙げられる。 The inorganic fine particles are not particularly limited, and examples thereof include fine particles composed of metal oxides such as silica and alumina. The organic-inorganic hybrid fine particles are not particularly limited, and examples thereof include hybrid fine particles containing an acrylic polymer in an organosiloxane skeleton. The metal fine particles are not particularly limited, and examples thereof include metal fine particles containing copper.
上記樹脂微粒子の10%K値の好ましい下限は1000N/mm2、好ましい上限は15000N/mm2である。上記10%K値が1000N/mm2未満であると、樹脂微粒子を圧縮変形させると、樹脂微粒子が破壊されることがある。上記10%K値が15000N/mm2を超えると、導電性微粒子が電極を傷つけることがある。上記10%K値のより好ましい下限は2000N/mm2、より好ましい上限は10000N/mm2である。 A preferred lower limit of the 10% K value of the resin fine particles 1000 N / mm 2, the upper limit is preferably 15000 N / mm 2. If the 10% K value is less than 1000 N / mm 2 , the resin fine particles may be destroyed when the resin fine particles are compressed and deformed. When the 10% K value exceeds 15000 N / mm 2 , the conductive fine particles may damage the electrode. A more preferred lower limit of the 10% K value 2000N / mm 2, and more preferable upper limit is 10000 N / mm 2.
なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所社製「PCT−200」)を用い、樹脂微粒子を直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)を測定し、下記式により求めることができる。
K値(N/mm2)=(3/√2)・F・S−3/2・R−1/2
F:樹脂微粒子の10%圧縮変形における荷重値(N)
S:樹脂微粒子の10%圧縮変形における圧縮変位(mm)
R:樹脂微粒子の半径(mm)
The 10% K value is obtained by using a micro compression tester (for example, “PCT-200” manufactured by Shimadzu Corporation), and using a smooth indenter end face of a diamond cylinder having a diameter of 50 μm and a compression speed of 2.6 mN / The compression displacement (mm) when compressed under conditions of seconds and a maximum test load of 10 g can be measured and determined by the following equation.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of resin fine particles (N)
S: Compression displacement (mm) in 10% compression deformation of resin fine particles
R: radius of resin fine particles (mm)
上記基材微粒子の平均粒子径は特に限定されないが、好ましい下限は0.5μm、好ましい上限は100μmである。上記基材微粒子の平均粒子径が0.5μm未満であると、基材微粒子が凝集しやすいため、凝集した基材微粒子の表面にニッケル層を形成した導電性微粒子は、隣接する電極間を短絡させることがある。上記基材微粒子の平均粒子径が100μmを超えると、基材微粒子の表面からニッケル層が剥がれやすくなるため、接続信頼性が低下することがある。上記基材微粒子の平均粒子径のより好ましい下限は1μm、より好ましい上限は20μmである。
なお、上記基材微粒子の平均粒子径は、光学顕微鏡又は電子顕微鏡を用いて無作為に選んだ50個の基材微粒子の粒子径を測定し、測定した粒子径を算術平均することにより求めることができる。
The average particle diameter of the substrate fine particles is not particularly limited, but a preferable lower limit is 0.5 μm and a preferable upper limit is 100 μm. When the average particle size of the base material particles is less than 0.5 μm, the base material particles are likely to aggregate. Therefore, the conductive fine particles in which the nickel layer is formed on the surface of the aggregated base material particles are short-circuited between adjacent electrodes. There are things to do. If the average particle diameter of the substrate fine particles exceeds 100 μm, the nickel layer tends to be peeled off from the surface of the substrate fine particles, so that the connection reliability may be lowered. The more preferable lower limit of the average particle diameter of the substrate fine particles is 1 μm, and the more preferable upper limit is 20 μm.
The average particle size of the above-mentioned substrate fine particles is obtained by measuring the particle size of 50 randomly selected substrate fine particles using an optical microscope or an electron microscope and arithmetically averaging the measured particle sizes. Can do.
上記基材微粒子の平均粒子径の変動係数は特に限定されないが、10%以下であることが好ましい。上記変動係数が10%を超えると、導電性微粒子の接続信頼性が低下することがある。なお、上記変動係数とは、粒子径分布から得られる標準偏差を平均粒子径で除して得られる値を百分率(%)で示した数値である。 The coefficient of variation of the average particle diameter of the substrate fine particles is not particularly limited, but is preferably 10% or less. If the coefficient of variation exceeds 10%, the connection reliability of the conductive fine particles may be lowered. The coefficient of variation is a numerical value obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size and expressed as a percentage (%).
上記基材微粒子の形状は、対向する電極の間隔を維持できる形状であれば特に限定されないが、真球形状であることが好ましい。また、上記基材微粒子の表面は平滑であってもよいし、突起を有していてもよい。 The shape of the substrate fine particles is not particularly limited as long as the distance between the opposing electrodes can be maintained, but a true spherical shape is preferable. Further, the surface of the substrate fine particles may be smooth or may have a protrusion.
上記ニッケル層のニッケル含有率は96重量%以上である。上記ニッケル含有率が96重量%未満であると、導電性微粒子の接続抵抗値が高くなるため、信頼性が高い電気接続ができない。また、上記ニッケル層が酸化されやすくなる。上記ニッケル含有率は97重量%以上であることが好ましく、99重量%以上であることがより好ましい。なお、上記ニッケル層のニッケル含有率とは、ニッケル層に含有される元素の合計重量に占めるニッケルの重量の割合を百分率(%)で示した数値である。 The nickel content of the nickel layer is 96% by weight or more. When the nickel content is less than 96% by weight, the connection resistance value of the conductive fine particles is increased, so that highly reliable electrical connection cannot be achieved. Further, the nickel layer is easily oxidized. The nickel content is preferably 97% by weight or more, and more preferably 99% by weight or more. In addition, the nickel content rate of the said nickel layer is the numerical value which showed the ratio of the weight of nickel to the total weight of the element contained in a nickel layer in percentage (%).
上記ニッケル層は、ニッケル以外の元素を含有してもよい。上記ニッケル以外の元素は特に限定されず、例えば、リン、ホウ素、コバルト、タングステン等が挙げられる。上記ニッケル層のニッケル以外の元素の含有率は4重量%以下であれば、特に限定されないが、上記ニッケル以外の元素の含有率は3重量%以下であることが好ましく、1重量%以下であることがより好ましい。
なお、上記ニッケル層のニッケル含有率は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定することができる。
The nickel layer may contain an element other than nickel. The elements other than nickel are not particularly limited, and examples thereof include phosphorus, boron, cobalt, tungsten, and the like. The content of elements other than nickel in the nickel layer is not particularly limited as long as it is 4% by weight or less, but the content of elements other than nickel is preferably 3% by weight or less, and is preferably 1% by weight or less. It is more preferable.
The nickel content of the nickel layer is determined using a high frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.), a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu), or the like. Can be measured.
上記ニッケル層は、上記基材微粒子の表面に直接形成されていてもよい。また、上記ニッケル層は、上記ニッケル層と上記基材微粒子との間に、下地金属層が形成されていてもよい。
上記下地金属層を構成する金属は特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等が挙げられる。
The nickel layer may be directly formed on the surface of the substrate fine particles. In the nickel layer, a base metal layer may be formed between the nickel layer and the substrate fine particles.
The metal constituting the base metal layer is not particularly limited. For example, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, chromium, titanium, antimony, bismuth, germanium, cadmium, etc. Is mentioned.
上記ニッケル層の厚さは特に限定されないが、好ましい下限は0.005μm、好ましい上限は3μmである。上記ニッケル層の厚さが0.005μm未満であると、導電性微粒子の接続抵抗値が高くなることがある。上記ニッケル層の厚さが3μmを超えると、導電性微粒子の柔軟性が損なわれることがある。上記ニッケル層の厚さのより好ましい下限は0.08μm、より好ましい上限は0.3μmである。
なお、上記ニッケル層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して厚さを測定し、測定値を算術平均した厚さである。
Although the thickness of the said nickel layer is not specifically limited, A preferable minimum is 0.005 micrometer and a preferable upper limit is 3 micrometers. When the thickness of the nickel layer is less than 0.005 μm, the connection resistance value of the conductive fine particles may increase. When the thickness of the nickel layer exceeds 3 μm, the flexibility of the conductive fine particles may be impaired. The minimum with more preferable thickness of the said nickel layer is 0.08 micrometer, and a more preferable upper limit is 0.3 micrometer.
The thickness of the nickel layer is a thickness obtained by observing a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and measuring the thickness and arithmetically averaging the measured values. is there.
本発明の導電性微粒子は、上記ニッケル層の表面に、セリウム、又は、チタンを含有する金属酸化物層が形成されていることが好ましい。上記ニッケル層の表面に、セリウム、又は、チタンを含有する金属酸化物層が形成されていると、上記ニッケル層が直接酸素と接触しない。その結果、上記ニッケル層の酸化をより効果的に防止することができる。なかでも、上記ニッケル層の表面に、セリウムを含有する金属酸化物層が形成されていることがより好ましい。上記セリウムを含有する金属酸化物層は自己修復機能を有するため、上記ニッケル層に亀裂が発生しても、上記ニッケル層の内部の酸化を防止する効果に優れる。
なお、上記金属酸化物層は、少なくとも酸化セリウム、又は、酸化チタンを含有すればよいが、実質的に、酸化セリウム、又は、酸化チタンで構成されていることが好ましい。
In the conductive fine particles of the present invention, it is preferable that a metal oxide layer containing cerium or titanium is formed on the surface of the nickel layer. When a metal oxide layer containing cerium or titanium is formed on the surface of the nickel layer, the nickel layer does not directly contact oxygen. As a result, oxidation of the nickel layer can be more effectively prevented. Among these, it is more preferable that a metal oxide layer containing cerium is formed on the surface of the nickel layer. Since the metal oxide layer containing cerium has a self-healing function, even if cracks occur in the nickel layer, it is excellent in the effect of preventing oxidation inside the nickel layer.
In addition, although the said metal oxide layer should just contain a cerium oxide or a titanium oxide at least, it is preferable that it is substantially comprised with the cerium oxide or the titanium oxide.
上記セリウム、又は、チタンを含有する金属酸化物層の厚さは特に限定されないが、好ましい下限は0.005μm、好ましい上限は0.05μmである。上記金属酸化物層の厚さが0.005μm未満であると、上記ニッケル層の酸化が防止できないことがある。上記金属酸化物層の厚さが0.05μmを超えると、導電性微粒子の接続抵抗値が高くなることがある。上記金属酸化物層の厚さのより好ましい下限は0.01μm、より好ましい上限は0.03μmである。
なお、上記金属酸化物層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して厚さを測定し、測定値を算術平均した厚さである。
The thickness of the metal oxide layer containing cerium or titanium is not particularly limited, but a preferable lower limit is 0.005 μm and a preferable upper limit is 0.05 μm. When the thickness of the metal oxide layer is less than 0.005 μm, oxidation of the nickel layer may not be prevented. When the thickness of the metal oxide layer exceeds 0.05 μm, the connection resistance value of the conductive fine particles may increase. The more preferable lower limit of the thickness of the metal oxide layer is 0.01 μm, and the more preferable upper limit is 0.03 μm.
The thickness of the metal oxide layer is a thickness obtained by observing a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and measuring the thickness and arithmetically averaging the measured values. That's it.
上記ニッケル層の表面に、セリウムを含有する金属酸化物層を形成する方法は特に限定されないが、ニッケル層が形成された基材微粒子を、セリウム化合物が溶解している水溶液に添加する方法等が挙げられる。また、上記ニッケル層の表面に、チタンを含有する金属酸化物層を形成する方法は特に限定されないが、ニッケル層が形成された基材微粒子を、チタン化合物が溶解している水溶液に添加する方法等が挙げられる。 The method of forming the metal oxide layer containing cerium on the surface of the nickel layer is not particularly limited, but there is a method of adding the substrate fine particles on which the nickel layer is formed to an aqueous solution in which the cerium compound is dissolved. Can be mentioned. The method of forming the titanium-containing metal oxide layer on the surface of the nickel layer is not particularly limited, but the method of adding the substrate fine particles on which the nickel layer is formed to the aqueous solution in which the titanium compound is dissolved. Etc.
上記セリウム化合物は特に限定されないが、硫酸セリウム、塩化セリウム、硝酸セリウム、ステアリン酸セリウム等が挙げられる。上記チタン化合物は特に限定されないが、シュウ酸チタンカリウム、硫酸チタン、塩化チタン等が挙げられる。 The cerium compound is not particularly limited, and examples thereof include cerium sulfate, cerium chloride, cerium nitrate, and cerium stearate. The titanium compound is not particularly limited, and examples thereof include potassium potassium oxalate, titanium sulfate, and titanium chloride.
本発明の導電性微粒子の水に対する表面接触角を100°以上、かつ、体積抵抗率が0.0030Ω・cm以下とするためには、上記ニッケル層(上記ニッケル層上に金属酸化物層が形成されている場合には金属酸化物層)の表面に表面処理を施す必要がある。
上記表面処理は特に限定されないが、例えば、上記ニッケル層又は上記金属酸化物層の表面に炭素数が6〜22のアルキル基を有する化合物を反応させて結合させる方法が挙げられる。炭素数が6〜22のアルキル基を有する化合物が結合したニッケル層又は金属酸化物層は、疎水性となって水に対する表面接触角が100°以上となる一方、導電率はそれほど低下せず、体積抵抗率が0.0030Ω・cm以下にすることができる。
In order for the surface contact angle of the conductive fine particles of the present invention to water to be 100 ° or more and the volume resistivity to be 0.0030 Ω · cm or less, the nickel layer (a metal oxide layer is formed on the nickel layer) In the case where it is applied, the surface of the metal oxide layer) needs to be subjected to surface treatment.
Although the said surface treatment is not specifically limited, For example, the method of making the surface of the said nickel layer or the said metal oxide layer react and couple | bond with the compound which has a C6-C22 alkyl group is mentioned. The nickel layer or metal oxide layer to which the compound having an alkyl group having 6 to 22 carbon atoms is bonded is hydrophobic and has a surface contact angle with water of 100 ° or more, while the conductivity is not lowered so much. The volume resistivity can be 0.0030 Ω · cm or less.
上記炭素数が6〜22のアルキル基を有する化合物のアルキル基の炭素数の下限は6、上限は22である。上記アルキル基の炭素数が6未満であると、得られる導電性微粒子の表面接触角を100°以上とすることができず、ニッケル層が酸化しやすくなり、信頼性が高い電気接続を行うことができないことがある。上記アルキル基の炭素数が22を超えると、得られる導電性微粒子の導電率が低下して、信頼性の高い電気接続を行うことができないことがある。上記アルキル基の炭素数の好ましい上限は16である。
上記アルキル基は直鎖構造のアルキル基であってもよいし、分岐構造のアルキル基であってもよいが、直鎖構造のアルキル基であることが好ましい。
The lower limit of the carbon number of the alkyl group of the compound having an alkyl group having 6 to 22 carbon atoms is 6, and the upper limit is 22. When the carbon number of the alkyl group is less than 6, the surface contact angle of the obtained conductive fine particles cannot be 100 ° or more, the nickel layer is easily oxidized, and highly reliable electrical connection is performed. May not be possible. When the alkyl group has more than 22 carbon atoms, the conductivity of the obtained conductive fine particles may be reduced, and reliable electrical connection may not be performed. The upper limit with preferable carbon number of the said alkyl group is 16.
The alkyl group may be a linear alkyl group or a branched alkyl group, but is preferably a linear alkyl group.
上記炭素数が6〜22のアルキル基を有する化合物は特に限定されないが、炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩、炭素数が6〜22のアルキル基を有するアルコキシシラン、炭素数が6〜22のアルキル基を有するアルキルチオール及び炭素数が6〜22のアルキル基を有するジアルキルジスルフィドからなる群より選択される少なくとも1種が好適である。 Although the said compound which has a C6-C22 alkyl group is not specifically limited, The phosphate ester which has a C6-C22 alkyl group, or its salt, The alkoxysilane which has a C6-C22 alkyl group At least one selected from the group consisting of an alkylthiol having an alkyl group having 6 to 22 carbon atoms and a dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms is preferable.
上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩は、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩、リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。 Examples of the phosphoric acid ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof include hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, Monoundecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monotetradecyl phosphate, monopentadecyl phosphate, monohexyl phosphate monosodium salt, monoheptyl phosphate monosodium Salt, monooctyl phosphate monosodium salt, monononyl phosphate monosodium salt, monodecyl phosphate monosodium salt, monoundecyl phosphate monosodium salt, monododecyl phosphate monosodium salt, phosphorus Mono tridecyl ester monosodium salt, phosphate acid mono tetradecyl ester monosodium salt, monocalcium phosphate pentadecyl ester monosodium salt.
上記ニッケル層又は上記金属酸化物層の表面に、上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩を反応させる方法は特に限定されないが、例えば、上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩の水溶液を付着させる方法等が挙げられる。上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩の水溶液を付着させることにより、上記ニッケル層又は上記金属酸化物層の表面のニッケル又は金属酸化物と、上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩とが反応し、上記ニッケル層又は金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩が結合される。
上記リン酸エステル又はその塩の水溶液のリン酸エステルの濃度は特に限定されないが、リン酸エステルの濃度の好ましい下限は0.5重量%、好ましい上限は3重量%である。
なお、上記リン酸エステル水溶液は、テトラヒドロフランや、メタノール、エタノール、プロパノール等のアルコール等の有機溶剤を含有してもよい。
The method of reacting the phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof on the surface of the nickel layer or the metal oxide layer is not particularly limited. For example, the nickel layer or the metal oxide Examples include a method in which an aqueous solution of a phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof is attached to the substrate fine particles on which the physical layer is formed. By attaching an aqueous solution of a phosphoric ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof to the substrate fine particles on which the nickel layer or the metal oxide layer is formed, the nickel layer or the metal The nickel or metal oxide on the surface of the oxide layer reacts with the phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, and the carbon number on the surface of the nickel layer or metal oxide layer. Is bound to a phosphate ester having an alkyl group of 6 to 22 or a salt thereof.
The concentration of the phosphate ester in the aqueous solution of the phosphate ester or a salt thereof is not particularly limited, but the preferred lower limit of the phosphate ester concentration is 0.5% by weight, and the preferred upper limit is 3% by weight.
In addition, the said phosphate ester aqueous solution may contain organic solvents, such as alcohol, such as tetrahydrofuran and methanol, ethanol, and propanol.
上記炭素数が6〜22のアルキル基を有するアルコキシシランは、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン、ペンタデシルトリエトキシシラン等が挙げられる。 Examples of the alkoxysilane having an alkyl group having 6 to 22 carbon atoms include hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, nonyltri. Methoxysilane, nonyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, undecyltrimethoxysilane, undecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tridecyltrimethoxysilane, tridecyltriethoxy Examples include silane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, pentadecyltrimethoxysilane, and pentadecyltriethoxysilane.
上記ニッケル層又は上記金属酸化物層の表面を、上記炭素数が6〜22のアルキル基を有するアルコキシシランで被覆する方法は特に限定されないが、上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するアルコキシシランの水溶液を付着させる方法等が挙げられる。上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するアルコキシシランの水溶液を付着させることにより、上記ニッケル層又は上記金属酸化物層の表面が、上記炭素数が6〜22のアルキル基を有するアルコキシシランで被覆される。
上記アルコキシシランの水溶液のアルコキシシランの濃度は特に限定されないが、アルコキシシランの濃度の好ましい下限は0.5重量%、好ましい上限は3重量%である。
なお、上記炭素数が6〜22のアルキル基を有するアルコキシシラン水溶液は、メタノール、エタノール、プロパノール等のアルコール等の有機溶剤を含有してもよい。
The method of coating the surface of the nickel layer or the metal oxide layer with the alkoxysilane having an alkyl group having 6 to 22 carbon atoms is not particularly limited, but the nickel layer or the metal oxide layer was formed. The method etc. which adhere the aqueous solution of the alkoxysilane which has the said C6-C22 alkyl group to base-material microparticles | fine-particles are mentioned. By adhering an aqueous solution of an alkoxysilane having an alkyl group having 6 to 22 carbon atoms to the substrate fine particles on which the nickel layer or the metal oxide layer is formed, the nickel layer or the metal oxide layer The surface is coated with an alkoxysilane having an alkyl group having 6 to 22 carbon atoms.
The concentration of the alkoxysilane in the alkoxysilane aqueous solution is not particularly limited, but the preferred lower limit of the alkoxysilane concentration is 0.5% by weight, and the preferred upper limit is 3% by weight.
In addition, the alkoxysilane aqueous solution which has the said C6-C22 alkyl group may contain organic solvents, such as alcohol, such as methanol, ethanol, and propanol.
上記炭素数が6〜22のアルキル基を有するアルキルチオールは、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール、ヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基が存在することが好ましい。 Examples of the alkyl thiol having an alkyl group having 6 to 22 carbon atoms include hexyl thiol, heptyl thiol, octyl thiol, nonyl thiol, decyl thiol, undecyl thiol, dodecyl thiol, tridecyl thiol, tetradecyl thiol, pentadecyl Examples include thiol and hexadecyl thiol. The alkyl thiol preferably has a thiol group at the end of the alkyl chain.
上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するアルキルチオールを反応させる方法は特に限定されないが、上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するアルキルチオールが溶解している溶液に付着させる方法等が挙げられる。上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するアルキルチオールが溶解している溶液に付着させることにより、上記ニッケル層又は上記金属酸化物層の表面のニッケル又は金属酸化物と、上記炭素数が6〜22のアルキル基を有するアルキルチオールとが反応し、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するアルキルチオールが結合される。
上記アルキルチオールが溶解している溶液の上記アルキルチオールの濃度は特に限定されないが、アルキルチオールの濃度の好ましい下限は0.5重量%、好ましい上限は3重量%である。
なお、上記炭素数が6〜22のアルキル基を有するアルキルチオールが溶解している溶液は、アルキルチオールが溶解すれば特に限定されず、メタノール、エタノール、プロパノール等のアルコール等の有機溶剤を含有してもよい。
The method of reacting the alkylthiol having an alkyl group having 6 to 22 carbon atoms on the surface of the nickel layer or the metal oxide layer is not particularly limited, but the group on which the nickel layer or the metal oxide layer is formed. Examples thereof include a method in which the fine particles are adhered to a solution in which the alkylthiol having an alkyl group having 6 to 22 carbon atoms is dissolved. The nickel layer or the metal is formed by adhering to the solution in which the alkyl thiol having an alkyl group having 6 to 22 carbon atoms is dissolved in the substrate fine particles on which the nickel layer or the metal oxide layer is formed. The nickel or metal oxide on the surface of the oxide layer reacts with the alkylthiol having an alkyl group having 6 to 22 carbon atoms, and the surface of the nickel layer or the metal oxide layer has 6 to 6 carbon atoms. An alkyl thiol having 22 alkyl groups is attached.
The concentration of the alkylthiol in the solution in which the alkylthiol is dissolved is not particularly limited, but the preferred lower limit of the alkylthiol concentration is 0.5% by weight, and the preferred upper limit is 3% by weight.
The solution in which the alkylthiol having an alkyl group having 6 to 22 carbon atoms is dissolved is not particularly limited as long as the alkylthiol dissolves, and contains an organic solvent such as alcohol such as methanol, ethanol, and propanol. May be.
上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドは、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド、ジヘキサデシルジスルフィド等が挙げられる。 Examples of the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms include dihexyl disulfide, diheptyl disulfide, dioctyl disulfide, dinonyl disulfide, didecyl disulfide, diundecyl disulfide, didodecyl disulfide, ditridecyl disulfide, ditetradecyl disulfide. Examples include decyl disulfide, dipentadecyl disulfide, and dihexadecyl disulfide.
上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドを反応させる方法は特に限定されないが、上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドが溶解している溶液に付着させる方法等が挙げられる。上記ニッケル層又は上記金属酸化物層が形成された基材微粒子に、上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドが溶解している溶液を付着させることにより、上記ニッケル層又は上記金属酸化物層の表面のニッケル又は金属酸化物と、上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドとが反応し、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドが結合される。
上記ジアルキルジスルフィドが溶解している溶液の上記ジアルキルジスルフィドの濃度は特に限定されないが、ジアルキルジスルフィドの濃度の好ましい下限は0.5重量%、好ましい上限は3重量%である。
なお、上記ジアルキルジスルフィドが溶解している溶液は、ジアルキルジスルフィドが溶解すれば特に限定されず、メタノール、エタノール、プロパノール等のアルコール等の有機溶剤を含有してもよい。
The method of reacting the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms on the surface of the nickel layer or the metal oxide layer is not particularly limited, but the group in which the nickel layer or the metal oxide layer is formed. Examples thereof include a method in which the fine particles are adhered to a solution in which the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms is dissolved. The nickel layer or the metal is formed by attaching a solution in which the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms is dissolved to the substrate fine particles on which the nickel layer or the metal oxide layer is formed. Nickel or metal oxide on the surface of the oxide layer reacts with the dialkyl disulfide having an alkyl group having 6 to 22 carbon atoms, and the carbon number is 6 to 6 on the surface of the nickel layer or the metal oxide layer. A dialkyl disulfide having 22 alkyl groups is attached.
The concentration of the dialkyl disulfide in the solution in which the dialkyl disulfide is dissolved is not particularly limited, but the preferred lower limit of the dialkyl disulfide concentration is 0.5% by weight, and the preferred upper limit is 3% by weight.
The solution in which the dialkyl disulfide is dissolved is not particularly limited as long as the dialkyl disulfide is dissolved, and may contain an organic solvent such as alcohol such as methanol, ethanol, and propanol.
上記表面処理の方法のなかでも、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩を反応させる方法、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するアルキルチオールを反応させる方法、及び、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するジアルキルジスルフィドを反応させる方法が好ましく、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩を反応させる方法、及び、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するアルキルチオールを反応させる方法がより好ましく、上記ニッケル層又は上記金属酸化物層の表面に上記炭素数が6〜22のアルキル基を有するリン酸エステル又はその塩を反応させる方法が更に好ましい。なお、上記表面接触角及び体積抵抗率は、上記炭素数が6〜22のアルキル基を有する化合物の炭素数を変更したり、上記炭素数が6〜22のアルキル基を有する化合物を反応させる時間、温度等を制御したりすることによって調整することができる。 Among the surface treatment methods, the nickel layer or the metal oxide layer is reacted with the phosphoric acid ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof, the nickel layer or the metal. A method of reacting an alkylthiol having an alkyl group having 6 to 22 carbon atoms on the surface of the oxide layer, and an alkyl group having 6 to 22 carbon atoms on the surface of the nickel layer or the metal oxide layer. A method of reacting a dialkyl disulfide having a reaction is preferable, a method of reacting a phosphate ester having an alkyl group having 6 to 22 carbon atoms or a salt thereof on the surface of the nickel layer or the metal oxide layer, and the nickel layer Or the method of making the surface of the said metal oxide layer react the said alkylthiol which has the said C6-C22 alkyl group is more preferable. How the number of carbon atoms on the surface of the nickel layer or the metal oxide layer reacting phosphoric acid ester or a salt thereof having an alkyl group of 6 to 22 is more preferred. In addition, the said surface contact angle and volume resistivity are the time which changes the carbon number of the compound which has the said C6-C22 alkyl group, or the compound which has the said C6-C22 alkyl group reacts. It can be adjusted by controlling the temperature or the like.
本発明の導電性微粒子の製造方法は特に限定されず、例えば、以下の方法により製造することができる。 The manufacturing method of the electroconductive fine particles of this invention is not specifically limited, For example, it can manufacture with the following method.
基材微粒子の表面に、ニッケル含有率が96重量%以上となるように、ニッケル層を形成させる。基材微粒子の表面に、ニッケル層を形成させる方法は特に限定されず、例えば、電解めっき法、無電解めっき法等の方法が挙げられる。
電解めっき法を用いて基材微粒子の表面に、ニッケル層を形成すると、ニッケル含有率が高いニッケル層が形成できる。しかし、電解めっき法を用いて、平均粒子径が100μm未満の基材微粒子の表面に、ニッケル層を形成させると、基材微粒子が凝集してしまうことがあった。
A nickel layer is formed on the surface of the substrate fine particles so that the nickel content is 96% by weight or more. The method for forming the nickel layer on the surface of the substrate fine particles is not particularly limited, and examples thereof include methods such as an electrolytic plating method and an electroless plating method.
When a nickel layer is formed on the surface of the substrate fine particles using the electrolytic plating method, a nickel layer having a high nickel content can be formed. However, when the nickel layer is formed on the surface of the substrate fine particles having an average particle diameter of less than 100 μm using the electrolytic plating method, the substrate fine particles sometimes aggregate.
また、従来の無電解めっき法を用いて、基材微粒子の表面に、ニッケル層を形成すると、無電解めっき浴に含まれる還元剤由来のリンやホウ素等が、ニッケル層に含まれてしまうことがあった。リンやホウ素がニッケル層に含まれてしまうと、導電性微粒子の接続抵抗値が高くなってしまう。
従来の無電解めっき法では、基材微粒子が分散している懸濁液に、還元剤を含有する無電解ニッケルめっき液を滴下していたため、懸濁液中の還元剤濃度が高くなる。還元剤由来のリンやホウ素等がニッケル層に含まれるため、ニッケル層のニッケル含有率が低くなることがあった。また、このような無電解めっき法では、懸濁液のpHや、液温を調整しても、ニッケル層のニッケル含有率を高くすることは困難であった。
したがって、本発明では、ニッケル含有率が高いニッケル層を形成するために、無電解めっき浴中の還元剤の濃度を低く保ちながら、前期めっき工程と、後期めっき工程とを行うことが好ましい。このような工程で無電解めっきを行うことにより、ニッケル含有率が高いニッケル層を得ることができる。
In addition, when a nickel layer is formed on the surface of the substrate fine particles using a conventional electroless plating method, phosphorus or boron derived from a reducing agent contained in the electroless plating bath may be included in the nickel layer. was there. If phosphorus or boron is contained in the nickel layer, the connection resistance value of the conductive fine particles is increased.
In the conventional electroless plating method, since the electroless nickel plating solution containing the reducing agent is dropped into the suspension in which the base particles are dispersed, the reducing agent concentration in the suspension is increased. Since the nickel layer contains phosphorus, boron, and the like derived from the reducing agent, the nickel content of the nickel layer may be low. In addition, in such an electroless plating method, it is difficult to increase the nickel content of the nickel layer even if the pH of the suspension or the liquid temperature is adjusted.
Therefore, in the present invention, in order to form a nickel layer having a high nickel content, it is preferable to perform the first plating step and the second plating step while keeping the concentration of the reducing agent in the electroless plating bath low. By performing electroless plating in such a process, a nickel layer having a high nickel content can be obtained.
本発明では、無電解めっき法において、一般にエッチング工程、触媒化工程を行った後、無電解めっき工程を行うことが好ましい。
上記エッチング工程は、クロム酸、硫酸−クロム酸混液、過マンガン酸溶液等の酸化剤や、塩酸、硫酸等の強酸や、水酸化ナトリウム、水酸化カリウム等の強アルカリの水溶液等を用いて基材微粒子の表面に微小な凹凸を形成させ、ニッケル層の密着をよくするための工程である。
In the present invention, in the electroless plating method, it is generally preferable to perform an electroless plating step after performing an etching step and a catalytic step.
The etching process is based on an oxidizing agent such as chromic acid, sulfuric acid-chromic acid mixture, permanganic acid solution, strong acid such as hydrochloric acid or sulfuric acid, or strong alkaline aqueous solution such as sodium hydroxide or potassium hydroxide. This is a process for forming minute irregularities on the surface of the material fine particles and improving the adhesion of the nickel layer.
上記触媒化工程は、基材微粒子の表面に無電解めっきの起点となる触媒を付与する工程である。上記触媒化工程では、例えば、センシタイジング工程と、アクチベイジング工程とが行われる。上記センシタイジング工程として、エッチングされた基材微粒子を二塩化錫溶液に浸漬させることにより、基材微粒子の表面にSn2+イオンが吸着される。上記アクチベイジング工程として、Sn2+イオンが吸着した基材微粒子を、二塩化パラジウム溶液に浸漬させることにより、基材微粒子の表面にパラジウム触媒が付与される。なお、上記アクチベイジング工程では、基材微粒子の表面で、Sn2++Pd2+→Sn4++Pd0で示される反応が行われる。 The catalyzing step is a step of imparting a catalyst serving as a starting point of electroless plating to the surface of the substrate fine particles. In the catalyzing step, for example, a sensitizing step and an activating step are performed. As the sensitizing step, Sn 2+ ions are adsorbed on the surface of the substrate fine particles by immersing the etched substrate fine particles in a tin dichloride solution. As the above-mentioned activating step, the base material fine particles adsorbed with Sn 2+ ions are immersed in a palladium dichloride solution, whereby a palladium catalyst is imparted to the surface of the base material fine particles. In the activating process, a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 is performed on the surface of the base particle.
上記無電解めっき工程は、パラジウム触媒が付与された基材微粒子を還元剤の存在下で、無電解めっき浴中に浸漬し、付与されたパラジウム触媒を起点として基材微粒子の表面にめっき金属を析出させる工程である。上記無電解めっき工程では、前期めっき工程と、後期めっき工程とを有することが好ましい。
例えば、上記無電解めっき工程において、前期めっき工程の反応が停止した後、ニッケル層が形成された基材微粒子を洗浄する。洗浄された基材微粒子を還元剤が含まれないイオン交換水等に分散させ、後期めっき工程を行なうことが好ましい。このようなめっき工程を有することで、ニッケル層に含まれるリンやホウ素等の含有率を低減できる。
The electroless plating step involves immersing the substrate fine particles provided with a palladium catalyst in an electroless plating bath in the presence of a reducing agent, and depositing a plating metal on the surface of the substrate fine particles using the provided palladium catalyst as a starting point. It is the process of making it precipitate. In the electroless plating process, it is preferable to have an early plating process and a late plating process.
For example, in the electroless plating step, after the reaction in the previous plating step is stopped, the substrate fine particles on which the nickel layer is formed are washed. It is preferable to disperse the cleaned substrate fine particles in ion-exchanged water or the like that does not contain a reducing agent, and perform the late plating step. By having such a plating step, the content of phosphorus, boron, etc. contained in the nickel layer can be reduced.
本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。本発明の導電性微粒子と、バインダー樹脂とを含有する異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. An anisotropic conductive material containing the conductive fine particles of the present invention and a binder resin is also one aspect of the present invention.
本発明の異方性導電材料として、例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤、異方性導電フィルム、異方性導電シート等が挙げられる。 Examples of the anisotropic conductive material of the present invention include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, and anisotropic conductive sheet.
上記バインダー樹脂は特に限定されないが、絶縁性の樹脂が用いられ、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体、エラストマー等が挙げられる。
上記ビニル樹脂は特に限定されないが、例えば、酢酸ビニル樹脂、アクリル樹脂、スチレン樹脂等が挙げられる。
上記熱可塑性樹脂は特に限定されないが、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体、ポリアミド樹脂等が挙げられる。
上記硬化性樹脂は特に限定されないが、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂、湿気硬化型樹脂であってもよい。上記硬化性樹脂は硬化剤と併用してもよい。
上記熱可塑性ブロック共重合体は特に限定されないが、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、スチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。
上記エラストマーは特に限定されないが、例えば、スチレン−ブタジエン共重合ゴム、アクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
The binder resin is not particularly limited, but an insulating resin is used, and examples thereof include a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer.
Although the said vinyl resin is not specifically limited, For example, a vinyl acetate resin, an acrylic resin, a styrene resin etc. are mentioned.
Although the said thermoplastic resin is not specifically limited, For example, polyolefin resin, ethylene-vinyl acetate copolymer, a polyamide resin etc. are mentioned.
Although the said curable resin is not specifically limited, For example, an epoxy resin, a urethane resin, a polyimide resin, an unsaturated polyester resin etc. are mentioned. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent.
The thermoplastic block copolymer is not particularly limited. For example, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, styrene -Hydrogenated product of isoprene-styrene block copolymer.
The elastomer is not particularly limited, and examples thereof include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
These resins may be used alone or in combination of two or more.
本発明の異方性導電材料は、本発明の導電性微粒子、及び、上記バインダー樹脂の他に、本発明の課題達成を阻害しない範囲で、例えば、増量剤、可塑剤、粘接着性向上剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等を含有してもよい。 In addition to the conductive fine particles of the present invention and the above-mentioned binder resin, the anisotropic conductive material of the present invention is, for example, an extender, a plasticizer, and improved adhesiveness within a range that does not hinder the achievement of the present invention. Agents, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, colorants, flame retardants, organic solvents, and the like.
本発明の異方性導電材料の製造方法は特に限定されず、例えば、上記バインダー樹脂に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤等を製造する方法が挙げられる。また、上記バインダー樹脂に本発明の導電性微粒子を添加し、均一に分散させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、例えば、異方性導電フィルム、異方性導電シート等を製造する方法も挙げられる。
また、上記バインダー樹脂と、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to the binder resin, and the mixture is uniformly mixed and dispersed. Examples thereof include a method for producing an anisotropic conductive ink, an anisotropic conductive adhesive, and the like. Further, the conductive fine particles of the present invention are added to the binder resin and uniformly dispersed or dissolved by heating, and a predetermined film thickness is applied to a release treatment surface of a release material such as release paper or release film. For example, a method for producing an anisotropic conductive film, an anisotropic conductive sheet or the like by coating may be used.
Moreover, it is good also as an anisotropic conductive material by using separately the said binder resin and the electroconductive fine particles of this invention, without mixing.
本発明の導電性微粒子、又は、本発明の異方性導電材料によって接続されている接続構造体もまた、本発明の1つである。
本発明の接続構造体は、一対の回路基板間に、本発明の導電性微粒子又は本発明の異方性導電材料を充填することにより、一対の回路基板間を電気接続させた接続構造体である。
A connection structure connected by the conductive fine particles of the present invention or the anisotropic conductive material of the present invention is also one aspect of the present invention.
The connection structure of the present invention is a connection structure in which a pair of circuit boards are electrically connected by filling the conductive fine particles of the present invention or the anisotropic conductive material of the present invention between a pair of circuit boards. is there.
本発明によれば、信頼性が高い電気接続ができる導電性微粒子を提供することができる。また、該導電性微粒子を含有する異方性導電材料、及び、該導電性微粒子又は該異方性導電材料によって接続された接続構造体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electroconductive fine particles which can make highly reliable electrical connection can be provided. In addition, an anisotropic conductive material containing the conductive fine particles and a connection structure connected by the conductive fine particles or the anisotropic conductive material can be provided.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)樹脂微粒子の作製
ポリビニルアルコールを3重量%含む水溶液800重量部に、ジビニルベンゼン70重量部、トリメチロールプロパントリメタクリレート30重量部、過酸化ベンゾイル2重量部を加え、混合物を攪拌した。窒素気流下にて、混合物を撹拌しながら80℃で、15時間重合し、樹脂微粒子を得た。
得られた樹脂微粒子を蒸留水及びメタノールで洗浄した後、分級操作を行った。樹脂微粒子の平均粒子径は4.1μm、変動係数は5.0%であった。
Example 1
(1) Preparation of resin fine particles 70 parts by weight of divinylbenzene, 30 parts by weight of trimethylolpropane trimethacrylate and 2 parts by weight of benzoyl peroxide were added to 800 parts by weight of an aqueous solution containing 3% by weight of polyvinyl alcohol, and the mixture was stirred. Under a nitrogen stream, the mixture was polymerized at 80 ° C. with stirring for 15 hours to obtain resin fine particles.
The obtained resin fine particles were washed with distilled water and methanol, and then classified. The average particle size of the resin fine particles was 4.1 μm, and the coefficient of variation was 5.0%.
得られた樹脂微粒子10gをエッチング処理し水洗した。パラジウムイオンを吸着させた樹脂微粒子を0.5重量%のジメチルアミンボラン水溶液に添加し、パラジウムが付与された樹脂微粒子を得た。 10 g of the obtained resin fine particles were etched and washed with water. Resin fine particles adsorbed with palladium ions were added to a 0.5% by weight dimethylamine borane aqueous solution to obtain resin fine particles to which palladium was imparted.
(2)ニッケル層の形成
パラジウムが付与された樹脂微粒子10gを、イオン交換水1200mLに分散させ、めっき安定剤4mLを添加し、懸濁液Aを作製した。次いで、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤6mLとの混合溶液120mLをアンモニアでpH8.5に調整し、前期めっき液を作製した。懸濁液Aに、81mL/分の添加速度で定量ポンプを通して、前期めっき液を添加した。その後、水溶液のpHが安定するまで攪拌し、水素の発泡が停止するまで、前期めっき工程を行った。前期めっき工程が終了した後、めっき液をろ過し、粒子を蒸留水及びメタノールで洗浄した。洗浄した粒子を、イオン交換水1200mLに分散させ、懸濁液Bを作製した。
(2) Formation of nickel layer 10 g of resin fine particles provided with palladium were dispersed in 1200 mL of ion-exchanged water, and 4 mL of a plating stabilizer was added to prepare a suspension A. Next, 120 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 6 mL of a plating stabilizer was adjusted to pH 8.5 with ammonia. Produced. The plating solution was added to the suspension A through a metering pump at an addition rate of 81 mL / min. Thereafter, stirring was performed until the pH of the aqueous solution was stabilized, and the previous plating step was performed until hydrogen foaming stopped. After the previous plating process was completed, the plating solution was filtered, and the particles were washed with distilled water and methanol. The washed particles were dispersed in 1200 mL of ion exchange water to prepare a suspension B.
次いで、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤35mLとの混合溶液650mLをアンモニアでpH9.5に調整し、後期めっき液を作製した。懸濁液Bに、27mL/分の添加速度で定量ポンプを通して、後期めっき液を添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するまで、後期めっき工程を行った。
次いで、めっき液をろ過し、粒子を蒸留水及びメタノールで洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層が形成された樹脂微粒子を得た。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は97重量%であった。また、ニッケル層の厚さは、0.1μmであった。
Next, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 mL of a plating stabilizer is adjusted to pH 9.5 with ammonia. Produced. Late plating solution was added to suspension B through a metering pump at an addition rate of 27 mL / min. Then, it stirred until pH was stabilized and the latter plating process was performed until hydrogen foaming stopped.
Next, the plating solution was filtered, and the particles were washed with distilled water and methanol and then dried with a vacuum dryer at 80 ° C. to obtain resin fine particles on which a nickel layer was formed.
In addition, the nickel content of the nickel layer was 97% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The thickness of the nickel layer was 0.1 μm.
(3)アルキル基の付与
リン酸モノヘキシルエステル1gを、50重量%エタノール水溶液(水:エタノール=50重量%:50重量%)99gに溶解させた。実施例1で作製したニッケル層が形成された樹脂微粒子10gを、エタノール水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。エタノール水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(3) Addition of alkyl group 1 g of phosphoric acid monohexyl ester was dissolved in 99 g of a 50 wt% aqueous ethanol solution (water: ethanol = 50 wt%: 50 wt%). 10 g of resin fine particles formed with the nickel layer produced in Example 1 were added to an ethanol aqueous solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous ethanol solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the nickel layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例2)
リン酸モノヘキシルエステルを、リン酸モノオクチルエステルに変更したこと以外は、実施例1と同様に導電性微粒子を作製した。
(Example 2)
Conductive fine particles were produced in the same manner as in Example 1 except that the monohexyl phosphate was changed to a monooctyl phosphate.
(実施例3)
リン酸モノヘキシルエステルを、リン酸モノドデシルエステルに変更したこと以外は、実施例1と同様に導電性微粒子を作製した。
(Example 3)
Conductive fine particles were produced in the same manner as in Example 1 except that monohexyl phosphate was changed to monododecyl phosphate.
(実施例4)
リン酸モノヘキシルエステルを、リン酸モノヘキサデシルエステルに変更したこと以外は、実施例1と同様に導電性微粒子を作製した。
Example 4
Conductive fine particles were produced in the same manner as in Example 1 except that monohexyl phosphate was changed to monohexadecyl phosphate.
(実施例5)
ニッケル層の形成において、前期めっき液のpHを8.0に変更し、後期めっき液のpHを9.0に変更したこと以外は、実施例1と同様にニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は96重量%であった。また、ニッケル層の厚さは、0.1μmであった。
(Example 5)
In the formation of the nickel layer, the surface of the nickel layer has an alkyl group as in Example 1 except that the pH of the previous plating solution was changed to 8.0 and the pH of the latter plating solution was changed to 9.0. Conductive fine particles were produced.
In addition, the nickel content of the nickel layer was 96% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The thickness of the nickel layer was 0.1 μm.
(実施例6)
ヘキシルチオール1gを、エタノール99gに溶解させた。実施例1で作製したニッケル層が形成された樹脂微粒子10gを、エタノールに添加し、エタノールの液温を50℃に保ちながら、1時間攪拌した。エタノールをろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(Example 6)
1 g of hexyl thiol was dissolved in 99 g of ethanol. 10 g of resin fine particles with a nickel layer formed in Example 1 were added to ethanol and stirred for 1 hour while maintaining the liquid temperature of ethanol at 50 ° C. Ethanol was filtered and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the nickel layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例7)
ヘキシルチオールを、オクチルチオールに変更したこと以外は、実施例6と同様に導電性微粒子を作製した。
(Example 7)
Conductive fine particles were produced in the same manner as in Example 6 except that hexyl thiol was changed to octyl thiol.
(実施例8)
ヘキシルチオールを、ドデシルチオールに変更したこと以外は、実施例6と同様に導電性微粒子を作製した。
(Example 8)
Conductive fine particles were produced in the same manner as in Example 6 except that hexylthiol was changed to dodecylthiol.
(実施例9)
ヘキシルチオールを、ヘキサデシルチオールに変更したこと以外は、実施例6と同様に導電性微粒子を作製した。
Example 9
Conductive fine particles were produced in the same manner as in Example 6 except that hexylthiol was changed to hexadecylthiol.
(実施例10)
ジ−n−ヘキシルジスルフィド1gを、エタノール99gに溶解させた。実施例1で作製したニッケル層が形成された樹脂微粒子10gを、エタノールに添加し、エタノールの液温を50℃に保ちながら、1時間攪拌した。エタノールをろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(Example 10)
1 g of di-n-hexyl disulfide was dissolved in 99 g of ethanol. 10 g of resin fine particles with a nickel layer formed in Example 1 were added to ethanol and stirred for 1 hour while maintaining the liquid temperature of ethanol at 50 ° C. Ethanol was filtered and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the nickel layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例11)
ジ−n−ヘキシルジスルフィドを、ジ−n−オクチルジスルフィドに変更したこと以外は、実施例10と同様に導電性微粒子を作製した。
(Example 11)
Conductive fine particles were produced in the same manner as in Example 10 except that di-n-hexyl disulfide was changed to di-n-octyl disulfide.
(実施例12)
ジ−n−ヘキシルジスルフィドを、ジ−n−ドデシルジスルフィドに変更したこと以外は、実施例10と同様に導電性微粒子を作製した。
Example 12
Conductive fine particles were produced in the same manner as in Example 10, except that di-n-hexyl disulfide was changed to di-n-dodecyl disulfide.
(実施例13)
ヘキシルトリエトキシシラン1gを、95重量%プロパノール水溶液(水:プロパノール=5重量%:95重量%)99gに溶解させた。実施例1で作製したニッケル層が形成された樹脂微粒子10gを、プロパノール水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。プロパノール水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(Example 13)
1 g of hexyltriethoxysilane was dissolved in 99 g of a 95% by weight aqueous propanol solution (water: propanol = 5% by weight: 95% by weight). 10 g of resin fine particles with a nickel layer formed in Example 1 were added to a propanol aqueous solution and stirred for 1 hour while maintaining the temperature of the aqueous solution at 50 ° C. The aqueous propanol solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the nickel layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例14)
ヘキシルトリエトキシシランを、オクチルトリエトキシシランに変更したこと以外は、実施例13と同様に導電性微粒子を作製した。
(Example 14)
Conductive fine particles were produced in the same manner as in Example 13 except that hexyltriethoxysilane was changed to octyltriethoxysilane.
(実施例15)
ヘキシルトリエトキシシランを、ドデシルトリエトキシシランに変更したこと以外は、実施例13と同様に導電性微粒子を作製した。
(Example 15)
Conductive fine particles were produced in the same manner as in Example 13 except that hexyltriethoxysilane was changed to dodecyltriethoxysilane.
(比較例1)
(1)樹脂微粒子の作製
ポリビニルアルコールを3重量%含む水溶液800重量部に、ジビニルベンゼン70重量部、トリメチロールプロパントリメタクリレート30重量部、過酸化ベンゾイル2重量部を加え、混合物を攪拌した。窒素気流下にて、混合物を撹拌しながら80℃で、15時間重合し、樹脂微粒子を得た。
得られた樹脂微粒子を蒸留水及びメタノールで洗浄した後、分級操作を行った。樹脂微粒子の平均粒子径は4.1μm、変動係数は5.0%であった。
(Comparative Example 1)
(1) Preparation of resin fine particles 70 parts by weight of divinylbenzene, 30 parts by weight of trimethylolpropane trimethacrylate and 2 parts by weight of benzoyl peroxide were added to 800 parts by weight of an aqueous solution containing 3% by weight of polyvinyl alcohol, and the mixture was stirred. Under a nitrogen stream, the mixture was polymerized at 80 ° C. with stirring for 15 hours to obtain resin fine particles.
The obtained resin fine particles were washed with distilled water and methanol, and then classified. The average particle size of the resin fine particles was 4.1 μm, and the coefficient of variation was 5.0%.
得られた樹脂微粒子10gをエッチング処理し水洗した。パラジウムイオンを吸着させた樹脂微粒子を0.5重量%のジメチルアミンボラン水溶液に添加し、パラジウムが付与された樹脂微粒子を得た。 10 g of the obtained resin fine particles were etched and washed with water. Resin fine particles adsorbed with palladium ions were added to a 0.5% by weight dimethylamine borane aqueous solution to obtain resin fine particles to which palladium was imparted.
(2)ニッケル層の形成
パラジウムが付与された樹脂微粒子10gを、イオン交換水1200mLに分散させ、めっき安定剤4mLを添加し、水溶液を調整した。この水溶液に硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤6mLとの混合溶液120mLを81mL/分の添加速度で定量ポンプを通して添加した。その後、水溶液のpHが安定するまで攪拌し、水素の発泡が停止するまで、前期めっき工程を行った。
(2) Formation of nickel layer 10 g of resin fine particles provided with palladium were dispersed in 1200 mL of ion-exchanged water, and 4 mL of a plating stabilizer was added to prepare an aqueous solution. To this aqueous solution, 120 mL of a mixed solution of nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, and plating stabilizer 6 mL was added at a rate of 81 mL / min through a metering pump. . Thereafter, stirring was performed until the pH of the aqueous solution was stabilized, and the previous plating step was performed until hydrogen foaming stopped.
次いで、前期めっき工程が終了した水溶液に、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤35mLとの混合溶液650mLを27mL/分の添加速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するまで、後期めっき工程を行った。次いで、めっき液をろ過し、粒子を蒸留水及びメタノールで洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層が形成された樹脂微粒子を得た。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は94重量%であった。また、ニッケル層の厚さは、0.1μmであった。
Next, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 mL of a plating stabilizer was added to the aqueous solution after the previous plating step was 27 mL / min. It was added through a metering pump at an addition rate. Then, it stirred until pH was stabilized and the latter plating process was performed until hydrogen foaming stopped. Next, the plating solution was filtered, and the particles were washed with distilled water and methanol and then dried with a vacuum dryer at 80 ° C. to obtain resin fine particles on which a nickel layer was formed.
In addition, the nickel content of the nickel layer was 94% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The thickness of the nickel layer was 0.1 μm.
(比較例2)
比較例1で得られたニッケル層が形成された樹脂微粒子を使用したこと以外は、実施例3と同様に、導電性微粒子を作製した。
(Comparative Example 2)
Conductive fine particles were produced in the same manner as in Example 3 except that the resin fine particles formed with the nickel layer obtained in Comparative Example 1 were used.
(比較例3)
比較例1で得られたニッケル層が形成された樹脂微粒子を使用したこと以外は、実施例1と同様に、導電性微粒子を作製した。
(Comparative Example 3)
Conductive fine particles were produced in the same manner as in Example 1, except that the resin fine particles formed with the nickel layer obtained in Comparative Example 1 were used.
(比較例4)
リン酸モノブチルエステル1gを、50重量%エタノール水溶液(水:エタノール=50重量%:50重量%)99gに溶解させた。実施例1で作製したニッケル層が形成された樹脂微粒子10gを、エタノール水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。エタノール水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ブチル基が形成されていることが確認された。
(Comparative Example 4)
1 g of phosphoric acid monobutyl ester was dissolved in 99 g of a 50 wt% ethanol aqueous solution (water: ethanol = 50 wt%: 50 wt%). 10 g of resin fine particles formed with the nickel layer produced in Example 1 were added to an ethanol aqueous solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous ethanol solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the nickel layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that a butyl group was formed on the surface of the conductive fine particles.
(比較例5)
実施例1で得られたニッケル層が形成された樹脂微粒子を導電性微粒子として使用した。
(Comparative Example 5)
The resin fine particles formed with the nickel layer obtained in Example 1 were used as conductive fine particles.
<評価>
実施例1〜15及び比較例1〜5で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained in Examples 1-15 and Comparative Examples 1-5. The results are shown in Table 1.
(1)水に対する表面接触角の測定
導電性微粒子の水に対する表面接触角は、全自動接触角測定装置(データフィジックス社製「OCA35」)を用いて測定した。即ち、得られた導電性微粒子1gをスライドガラス上に置き、ニードルを導電性微粒子表面に近づけ、ニードルを用いて純水3μLを導電性微粒子表面に付着させた。純水が付着した導電性微粒子を撮影した画像を解析し、表面接触角を測定した。
(1) Measurement of surface contact angle to water The surface contact angle of conductive fine particles to water was measured using a fully automatic contact angle measuring device (“OCA35” manufactured by Data Physics Co., Ltd.). That is, 1 g of the obtained conductive fine particles were placed on a slide glass, the needle was brought close to the surface of the conductive fine particle, and 3 μL of pure water was attached to the surface of the conductive fine particle using the needle. An image obtained by photographing the conductive fine particles to which pure water adhered was analyzed, and the surface contact angle was measured.
(2)体積抵抗率の測定
導電性微粒子の体積抵抗率は、三菱化学社製「粉体抵抗率測定システム」を用い、導電性微粒子2.5gに20kNの荷重を与えた条件下で測定した。
(2) Measurement of volume resistivity The volume resistivity of the conductive fine particles was measured using a “powder resistivity measurement system” manufactured by Mitsubishi Chemical Corporation under a condition in which a load of 20 kN was applied to 2.5 g of the conductive fine particles. .
(3)異方性導電フィルムの作製
バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合し、混合物を得た。得られた混合物を、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを揮発させて接着性フィルム1を得た。
次いで、バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合し、混合物を得た。得られた混合物を、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを揮発させて導電性微粒子を含有する接着性フィルム2を得た。なお、接着性フィルム2における導電性微粒子の含有量は5万個/cm2となるように調整した。
得られた接着性フィルム1と接着性フィルム2とを常温でラミネートし、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
(3) Production of anisotropic conductive film 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a binder resin The mixture was sufficiently mixed using a stirrer to obtain a mixture. The obtained mixture was applied onto a release film so that the thickness after drying was 10 μm, and toluene was volatilized to obtain an adhesive film 1.
Next, conductive fine particles were added to 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a binder resin, and a planetary stirrer Was mixed well to obtain a mixture. The obtained mixture was applied onto a release film so that the thickness after drying was 7 μm, and toluene was volatilized to obtain an adhesive film 2 containing conductive fine particles. In addition, the content of the conductive fine particles in the adhesive film 2 was adjusted to be 50,000 / cm 2 .
The obtained adhesive film 1 and adhesive film 2 were laminated at room temperature to obtain a 17 μm thick anisotropic conductive film having a two-layer structure.
(4)接続構造体の作製
得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断した異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)が形成されたガラス基板のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極が形成されたガラス基板を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板の積層体を、10N、180℃の圧着条件で熱圧着し、接続構造体を得た。
(4) Preparation of connection structure The obtained anisotropic conductive film was cut into a size of 5 mm × 5 mm. At the center of the glass substrate on which the aluminum electrode (height 0.2 μm, L / S = 20 μm / 20 μm) having a resistance measurement lead wire formed on one side is formed on the cut anisotropic conductive film. Pasted. Next, the glass substrates on which the same aluminum electrodes were formed were bonded together after being aligned so that the electrodes overlap each other. The laminated body of the glass substrates was thermocompression bonded under pressure bonding conditions of 10N and 180 ° C. to obtain a connection structure.
(5)接続抵抗値の測定
得られた接続構造体の対向する電極間の接続抵抗値を4端子法により測定した。また、PCT試験後の接続構造体の接続抵抗値を同様に測定した。なお、PCT試験とは、得られた接続構造体を85℃、相対湿度85%の恒温恒湿器内に100時間保管する加速試験を意味する。
(5) Measurement of connection resistance value The connection resistance value between the opposing electrodes of the obtained connection structure was measured by a four-terminal method. Moreover, the connection resistance value of the connection structure after a PCT test was measured similarly. The PCT test means an accelerated test in which the obtained connection structure is stored in a constant temperature and humidity chamber at 85 ° C. and a relative humidity of 85% for 100 hours.
(実施例16)
(1)樹脂微粒子の作製
ポリビニルアルコールを3重量%含む水溶液800重量部に、ジビニルベンゼン70重量部、トリメチロールプロパントリメタクリレート30重量部、過酸化ベンゾイル2重量部を加え、混合物を攪拌した。窒素気流下にて、混合物を撹拌しながら80℃で、15時間重合し、樹脂微粒子を得た。
得られた樹脂微粒子を蒸留水及びメタノールで洗浄した後、分級操作を行った。樹脂微粒子の平均粒子径は4.1μm、変動係数は5.0%であった。
(Example 16)
(1) Preparation of resin fine particles 70 parts by weight of divinylbenzene, 30 parts by weight of trimethylolpropane trimethacrylate and 2 parts by weight of benzoyl peroxide were added to 800 parts by weight of an aqueous solution containing 3% by weight of polyvinyl alcohol, and the mixture was stirred. Under a nitrogen stream, the mixture was polymerized at 80 ° C. with stirring for 15 hours to obtain resin fine particles.
The obtained resin fine particles were washed with distilled water and methanol, and then classified. The average particle size of the resin fine particles was 4.1 μm, and the coefficient of variation was 5.0%.
得られた樹脂微粒子10gをエッチング処理し水洗した。パラジウムイオンを吸着させた樹脂微粒子を0.5重量%のジメチルアミンボラン水溶液に添加し、パラジウムが付与された樹脂微粒子を得た。 10 g of the obtained resin fine particles were etched and washed with water. Resin fine particles adsorbed with palladium ions were added to a 0.5% by weight dimethylamine borane aqueous solution to obtain resin fine particles to which palladium was imparted.
(2)ニッケル層の形成
パラジウムが付与された樹脂微粒子10gを、イオン交換水1200mLに分散させ、めっき安定剤4mLを添加し、懸濁液Aを作製した。次いで、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤6mLとの混合溶液120mLをアンモニアでpH8.5に調整し、前期めっき液を作製した。懸濁液Aに、81mL/分の添加速度で定量ポンプを通して、前期めっき液を添加した。その後、水溶液のpHが安定するまで攪拌し、水素の発泡が停止するまで、前期めっき工程を行った。前期めっき工程が終了した後、めっき液をろ過し、粒子を蒸留水及びメタノールで洗浄した。洗浄した粒子を、イオン交換水1200mLに分散させ、懸濁液Bを作製した。
(2) Formation of nickel layer 10 g of resin fine particles provided with palladium were dispersed in 1200 mL of ion-exchanged water, and 4 mL of a plating stabilizer was added to prepare a suspension A. Next, 120 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 6 mL of a plating stabilizer was adjusted to pH 8.5 with ammonia. Produced. The plating solution was added to the suspension A through a metering pump at an addition rate of 81 mL / min. Thereafter, stirring was performed until the pH of the aqueous solution was stabilized, and the previous plating step was performed until hydrogen foaming stopped. After the previous plating process was completed, the plating solution was filtered, and the particles were washed with distilled water and methanol. The washed particles were dispersed in 1200 mL of ion exchange water to prepare a suspension B.
次いで、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム116g/Lと、めっき安定剤35mLとの混合溶液650mLをアンモニアでpH9.5に調整し、後期めっき液を作製した。懸濁液Bに、27mL/分の添加速度で定量ポンプを通して、後期めっき液を添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するまで、後期めっき工程を行った。
次いで、めっき液をろ過し、粒子を蒸留水及びメタノールで洗浄した後、80℃の真空乾燥機で乾燥させ、ニッケル層が形成された樹脂微粒子を得た。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は97重量%であった。
Next, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 mL of a plating stabilizer is adjusted to pH 9.5 with ammonia. Produced. Late plating solution was added to suspension B through a metering pump at an addition rate of 27 mL / min. Then, it stirred until pH was stabilized and the latter plating process was performed until hydrogen foaming stopped.
Next, the plating solution was filtered, and the particles were washed with distilled water and methanol and then dried with a vacuum dryer at 80 ° C. to obtain resin fine particles on which a nickel layer was formed.
In addition, the nickel content of the nickel layer was 97% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation).
(3)酸化セリウム層の形成
ニッケル層が形成された樹脂微粒子10gを、1重量%の硫酸セリウム水溶液1Lに添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。硫酸セリウム水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化セリウム層が形成された導電性微粒子を作製した。
なお、エネルギー分散型X線分光器により測定すると、ニッケル層の表面に酸化セリウム層が形成されていることが確認された。また、得られた導電性微粒子のニッケル層の厚さは、0.1μm、酸化セリウム層の厚さは、0.005μmであった。
(3) Formation of cerium oxide layer 10 g of resin fine particles on which a nickel layer was formed were added to 1 L of a 1% by weight cerium sulfate aqueous solution and stirred for 1 hour while maintaining the liquid temperature of the aqueous solution at 50 ° C. The aqueous cerium sulfate solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles on which a cerium oxide layer was formed.
In addition, when measured with an energy dispersive X-ray spectrometer, it was confirmed that a cerium oxide layer was formed on the surface of the nickel layer. Moreover, the thickness of the nickel layer of the obtained conductive fine particles was 0.1 μm, and the thickness of the cerium oxide layer was 0.005 μm.
(4)アルキル基の付与
リン酸モノドデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化セリウム層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ドデシル基が形成されていることが確認された。
(4) Giving alkyl group 1 g of phosphoric acid monododecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50 wt%: 50 wt%). 10 g of the obtained conductive fine particles were added to an aqueous tetrahydrofuran solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the cerium oxide layer.
In addition, when analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that dodecyl groups were formed on the surface of the conductive fine particles.
(実施例17)
実施例16と同様にして得られたニッケル層が形成された樹脂微粒子10gを、1重量%のシュウ酸チタンカリウム水溶液1Lに添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。シュウ酸チタンカリウム水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化チタン層が形成された導電性微粒子を作製した。
なお、エネルギー分散型X線分光器により測定すると、ニッケル層の表面に酸化チタン層が形成されていることが確認された。また、得られた導電性微粒子のニッケル層の厚さは、0.1μm、酸化チタン層の厚さは、0.005μmであった。
(Example 17)
10 g of resin fine particles formed with a nickel layer obtained in the same manner as in Example 16 were added to 1 L of 1 wt% aqueous potassium potassium oxalate solution, and the mixture was stirred for 1 hour while maintaining the liquid temperature at 50 ° C. . After filtering the aqueous potassium potassium oxalate solution and washing the particles with distilled water, the particles were dried with a vacuum dryer at 80 ° C. to produce conductive fine particles on which a titanium oxide layer was formed.
In addition, when measured with the energy dispersive X-ray spectrometer, it was confirmed that a titanium oxide layer was formed on the surface of the nickel layer. Moreover, the thickness of the nickel layer of the obtained conductive fine particles was 0.1 μm, and the thickness of the titanium oxide layer was 0.005 μm.
リン酸モノドデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化チタン層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ドデシル基が形成されていることが確認された。
1 g of phosphoric acid monododecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50% by weight: 50% by weight). 10 g of the obtained conductive fine particles were added to an aqueous tetrahydrofuran solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the titanium oxide layer.
In addition, when analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that dodecyl groups were formed on the surface of the conductive fine particles.
(実施例18)
リン酸モノへキシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。実施例16と同様にして得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化セリウム層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(Example 18)
1 g of monohexyl phosphate was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50% by weight: 50% by weight). 10 g of conductive fine particles obtained in the same manner as in Example 16 was added to an aqueous tetrahydrofuran solution and stirred for 1 hour while maintaining the liquid temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the cerium oxide layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例19)
リン酸モノヘキシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。実施例17と同様にして得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化チタン層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキシル基が形成されていることが確認された。
(Example 19)
1 g of phosphoric acid monohexyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50% by weight: 50% by weight). 10 g of conductive fine particles obtained in the same manner as in Example 17 was added to an aqueous tetrahydrofuran solution and stirred for 1 hour while maintaining the liquid temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the titanium oxide layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexyl groups were formed on the surface of the conductive fine particles.
(実施例20)
リン酸モノヘキサデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。実施例16と同様にして得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化セリウム層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキサデシル基が形成されていることが確認された。
(Example 20)
1 g of phosphoric acid monohexadecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50 wt%: 50 wt%). 10 g of conductive fine particles obtained in the same manner as in Example 16 was added to an aqueous tetrahydrofuran solution and stirred for 1 hour while maintaining the liquid temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the cerium oxide layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexadecyl groups were formed on the surface of the conductive fine particles.
(実施例21)
リン酸モノヘキサデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。実施例17と同様にして得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化チタン層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ヘキサデシル基が形成されていることが確認された。
(Example 21)
1 g of phosphoric acid monohexadecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50 wt%: 50 wt%). 10 g of conductive fine particles obtained in the same manner as in Example 17 was added to an aqueous tetrahydrofuran solution and stirred for 1 hour while maintaining the liquid temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the titanium oxide layer.
When analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that hexadecyl groups were formed on the surface of the conductive fine particles.
(実施例22)
ニッケル層の形成において、前期めっき液のpHを8.0に変更し、後期めっき液のpHを9.0に変更したこと以外は、実施例16と同様に導電性微粒子を作製した。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は96重量%であった。また、ニッケル層の厚さは、0.1μm、酸化セリウム層の厚さは、0.005μmであった。
(Example 22)
In the formation of the nickel layer, conductive fine particles were prepared in the same manner as in Example 16 except that the pH of the first plating solution was changed to 8.0 and the pH of the latter plating solution was changed to 9.0.
In addition, the nickel content of the nickel layer was 96% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). Moreover, the thickness of the nickel layer was 0.1 μm, and the thickness of the cerium oxide layer was 0.005 μm.
リン酸モノドデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化セリウム層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ドデシル基が形成されていることが確認された。
1 g of phosphoric acid monododecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50% by weight: 50% by weight). 10 g of the obtained conductive fine particles were added to an aqueous tetrahydrofuran solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the cerium oxide layer.
In addition, when analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that dodecyl groups were formed on the surface of the conductive fine particles.
(実施例23)
ニッケル層の形成において、前期めっき液のpHを8.0に変更し、後期めっき液のpHを9.0に変更したこと以外は、実施例17と同様に導電性微粒子を作製した。
なお、蛍光X線分析装置(島津製作所社製「EDX−800HS」)により測定すると、ニッケル層のニッケル含有率は96重量%であった。また、ニッケル層の厚さは、0.1μm、酸化チタン層の厚さは、0.005μmであった。
(Example 23)
In the formation of the nickel layer, conductive fine particles were prepared in the same manner as in Example 17 except that the pH of the first plating solution was changed to 8.0 and the pH of the latter plating solution was changed to 9.0.
In addition, the nickel content of the nickel layer was 96% by weight as measured by a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). Moreover, the thickness of the nickel layer was 0.1 μm, and the thickness of the titanium oxide layer was 0.005 μm.
リン酸モノドデシルエステル1gを、テトラヒドロフラン水溶液(水:テトラヒドロフラン=50重量%:50重量%)1Lに溶解させた。得られた導電性微粒子10gを、テトラヒドロフラン水溶液に添加し、水溶液の液温を50℃に保ちながら、1時間攪拌した。テトラヒドロフラン水溶液をろ過し、粒子を蒸留水で洗浄した後、80℃の真空乾燥機で乾燥させ、酸化チタン層の表面にアルキル基を有する導電性微粒子を作製した。
なお、飛行時間型二次イオン質量分析装置(TOF−SIMS)により分析すると、導電性微粒子の表面に、ドデシル基が形成されていることが確認された。
1 g of phosphoric acid monododecyl ester was dissolved in 1 L of an aqueous tetrahydrofuran solution (water: tetrahydrofuran = 50% by weight: 50% by weight). 10 g of the obtained conductive fine particles were added to an aqueous tetrahydrofuran solution and stirred for 1 hour while keeping the temperature of the aqueous solution at 50 ° C. The aqueous tetrahydrofuran solution was filtered, and the particles were washed with distilled water and then dried with a vacuum dryer at 80 ° C. to produce conductive fine particles having an alkyl group on the surface of the titanium oxide layer.
In addition, when analyzed by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), it was confirmed that dodecyl groups were formed on the surface of the conductive fine particles.
<評価>
実施例16〜23で得られた導電性微粒子について実施例1等と同様の評価を行った。結果を表2に示した。
<Evaluation>
The conductive fine particles obtained in Examples 16 to 23 were evaluated in the same manner as in Example 1 and the like. The results are shown in Table 2.
本発明によれば、信頼性が高い電気接続ができる導電性微粒子を提供することができる。また、該導電性微粒子を含有する異方性導電材料、及び、該導電性微粒子又は該異方性導電材料によって接続された接続構造体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electroconductive fine particles which can make highly reliable electrical connection can be provided. In addition, an anisotropic conductive material containing the conductive fine particles and a connection structure connected by the conductive fine particles or the anisotropic conductive material can be provided.
Claims (9)
前記ニッケル層のニッケル含有率が96重量%以上であり、
水に対する表面接触角が90°以上、かつ、体積抵抗率が0.0030Ω・cm以下であることを特徴とする導電性微粒子。 Conductive fine particles in which a nickel layer is formed on the surface of the substrate fine particles,
The nickel content of the nickel layer is 96 wt% or more,
Conductive fine particles characterized by having a surface contact angle with water of 90 ° or more and a volume resistivity of 0.0030 Ω · cm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009079911A JP5485575B2 (en) | 2008-03-27 | 2009-03-27 | Conductive fine particles, anisotropic conductive material, and connection structure |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084476 | 2008-03-27 | ||
JP2008084475 | 2008-03-27 | ||
JP2008084476 | 2008-03-27 | ||
JP2008084475 | 2008-03-27 | ||
JP2008251058 | 2008-09-29 | ||
JP2008251057 | 2008-09-29 | ||
JP2008251057 | 2008-09-29 | ||
JP2008251058 | 2008-09-29 | ||
JP2009079911A JP5485575B2 (en) | 2008-03-27 | 2009-03-27 | Conductive fine particles, anisotropic conductive material, and connection structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010103080A true JP2010103080A (en) | 2010-05-06 |
JP5485575B2 JP5485575B2 (en) | 2014-05-07 |
Family
ID=42293542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009079911A Active JP5485575B2 (en) | 2008-03-27 | 2009-03-27 | Conductive fine particles, anisotropic conductive material, and connection structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5485575B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010278026A (en) * | 2010-08-31 | 2010-12-09 | Sony Chemical & Information Device Corp | Conductive particles, manufacturing method thereof, anisotropic conductive film, joined body, and connecting method |
JP2012003917A (en) * | 2010-06-16 | 2012-01-05 | Sekisui Chem Co Ltd | Conductive particle, anisotropic conductive material and connection structure |
JP2012004034A (en) * | 2010-06-18 | 2012-01-05 | Sekisui Chem Co Ltd | Conductive particles, anisotropic conductive material and connection structure |
WO2012014925A1 (en) * | 2010-07-28 | 2012-02-02 | 積水化学工業株式会社 | Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure |
JP2013214509A (en) * | 2012-03-06 | 2013-10-17 | Sekisui Chem Co Ltd | Conductive particle, conductive material, and connection structure |
WO2023171634A1 (en) * | 2022-03-09 | 2023-09-14 | 株式会社レゾナック | Conductive particles, adhesive film for circuit connection, production method therefor, connection structure, and production method therefor |
WO2023171633A1 (en) * | 2022-03-09 | 2023-09-14 | 株式会社レゾナック | Electrically conductive particle, adhesive film for circuit connection and method for manufacturing same, and connection structure body and method for manufacturing same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000063901A (en) * | 1998-08-24 | 2000-02-29 | Sumitomo Metal Mining Co Ltd | Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste |
JP2000239704A (en) * | 1999-02-19 | 2000-09-05 | Matsushita Electric Ind Co Ltd | Water repellant electrically conductive material, its production and electrode for fuel battery using the same |
JP2003197028A (en) * | 2001-12-26 | 2003-07-11 | Sekisui Chem Co Ltd | Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material |
JP2004179139A (en) * | 2002-09-30 | 2004-06-24 | Sumitomo Osaka Cement Co Ltd | Conductive particles and conductive adhesive material containing it and paint for forming transparent conductive film, and transparent conductive film as well as display device using it |
JP2007100062A (en) * | 2005-02-28 | 2007-04-19 | Dainippon Ink & Chem Inc | Method for producing electro conductive coating material |
JP2009079912A (en) * | 2007-09-25 | 2009-04-16 | Niigata Denki Kk | Snowfall intensity measuring method and snowfall intensity measuring device |
-
2009
- 2009-03-27 JP JP2009079911A patent/JP5485575B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000063901A (en) * | 1998-08-24 | 2000-02-29 | Sumitomo Metal Mining Co Ltd | Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste |
JP2000239704A (en) * | 1999-02-19 | 2000-09-05 | Matsushita Electric Ind Co Ltd | Water repellant electrically conductive material, its production and electrode for fuel battery using the same |
JP2003197028A (en) * | 2001-12-26 | 2003-07-11 | Sekisui Chem Co Ltd | Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material |
JP2004179139A (en) * | 2002-09-30 | 2004-06-24 | Sumitomo Osaka Cement Co Ltd | Conductive particles and conductive adhesive material containing it and paint for forming transparent conductive film, and transparent conductive film as well as display device using it |
JP2007100062A (en) * | 2005-02-28 | 2007-04-19 | Dainippon Ink & Chem Inc | Method for producing electro conductive coating material |
JP2009079912A (en) * | 2007-09-25 | 2009-04-16 | Niigata Denki Kk | Snowfall intensity measuring method and snowfall intensity measuring device |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012003917A (en) * | 2010-06-16 | 2012-01-05 | Sekisui Chem Co Ltd | Conductive particle, anisotropic conductive material and connection structure |
JP2012004034A (en) * | 2010-06-18 | 2012-01-05 | Sekisui Chem Co Ltd | Conductive particles, anisotropic conductive material and connection structure |
TWI381037B (en) * | 2010-07-28 | 2013-01-01 | Sekisui Chemical Co Ltd | An electrically conductive particles having an insulating particle, an anisotropic conductive material, and a connecting structure |
WO2012014925A1 (en) * | 2010-07-28 | 2012-02-02 | 積水化学工業株式会社 | Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure |
KR101242235B1 (en) | 2010-07-28 | 2013-03-11 | 세키스이가가쿠 고교가부시키가이샤 | Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure |
JP2012094541A (en) * | 2010-07-28 | 2012-05-17 | Sekisui Chem Co Ltd | Method of producing conductive particle with insulating particles, anisotropic conductive material and connection structure |
JP2012124169A (en) * | 2010-07-28 | 2012-06-28 | Sekisui Chem Co Ltd | Conductive particle with insulating particles, anisotropic conductive material, and connection structure |
JP5025825B2 (en) * | 2010-07-28 | 2012-09-12 | 積水化学工業株式会社 | Conductive particles with insulating particles, anisotropic conductive material, and connection structure |
CN102884590A (en) * | 2010-07-28 | 2013-01-16 | 积水化学工业株式会社 | Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure |
JP2012234821A (en) * | 2010-07-28 | 2012-11-29 | Sekisui Chem Co Ltd | Conductive particle with insulating particles and connection structure |
WO2012029587A1 (en) * | 2010-08-31 | 2012-03-08 | ソニーケミカル&インフォメーションデバイス株式会社 | Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method |
CN102792386A (en) * | 2010-08-31 | 2012-11-21 | 索尼化学&信息部件株式会社 | Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method |
JP2010278026A (en) * | 2010-08-31 | 2010-12-09 | Sony Chemical & Information Device Corp | Conductive particles, manufacturing method thereof, anisotropic conductive film, joined body, and connecting method |
KR101385330B1 (en) * | 2010-08-31 | 2014-04-14 | 데쿠세리아루즈 가부시키가이샤 | Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method |
US8987607B2 (en) | 2010-08-31 | 2015-03-24 | Dexerials Corporation | Conductive particle, and anisotropic conductive film, bonded structure, and bonding method |
CN102792386B (en) * | 2010-08-31 | 2015-11-25 | 迪睿合电子材料有限公司 | Electroconductive particle and manufacture method thereof and anisotropic conductive film, conjugant and method of attachment |
JP2013214509A (en) * | 2012-03-06 | 2013-10-17 | Sekisui Chem Co Ltd | Conductive particle, conductive material, and connection structure |
WO2023171634A1 (en) * | 2022-03-09 | 2023-09-14 | 株式会社レゾナック | Conductive particles, adhesive film for circuit connection, production method therefor, connection structure, and production method therefor |
WO2023171633A1 (en) * | 2022-03-09 | 2023-09-14 | 株式会社レゾナック | Electrically conductive particle, adhesive film for circuit connection and method for manufacturing same, and connection structure body and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP5485575B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5485575B2 (en) | Conductive fine particles, anisotropic conductive material, and connection structure | |
JP5271019B2 (en) | Conductive fine particles, anisotropic conductive material, and connection structure | |
KR101242235B1 (en) | Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure | |
TWI603345B (en) | Conductive particles, anisotropic conductive adhesive film and connection structure | |
JP4052832B2 (en) | Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material | |
JP6155651B2 (en) | Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive | |
TW201333980A (en) | Conductive particles, conductive material, and connection structure | |
JP5529431B2 (en) | Conductive fine particles, anisotropic conductive material, and connection structure | |
JP2014029857A (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP2007035573A (en) | Conductive particulate and anisotropic conductive material | |
JP2019075380A (en) | Conductive particle, conductive material and connection structure | |
JP5297569B1 (en) | Conductive particles, conductive materials, and connection structures | |
JP2013214511A (en) | Conductive particle, conductive material, and connection structure | |
JP4715969B1 (en) | Conductive particles | |
JP6431411B2 (en) | Conductive particles with insulating particles, conductive material, and connection structure | |
JP2009032397A (en) | Conductive fine particle | |
JP2013251099A (en) | Conductive particle and process of manufacturing the same | |
JP5529901B2 (en) | Conductive particles and anisotropic conductive materials | |
JP4714719B2 (en) | Method for producing conductive fine particles | |
JP6646366B2 (en) | Conductive particles, conductive material and connection structure | |
JP6357347B2 (en) | Conductive particles, conductive materials, and connection structures | |
JP5368611B1 (en) | Conductive fine particles | |
JP6450154B2 (en) | Conductive particles, conductive materials, and connection structures | |
JP5796232B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
JP5549352B2 (en) | Conductive particles, adhesive composition, circuit connection material, and connection structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20130806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140220 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5485575 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |