JP6155651B2 - Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive - Google Patents

Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive Download PDF

Info

Publication number
JP6155651B2
JP6155651B2 JP2013003642A JP2013003642A JP6155651B2 JP 6155651 B2 JP6155651 B2 JP 6155651B2 JP 2013003642 A JP2013003642 A JP 2013003642A JP 2013003642 A JP2013003642 A JP 2013003642A JP 6155651 B2 JP6155651 B2 JP 6155651B2
Authority
JP
Japan
Prior art keywords
layer
circuit
conductive particles
nickel
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013003642A
Other languages
Japanese (ja)
Other versions
JP2014132542A (en
Inventor
芳則 江尻
芳則 江尻
昌之 中川
昌之 中川
高井 健次
健次 高井
邦彦 赤井
邦彦 赤井
渡辺 靖
靖 渡辺
奈々 榎本
奈々 榎本
光晴 松沢
光晴 松沢
泰三 山村
泰三 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013003642A priority Critical patent/JP6155651B2/en
Publication of JP2014132542A publication Critical patent/JP2014132542A/en
Application granted granted Critical
Publication of JP6155651B2 publication Critical patent/JP6155651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、導電粒子、絶縁被覆導電粒子及び異方導電性接着剤、並びに、回路部材の接続構造体及びその製造方法に関する。   The present invention relates to conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, a circuit member connection structure, and a method for manufacturing the same.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)実装に大別できる。COG実装では、異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting a liquid crystal driving IC on a liquid crystal display glass panel can be broadly divided into COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive. Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.

従来、異方導電性接着剤として、表面に金層が形成された導電粒子を含む接着剤が主流である。かかる導電粒子は、電気抵抗値が低い。また、金は酸化される恐れがないことから、長期間保存しても、電気抵抗値が高まることがない。しかしながら、近年の省エネルギー化に対応して消費電力を抑える目的で、集積回路を流れる電流量を小さくすることが試みられている。従って、従来よりもさらに電気抵抗値の低い導電粒子が求められてきている。   Conventionally, as an anisotropic conductive adhesive, an adhesive containing conductive particles having a gold layer formed on the surface has been mainly used. Such conductive particles have a low electrical resistance value. Further, since gold is not likely to be oxidized, the electrical resistance value does not increase even when stored for a long period of time. However, attempts have been made to reduce the amount of current flowing through an integrated circuit in order to reduce power consumption in response to recent energy savings. Accordingly, there has been a demand for conductive particles having a lower electrical resistance than before.

特許文献1〜3には、プラスチック粒子の表面に銅めっきが形成された導電粒子が開示されている。銅は金よりも電気抵抗が小さい金属であるため、銅めっきによれば、金めっきされた導電粒子よりも電気抵抗の小さい導電粒子が得られる。しかしながら、プラスチック粒子の表面に銅めっきが形成された導電粒子の作製過程では、無電解銅めっきの最中に粒子同士が凝集しやすいことが知られている。   Patent Documents 1 to 3 disclose conductive particles in which copper plating is formed on the surface of plastic particles. Since copper is a metal having an electric resistance smaller than that of gold, according to copper plating, conductive particles having an electric resistance lower than that of gold-plated conductive particles can be obtained. However, it is known that in the process of producing conductive particles in which copper plating is formed on the surface of plastic particles, the particles are likely to aggregate during electroless copper plating.

この凝集性を改善するために、特許文献4には、樹脂表面に対して無電解めっき法によりニッケル、銅及びリンを含有する合金めっき被膜を形成する方法が記載されている。具体的には、芯材粒子を含む懸濁液に、ニッケル塩、リン系還元剤及びpH調整剤を含むめっき液を添加して、初期無電解めっき反応により、リンを含んだ無電解ニッケルめっき被膜を形成する。その後、ニッケル塩、銅塩、リン系還元剤及びpH調整剤を含むめっき液を添加して行う後期無電解めっき反応により、ニッケル、銅及びリンを含有する後期の合金めっき被膜を形成する。   In order to improve this cohesiveness, Patent Document 4 describes a method of forming an alloy plating film containing nickel, copper and phosphorus on a resin surface by an electroless plating method. Specifically, an electroless nickel plating containing phosphorus by an initial electroless plating reaction by adding a plating solution containing a nickel salt, a phosphorus reducing agent and a pH adjuster to a suspension containing core material particles. Form a film. Thereafter, a late alloy plating film containing nickel, copper and phosphorus is formed by a late electroless plating reaction performed by adding a plating solution containing a nickel salt, a copper salt, a phosphorus-based reducing agent and a pH adjuster.

特許第3581618号公報Japanese Patent No. 3581618 特開2009−48991号公報JP 2009-48991 A 特許第4352097号公報Japanese Patent No. 4352097 特開2006−52460公報JP 2006-52460 A

特許文献4に記載の方法では、後期の合金めっき被膜が銅を含有するため、単にニッケル及びリンからなる合金めっき被膜と比較して電気抵抗は小さくなる。しかしながら、初期の合金めっき被膜がニッケル及びリンからなる合金めっき被膜であるために、銅と比較して延性が著しく低い。それに加え、後期の合金めっき被膜にもリンが含まれることで、銅と比較すると延性が低い。これらのめっき被膜の構成からなる導電粒子を圧縮したときに電気抵抗値が上昇することが分かった。具体的には、導電粒子を上面とこれに平行な下面との間に挟んで、その大きさが元の粒径の20%になるまで圧縮(圧縮率80%)したときに、樹脂粒子とめっき被膜の間で剥離が発生しやすくなり、電気抵抗値が上昇することを本発明者らは見出した。また、めっき被膜形成の際に粒子同士が凝集すると導電粒子の金属層にピンホールが生じてしまう。ピンホールが形成された導電粒子を圧縮した場合、ピンホールの形成部を起点としてめっき被膜の割れが発生しやすくなり、これが電気抵抗値が上昇する原因となると考えられる。   In the method described in Patent Document 4, since the latter alloy plating film contains copper, the electric resistance is smaller than that of an alloy plating film made of nickel and phosphorus. However, since the initial alloy plating film is an alloy plating film made of nickel and phosphorus, the ductility is remarkably lower than that of copper. In addition, the late alloy plating film contains phosphorus, so that the ductility is low as compared with copper. It has been found that the electrical resistance value increases when the conductive particles having the structure of the plating film are compressed. Specifically, when the conductive particles are sandwiched between an upper surface and a lower surface parallel to the upper surface and compressed until the size becomes 20% of the original particle size (compression rate 80%), the resin particles The present inventors have found that peeling easily occurs between the plating films, and the electrical resistance value increases. Further, when particles are aggregated during the formation of the plating film, pinholes are generated in the metal layer of the conductive particles. When conductive particles having pinholes are compressed, cracking of the plating film tends to occur starting from the pinhole formation portion, which is considered to cause an increase in electrical resistance.

そこで本発明は、圧縮された場合でも低い電気抵抗値を保つことができ、かつ、ピンホールの少ない導電粒子を提供することを目的とする。また、これを用いた絶縁被覆導電粒子及び異方導電性接着剤を提供することを目的とする。   Accordingly, an object of the present invention is to provide conductive particles that can maintain a low electric resistance value even when compressed and have few pinholes. Moreover, it aims at providing the insulation coating electrically-conductive particle and anisotropic conductive adhesive using this.

上記課題を解決するために、本発明は、樹脂粒子と、該樹脂粒子の表面に設けられた金属層とを備え、該金属層はニッケル及び銅を含み、かつ、樹脂粒子の表面から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる部分を有する導電粒子を提供する。このような部分を金属層が有することで、上記導電粒子は圧縮された場合でも低い電気抵抗値を保つことができ、かつ、ピンホールが少ない。   In order to solve the above problems, the present invention comprises resin particles and a metal layer provided on the surface of the resin particles, the metal layer containing nickel and copper, and away from the surface of the resin particles. Therefore, a conductive particle having a portion where the element ratio of copper to nickel is high is provided. By having such a portion in the metal layer, the conductive particles can maintain a low electric resistance value even when compressed, and there are few pinholes.

金属層は、ニッケル及び銅を主成分とするNi−Cu層を少なくとも有し、このNi−Cu層が、上記部分(樹脂粒子の表面から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる部分)を有してもよい。ここで、Ni−Cu層は、樹脂粒子に近い順に、97重量%以上のニッケルを含有する第1の層(第1の部分)、上記部分をなす第2の層(第2の部分)、及び、銅を主成分とする第3の層(第3の部分)が配置された構造を有することが好ましい。これによれば、上記効果が一層奏される。   The metal layer has at least a Ni—Cu layer mainly composed of nickel and copper, and this Ni—Cu layer is the above portion (a portion where the element ratio of copper to nickel increases as the distance from the surface of the resin particle increases). You may have. Here, the Ni—Cu layer is a first layer (first part) containing 97 wt% or more of nickel in the order close to the resin particles, a second layer (second part) forming the above part, And it is preferable to have the structure where the 3rd layer (3rd part) which has copper as a main component is arrange | positioned. According to this, the said effect is further show | played.

第2の層におけるニッケルの含有率と銅の含有率との合計が、97重量%以上であることが好ましい。また、第3の層における銅の含有率が、97重量%以上であることが好ましい。これらによれば、導電粒子を高圧縮して圧着接続する場合に、圧縮後の金属の割れを抑制することが一層可能である。   The total of the nickel content and the copper content in the second layer is preferably 97% by weight or more. Moreover, it is preferable that the copper content rate in a 3rd layer is 97 weight% or more. According to these, when conductive particles are highly compressed and crimped and connected, cracking of the metal after compression can be further suppressed.

第1の層、第2の層及び第3の層が、ニッケル、銅及びホルムアルデヒドを含む無電解めっき液により形成されたものであることが好ましい。特に、第1の層及び第2の層が、一つの建浴槽における無電解めっき液の中で順次形成されたものであることが好ましい。一つの建浴槽において複数の層を順次形成することで、第1の層、第2の層及び第3の層のそれぞれの層間の密着性を良好に保つことができる。   The first layer, the second layer, and the third layer are preferably formed by an electroless plating solution containing nickel, copper, and formaldehyde. In particular, it is preferable that the first layer and the second layer are sequentially formed in an electroless plating solution in one building tub. By sequentially forming a plurality of layers in one building tub, it is possible to maintain good adhesion between the first layer, the second layer, and the third layer.

金属層は、Ni−Cu層の外側に、ニッケルを含有し銅を含有しない第4の層をさらに有してもよい。また、金属層は、Ni−Cu層の外側に、パラジウムを含有する第5の層をさらに有してもよい。これらの層は、銅のマイグレーションストップ層として機能する。   The metal layer may further include a fourth layer containing nickel and not containing copper outside the Ni—Cu layer. The metal layer may further include a fifth layer containing palladium outside the Ni—Cu layer. These layers function as a copper migration stop layer.

第4の層におけるニッケルの含有率が、85〜99重量%であることが好ましい。第4の層におけるニッケルの含有率がこの範囲にあると、第3の層上へのニッケルめっき被膜の析出性が向上し、部分的に析出しない場所ができるのを抑制できる。   The nickel content in the fourth layer is preferably 85 to 99% by weight. When the content ratio of nickel in the fourth layer is within this range, the depositability of the nickel plating film on the third layer is improved, and it is possible to suppress the formation of a place where the nickel layer is not partially deposited.

金属層は、Ni−Cu層の外側に、金を含有する第6の層をさらに有してもよい。この層によれば、導電粒子の表面における電気抵抗値が下がり、特性を向上させることができる。また、銅のマイグレーションストップ層としても期待できる。   The metal layer may further include a sixth layer containing gold outside the Ni—Cu layer. According to this layer, the electrical resistance value on the surface of the conductive particles is lowered, and the characteristics can be improved. It can also be expected as a copper migration stop layer.

本発明の導電粒子は、平均粒径が1〜10μmであることが好ましく、2〜5μmであることがより好ましい。   The conductive particles of the present invention preferably have an average particle size of 1 to 10 μm, and more preferably 2 to 5 μm.

また、本発明は、上記導電粒子と、この導電粒子の金属層の表面に設けられ、当該表面の少なくとも一部を被覆する絶縁性子粒子とを備える絶縁被覆導電粒子を提供する。   The present invention also provides insulating coated conductive particles comprising the above conductive particles and insulator particles provided on the surface of the metal layer of the conductive particles and covering at least a part of the surface.

また、本発明は、上記導電粒子又は上記絶縁被覆導電粒子を接着剤に含有してなる異方導電性接着剤を提供する。   The present invention also provides an anisotropic conductive adhesive comprising the conductive particles or the insulating coated conductive particles in an adhesive.

さらに、本発明は、回路部材の接続構造体及びその製造方法を提供する。本発明に係る、回路部材の接続構造体は、第一の回路基板の主面上に複数の第一の回路電極が形成された第一の回路部材と、第二の回路基板の主面上に複数の第二の回路電極が形成された第二の回路部材と、第一の回路基板の主面と第二の回路基板の主面との間に設けられ、第一及び第二の回路電極を相互に対向させた状態で第一及び第二の回路部材同士を接続する回路接続部材とを備え、回路接続部材は、上記異方導電性接着剤の硬化物からなり、第一の回路電極と第二の回路電極とが、上記導電粒子又は絶縁被覆導電粒子を介して電気的に接続されている。本発明に係る、回路部材の接続構造体の製造方法は、第一の回路基板の主面上に複数の第一の回路電極が形成された第一の回路部材と、第二の回路基板の主面上に複数の第二の回路電極が形成された第二の回路部材との間に、第一の回路電極と第二の回路電極とを対向させた状態で、上記異方導電性接着剤を介在させる工程と、当該異方導電性接着剤を加熱及び加圧により硬化させる工程とを備える。   Furthermore, this invention provides the connection structure of a circuit member, and its manufacturing method. The circuit member connection structure according to the present invention includes a first circuit member in which a plurality of first circuit electrodes are formed on the main surface of the first circuit board, and a main surface of the second circuit board. A second circuit member having a plurality of second circuit electrodes formed thereon, and a first circuit board and a second circuit board provided between a main surface of the first circuit board and a main surface of the second circuit board. A circuit connection member for connecting the first and second circuit members with the electrodes facing each other, the circuit connection member being made of a cured product of the anisotropic conductive adhesive, and the first circuit The electrode and the second circuit electrode are electrically connected via the conductive particles or the insulating coated conductive particles. A method for manufacturing a circuit member connection structure according to the present invention includes: a first circuit member having a plurality of first circuit electrodes formed on a main surface of a first circuit board; and a second circuit board. The anisotropic conductive adhesive in the state where the first circuit electrode and the second circuit electrode are opposed to each other between the second circuit member having a plurality of second circuit electrodes formed on the main surface. A step of interposing an agent, and a step of curing the anisotropic conductive adhesive by heating and pressing.

本発明によれば、圧縮された場合でも低い電気抵抗値を保つことができ、かつ、ピンホールの少ない導電粒子及びこれを用いた絶縁被覆導電粒子が提供される。また、本発明によれば、当該導電粒子又は絶縁被覆導電粒子を含む異方導電性接着剤が提供される。さらに、本発明によれば、当該異方導電性接着剤を用いて接続構造体を製造する方法及びこれによって製造される接続構造体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even when it compresses, a low electrical resistance value can be maintained, and the conductive particle with few pinholes and the insulation coating conductive particle using the same are provided. Moreover, according to this invention, the anisotropic conductive adhesive containing the said electroconductive particle or insulation coating electroconductive particle is provided. Furthermore, according to this invention, the method of manufacturing a connection structure using the said anisotropic conductive adhesive, and the connection structure manufactured by this are provided.

(a)は本発明に係る導電粒子の一実施形態を模式的に示す断面図であり、(b)は金属層のニッケル及び銅の含有率の一例を示すグラフである。(A) is sectional drawing which shows typically one Embodiment of the electroconductive particle which concerns on this invention, (b) is a graph which shows an example of the content rate of nickel and copper of a metal layer. (a)〜(c)は本発明に係る導電粒子の他の実施形態を模式的に示す断面図である。(A)-(c) is sectional drawing which shows typically other embodiment of the electroconductive particle which concerns on this invention. 回路電極同士が接続された接続構造体の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the connection structure in which circuit electrodes were connected. 接続構造体の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of a connection structure. 実施例1で作製した導電粒子のめっき被膜の断面を、EDXにより解析した結果である。It is the result of having analyzed the cross section of the plating film of the electroconductive particle produced in Example 1 by EDX.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

<導電粒子>
図1(a)に示す導電粒子2は、導電粒子2のコアを構成する樹脂粒子2aと、樹脂粒子2aの表面に設けられた金属層3とを備える。金属層3は、ニッケル及び銅を含み、かつ、樹脂粒子2aの表面から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる部分を有する。この部分は金属層3の厚さ方向の一部であって樹脂粒子2aのほぼ全体もしくは全体をカバーするように設けられた層であってもよい。言い換えると、金属層3は、上記部分として、ニッケル及び銅を主成分とする層(以下、「Ni−Cu層」ともいう)3aを少なくとも有し、Ni−Cu層3aはニッケルに対する銅の元素比率が樹脂粒子の表面から遠ざかる方向に高くなる濃度勾配を有してもよい。
<Conductive particles>
A conductive particle 2 shown in FIG. 1A includes a resin particle 2a constituting a core of the conductive particle 2 and a metal layer 3 provided on the surface of the resin particle 2a. The metal layer 3 contains nickel and copper, and has a portion where the element ratio of copper to nickel increases as the distance from the surface of the resin particle 2a increases. This portion may be a part of the metal layer 3 in the thickness direction and a layer provided so as to cover almost the entire resin particle 2a or the entire. In other words, the metal layer 3 has at least a layer containing nickel and copper as main components (hereinafter also referred to as “Ni—Cu layer”) 3 a as the above portion, and the Ni—Cu layer 3 a is an element of copper with respect to nickel. You may have the density | concentration gradient from which the ratio becomes high in the direction away from the surface of the resin particle.

Ni−Cu層3aにおけるニッケルの含有率と銅の含有率との合計は97重量%以上であることが好ましく、98.5重量%以上であることがより好ましく、99.5重量%以上であることがさらに好ましい。Ni−Cu層3aにおけるニッケルの含有率と銅の含有率との合計の上限は100重量%である。また、Ni−Cu層3aにおけるニッケルに対する銅の元素比率は樹脂粒子2aの表面から遠ざかる方向に高くなる濃度勾配を有し、この濃度勾配は連続的であることが好ましい。なお、本発明における元素比率は、例えば、導電粒子の断面を収束イオンビームで切り出し、40万倍の透過型電子顕微鏡で観察し、透過型電子顕微鏡に付属するEDX(エネルギー分散型X線分光機、日本電子データム株式会社製)による成分分析により、金属層(例えば後述の第1の層、第2の層及び第3の層)における元素比率を測定することができる。   The total of the nickel content and the copper content in the Ni-Cu layer 3a is preferably 97% by weight or more, more preferably 98.5% by weight or more, and 99.5% by weight or more. More preferably. The upper limit of the sum of the nickel content and the copper content in the Ni-Cu layer 3a is 100% by weight. In addition, the element ratio of copper to nickel in the Ni—Cu layer 3a has a concentration gradient that increases in a direction away from the surface of the resin particle 2a, and this concentration gradient is preferably continuous. The element ratio in the present invention is, for example, an EDX (energy dispersive X-ray spectroscope) attached to a transmission electron microscope by cutting out a cross section of a conductive particle with a focused ion beam and observing it with a transmission electron microscope of 400,000 times. The element ratio in the metal layer (for example, a first layer, a second layer, and a third layer described later) can be measured by component analysis using JEOL Datum Co., Ltd.

導電粒子2の平均粒径は、1〜10μmの範囲が好ましく、2〜5μmの範囲がより好ましい。導電粒子2の平均粒径を1〜10μmの範囲にすることにより、異方導電性接着剤を用いて接続構造体を作製した場合に電極の高さバラツキの影響を受けにくくなる。導電粒子2の平均粒径は、任意の導電粒子300個を電子顕微鏡で観察及び測定し、それらの平均値をとることにより得られる。   The average particle diameter of the conductive particles 2 is preferably in the range of 1 to 10 μm, and more preferably in the range of 2 to 5 μm. By making the average particle diameter of the conductive particles 2 in the range of 1 to 10 μm, it becomes difficult to be affected by variations in the height of the electrodes when a connection structure is produced using an anisotropic conductive adhesive. The average particle diameter of the conductive particles 2 is obtained by observing and measuring 300 arbitrary conductive particles with an electron microscope and taking the average value thereof.

[樹脂粒子]
樹脂粒子2aの材質としては、特に限定されないが、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂などが挙げられる。また、樹脂粒子2aとして、例えば、架橋アクリル粒子、架橋ポリスチレン粒子等も使用可能である。
[Resin particles]
The material of the resin particles 2a is not particularly limited, and examples thereof include acrylic resins such as polymethyl methacrylate and polymethyl acrylate, and polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene. Moreover, as the resin particles 2a, for example, crosslinked acrylic particles, crosslinked polystyrene particles, and the like can be used.

[金属層]
金属層3は、Ni−Cu層3aを少なくとも有する。Ni−Cu層3aは、樹脂粒子2aに近い順に、97重量%以上のニッケルを含有する第1の層(第1の部分)3aと、ニッケル及び銅を主成分とする合金を含有する第2の層(第2の部分)3aと、銅を主成分とする第3の層(第3の部分)3aとが積層された構造からなることが好ましい(図1(b)参照)。
[Metal layer]
The metal layer 3 has at least a Ni—Cu layer 3a. Ni-Cu layer 3a is composed of, in order close to the resin particles 2a, second containing a first layer (first portion) 3a 1 containing 97 wt% or more of nickel, an alloy mainly containing nickel and copper 2 layer (second portion) 3a 2 and a third layer (third portion) 3a 3 mainly composed of copper are preferably stacked (see FIG. 1B). .

(第1の層、第2の層、第3の層)
第1の層3aは、97重量%以上のニッケルを含有する。第1の層3aのニッケルの含有率は、98.5重量%以上であることがより好ましく、99.5重量%以上であることがさらに好ましい。ニッケルが97重量%以上であることで、導電粒子2を高圧縮して圧着接続する場合に、圧縮後の金属の割れをより抑制することができる。このニッケルの含有率の上限は100重量%である。
(First layer, second layer, third layer)
The first layer 3a 1 contains 97% by weight or more of nickel. The nickel content of the first layer 3a 1 is more preferably 98.5% by weight or more, and further preferably 99.5% by weight or more. When nickel is 97% by weight or more, cracking of the metal after compression can be further suppressed when the conductive particles 2 are subjected to high pressure compression bonding. The upper limit of the nickel content is 100% by weight.

第1の層3aの厚みは、20〜200Å(2〜20nm)の範囲が好ましく、20〜150Å(2〜15nm)の範囲がより好ましく、60〜100Å(6〜10nm)の範囲がさらに好ましい。第1の層の厚みが20Å(2nm)未満であるとめっき時に凝集しやすい傾向があり、200Å(20nm)を超えると、導電粒子を高圧縮して圧着接続する場合に、ニッケルの部分で金属の割れが発生しやすくなる傾向がある。 The thickness of the first layer 3a 1 is preferably in the range of 20 to 200 mm (2 to 20 nm), more preferably in the range of 20 to 150 mm (2 to 15 nm), and still more preferably in the range of 60 to 100 mm (6 to 10 nm). . If the thickness of the first layer is less than 20 mm (2 nm), the metal tends to aggregate during plating. If the thickness exceeds 200 mm (20 nm), when the conductive particles are highly compressed and connected by pressure bonding, a metal is formed at the nickel portion. There is a tendency that cracks are likely to occur.

第2の層3aは、ニッケル及び銅を主成分とする合金を含有する。第2の層3aにおける、ニッケルの含有率と銅の含有率との合計は、97重量%以上であることが好ましく、98.5重量%以上であることがより好ましく、99.5重量%以上であることがさらに好ましい。97重量%以上であると、導電粒子2を高圧縮して圧着接続する場合に、圧縮後の金属の割れをより抑制することができる。このニッケルの含有率と銅の含有率との合計の上限は100重量%である。 The second layer 3a 2 contains an alloy mainly composed of nickel and copper. The total of the nickel content and the copper content in the second layer 3a 2 is preferably 97% by weight or more, more preferably 98.5% by weight or more, and 99.5% by weight. More preferably, it is the above. When the content is 97% by weight or more, cracking of the metal after compression can be further suppressed when the conductive particles 2 are subjected to high pressure compression connection. The upper limit of the total content of nickel and copper is 100% by weight.

第2の層3aの厚みは、20〜500Å(2〜50nm)の範囲が好ましく、20〜400Å(2〜40nm)の範囲がより好ましく、20〜200Å(2〜20nm)の範囲がさらに好ましい。第2の層3aの厚みが20Å(2nm)未満であるとめっき時に凝集しやすい傾向があり、500Å(50nm)を超えると、導電粒子2を高圧縮して圧着接続する場合に、ニッケルの部分で金属割れが発生しやすくなる傾向がある。 The thickness of the second layer 3a 2 is preferably in the range of 20 to 500 mm (2 to 50 nm), more preferably in the range of 20 to 400 mm (2 to 40 nm), and still more preferably in the range of 20 to 200 mm (2 to 20 nm). . If the thickness of the second layer 3a 2 is less than 20 mm (2 nm), it tends to agglomerate during plating. If the thickness exceeds 500 mm (50 nm), when the conductive particles 2 are subjected to high pressure compression bonding, There is a tendency that metal cracking is likely to occur at the portion.

第3の層3aは、銅を主成分とする。第3の層3aにおける銅の含有率は、97重量%以上であることが好ましく、98.5重量%以上であることが好ましく、99.5重量%以上であることがさらに好ましい。97重量%以上であると、導電粒子2を高圧縮して圧着接続する場合に、圧縮後の金属の割れをより抑制することができる。この銅の含有率の上限は100重量%である。 The third layer 3a 3 is mainly composed of copper. The content of copper in the third layer 3a 3 is preferably 97% by weight or more, preferably 98.5% by weight or more, and more preferably 99.5% by weight or more. When the content is 97% by weight or more, cracking of the metal after compression can be further suppressed when the conductive particles 2 are subjected to high pressure compression connection. The upper limit of the copper content is 100% by weight.

第3の層3aの厚みは、100〜2000Å(10〜200nm)の範囲が好ましく、200〜1500Å(20〜150nm)の範囲がより好ましく、300〜1000Å(30〜100nm)の範囲がさらに好ましい。第3の層3aの厚みが100Å(10nm)未満であると、導電性が低下する傾向があり、2000Å(200nm)を超えると、めっき時に導電粒子が凝集しやすくなる傾向がある。 The thickness of the third layer 3a 3 is preferably in the range of 100 to 2000 mm (10 to 200 nm), more preferably in the range of 200 to 1500 mm (20 to 150 nm), and still more preferably in the range of 300 to 1000 mm (30 to 100 nm). . If the thickness of the third layer 3a 3 is less than 100 mm (10 nm), the conductivity tends to decrease, and if it exceeds 2000 mm (200 nm), the conductive particles tend to aggregate during plating.

図1(a)に示す導電粒子2の金属層3は、Ni−Cu層3aからなる。図1(b)は、金属層3(Ni−Cu層3a)の厚さ方向のニッケル含有率及び銅含有率を示すグラフである。該グラフにおいて、第1の層3aと、第2の層3aとの境界線は、Ni含有率(実線)が97重量%にまで低下した点を通過するように引いたものである。他方、第2の層3aと、第3の層3aとの境界線は、Cu含有率(破線)が97重量%にまで上昇した点を通過するように引いたものである。 The metal layer 3 of the conductive particle 2 shown in FIG. 1A is composed of a Ni—Cu layer 3a. FIG.1 (b) is a graph which shows the nickel content rate and copper content rate of the thickness direction of the metal layer 3 (Ni-Cu layer 3a). In the graph, the boundary line between the first layer 3a 1 and the second layer 3a 2 is drawn so as to pass through the point where the Ni content (solid line) has decreased to 97% by weight. On the other hand, the boundary line between the second layer 3a 2 and the third layer 3a 3 is drawn so as to pass through a point where the Cu content (broken line) has increased to 97% by weight.

第1の層3a、第2の層3a及び第3の層3aは、いずれもニッケル、銅及びホルムアルデヒドを含む無電解めっきにより形成されたものであることが好ましく、一つの建浴槽における無電解めっき液の中で順次形成されたものであることがより好ましい。一つの建浴槽において複数の層を順次形成することで、それぞれの層間の密着性を良好に保つことができる。 The first layer 3a 1 , the second layer 3a 2 and the third layer 3a 3 are all preferably formed by electroless plating containing nickel, copper and formaldehyde, and in one building tub It is more preferable that they are sequentially formed in the electroless plating solution. By sequentially forming a plurality of layers in one building tub, it is possible to maintain good adhesion between the respective layers.

第1の層3a、第2の層3a及び第3の層3aを同一の無電解めっき液により連続的に作製するための無電解めっき液の組成としては、例えば、(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えたものが好ましい。 As the composition of the electroless plating solution for continuously producing the first layer 3a 1 , the second layer 3a 2 and the third layer 3a 3 with the same electroless plating solution, for example, (a) sulfuric acid Water-soluble copper salts such as copper; (b) water-soluble nickel salts such as nickel sulfate; (c) reducing agents such as formaldehyde; (d) complexing agents such as Rochelle salts and EDTA; and (e) alkali hydroxides. What added pH adjusters, such as these, is preferable.

無電解めっきにより樹脂粒子2aの表面に金属層3を形成するためには、例えば、樹脂粒子2aの表面にパラジウム触媒を付与し、その後、無電解めっきを行うことによりめっき被膜を形成するのがよい。第1の層3a、第2の層3a及び第3の層3aを無電解めっきにより形成する具体的な方法としては、例えば、(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液に、パラジウム触媒を付与した樹脂粒子を加えることで、第1の層3a及び第2の層3aを形成し、その後に(a)硫酸銅等の水溶性銅塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた補充液を補充することで、第3の層3aを形成することが可能となる。 In order to form the metal layer 3 on the surface of the resin particle 2a by electroless plating, for example, a palladium catalyst is applied to the surface of the resin particle 2a, and then a plating film is formed by performing electroless plating. Good. As a specific method for forming the first layer 3a 1 , the second layer 3a 2 and the third layer 3a 3 by electroless plating, for example, (a) a water-soluble copper salt such as copper sulfate, (b (1) A water-soluble nickel salt such as nickel sulfate, (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt and EDTA, and (e) a pH adjusting agent such as alkali hydroxide. By adding resin particles imparted with a palladium catalyst to the liquid, the first layer 3a 1 and the second layer 3a 2 are formed, and then (a) a water-soluble copper salt such as copper sulfate, (c) formaldehyde The third layer 3a 3 is formed by replenishing a replenisher containing a reducing agent such as (d) a complexing agent such as Rochelle salt and EDTA, and (e) a pH adjusting agent such as alkali hydroxide. It becomes possible to do.

(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液における、(b)硫酸ニッケル等の水溶性ニッケル塩の濃度としては、0.0005〜0.05mol/Lが好ましく、0.001〜0.03mol/Lがより好ましく、0.005〜0.02mol/Lがさらに好ましい。(b)硫酸ニッケル等の水溶性ニッケル塩の濃度が0.0005mol/Lよりも低い場合、樹脂粒子2aの表面のパラジウム触媒上をニッケルめっき被膜により覆うことができずに、パラジウム触媒上に銅が析出する箇所が部分的に出てきやすくなり、粒子同士が凝集しやすくなるとともに、樹脂粒子2aの表面の一部に金属が未析出の箇所が発生しやすくなる。(b)硫酸ニッケル等の水溶性ニッケル塩の濃度が0.05mol/Lよりも高い場合、ニッケルの濃度が高くなることで液の活性が高まり粒子同士の凝集が発生しやすくなる。   (A) a water-soluble copper salt such as copper sulfate, (b) a water-soluble nickel salt such as nickel sulfate, (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt, EDTA, and (e ) The concentration of the water-soluble nickel salt such as (b) nickel sulfate in the building bath solution to which a pH adjusting agent such as alkali hydroxide is added is preferably 0.0005 to 0.05 mol / L, 0.001 to 0 0.03 mol / L is more preferable, and 0.005 to 0.02 mol / L is more preferable. (B) When the concentration of the water-soluble nickel salt such as nickel sulfate is lower than 0.0005 mol / L, the palladium catalyst on the surface of the resin particle 2a cannot be covered with the nickel plating film, and the copper is deposited on the palladium catalyst. The part where the metal precipitates is likely to appear partially, the particles are easily aggregated, and the part where the metal is not precipitated is easily generated on a part of the surface of the resin particle 2a. (B) When the concentration of the water-soluble nickel salt such as nickel sulfate is higher than 0.05 mol / L, the activity of the liquid is increased by the increase in the nickel concentration, and the aggregation of particles tends to occur.

(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液における、(a)硫酸銅等の水溶性銅塩の濃度としては、0.0005〜0.05mol/Lが好ましく、0.001〜0.03mol/Lがより好ましく、0.005〜0.02mol/Lがさらに好ましい。(a)硫酸銅等の水溶性銅塩の濃度が0.0005mol/Lよりも低い場合、第2の層3a又は第3の層3aの形成が不均一になる傾向がある。(a)硫酸銅等の水溶性銅塩の濃度が0.05mol/Lよりも高い場合、銅の濃度が高くなることで液の活性が高まり粒子同士の凝集が発生しやすくなる。 (A) a water-soluble copper salt such as copper sulfate, (b) a water-soluble nickel salt such as nickel sulfate, (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt, EDTA, and (e ) The concentration of the water-soluble copper salt such as copper sulfate (a) in the building bath solution to which a pH adjusting agent such as alkali hydroxide is added is preferably 0.0005 to 0.05 mol / L, 0.001 to 0 0.03 mol / L is more preferable, and 0.005 to 0.02 mol / L is more preferable. (A) When the concentration of the water-soluble copper salt such as copper sulfate is lower than 0.0005 mol / L, the formation of the second layer 3a 2 or the third layer 3a 3 tends to be non-uniform. (A) When the concentration of the water-soluble copper salt such as copper sulfate is higher than 0.05 mol / L, the activity of the liquid increases and the aggregation of particles tends to occur due to the increase in the concentration of copper.

無電解めっき液に(a)硫酸銅等の水溶性銅塩、及び、(b)硫酸ニッケル等の水溶性ニッケル塩を同時に含ませることで第1の層3a及び第2の層3aを同一の無電解めっき液により連続的に作製することができる。この理由としては、次のように考えられる。すなわち、ホルムアルデヒドを還元剤として用いることで、樹脂表面のパラジウム触媒上ではニッケルの方が銅よりも優先的に析出するために第1の層3aが形成され、その後、第1の層3aの外側に第2の層3aが形成される。第2の層3aの、ニッケルに対する銅の濃度の割合は、第2の層3aの厚みの成長とともに高くなる傾向がある。パラジウム触媒上ではニッケルが優先的に析出し、パラジウム触媒がニッケルにより被覆されると、ただちに銅の析出も起こるようになるためにニッケル及び銅を主成分とする合金を含有する層(第2の層3a)が形成され始めると考えられる。そして、めっき被膜(Ni−Cu層3a)の厚みが厚くなるにしたがってパラジウム触媒の影響が薄れていくために、銅の析出がニッケルの析出よりも支配的になり、結果として、樹脂粒子2a側からめっき被膜中の厚さ方向において、銅の割合が高くなると考えられる。 By including (a) a water-soluble copper salt such as copper sulfate and (b) a water-soluble nickel salt such as nickel sulfate in the electroless plating solution at the same time, the first layer 3a 1 and the second layer 3a 2 are formed. It can be continuously produced with the same electroless plating solution. The reason is considered as follows. That is, by using formaldehyde as a reducing agent, nickel is preferentially precipitated over copper on the palladium catalyst on the resin surface, so that the first layer 3a 1 is formed, and then the first layer 3a 1 The second layer 3a 2 is formed on the outside. The second layer 3a 2, the ratio of the concentration of copper to nickel, tends to increase with the growth of the second layer 3a 2 thickness. On the palladium catalyst, nickel is preferentially deposited, and when the palladium catalyst is coated with nickel, copper is immediately deposited. Therefore, a layer containing an alloy containing nickel and copper as a main component (the second layer) It is believed that layer 3a 2 ) begins to form. And since the influence of a palladium catalyst becomes thin as the thickness of a plating film (Ni-Cu layer 3a) becomes thick, the precipitation of copper becomes more dominant than the precipitation of nickel, and as a result, the resin particle 2a side From the above, it is considered that the copper ratio increases in the thickness direction in the plating film.

樹脂粒子2aの表面に第1の層3aを形成した場合、樹脂粒子2aの表面に直接銅めっき層を形成した場合と比較して、樹脂粒子2a同士の凝集を抑制することができる。この理由としては、以下のように考えられる。無電解銅めっきの銅イオンから銅への析出過程は、銅の価数がCu(2価)→Cu(1価)→Cu(0価)へと変化する反応であり、反応中間体として不安定な1価の銅イオンが生成する。この一価の銅イオンが不均化反応を起こすことで、例えばめっき液中にCu(0価)が発生する等し、液の安定性が非常に低くなると考えられる。一方、無電解ニッケルめっきのニッケルイオンからニッケルへの析出過程は、ニッケルの価数がNi(2価)→Ni(0価)へと変化する反応であり、反応中間体として不安定な1価のニッケルイオンの過程を通過しない。したがって、パラジウム触媒表面上での無電解銅めっきと無電解ニッケルめっきとを比較すると、無電解銅めっき液の方が安定性に乏しく反応が激しいために、反応開始と同時に粒子同士の凝集が発生しやすくなる。一方、無電解ニッケルめっきは前述したように、安定性が高く、粒子同士の凝集を抑制してめっき被膜を形成することが可能になると考えられる。 If the surface of the resin particles 2a to form a first layer 3a 1, it can be compared with the case of forming the direct copper plating layer on the surface of the resin particles 2a, to suppress the aggregation of the resin particles 2a. The reason is considered as follows. The deposition process from copper ions to copper in electroless copper plating is a reaction in which the valence of copper changes from Cu (divalent) → Cu (monovalent) → Cu (zero valent), and is not suitable as a reaction intermediate. Stable monovalent copper ions are produced. This monovalent copper ion causes a disproportionation reaction, for example, Cu (zero valence) is generated in the plating solution, and the stability of the solution is considered to be very low. On the other hand, the deposition process from nickel ions to nickel in electroless nickel plating is a reaction in which the valence of nickel changes from Ni (divalent) to Ni (zero valent), and is an unstable monovalent as a reaction intermediate. Does not pass through the nickel ion process. Therefore, when comparing electroless copper plating and electroless nickel plating on the surface of the palladium catalyst, the electroless copper plating solution is less stable and the reaction is more intense. It becomes easy to do. On the other hand, as described above, electroless nickel plating has high stability, and it is considered that a plating film can be formed while suppressing aggregation of particles.

導電粒子2の金属層3にピンホールが生じる原因としては、めっき被膜形成の際に粒子同士が凝集するためであると考えられる。これについて本発明者等は次のように推測する。すなわち、めっきの初期段階で粒子が凝集し、その後に粒子同士が離れた場合、凝集していたところは初期段階でめっきがされなかったため、その後にめっき被膜を成長させてもめっきされることはなく、ピンホールが形成されてしまう。また、ピンホールが形成された導電粒子2を圧縮した場合、ピンホールの形成部を起点としてめっき被膜の割れが発生しやすくなるために電気抵抗値が上昇すると考えられる。   The reason why the pinholes are generated in the metal layer 3 of the conductive particles 2 is considered to be because the particles aggregate when forming the plating film. The present inventors infer about this as follows. That is, if the particles aggregate in the initial stage of plating, and then the particles are separated from each other, plating was not performed in the initial stage where it was agglomerated. And pinholes are formed. In addition, when the conductive particles 2 in which pinholes are formed are compressed, it is considered that the electric resistance value increases because cracks in the plating film are likely to occur starting from the pinhole formation portion.

次に、樹脂粒子2aの表面のパラジウム触媒表面上での無電解銅めっきの反応と、第1の層3a上における第2の層3aの反応と、第2の層3a上における第3の層3aの反応と、第3の層3aの成長と、の四者を比較して考察する。 Next, the reaction of electroless copper plating on the surface of the palladium catalyst on the surface of the resin particle 2a, the reaction of the second layer 3a 2 on the first layer 3a 1 , and the reaction of the second layer 3a 2 on the second layer 3a 2 3 the reaction and the layers 3a 3, discussed by comparing growth of the third layer 3a 3, four's.

樹脂粒子2aの表面のパラジウム触媒表面上での無電解銅めっきの反応では、パラジウム触媒表面上でホルムアルデヒド等の還元剤の酸化反応が進行しやすいために、無電解銅めっきの反応が進みやすく不安定化し、粒子同士が凝集しやすくなる。一方、第1の層3a上における第2の層3aの反応では、第1の層3aが自己触媒の表面となり、還元剤が酸化される。また、第2の層3aの表面における第3の層3aの反応では、第2の層3aが自己触媒の表面となり、還元剤が酸化される。また、第3の層3aの成長では、銅そのものが自己触媒の表面となり、銅の成長が起こる。第1の層3a、第2の層3a及び第3の層3aの表面におけるホルムアルデヒド等の還元剤の酸化反応と、パラジウム触媒表面上でのホルムアルデヒド等の還元剤の酸化反応を比較すると、第1の層3a、第2の層3a及び第3の層3aの表面におけるホルムアルデヒド等の還元剤の酸化反応の方が、パラジウム触媒表面上と比較して進みにくい。そのため、パラジウム触媒表面上での無電解銅めっきでは粒子同士が凝集しやすいが、ニッケルと銅の合金又は銅被膜の成長が起こっても粒子同士の凝集が起こりにくい。 In the electroless copper plating reaction on the surface of the palladium catalyst on the surface of the resin particle 2a, the oxidation reaction of a reducing agent such as formaldehyde tends to proceed on the palladium catalyst surface. It stabilizes and the particles tend to aggregate. On the other hand, in the reaction of the second layer 3a 2 in the first layer 3a on one, the first layer 3a 1 is the surface of the autocatalytic reducing agent is oxidized. In the reaction of the third layer 3a 3 on the surface of the second layer 3a 2 , the second layer 3a 2 becomes the surface of the autocatalyst, and the reducing agent is oxidized. Further, the growth of the third layer 3a 3, copper itself is a surface of the autocatalytic growth of the copper occurs. When the oxidation reaction of a reducing agent such as formaldehyde on the surfaces of the first layer 3a 1 , the second layer 3a 2 and the third layer 3a 3 is compared with the oxidation reaction of a reducing agent such as formaldehyde on the surface of the palladium catalyst, The oxidation reaction of a reducing agent such as formaldehyde on the surfaces of the first layer 3a 1 , the second layer 3a 2 and the third layer 3a 3 is less likely to proceed than on the palladium catalyst surface. Therefore, in electroless copper plating on the surface of the palladium catalyst, particles tend to aggregate, but even if nickel-copper alloy or copper coating grows, the particles hardly aggregate.

本実施形態で用いる無電解めっき液の還元剤として、例えば、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤を用いてもよいが、ホルムアルデヒドを単独で使用することが最も好ましい。次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン等を加える場合は、リンやホウ素が共析しやすいため、第1の層3aにおけるニッケルの含有率を97重量%以上とするためには、濃度を調整することが好ましい。還元剤としてホルムアルデヒドを用いることで、第1の層3aにおけるニッケルの含有率が99重量%以上のめっき被膜を形成しやすい。この場合、導電粒子2を高圧縮して圧着接続する場合に、圧縮後の金属の割れを抑制することが可能である。一方、第1の層3aにおけるニッケルの含有率が97重量%よりも低い場合、圧縮後の金属の割れが発生しやすくなる。なお、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤を用いる場合は、これらの少なくとも1種をホルムアルデヒドと併用することが好ましい。 As a reducing agent for the electroless plating solution used in this embodiment, for example, a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine may be used, but formaldehyde is used alone. Most preferred. When adding sodium hypophosphite, sodium borohydride, dimethylamine borane, etc., since phosphorus and boron are likely to co-deposit, the nickel content in the first layer 3a 1 is set to 97% by weight or more. For this, it is preferable to adjust the concentration. By using formaldehyde as the reducing agent, it is easy to form a plating film having a nickel content of 99% by weight or more in the first layer 3a 1 . In this case, when the conductive particles 2 are highly compressed and crimped and connected, it is possible to suppress cracking of the metal after compression. On the other hand, when the nickel content in the first layer 3a 1 is lower than 97% by weight, cracking of the metal after compression tends to occur. When a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine is used, it is preferable to use at least one of these in combination with formaldehyde.

本実施形態で用いる無電解めっき液の錯化剤として、例えば、グリシン等のアミノ酸、エチレンジアミン、アルキルアミン等のアミン類、EDTA、ピロリン酸等の銅錯化剤、クエン酸、酒石酸、ヒドロキシ酢酸、リンゴ酸、乳酸、グルコン酸などを用いてもよい。   Examples of complexing agents for the electroless plating solution used in the present embodiment include amino acids such as glycine, amines such as ethylenediamine and alkylamine, copper complexing agents such as EDTA and pyrophosphate, citric acid, tartaric acid, hydroxyacetic acid, Malic acid, lactic acid, gluconic acid and the like may be used.

無電解銅めっき終了後の水洗は、短時間に効率よく行うことが望ましい。水洗時間が短いほど、銅表面に酸化被膜ができにくいため、後のめっきが有利になる傾向がある。   It is desirable that the washing with water after the electroless copper plating is completed efficiently in a short time. As the washing time is shorter, an oxide film is less likely to be formed on the copper surface, so that subsequent plating tends to be advantageous.

(第4の層、第5の層、第6の層)
図2(a)に示すように導電粒子2の金属層3は、Ni−Cu層3aの外側に、ニッケルを含有し銅を含有しない第4の層4をさらに有してもよい。
(4th layer, 5th layer, 6th layer)
As shown in FIG. 2A, the metal layer 3 of the conductive particle 2 may further include a fourth layer 4 containing nickel and not containing copper outside the Ni—Cu layer 3a.

第4の層4は、ニッケルを含有し銅を含有しない。第4の層4は、銅のマイグレーションストップ層として機能する。従って、第4の層4は、第3の層3aの上に設けることが好ましい。第4の層4におけるニッケルの含有率は、85〜99重量%の範囲が好ましく、88〜98重量%の範囲がより好ましく、90〜97重量%の範囲がさらに好ましい。ニッケルの含有率が85重量%よりも低い場合、第3の層3aの表面におけるニッケルめっき被膜の析出性が低下し、部分的に析出しない場所が生じる場合がある。ニッケルの含有率が99重量%よりも高いと、ニッケルの磁性が高くなるため、導電粒子2の凝集が起こりやすくなる傾向がある。 The fourth layer 4 contains nickel and does not contain copper. The fourth layer 4 functions as a copper migration stop layer. Thus, the fourth layer 4 is preferably provided on the third layer 3a 3. The nickel content in the fourth layer 4 is preferably in the range of 85 to 99% by weight, more preferably in the range of 88 to 98% by weight, and still more preferably in the range of 90 to 97% by weight. When the nickel content is lower than 85% by weight, the depositing property of the nickel plating film on the surface of the third layer 3a 3 is lowered, and there may be a place where the nickel is not partially deposited. If the nickel content is higher than 99% by weight, the magnetic properties of nickel increase, and the aggregation of the conductive particles 2 tends to occur.

第4の層4の厚みは、20〜1000Å(2〜100nm)の範囲が好ましく、50〜500Å(5〜50nm)の範囲がより好ましく、さらに、100〜300Å(10〜30nm)の範囲が好ましい。第4の層4の厚みが20Å(2nm)未満であると、第3の層3aの銅表面を被覆できていない場所が生じることがあり、銅がニッケル表面に拡散して酸化し、導電性が低下する傾向がある。1000Å(100nm)を超えると、めっき時に導電粒子2が凝集しやすくなる傾向がある。 The thickness of the fourth layer 4 is preferably in the range of 20 to 1000 mm (2 to 100 nm), more preferably in the range of 50 to 500 mm (5 to 50 nm), and further preferably in the range of 100 to 300 mm (10 to 30 nm). . If the thickness of the fourth layer 4 is less than 20 mm (2 nm), there may be a place where the copper surface of the third layer 3a 3 is not covered, and copper diffuses and oxidizes on the nickel surface, resulting in conductivity. Tend to decrease. If it exceeds 1000 mm (100 nm), the conductive particles 2 tend to aggregate during plating.

第4の層4は、例えば、硫酸ニッケル等の水溶性ニッケル塩、次亜リン酸ナトリウム等の還元剤、ロッシェル塩等の錯化剤、及び、水酸化アルカリ等のpH調整剤を加えた溶液により形成することができる。還元剤としては、例えば、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤を用いてもよいが、めっき液の安定性の点から、次亜リン酸ナトリウムを単独で使用することが好ましい。錯化剤としては、ニッケルと錯形成することができる錯化剤であればよく、例えば、ロッシェル塩、クエン酸、ヒドロキシ酢酸、リンゴ酸、乳酸等が挙げられる。   For example, the fourth layer 4 is a solution in which a water-soluble nickel salt such as nickel sulfate, a reducing agent such as sodium hypophosphite, a complexing agent such as Rochelle salt, and a pH adjusting agent such as alkali hydroxide are added. Can be formed. As the reducing agent, for example, a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine may be used. From the viewpoint of the stability of the plating solution, sodium hypophosphite is used. It is preferable to use it alone. The complexing agent may be any complexing agent capable of complexing with nickel, and examples thereof include Rochelle salt, citric acid, hydroxyacetic acid, malic acid, and lactic acid.

本実施形態の導電粒子2において、金属層3は、Ni−Cu層3aの外側に、パラジウムを含む第5の層(以下、単に「第5の層」ともいう)5をさらに有してもよい。第5の層5は、第3の層3aの上に設けてもよいし、第4の層4の上に設けてもよい(図2(b)参照)。 In the conductive particle 2 of the present embodiment, the metal layer 3 may further include a fifth layer (hereinafter also simply referred to as “fifth layer”) 5 containing palladium outside the Ni—Cu layer 3 a. Good. The fifth layer 5 may be provided on the third layer 3a 3 or on the fourth layer 4 (see FIG. 2B).

第5の層は、銅のマイグレーションストップ層として機能する。従って、第5の層5は、第3の層3aの上に設けることが好ましい。第5の層5の厚みは100〜1000Å(10〜100nm)が好ましく、100〜300Å(10〜30nm)がさらに好ましい。第5の層5の厚みが100Å(10nm)未満であると、第5の層5をめっき等により形成した場合に第5の層5がまばらになり、銅のマイグレーションストップ層としての効果が低下する傾向がある。第5の層5の厚みが1000Å(100nm)を超えると製造コストが増大する傾向がある。 The fifth layer functions as a copper migration stop layer. Thus, the layer 5 of the fifth is preferably provided on the third layer 3a 3. The thickness of the fifth layer 5 is preferably 100 to 1000 mm (10 to 100 nm), more preferably 100 to 300 mm (10 to 30 nm). If the thickness of the fifth layer 5 is less than 100 mm (10 nm), the fifth layer 5 becomes sparse when the fifth layer 5 is formed by plating or the like, and the effect as a copper migration stop layer is reduced. Tend to. If the thickness of the fifth layer 5 exceeds 1000 mm (100 nm), the manufacturing cost tends to increase.

第5の層5は、例えば、パラジウムめっき工程を経て形成することができ、第5の層5は無電解めっき型のパラジウム層であることが好ましい。無電解パラジウムめっきは、置換型(還元剤の入っていないタイプ)、還元型(還元剤の入ったタイプ)のいずれを用いてもよい。このような無電解パラジウムめっきの例としては、還元型ではAPP(石原薬品工業株式会社製、商品名)等があり、置換型ではMCA(株式会社ワールドメタル製、商品名)等がある。   The fifth layer 5 can be formed, for example, through a palladium plating step, and the fifth layer 5 is preferably an electroless plating type palladium layer. For electroless palladium plating, either a substitution type (a type that does not contain a reducing agent) or a reduction type (a type that contains a reducing agent) may be used. Examples of such electroless palladium plating include APP (product name) manufactured by Ishihara Pharmaceutical Co., Ltd. for the reduction type, and MCA (product name manufactured by World Metal Co., Ltd.) for the replacement type.

置換型と還元型とを比較した場合、還元型はボイドが少なくなりやすいため特に好ましい。置換型は内側の金属を溶解させながら析出するため、還元型に比べて被覆面積が上がりにくい。   When the substitution type and the reduction type are compared, the reduction type is particularly preferable because voids tend to decrease. Since the substitution type precipitates while dissolving the inner metal, the coating area is less likely to increase than the reduction type.

本実施形態の導電粒子2において、金属層3は、Ni−Cu層3aの外側に、金を含有する第6の層(以下、単に「第6の層」ともいう)6をさらに有してもよい。第6の層6は、第3の層3aの上に設けてもよいし、第4の層4の上に設けてもよいし、第5の層5の上に設けてもよい(図2(c)参照)。 In the conductive particles 2 of the present embodiment, the metal layer 3 further includes a sixth layer 6 (hereinafter also simply referred to as “sixth layer”) 6 containing gold outside the Ni—Cu layer 3a. Also good. The sixth layer 6 may be provided on the third layer 3 a 3 , may be provided on the fourth layer 4, or may be provided on the fifth layer 5 (FIG. 2 (c)).

第6の層6は、導電粒子の表面における電気抵抗値を下げ、特性を向上させる。この観点から、第6の層6は、金属層3の最外層として形成されることが好ましい。この場合の第6の層6の厚みは、導電粒子2の表面における電気抵抗値の低減効果と製造コストとのバランスの観点から、0Å(0nm)を超え、かつ、300Å(30nm)以下が好ましいが、300Å(30nm)以上であっても特性上は問題ない。また、銅のマイグレーションストップ層としての機能を期待する場合は、第6の層6は、第3の層3の上に設けることが好ましい。この場合の第6の層6の厚みは100〜1000Å(10〜100nm)が好ましい。   The sixth layer 6 reduces the electrical resistance value on the surface of the conductive particles and improves the characteristics. From this viewpoint, the sixth layer 6 is preferably formed as the outermost layer of the metal layer 3. In this case, the thickness of the sixth layer 6 is preferably more than 0 mm (0 nm) and not more than 300 mm (30 nm) from the viewpoint of the balance between the effect of reducing the electric resistance value on the surface of the conductive particles 2 and the manufacturing cost. However, there is no problem in characteristics even if it is 300 mm (30 nm) or more. Moreover, when the function as a copper migration stop layer is expected, the sixth layer 6 is preferably provided on the third layer 3. In this case, the thickness of the sixth layer 6 is preferably 100 to 1000 mm (10 to 100 nm).

第6の層6は、例えば、金めっき工程を経て形成することができる。金めっきは、例えば、HGS−100(日立化成工業株式会社製、商品名)等の置換型金めっき、HGS−2000(日立化成工業株式会社製、商品名)等の還元型金めっきなどを用いることができる。   The sixth layer 6 can be formed through a gold plating process, for example. For the gold plating, for example, substitution type gold plating such as HGS-100 (manufactured by Hitachi Chemical Co., Ltd., trade name) or reduction type gold plating such as HGS-2000 (product name of Hitachi Chemical Co., Ltd.) is used. be able to.

置換型と還元型とを比較した場合、還元型はボイドが少なくなりやすいため特に好ましい。置換めっきは内側の金属を溶解させながら析出するため、還元型に比べて被覆面積が上がりにくい。   When the substitution type and the reduction type are compared, the reduction type is particularly preferable because voids tend to decrease. Since displacement plating precipitates while dissolving the inner metal, the coating area is less likely to increase compared to the reduced type.

<絶縁被覆導電粒子>
次に、本実施形態の絶縁被覆導電粒子について説明する。図3に示す絶縁被覆導電粒子10は、導電粒子2の金属層3の表面の少なくとも一部が絶縁性子粒子1により被覆されてなるものである。COG実装用の異方導電性接着剤は近年10μmレベルの狭ピッチでの絶縁信頼性が求められているため、さらに絶縁信頼性を向上させるためには導電粒子2に絶縁被覆を施すことが好ましい。絶縁被覆導電粒子10によればかかる要求特性を有効に実現することができる。
<Insulation coated conductive particles>
Next, the insulating coated conductive particles of this embodiment will be described. Insulating coated conductive particles 10 shown in FIG. 3 are formed by covering at least part of the surface of the metal layer 3 of the conductive particles 2 with the insulating particles 1. In recent years, anisotropic conductive adhesives for COG mounting have been required to have insulation reliability at a narrow pitch of 10 μm level. Therefore, in order to further improve insulation reliability, it is preferable to apply an insulating coating to the conductive particles 2. . According to the insulating coated conductive particles 10, such required characteristics can be effectively realized.

導電粒子2を被覆する絶縁性子粒子1としては、無機酸化物微粒子が絶縁信頼性の点で好ましい。なお、有機微粒子を用いると、絶縁信頼性は無機酸化物微粒子を用いた場合と比較して向上しにくいが、絶縁抵抗値を下げやすい。   As the insulator particles 1 covering the conductive particles 2, inorganic oxide fine particles are preferable from the viewpoint of insulation reliability. When organic fine particles are used, the insulation reliability is difficult to improve as compared with the case of using inorganic oxide fine particles, but the insulation resistance value is likely to be lowered.

無機酸化物微粒子としては、例えば、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選ばれる少なくとも一種の元素を含む酸化物が好ましく、これらは単独で又は二種類以上を混合して使用することができる。無機酸化物微粒子の中でも水分散コロイダルシリカ(SiO)は表面に水酸基を有するため、導電粒子との結合性に優れ、粒子径を揃えやすく、安価であるため特に好適である。このような無機酸化物微粒子の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業株式会社製、商品名)、クオートロンPLシリーズ(扶桑化学工業株式会社製、商品名)等が挙げられる。 As the inorganic oxide fine particles, for example, an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium is preferable, and these may be used alone or in two kinds. The above can be mixed and used. Among the inorganic oxide fine particles, water-dispersed colloidal silica (SiO 2 ) is particularly suitable because it has a hydroxyl group on the surface, and thus has excellent bonding properties with conductive particles, easily aligns the particle diameter, and is inexpensive. Examples of such commercially available inorganic oxide fine particles include Snowtex, Snowtex UP (trade name, manufactured by Nissan Chemical Industries, Ltd.), Quateron PL series (trade name, manufactured by Fuso Chemical Industries, Ltd.), and the like. It is done.

無機酸化物微粒子の大きさとしては、BET法による比表面積換算法又はX線小角散乱法で測定された平均粒径が、20〜500nmであることが好ましい。この平均粒径が20nm未満であると、導電粒子に吸着された無機酸化物微粒子が絶縁膜として作用せずに、一部にショートが発生しやすくなる傾向がある。この平均粒径が500nmを超えると、接続の加圧方向の導電性が低下する傾向がある。   As the size of the inorganic oxide fine particles, the average particle diameter measured by a specific surface area conversion method by the BET method or the X-ray small angle scattering method is preferably 20 to 500 nm. If this average particle size is less than 20 nm, the inorganic oxide fine particles adsorbed on the conductive particles do not act as an insulating film, and a short circuit tends to occur in part. When this average particle diameter exceeds 500 nm, the conductivity in the pressurizing direction of connection tends to decrease.

無機酸化物微粒子表面の水酸基はシランカップリング剤等でアミノ基、カルボキシル基、エポキシ基等に変性することが可能であるが、無機酸化物微粒子の平均粒径が500nm以下の場合、困難な場合がある。その場合には、官能基による変性を行わずに導電粒子に被覆することが望ましい。   The hydroxyl group on the surface of the inorganic oxide fine particle can be modified to an amino group, a carboxyl group, an epoxy group, etc. with a silane coupling agent, etc., but it is difficult if the average particle size of the inorganic oxide fine particle is 500 nm or less There is. In that case, it is desirable to coat the conductive particles without modification with a functional group.

一般的に水酸基を有することにより、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基等と結合することが可能である。結合形態としては、例えば、脱水縮合による共有結合、水素結合、配位結合等が挙げられる。   In general, by having a hydroxyl group, it can be bonded to a hydroxyl group, a carboxyl group, an alkoxyl group, an alkoxycarbonyl group, or the like. Examples of the bonding form include a covalent bond by dehydration condensation, a hydrogen bond, and a coordination bond.

導電粒子2の表面が金又はパラジウムからなる場合、これらに対して配位結合を形成するメルカプト基、スルフィド基、ジスルフィド基等を分子内に有する化合物で表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基等の官能基を形成するとよい。上記化合物としては、例えば、メルカプト酢酸、2−メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が挙げられる。   When the surface of the conductive particle 2 is made of gold or palladium, it is a compound having a mercapto group, sulfide group, disulfide group, or the like that forms a coordinate bond with these in the molecule, and has a hydroxyl group, carboxyl group, alkoxyl group, alkoxy group on the surface. A functional group such as a carbonyl group may be formed. Examples of the compound include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, and cysteine.

特に、金、パラジウム、銅等の貴金属はチオールと反応しやすく、ニッケルのような卑金属はチオールと反応し難い。すなわち、導電粒子2の最外層が貴金属である場合は、導電粒子2の最外層が卑金属である場合と比べてチオールと反応しやすい。   In particular, noble metals such as gold, palladium, and copper easily react with thiol, and base metals such as nickel hardly react with thiol. That is, when the outermost layer of the conductive particles 2 is a noble metal, it reacts more easily with thiol than when the outermost layer of the conductive particles 2 is a base metal.

例えば、金表面に上記化合物を処理する方法としては特に限定されないが、メタノールやエタノール等の有機溶媒中にメルカプト酢酸等の化合物を10〜100mmol/L程度分散し、その中に最外層が金である導電粒子2を分散させる。   For example, the method for treating the above compound on the gold surface is not particularly limited, but a compound such as mercaptoacetic acid is dispersed in an organic solvent such as methanol or ethanol at about 10 to 100 mmol / L, and the outermost layer is made of gold. A certain conductive particle 2 is dispersed.

次に、前記官能基を有する導電粒子2表面に無機酸化物微粒子を被覆する方法としては、例えば、高分子電解質と無機酸化物微粒子とを交互に積層する方法が好ましい。より具体的な製造方法としては、(1)官能基を有する導電粒子2を高分子電解質溶液に分散し、導電粒子2の表面に高分子電解質を吸着させた後、リンスする工程、(2)導電粒子2を無機酸化物微粒子の分散溶液に分散し、導電粒子2の表面に無機微粒子を吸着させた後、リンスする工程、を行うことで、表面に高分子電解質と無機酸化物微粒子とが被覆された絶縁被覆導電粒子10を製造できる。このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films,210/211,p831(1992))。この方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)の水溶液に、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層して複合膜(交互積層膜)が得られるものである。   Next, as a method of coating the surface of the conductive particles 2 having functional groups with inorganic oxide fine particles, for example, a method of alternately laminating polymer electrolytes and inorganic oxide fine particles is preferable. As a more specific production method, (1) a step of dispersing conductive particles 2 having functional groups in a polymer electrolyte solution, adsorbing the polymer electrolyte on the surfaces of the conductive particles 2, and then rinsing, (2) The conductive particles 2 are dispersed in a dispersion solution of inorganic oxide fine particles, the inorganic fine particles are adsorbed on the surface of the conductive particles 2 and then rinsed, whereby the polymer electrolyte and the inorganic oxide fine particles are formed on the surface. The coated insulating coated conductive particles 10 can be manufactured. Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method of forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)). In this method, a polycation adsorbed on a substrate by electrostatic attraction by alternately immersing the base material in an aqueous solution of a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion). A combination of polyanions is laminated to obtain a composite film (alternate laminated film).

交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料が引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。従って、ある飽和点までに至れば、それ以上膜厚が増加することはない。Lvovらは交互積層法を、微粒子に応用し、シリカ、チタニア、セリア等の各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir,Vol.13,(1997)p6195−6203)。この方法を用いると、負の表面電荷を有するシリカの微粒子とその反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)又はポリエチレンイミン(PEI)等とを交互に積層することで、シリカ微粒子と高分子電解質が交互に積層された微粒子積層薄膜を形成することが可能である。   In the alternating layering method, the film is grown by attracting the charge of the material formed on the substrate and the material having the opposite charge in the solution by electrostatic attraction, so that the adsorption proceeds and the charge is neutralized. When this occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more. Lvov et al. Reported on a method of applying an alternate lamination method to fine particles and laminating a polymer electrolyte having a charge opposite to the surface charge of the fine particles using each fine particle dispersion such as silica, titania, and ceria. (Langmuir, Vol. 13, (1997) p6195-6203). By using this method, silica fine particles having a negative surface charge and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having the opposite charge, are alternately laminated to form silica. It is possible to form a fine particle laminated thin film in which fine particles and a polymer electrolyte are alternately laminated.

高分子電解質としては、例えば、水溶液中で電離し、荷電を有する官能基を主鎖又は側鎖に持つ高分子を用いることができる。この場合はポリカチオンを用いるのがよい。また、ポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド、これらを少なくとも1種以上を含む共重合体等を用いることができる。高分子電解質の中でもポリエチレンイミンは電荷密度が高く、結合力が強いため好ましい。   As the polymer electrolyte, for example, a polymer that is ionized in an aqueous solution and has a charged functional group in the main chain or side chain can be used. In this case, a polycation is preferably used. The polycation generally has a positively charged functional group such as polyamines, such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride ( PDDA), polyvinyl pyridine (PVP), polylysine, polyacrylamide, a copolymer containing at least one of these, and the like can be used. Among the polymer electrolytes, polyethyleneimine is preferable because of its high charge density and strong binding force.

導電粒子2の表面を絶縁性子粒子1が覆う割合(被覆率)は、20〜40%であることが好ましい。回路接続体の低い抵抗値の維持及び隣接する回路電極間の優れた絶縁性の両方を達成する観点から、被覆率は25〜35%であることがより好ましく、28〜32%であることがさらに好ましい。被覆率が20%以上であると隣接する回路電極間の絶縁性を十分に確保でき、40%以下であると接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を十分に達成できる。ここでいう被覆率は、示差走査電子顕微鏡(倍率8000倍)による観察によって得られる、下記の測定値に基づくものである。すなわち、被覆率は、導電粒子2及び絶縁性子粒子1のそれぞれの粒子径、並びに1個の導電粒子2に付着している絶縁性子粒子1の個数に基づき、算出される値である。   The ratio (coverage) that the insulator particles 1 cover the surfaces of the conductive particles 2 is preferably 20 to 40%. From the viewpoint of achieving both maintenance of a low resistance value of the circuit connection body and excellent insulation between adjacent circuit electrodes, the coverage is more preferably 25 to 35%, and more preferably 28 to 32%. Further preferred. If the coverage is 20% or more, sufficient insulation between adjacent circuit electrodes can be secured, and if it is 40% or less, both the sufficiently low initial resistance value of the connection portion and the suppression of the increase in resistance value over time are both suppressed. Can be fully achieved. The coverage here is based on the following measured values obtained by observation with a differential scanning electron microscope (magnification 8000 times). That is, the coverage is a value calculated based on the respective particle diameters of the conductive particles 2 and the insulator particles 1 and the number of insulator particles 1 attached to one conductor particle 2.

導電粒子2の粒径は、以下のようにして測定される。すなわち、1個の導電粒子を任意に選択し、これを示差走査電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。任意に選択した核粒子300個について上記のようにして粒径を測定し、その平均値を導電粒子2の平均粒径(D)とする。絶縁性子粒子1の粒径についても、これと同様にして任意の絶縁性子粒子300個についてその粒径を測定し、その平均値を絶縁性子粒子1の平均粒径(D)とする。 The particle size of the conductive particles 2 is measured as follows. That is, one conductive particle is arbitrarily selected and observed with a differential scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. The particle diameter of 300 arbitrarily selected core particles is measured as described above, and the average value is defined as the average particle diameter (D 1 ) of the conductive particles 2. As for the particle size of the insulator particles 1, the particle size of 300 arbitrary insulator particles is measured in the same manner, and the average value is defined as the average particle size (D 2 ) of the insulator particles 1.

1個の導電粒子2が備える絶縁性子粒子1の個数は、以下のようにして測定される。すなわち、複数の絶縁性子粒子で表面の一部が被覆された導電粒子1個を任意に選択する。そして、これを示差走査電子顕微鏡で撮像し、観察し得る核粒子表面に付着している絶縁性粒子の数をカウントする。これにより得られたカウント数を2倍にすることで1個の導電粒子に付着している絶縁性子粒子の数を算出する。任意に選択した導電粒子300個について上記のようにして絶縁性子粒子の数を測定し、その平均値を1個の導電粒子が備える絶縁性子粒子の個数とする。   The number of insulator particles 1 included in one conductive particle 2 is measured as follows. That is, one conductive particle whose surface is partially covered with a plurality of insulator particles is arbitrarily selected. And this is imaged with a differential scanning electron microscope, and the number of the insulating particles adhering to the surface of the core particle which can be observed is counted. By doubling the count number obtained in this way, the number of insulator particles attached to one conductive particle is calculated. The number of insulator particles is measured as described above for 300 arbitrarily selected conductive particles, and the average value is defined as the number of insulator particles included in one conductive particle.

<異方導電性接着剤>
以上のようにして作製される導電粒子2又は絶縁被覆導電粒子10を接着剤に含有させて、異方導電性接着剤50を作製することができる。異方導電性接着剤50は、絶縁性を有する接着剤成分20と、接着剤成分20中に分散した導電粒子2又は絶縁被覆導電粒子10とを備える(図4参照)。異方導電性接着剤50は回路接続材料として使用できる。
<Anisotropic conductive adhesive>
The anisotropic conductive adhesive 50 can be produced by containing the conductive particles 2 or the insulating coated conductive particles 10 produced as described above in an adhesive. The anisotropic conductive adhesive 50 includes an adhesive component 20 having insulating properties, and conductive particles 2 or insulating coated conductive particles 10 dispersed in the adhesive component 20 (see FIG. 4). The anisotropic conductive adhesive 50 can be used as a circuit connecting material.

本実施形態の異方導電性接着剤に用いられる接着剤成分20としては、例えば、熱反応性樹脂と硬化剤との混合物が用いられる。好ましく用いられる接着剤としては、例えば、(a)エポキシ樹脂と(b)潜在性硬化剤との混合物、(c)ラジカル重合性化合物と(d)有機過酸化物との混合物等が挙げられる。   As the adhesive component 20 used for the anisotropic conductive adhesive of this embodiment, for example, a mixture of a heat-reactive resin and a curing agent is used. Examples of the adhesive preferably used include (a) a mixture of an epoxy resin and (b) a latent curing agent, (c) a mixture of a radical polymerizable compound and (d) an organic peroxide, and the like.

(a)エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、1種を単独で、又は2種以上を組み合わせて使用することができる。   (A) As an epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy Examples thereof include resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. These epoxy resins can be used individually by 1 type or in combination of 2 or more types.

(b)潜在性硬化剤としては、アミン系、フェノール系、酸無水物系、イミダゾール系、ヒドラジド系、ジシアンジアミド、三フッ化ホウ素−アミン錯体、スルホニウム塩、ヨードニウム塩、アミンイミド等が挙げられる。これらは、単独又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。(b)潜在性硬化剤の配合量は、接着剤成分の総質量を基準として、0.1〜60.0質量%程度であると好ましく、1.0〜20.0質量%であるとより好ましい。硬化剤の配合量が0.1質量%未満であると、硬化反応の進行が不十分となり、良好な接着強度や接続抵抗値を得ることが困難となる傾向がある。他方、配合量が60質量%を越えると、接着剤成分の流動性が低下したり、ポットライフが短くなったりする傾向があるとともに、接続部分の接続抵抗値が高くなる傾向がある。   (B) Examples of latent curing agents include amines, phenols, acid anhydrides, imidazoles, hydrazides, dicyandiamide, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, amine imides, and the like. These can be used alone or in admixture of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. (B) The blending amount of the latent curing agent is preferably about 0.1 to 60.0% by mass and more preferably 1.0 to 20.0% by mass based on the total mass of the adhesive component. preferable. When the blending amount of the curing agent is less than 0.1% by mass, the progress of the curing reaction becomes insufficient, and it tends to be difficult to obtain good adhesive strength and connection resistance value. On the other hand, when the blending amount exceeds 60% by mass, the fluidity of the adhesive component tends to be reduced, the pot life tends to be shortened, and the connection resistance value of the connection portion tends to be high.

(c)ラジカル重合性化合物は、ラジカルにより重合する官能基を有する化合物であり、例えば、(メタ)アクリレート、マレイミド化合物等が挙げられる。   (C) A radically polymerizable compound is a compound having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylates and maleimide compounds.

(d)有機過酸化物としては、例えば、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等が挙げられる。(d)有機過酸化物の配合量は、接着剤成分の総質量を基準として、0.05〜10質量%であると好ましく、0.1〜5質量%であるとより好ましい。   Examples of the organic peroxide (d) include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like. (D) The compounding amount of the organic peroxide is preferably 0.05 to 10% by mass and more preferably 0.1 to 5% by mass based on the total mass of the adhesive component.

異方導電性接着剤50は、ペースト状であっても、フィルム状に加工したものであってもよい。フィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエステルウレタン樹脂等の熱可塑性樹脂を配合することが効果的である。これらの樹脂の配合量は、接着剤成分の総質量を基準として、2〜80質量%であることが好ましく、5〜70質量%であることがより好ましく、10〜60質量%であることがさらに好ましい。   The anisotropic conductive adhesive 50 may be a paste or processed into a film. In order to form a film, it is effective to blend a thermoplastic resin such as a phenoxy resin, a polyester resin, a polyamide resin, a polyester resin, a polyurethane resin, an acrylic resin, or a polyester urethane resin. The blending amount of these resins is preferably 2 to 80% by mass, more preferably 5 to 70% by mass, and 10 to 60% by mass based on the total mass of the adhesive component. Further preferred.

異方導電性接着剤50において導電粒子2又は絶縁被覆導電粒子10の含有量は、当該接着剤の全体積を100体積部とすると、0.5〜60体積部であることが好ましく、その含有量は用途により使い分ける。   In the anisotropic conductive adhesive 50, the content of the conductive particles 2 or the insulating coated conductive particles 10 is preferably 0.5 to 60 parts by volume when the total volume of the adhesive is 100 parts by volume, and the content thereof The amount depends on the application.

<接続構造体の製造方法>
上記のように作製した異方導電性接着剤を用いて製造された接続構造体及び当該接続構造体の製造方法について、図3及び図4を参照しながら説明する。
<Method for manufacturing connection structure>
A connection structure manufactured using the anisotropic conductive adhesive produced as described above and a method for manufacturing the connection structure will be described with reference to FIGS. 3 and 4.

[接続構造体]
図3に示す接続構造体100は、相互に対向する第1の回路部材30及び第2の回路部材40を備えており、第1の回路部材30と第2の回路部材40との間には、これらを接続する接続部50aが設けられている。
[Connection structure]
The connection structure 100 shown in FIG. 3 includes a first circuit member 30 and a second circuit member 40 that face each other, and the connection between the first circuit member 30 and the second circuit member 40. A connecting portion 50a for connecting them is provided.

第1の回路部材30は、回路基板(第1の回路基板)31と、回路基板31の主面31a上に形成される回路電極(第1の回路電極)32とを備える。第2の回路部材40は、回路基板(第2の回路基板)41と、回路基板41の主面41a上に形成される回路電極(第2の回路電極)42とを備える。   The first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31 a of the circuit board 31. The second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41.

回路部材の具体例としては、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品やリジッド型のパッケージ基板等が挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。上記回路部材が接続される、もう一方の回路部材の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)が蒸着されたガラス基板等の配線基板が挙げられる。フィルム状の異方導電性接着剤50によれば、これらの回路部材同士を効率的且つ高い接続信頼性をもって接続することができる。本実施形態の異方導電性接着剤は、微細な回路電極を多数備えるチップ部品の配線基板上へのCOG実装もしくはCOF実装に好適である。   Specific examples of the circuit member include a chip component such as an IC chip (semiconductor chip), a resistor chip, a capacitor chip, and a driver IC, a rigid package substrate, and the like. These circuit members are provided with circuit electrodes, and generally have many circuit electrodes. Specific examples of the other circuit member to which the circuit member is connected include a flexible tape substrate having metal wiring, a flexible printed wiring board, and a wiring substrate such as a glass substrate on which indium tin oxide (ITO) is deposited. Can be mentioned. According to the film-like anisotropic conductive adhesive 50, these circuit members can be connected efficiently and with high connection reliability. The anisotropic conductive adhesive of this embodiment is suitable for COG mounting or COF mounting on a wiring board of a chip component having many fine circuit electrodes.

接続部50aは異方導電性接着剤に含まれる絶縁性の接着剤の硬化物20aと、これに分散している絶縁被覆導電粒子10とを備える。そして、接続構造体100においては、対向する回路電極32と回路電極42とが、絶縁被覆導電粒子10を介して電気的に接続されている。より具体的には、図3に示すとおり、絶縁被覆導電粒子10にあっては、導電粒子2が圧縮により変形し、回路電極32,42の双方に直接接触している。他方、図示横方向は導電粒子2間に絶縁性子粒子1が介在することで絶縁性が維持される。従って、本実施形態の異方導電性接着剤を用いれば、10μmレベルの狭ピッチでの絶縁信頼性を向上させることが可能となる。また、用途によっては絶縁被覆導電粒子の代わりに絶縁被覆されていない導電粒子を用いることも可能である。   The connecting portion 50a includes a cured product 20a of an insulating adhesive contained in the anisotropic conductive adhesive, and insulating coated conductive particles 10 dispersed therein. And in the connection structure 100, the circuit electrode 32 and the circuit electrode 42 which oppose are electrically connected through the insulation coating electrically-conductive particle 10. FIG. More specifically, as shown in FIG. 3, in the insulating coated conductive particles 10, the conductive particles 2 are deformed by compression and are in direct contact with both the circuit electrodes 32 and 42. On the other hand, in the illustrated horizontal direction, insulation is maintained by the presence of the insulator particles 1 between the conductive particles 2. Therefore, if the anisotropic conductive adhesive of this embodiment is used, it is possible to improve the insulation reliability at a narrow pitch of 10 μm level. Further, depending on the application, it is also possible to use conductive particles that are not covered with insulation instead of insulating coated conductive particles.

[接続構造体の製造方法]
図4は、異方導電性接着剤を用いて上記接続構造体を製造する工程を概略断面図により示す工程図である。本実施形態では、異方導電性接着剤を熱硬化させて接続構造体を製造する。
[Method of manufacturing connection structure]
FIG. 4 is a process diagram showing a schematic cross-sectional view of a process for manufacturing the connection structure using an anisotropic conductive adhesive. In the present embodiment, the anisotropic conductive adhesive is thermoset to produce a connection structure.

先ず、上述した第1の回路部材30と、フィルム状に成形した異方導電性接着剤50を用意する。フィルム状の異方導電性接着剤50は、上記のように絶縁被覆導電粒子10を絶縁性の接着剤成分20に含有してなるものである。   First, the first circuit member 30 described above and the anisotropic conductive adhesive 50 formed into a film shape are prepared. The film-like anisotropic conductive adhesive 50 is obtained by containing the insulating coated conductive particles 10 in the insulating adhesive component 20 as described above.

次に、フィルム状の異方導電性接着剤50を第1の回路部材30の回路電極32が形成されている面上に載せる。そして、フィルム状の異方導電性接着剤50を、図4(a)の矢印A及びB方向に加圧し、フィルム状の異方導電性接着剤50を第1の回路部材30に積層する(図4(b))。   Next, the film-like anisotropic conductive adhesive 50 is placed on the surface of the first circuit member 30 on which the circuit electrodes 32 are formed. Then, the film-like anisotropic conductive adhesive 50 is pressed in the directions of arrows A and B in FIG. 4A, and the film-like anisotropic conductive adhesive 50 is laminated on the first circuit member 30 ( FIG. 4 (b)).

次いで、図4(c)に示すように、第2の回路部材40を、第2の回路電極42を第1の回路部材30の側に向けるようにしてフィルム状の異方導電性接着剤50上に載せる。そして、フィルム状の異方導電性接着剤50を加熱しながら、図4(c)の矢印A及びB方向に全体を加圧する。フィルム状の異方導電性接着剤50の硬化により接続部50aが形成されて、図3に示すような接続構造体100が得られる。   Next, as shown in FIG. 4C, the film-like anisotropic conductive adhesive 50 is arranged so that the second circuit member 40 faces the second circuit electrode 42 toward the first circuit member 30. Put it on top. Then, while the film-like anisotropic conductive adhesive 50 is heated, the whole is pressurized in the directions of arrows A and B in FIG. The connection portion 50a is formed by curing the film-like anisotropic conductive adhesive 50, and a connection structure 100 as shown in FIG. 3 is obtained.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.

<実施例1>
(工程a)(前処理工程)
平均粒径3.8μmの架橋ポリスチレン粒子2gをパラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8重量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した後、φ3μmのメンブレンフィルタ(ミリポア株式会社製)で濾過し、水洗を行った。その後、樹脂粒子をpH6.0に調整された0.5重量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂粒子を得た。その後、20mLの蒸留水に表面が活性化された樹脂粒子を浸漬し、超音波分散した。
<Example 1>
(Process a) (Pretreatment process)
2 g of crosslinked polystyrene particles having an average particle size of 3.8 μm are added to 100 mL of a palladium-catalyzed solution containing 8 wt% of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst, and 30 minutes at 30 ° C. After stirring, the solution was filtered through a membrane filter of φ3 μm (Millipore Corporation) and washed with water. Thereafter, the resin particles were added to a 0.5 wt% dimethylamine borane solution adjusted to pH 6.0 to obtain resin particles whose surface was activated. Thereafter, the resin particles whose surfaces were activated were immersed in 20 mL of distilled water and ultrasonically dispersed.

(工程b)(めっき工程)
その後、40℃に加温した表1に示す組成を有する1Lの建浴液に、樹脂粒子を加えて、表2に示す値の97重量%以上のニッケルを含有する第1の層、及び、ニッケル及び銅を主成分とする合金を含有する第2の層を形成した。さらに、添加法により下記組成のニッケルを含有しない補充液A及び補充液Bをそれぞれ930mL準備し、20mL/minの速度で連続的に滴下し、表2に示す含有率及び膜厚を有する銅を主成分とする第3の層を形成した。
(補充液 A)
CuSO・5HO:0.8mol/L
HCHO:1mol/L
NaCN:0.001mol/L
(補充液 B)
EDTA・4Na:1mol/L
NaOH:1mol/L
(Process b) (Plating process)
Thereafter, resin particles are added to 1 L of a building bath liquid having a composition shown in Table 1 heated to 40 ° C., and a first layer containing 97% by weight or more of the value shown in Table 2; and A second layer containing an alloy mainly composed of nickel and copper was formed. Further, 930 mL of replenisher A and replenisher B not containing nickel having the following composition were prepared by the addition method, and continuously dropped at a rate of 20 mL / min, and the copper having the content and thickness shown in Table 2 was added. A third layer as a main component was formed.
(Replenisher A)
CuSO 4 · 5H 2 O: 0.8mol / L
HCHO: 1 mol / L
NaCN: 0.001 mol / L
(Replenisher B)
EDTA · 4Na: 1 mol / L
NaOH: 1 mol / L

水洗と濾過を行った後、置換金めっきである85℃のHGS−100(日立化成工業株式会社製、商品名)に導電粒子を浸漬し、表2に示す膜厚の、金を含有する第6の層を形成し、導電粒子を作製した。   After washing with water and filtering, the conductive particles are immersed in HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 85 ° C., which is a displacement gold plating, and the gold film having the thickness shown in Table 2 is contained. 6 layers were formed to produce conductive particles.

(導電粒子の膜厚及び成分の評価)
得られた導電粒子について、断面を収束イオンビームで切り出し、40万倍の透過型電子顕微鏡で観察した。また、このとき、EDX(エネルギー分散型X線分光機、日本電子データム株式会社製)による成分分析により、第1の層、第2の層及び第3の層の成分を分析するとともに膜厚を計測した。その計測結果を図5に示した。金を含有する第6の層についても膜厚を計測した。
(Evaluation of film thickness and components of conductive particles)
About the obtained electroconductive particle, the cross section was cut out with the focused ion beam, and it observed with the transmission electron microscope of 400,000 times. At this time, the components of the first layer, the second layer, and the third layer are analyzed by component analysis using EDX (energy dispersive X-ray spectrometer, manufactured by JEOL Datum Co., Ltd.) and the film thickness is determined. Measured. The measurement results are shown in FIG. The film thickness was also measured for the sixth layer containing gold.

(導電粒子の抵抗値測定方法)
微小圧縮試験機MCTW−200(株式会社島津製作所製、商品名)を用いて、負荷速度0.5mN/secの条件で、導電粒子を圧縮し、元の粒径の70%になるまで圧縮した場合(圧縮率30%)、元の粒径の50%になるまで圧縮した場合(圧縮率50%)、元の粒径の40%になるまで圧縮した場合(圧縮率60%)、元の粒径の30%になるまで圧縮した場合(圧縮率70%)、元の粒径の20%になるまで圧縮した場合(圧縮率80%)、及び、元の粒径の10%になるまで圧縮した場合(圧縮率90%)の電気抵抗値(Ω)の測定を行った。10個の導電粒子の測定を行い、その平均値を表5に示す。
(Method for measuring resistance value of conductive particles)
Using a micro compression tester MCTW-200 (manufactured by Shimadzu Corporation, trade name), the conductive particles were compressed under the condition of a load speed of 0.5 mN / sec and compressed to 70% of the original particle size. In case (compression rate 30%), when compressed to 50% of original particle size (compression rate 50%), compressed to 40% of original particle size (compression rate 60%), original When compressed to 30% of the particle size (compression rate 70%), compressed to 20% of the original particle size (compression rate 80%), and until 10% of the original particle size The electrical resistance value (Ω) when compressed (compression ratio 90%) was measured. Ten conductive particles were measured, and the average value is shown in Table 5.

(導電粒子のめっきによる凝集性の評価)
得られた導電粒子を解砕し、導電粒子300個をSEMで観察し、めっき被膜にピンホールが発生していた導電粒子数の割合をピンホール発生率として算出し、めっきによる凝集性の評価を行った。その結果を表5に示す。なお、導電粒子の解砕は次のようにして行った。すなわち、100mLのビーカーに、導電粒子1g、直径1mmのジルコニアボール40g、及び、エタノール20mLを投入した。ビーカー内の液を、ステンレス製の4枚攪拌羽根を用いて回転数400rpmで2分間攪拌した後、ろ過乾燥を行った。これらの処理を経た導電粒子をSEMで観察した。
(Evaluation of cohesiveness by plating of conductive particles)
The obtained conductive particles were crushed, 300 conductive particles were observed with an SEM, the ratio of the number of conductive particles in which pinholes were generated in the plating film was calculated as the pinhole generation rate, and the cohesiveness evaluation by plating was evaluated. Went. The results are shown in Table 5. The conductive particles were crushed as follows. That is, 1 g of conductive particles, 40 g of zirconia balls having a diameter of 1 mm, and 20 mL of ethanol were put into a 100 mL beaker. The liquid in the beaker was stirred for 2 minutes at a rotational speed of 400 rpm using four stainless steel stirring blades, and then filtered and dried. The electroconductive particle which passed through these processes was observed by SEM.

<実施例2>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと、及び、ニッケルを含有しない補充液A及びBをそれぞれ830mLに変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Example 2>
In the plating step of Example 1 (step b), all except that the bathing solution was changed to the bathing solution shown in Table 1 and that the replenishers A and B not containing nickel were changed to 830 mL, respectively. The same operation as in Example 1 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<実施例3>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと、及び、ニッケルを含有しない補充液A及びBをそれぞれ800mLに変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Example 3>
In the plating step of Example 1 (step b), all except that the bathing solution was changed to the bathing solution shown in Table 1 and that the replenishers A and B not containing nickel were each changed to 800 mL. The same operation as in Example 1 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<実施例4>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと、及び、ニッケルを含有しない補充液A及びBをそれぞれ730mLに変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Example 4>
In the plating step of Example 1 (step b), all except that the bath solution was changed to the bath solution shown in Table 1 and that the replenishers A and B not containing nickel were changed to 730 mL, respectively. The same operation as in Example 1 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<実施例5>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと、及び、ニッケルを含有しない補充液A及びBをそれぞれ700mLに変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Example 5>
In the plating step of Example 1 (step b), all except that the bath solution was changed to the bath solution shown in Table 1 and that the replenishers A and B not containing nickel were each changed to 700 mL. The same operation as in Example 1 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<実施例6>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと、及び、ニッケルを含有しない補充液A及びBをそれぞれ670mLに変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Example 6>
In the plating step of Example 1 (step b), all except that the bathing solution was changed to the bathing solution shown in Table 1 and that the replenishers A and B not containing nickel were changed to 670 mL, respectively. The same operation as in Example 1 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例1>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative Example 1>
In the plating process of Example 1 (step b), all was performed in the same manner as in Example 1 except that the bath solution was changed to the bath solution shown in Table 1. As in Example 1, Table 5 shows the measurement result of the electrical resistance value (Ω) with respect to the compression rate and the calculation result of the pinhole generation rate (%) after crushing.

<比較例2>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative example 2>
In the plating process of Example 1 (step b), all was performed in the same manner as in Example 1 except that the bath solution was changed to the bath solution shown in Table 1. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例3>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative Example 3>
In the plating process of Example 1 (step b), all was performed in the same manner as in Example 1 except that the bath solution was changed to the bath solution shown in Table 1. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例4>
実施例1の(工程b)のめっき工程において、建浴液を表1に示す建浴液に変更したこと以外は全て実施例1と同様に行った。実施例1と同様に、膜厚の測定結果を表2に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative example 4>
In the plating process of Example 1 (step b), all was performed in the same manner as in Example 1 except that the bath solution was changed to the bath solution shown in Table 1. As in Example 1, the measurement results of the film thickness are shown in Table 2, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

Figure 0006155651
Figure 0006155651

Figure 0006155651
Figure 0006155651

<比較例5>
実施例1の(工程a)の前処理工程を行った。その後、コハク酸を0.084mol/L(1重量%)含んだ溶液を調整し、前処理工程を経た樹脂粒子を加え、さらに硫酸を添加してpH5の樹脂粒子含有溶液1Lを作製した。
<Comparative Example 5>
The pretreatment step of (Step a) of Example 1 was performed. Thereafter, a solution containing 0.084 mol / L (1% by weight) of succinic acid was prepared, the resin particles subjected to the pretreatment step were added, and sulfuric acid was further added to prepare 1 L of a resin particle-containing solution having a pH of 5.

ニッケル及びリンを含有する第7の層の合金めっき被膜を作製するため、下記組成のめっき液を調整した。
(ニッケル及びリンを含有する第7の層作製用無電解めっき液)
NiSO・6HO:0.76mol/L(20重量%)
NaPO・HO:1.89mol/L(20重量%)
NaOH:2mol/L(8重量%)
In order to produce a seventh layer alloy plating film containing nickel and phosphorus, a plating solution having the following composition was prepared.
(Electroless plating solution for preparing the seventh layer containing nickel and phosphorus)
NiSO 4 · 6H 2 O: 0.76mol / L (20 wt%)
NaPO 2 · H 2 O: 1.89mol / L (20 wt%)
NaOH: 2 mol / L (8% by weight)

得られた樹脂粒子含有溶液1Lを80℃にし、ニッケル及びリンを含有する第7の層作製用無電解めっき液20mLを20mL/minの速度で連続的に滴下し、表3に示す第7の層を得た。   1 L of the obtained resin particle-containing solution was brought to 80 ° C., and 20 mL of a seventh layer-forming electroless plating solution containing nickel and phosphorus was continuously dropped at a rate of 20 mL / min. A layer was obtained.

次に、ニッケル、銅及びリンを含有する第8の層の合金めっき被膜を作製するため、下記組成のめっき液を調整した。
(ニッケル、銅及びリンを含有する第8の層作製用無電解めっき液)
NiSO・6HO:0.76mol/L(20重量%)
CuSO・5HO:0.80mol/L(20重量%)
NaHPO・HO:1.89mol/L(20重量%)
NaOH:2mol/L(8重量%)
Next, in order to produce the 8th layer alloy plating film containing nickel, copper, and phosphorus, the plating solution of the following composition was prepared.
(Electroless plating solution for preparing the eighth layer containing nickel, copper and phosphorus)
NiSO 4 · 6H 2 O: 0.76mol / L (20 wt%)
CuSO 4 · 5H 2 O: 0.80mol / L (20 wt%)
NaH 2 PO 2 .H 2 O: 1.89 mol / L (20% by weight)
NaOH: 2 mol / L (8% by weight)

その後、第7の層の作製を終えた溶液に、得られた第8の層の合金めっきを作製するためのめっき液980mLを20mL/minの速度で連続的に滴下し、表3に示す第8の層を得た。   Thereafter, 980 mL of the plating solution for preparing the alloy plating of the obtained eighth layer was continuously dropped at a rate of 20 mL / min into the solution where the preparation of the seventh layer was finished. 8 layers were obtained.

水洗と濾過を行った後、置換金めっきである85℃のHGS−100(日立化成工業株式会社製、商品名)に導電粒子を浸漬し、表3に示す膜厚の、金を含有する第6の層を形成し、導電粒子を作製した。実施例1と同様に、膜厚の測定結果を表3に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。   After washing with water and filtration, the conductive particles were immersed in HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 85 ° C., which is a displacement gold plating, and the gold film having the thickness shown in Table 3 is contained. 6 layers were formed to produce conductive particles. As in Example 1, the measurement results of the film thickness are shown in Table 3, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例6>
比較例5の、第7の層作製用無電解めっき液を50mL、第8の層作製用無電解めっき液を950mLにそれぞれ変更し、第7の層及び第8の層の厚みを変化させたこと以外は比較例5と同様に行った。実施例1と同様に、膜厚の測定結果を表3に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative Example 6>
In Comparative Example 5, the seventh layer preparation electroless plating solution was changed to 50 mL, and the eighth layer preparation electroless plating solution was changed to 950 mL, and the thicknesses of the seventh layer and the eighth layer were changed. Except for this, the same procedure as in Comparative Example 5 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 3, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例7>
比較例5の、第7の層作製用無電解めっき液を100mL、第8の層作製用無電解めっき液を900mLにそれぞれ変更し、第7の層及び第8の層の厚みを変化させたこと以外は比較例5と同様に行った。実施例1と同様に、膜厚の測定結果を表3に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative Example 7>
In Comparative Example 5, the electroless plating solution for preparing the seventh layer was changed to 100 mL and the electroless plating solution for preparing the eighth layer was changed to 900 mL, and the thicknesses of the seventh layer and the eighth layer were changed. Except for this, the same procedure as in Comparative Example 5 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 3, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

<比較例8>
比較例5の第7の層作製用無電解めっき液を200mL、第8の層作製用無電解めっき液を800mLにそれぞれ変更し、第7の層及び第8の層の厚みを変化させたこと以外は比較例5と同様に行った。実施例1と同様に、膜厚の測定結果を表3に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
<Comparative Example 8>
The thickness of the seventh layer and the eighth layer was changed by changing the electroless plating solution for preparing the seventh layer in Comparative Example 5 to 200 mL and the electroless plating solution for preparing the eighth layer to 800 mL, respectively. Except for this, the same procedure as in Comparative Example 5 was performed. As in Example 1, the measurement results of the film thickness are shown in Table 3, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

Figure 0006155651
Figure 0006155651

<比較例9>
比較例5と同様の操作を行い、ニッケル及びリンを含有する第7の層を形成した後、水洗と濾過を行った。得られた導電粒子含有溶液1Lを40℃にし、さらに、添加法により下記組成のニッケルを含有しない補充液A及びBをそれぞれ980mL準備し、20mL/minの速度で連続的に滴下し、表4に示した値の第3の層を形成した。
(補充液A)
CuSO・5HO:0.8mol/L
HCHO:1mol/L
NaCN:0.001mol/L
(補充液B)
EDTA・4Na:1mol/L
NaOH:1mol/L
<Comparative Example 9>
The same operation as in Comparative Example 5 was performed to form a seventh layer containing nickel and phosphorus, and then washed with water and filtered. 1 L of the obtained conductive particle-containing solution was brought to 40 ° C., and 980 mL of replenishers A and B each containing no nickel having the following composition were prepared by the addition method, and continuously dropped at a rate of 20 mL / min. A third layer having the value shown in FIG.
(Replenisher A)
CuSO 4 · 5H 2 O: 0.8mol / L
HCHO: 1 mol / L
NaCN: 0.001 mol / L
(Replenisher B)
EDTA · 4Na: 1 mol / L
NaOH: 1 mol / L

水洗と濾過を行った後、置換金めっきである85℃のHGS−100(日立化成工業株式会社製、商品名)に導電粒子を浸漬し、金を含有する第6の層を形成し、導電粒子を作製した。実施例1と同様に、膜厚の測定結果を表4に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。   After washing with water and filtering, the conductive particles are immersed in 85 ° C HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a displacement gold plating, and a sixth layer containing gold is formed. Particles were made. As in Example 1, the measurement results of the film thickness are shown in Table 4, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

(比較例10)
比較例6と同様の操作を行うことで、表4に示した第7の層を形成し、さらに比較例9と同様のニッケルを含有しない補充液A及びBをそれぞれ950mL準備し、20mL/minの速度で連続的に滴下し、表4に示す値の第3の層を形成した。さらに比較例9と同様に第6の層を形成した。実施例1と同様に、膜厚の測定結果を表4に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
(Comparative Example 10)
By performing the same operation as in Comparative Example 6, the seventh layer shown in Table 4 was formed, and 950 mL of replenishing solutions A and B that did not contain nickel were also prepared in the same manner as in Comparative Example 9, and 20 mL / min. The third layer having the values shown in Table 4 was formed by continuous dropwise addition at a rate of. Further, a sixth layer was formed in the same manner as in Comparative Example 9. As in Example 1, the measurement results of the film thickness are shown in Table 4, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

(比較例11)
比較例7と同様の操作を行うことで、表4に示した第7の層を形成し、さらに比較例9と同様のニッケルを含有しない補充液A及びBをそれぞれ900mL準備し、20mL/minの速度で連続的に滴下し、表4に示す値の第3の層を形成した。さらに比較例9と同様に第6の層を形成した。実施例1と同様に、膜厚の測定結果を表4に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
(Comparative Example 11)
By performing the same operation as in Comparative Example 7, the seventh layer shown in Table 4 was formed, and 900 mL of replenishers A and B containing no nickel as in Comparative Example 9 were prepared, and 20 mL / min. The third layer having the values shown in Table 4 was formed by continuous dropwise addition at a rate of. Further, a sixth layer was formed in the same manner as in Comparative Example 9. As in Example 1, the measurement results of the film thickness are shown in Table 4, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

(比較例12)
比較例8と同様の操作を行うことで、表4に示した第7の層を形成し、さらに比較例9と同様のニッケルを含有しない補充液A及びBをそれぞれ800mL準備し、20mL/minの速度で連続的に滴下し、表4に示す値の第3の層を形成した。さらに比較例9と同様に第6の層を形成した。実施例1と同様に、膜厚の測定結果を表4に、圧縮率に対する電気抵抗値(Ω)の測定結果と解砕後のピンホール発生率(%)の算出結果を表5に示す。
(Comparative Example 12)
By performing the same operations as in Comparative Example 8, the seventh layer shown in Table 4 was formed, and 800 mL of replenishers A and B that did not contain nickel were also prepared, and 20 mL / min. The third layer having the values shown in Table 4 was formed by continuous dropwise addition at a rate of. Further, a sixth layer was formed in the same manner as in Comparative Example 9. As in Example 1, the measurement results of the film thickness are shown in Table 4, and the measurement results of the electrical resistance value (Ω) with respect to the compression rate and the calculation results of the pinhole occurrence rate (%) after crushing are shown in Table 5.

Figure 0006155651
Figure 0006155651

以上の結果から、実施例1〜6で作製した導電粒子は、圧縮率が90%の場合でも(つまり、その大きさが元の粒径の10%になるまで圧縮)、5Ω以下の抵抗値を維持できることが明らかとなった。また、解砕後のピンホール発生率を見ても、0%であり、めっき最中の粒子間の凝集を抑制することができていることが分かった。一方、還元剤にホルムアルデヒドを用いても、めっき析出の初期の建浴液にニッケルを含まない比較例1の方法で作製した導電粒子や、還元剤にホルムアルデヒドではなく次亜リン酸を用いた比較例2〜4で作製した導電粒子は、圧縮を行うことで電気抵抗値が上昇し、圧縮率が80%の場合5Ωを越えることが分かった。また、解砕後のピンホール発生率を見ると、10%前後の割合で発生していることが分かった。比較例5〜12で作製した導電粒子は、解砕後にピンホールがないことから、めっき析出の初期にニッケル及びリンを含有するめっき被膜を形成することで、めっき最中の粒子間の凝集を抑えることができているが、ニッケル及びリンを含有するめっき被膜の厚みが厚いほど、圧縮に伴う電気抵抗値が上昇しやすい傾向があることが分かった。   From the above results, the conductive particles produced in Examples 1 to 6 have a resistance value of 5Ω or less even when the compression rate is 90% (that is, the compression is performed until the size becomes 10% of the original particle size). It became clear that it can be maintained. Moreover, even if it looked at the pinhole incidence after crushing, it was 0%, and it turned out that the aggregation between the particles in the middle of plating can be suppressed. On the other hand, even if formaldehyde is used as the reducing agent, conductive particles produced by the method of Comparative Example 1 that does not contain nickel in the initial bathing solution of plating deposition, and comparison using hypophosphorous acid instead of formaldehyde as the reducing agent It was found that the conductive particles produced in Examples 2 to 4 increased in electrical resistance when compressed, and exceeded 5Ω when the compression ratio was 80%. Moreover, when the pinhole incidence after crushing was seen, it turned out that it has generate | occur | produced in the ratio around 10%. Since the conductive particles produced in Comparative Examples 5 to 12 do not have pinholes after crushing, the formation of a plating film containing nickel and phosphorus at the initial stage of plating deposition causes aggregation between particles during plating. It was found that the electrical resistance value accompanying compression tends to increase as the thickness of the plating film containing nickel and phosphorus increases.

Figure 0006155651
Figure 0006155651

本発明によれば、圧縮された場合でも低い電気抵抗値を保つことができ、かつ、ピンホールの少ない導電粒子及びこれを用いた絶縁被覆導電粒子が提供される。また、本発明によれば、当該導電粒子又は絶縁被覆導電粒子を含む異方導電性接着剤が提供される。さらに、本発明によれば、当該異方導電性接着剤を用いて接続構造体を製造する方法及びこれによって製造される接続構造体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even when it compresses, a low electrical resistance value can be maintained, and the conductive particle with few pinholes and the insulation coating conductive particle using the same are provided. Moreover, according to this invention, the anisotropic conductive adhesive containing the said electroconductive particle or insulation coating electroconductive particle is provided. Furthermore, according to this invention, the method of manufacturing a connection structure using the said anisotropic conductive adhesive, and the connection structure manufactured by this are provided.

1…絶縁性子粒子、2…導電粒子、2a…樹脂粒子、3…金属層、3a…Ni−Cu層、3a…第1の層(第1の部分)、3a…第2の層(第2の部分)、3a…第3の層(第3の部分)、4…第4の層、5…第5の層、6…第6の層、10…絶縁被覆導電粒子、20…絶縁性の接着剤成分、20a…絶縁性の接着剤成分の硬化物、30…第1の回路部材、31…回路基板(第1の回路基板)、31a…第1の回路基板の主面、32…回路電極(第1の回路電極)、40…第2の回路部材、41…回路基板(第2の回路基板)、41a…第2の回路基板の主面、42…回路電極(第2の回路電極)、50…フィルム状の異方導電性接着剤、50a…接続部、100…接続構造体。 DESCRIPTION OF SYMBOLS 1 ... Insulator child particle, 2 ... Conductive particle, 2a ... Resin particle, 3 ... Metal layer, 3a ... Ni-Cu layer, 3a 1 ... 1st layer (1st part), 3a 2 ... 2nd layer ( 2nd part), 3a 3 ... 3rd layer (3rd part), 4 ... 4th layer, 5 ... 5th layer, 6 ... 6th layer, 10 ... Insulation coated conductive particles, 20 ... Insulating adhesive component, 20a ... cured product of insulating adhesive component, 30 ... first circuit member, 31 ... circuit board (first circuit board), 31a ... main surface of first circuit board, 32 ... Circuit electrode (first circuit electrode), 40 ... Second circuit member, 41 ... Circuit board (second circuit board), 41a ... Main surface of the second circuit board, 42 ... Circuit electrode (second) Circuit electrode), 50... Film-like anisotropic conductive adhesive, 50 a... Connection part, 100.

Claims (17)

樹脂粒子と、該樹脂粒子の表面に設けられた金属層と、を備え、
前記金属層は、ニッケル及び銅を含むNi−Cu層を少なくとも有し、
前記Ni−Cu層は、前記樹脂粒子に近い順に、97重量%以上のニッケルを含有する第1の部分、前記樹脂粒子の表面から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる第2の部分、及び、銅を含む第3の部分が配置された構造からなる導電粒子。
Resin particles and a metal layer provided on the surface of the resin particles,
The metal layer having at least a including Ni-Cu layer of nickel and copper,
The Ni—Cu layer is a first portion containing 97% by weight or more of nickel in order closer to the resin particles, and a second portion in which the element ratio of copper to nickel increases as the distance from the surface of the resin particles increases . and, Rushirubeden particles from the third portion are arranged structure containing copper.
前記第2の部分におけるニッケルの含有率と銅の含有率との合計が、97重量%以上である、請求項に記載の導電粒子。 The sum of the content and the copper content of the nickel in the second portion is 97 wt% or more, the conductive particle according to claim 1. 前記第3の部分における銅の含有率が、97重量%以上である、請求項又はに記載の導電粒子。 The electroconductive particle of Claim 1 or 2 whose content rate of the copper in a said 3rd part is 97 weight% or more. 前記第1の部分、前記第2の部分及び前記第3の部分が、ニッケル、銅及びホルムアルデヒドを含む無電解めっき液により形成されたものである、請求項のいずれか一項に記載の導電粒子。 Said first portion, said second portion and said third portion, nickel, and is formed by an electroless plating solution containing copper and formaldehyde, according to any one of claims 1 to 3 Conductive particles. 前記第1の部分及び前記第2の部分が、一つの建浴槽における無電解めっき液の中で順次形成されたものである、請求項に記載の導電粒子。 The conductive particles according to claim 4 , wherein the first portion and the second portion are sequentially formed in an electroless plating solution in one building tub. 前記金属層は、前記Ni−Cu層の外側に、ニッケルを含有し銅を含有しない第4の層をさらに有する、請求項のいずれか一項に記載の導電粒子。 The metal layer, the outside of the Ni-Cu layer further includes a fourth layer containing no copper containing nickel, conductive particles according to any one of claims 1 to 5. 前記第4の層におけるニッケルの含有率が、85〜99重量%である、請求項に記載の導電粒子。 The electroconductive particle of Claim 6 whose content rate of the nickel in a said 4th layer is 85 to 99 weight%. 前記金属層は、前記Ni−Cu層の外側に、パラジウムを含有する第5の層をさらに有する、請求項のいずれか一項に記載の導電粒子。 The metal layer, the outside of the Ni-Cu layer, further comprising a fifth layer containing palladium, conductive particles according to any one of claims 1 to 7. 前記金属層は、前記Ni−Cu層の外側に、金を含有する第6の層をさらに有する、請求項のいずれか一項に記載の導電粒子。 The metal layer, the outside of the Ni-Cu layer, having further a sixth layer containing gold, conductive particles according to any one of claims 1-8. 平均粒径が1〜10μmである、請求項1〜のいずれか一項に記載の導電粒子。 Average particle size of 1 to 10 [mu] m, the conductive particles according to any one of claims 1-9. 平均粒径が2〜5μmである、請求項1〜のいずれか一項に記載の導電粒子。 Average particle diameter of 2 to 5 [mu] m, the conductive particles according to any one of claims 1-9. 請求項1〜11のいずれか一項に記載の導電粒子と、
前記導電粒子の前記金属層の表面に設けられ、当該表面の少なくとも一部を被覆する絶縁性子粒子と、
を備える絶縁被覆導電粒子。
Conductive particles according to any one of claims 1 to 11 ,
Insulator particles provided on the surface of the metal layer of the conductive particles and covering at least a part of the surface;
Insulating coated conductive particles.
請求項1〜11のいずれか一項に記載の導電粒子を接着剤に含有してなる異方導電性接着剤。 An anisotropic conductive adhesive comprising the conductive particles according to any one of claims 1 to 11 in an adhesive. 請求項12に記載の絶縁被覆導電粒子を接着剤に含有してなる異方導電性接着剤。 An anisotropic conductive adhesive comprising the insulating coated conductive particles according to claim 12 in an adhesive. 第一の回路基板の主面上に複数の第一の回路電極が形成された第一の回路部材と、
第二の回路基板の主面上に複数の第二の回路電極が形成された第二の回路部材と、
前記第一の回路基板の前記主面と前記第二の回路基板の前記主面との間に設けられ、前記第一及び第二の回路電極を相互に対向させた状態で前記第一及び第二の回路部材同士を接続する回路接続部材と、
を備えた回路部材の接続構造体であって、
前記回路接続部材は、請求項13に記載の異方導電性接着剤の硬化物からなり、
前記第一の回路電極と前記第二の回路電極とが、前記導電粒子を介して電気的に接続されている、回路部材の接続構造体。
A first circuit member having a plurality of first circuit electrodes formed on the main surface of the first circuit board;
A second circuit member having a plurality of second circuit electrodes formed on the main surface of the second circuit board;
The first and second circuit electrodes are provided between the main surface of the first circuit board and the main surface of the second circuit board, and the first and second circuit electrodes face each other. A circuit connecting member for connecting two circuit members;
A circuit member connection structure comprising:
The circuit connection member is made of a cured product of the anisotropic conductive adhesive according to claim 13 ,
A connection structure for a circuit member, wherein the first circuit electrode and the second circuit electrode are electrically connected via the conductive particles.
第一の回路基板の主面上に複数の第一の回路電極が形成された第一の回路部材と、
第二の回路基板の主面上に複数の第二の回路電極が形成された第二の回路部材と、
前記第一の回路基板の前記主面と前記第二の回路基板の前記主面との間に設けられ、前記第一及び第二の回路電極を相互に対向させた状態で前記第一及び第二の回路部材同士を接続する回路接続部材と、
を備えた回路部材の接続構造体であって、
前記回路接続部材は、請求項14に記載の異方導電性接着剤の硬化物からなり、
前記第一の回路電極と前記第二の回路電極とが、前記絶縁被覆導電粒子を介して電気的に接続されている、回路部材の接続構造体。
A first circuit member having a plurality of first circuit electrodes formed on the main surface of the first circuit board;
A second circuit member having a plurality of second circuit electrodes formed on the main surface of the second circuit board;
The first and second circuit electrodes are provided between the main surface of the first circuit board and the main surface of the second circuit board, and the first and second circuit electrodes face each other. A circuit connecting member for connecting two circuit members;
A circuit member connection structure comprising:
The circuit connection member comprises a cured product of the anisotropic conductive adhesive according to claim 14 ,
A connection structure for a circuit member, wherein the first circuit electrode and the second circuit electrode are electrically connected via the insulating coating conductive particles.
第一の回路基板の主面上に複数の第一の回路電極が形成された第一の回路部材と、第二の回路基板の主面上に複数の第二の回路電極が形成された第二の回路部材との間に、前記第一の回路電極と前記第二の回路電極とを対向させた状態で、請求項13又は14に記載の異方導電性接着剤を介在させる工程と、
前記異方導電性接着剤を加熱及び加圧により硬化させる工程と、
を備えた、回路部材の接続構造体の製造方法。
A first circuit member having a plurality of first circuit electrodes formed on a main surface of the first circuit board; and a second circuit member having a plurality of second circuit electrodes formed on a main surface of the second circuit board. A step of interposing the anisotropic conductive adhesive according to claim 13 or 14 with the first circuit electrode and the second circuit electrode opposed to each other between two circuit members;
Curing the anisotropic conductive adhesive by heating and pressing; and
The manufacturing method of the connection structure of a circuit member provided with this.
JP2013003642A 2012-01-11 2013-01-11 Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive Active JP6155651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003642A JP6155651B2 (en) 2012-01-11 2013-01-11 Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2012003359 2012-01-11
JP2012003359 2012-01-11
JP2012113774 2012-05-17
JP2012113774 2012-05-17
JP2012267515 2012-12-06
JP2012267515 2012-12-06
JP2013003642A JP6155651B2 (en) 2012-01-11 2013-01-11 Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive

Publications (2)

Publication Number Publication Date
JP2014132542A JP2014132542A (en) 2014-07-17
JP6155651B2 true JP6155651B2 (en) 2017-07-05

Family

ID=48752625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003642A Active JP6155651B2 (en) 2012-01-11 2013-01-11 Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive

Country Status (4)

Country Link
JP (1) JP6155651B2 (en)
KR (1) KR102097172B1 (en)
CN (1) CN103205215B (en)
TW (1) TWI602198B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478308B2 (en) * 2012-11-28 2019-03-06 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6324746B2 (en) * 2014-02-03 2018-05-16 デクセリアルズ株式会社 Connection body, method for manufacturing connection body, electronic device
JP5975054B2 (en) * 2014-03-10 2016-08-23 日立化成株式会社 Conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle
KR20220041240A (en) * 2014-10-22 2022-03-31 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
CN109313956A (en) * 2016-09-09 2019-02-05 积水化学工业株式会社 The manufacturing method of conductive material, connection structural bodies and connection structural bodies
JP6907490B2 (en) * 2016-09-16 2021-07-21 昭和電工マテリアルズ株式会社 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
CN107142029B (en) * 2017-06-01 2020-08-21 昆山市工业技术研究院有限责任公司 Anisotropic conductive adhesive film and preparation method and application thereof
KR102356887B1 (en) * 2017-06-22 2022-02-03 세키스이가가쿠 고교가부시키가이샤 Electroconductive particle, the manufacturing method of electroconductive particle, an electrically-conductive material, and bonded structure
JP6474860B2 (en) * 2017-06-28 2019-02-27 小島化学薬品株式会社 Electroless nickel strike plating solution and method for forming nickel plating film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581618B2 (en) 1975-04-16 1983-01-12 株式会社東芝 Gas Engine Bunrisouchi
JP3858971B2 (en) * 2001-05-16 2006-12-20 上村工業株式会社 Electroless plating method for fine particles
CN1205295C (en) * 2002-07-24 2005-06-08 财团法人工业技术研究院 Microconductive powder suitable for preparing anisotropic conductive rubber composition
CN100380741C (en) * 2003-06-25 2008-04-09 日立化成工业株式会社 Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
JP4728665B2 (en) * 2004-07-15 2011-07-20 積水化学工業株式会社 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
KR101178745B1 (en) * 2004-07-15 2012-09-07 세키스이가가쿠 고교가부시키가이샤 Conductive microparticle, process for producing the same and anisotropic conductive material
US20100065311A1 (en) * 2006-07-03 2010-03-18 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
EP2073316A4 (en) * 2006-09-26 2010-07-21 Hitachi Chemical Co Ltd Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP5006081B2 (en) * 2007-03-28 2012-08-22 株式会社日立製作所 Semiconductor device, manufacturing method thereof, composite metal body and manufacturing method thereof
JP2009048991A (en) 2007-07-20 2009-03-05 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
WO2009054502A1 (en) 2007-10-24 2009-04-30 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP5024260B2 (en) * 2007-11-01 2012-09-12 日立化成工業株式会社 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP4957838B2 (en) * 2009-08-06 2012-06-20 日立化成工業株式会社 Conductive fine particles and anisotropic conductive materials

Also Published As

Publication number Publication date
KR102097172B1 (en) 2020-04-03
TWI602198B (en) 2017-10-11
KR20130082470A (en) 2013-07-19
CN103205215B (en) 2018-02-06
CN103205215A (en) 2013-07-17
TW201335948A (en) 2013-09-01
JP2014132542A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP6155651B2 (en) Conductive particles, insulating coated conductive particles, and anisotropic conductive adhesive
JP6079425B2 (en) Conductive particles, anisotropic conductive adhesive film, and connection structure
KR101261184B1 (en) Coated conductive particles and method for producing same
JP5472369B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP2009212077A (en) Conductive particle, and manufacturing method of conductive particle
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
JP5271019B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4715969B1 (en) Conductive particles
JP2010103080A (en) Electroconductive fine particles, anisotropic electroconductive material and connecting structure
JP2013251099A (en) Conductive particle and process of manufacturing the same
JP5368611B1 (en) Conductive fine particles
JP5549352B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP5368613B1 (en) Conductive fine particles
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP2012004133A (en) Conductive fine particle and anisotropic conductive material
JP6507552B2 (en) Conductive particles
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350