JP2010102416A - 工作機械の制御方法及び制御装置 - Google Patents

工作機械の制御方法及び制御装置 Download PDF

Info

Publication number
JP2010102416A
JP2010102416A JP2008271610A JP2008271610A JP2010102416A JP 2010102416 A JP2010102416 A JP 2010102416A JP 2008271610 A JP2008271610 A JP 2008271610A JP 2008271610 A JP2008271610 A JP 2008271610A JP 2010102416 A JP2010102416 A JP 2010102416A
Authority
JP
Japan
Prior art keywords
torque
mean square
time
cutting
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008271610A
Other languages
English (en)
Other versions
JP5333905B2 (ja
Inventor
Naohiro Ikeda
直弘 池田
Toshiaki Kubota
利昭 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Machine Techno Co Ltd
Original Assignee
Niigata Machine Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Machine Techno Co Ltd filed Critical Niigata Machine Techno Co Ltd
Priority to JP2008271610A priority Critical patent/JP5333905B2/ja
Publication of JP2010102416A publication Critical patent/JP2010102416A/ja
Application granted granted Critical
Publication of JP5333905B2 publication Critical patent/JP5333905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42289Avoid overload servo motor, actuator limit servo torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

【課題】モータが過負荷で切削を停止したりワークや工具や工作機械の損傷等しないように回避動作を行う。
【解決手段】工作機械1の制御方法は、実際に切削する工具の駆動源であるサーボモータMのトルクをトルク検出センサ6で検出する。この実測トルクと当該トルクを生じる微少時間との積算を演算指令部11で行って二乗平均トルクを算出する。二乗平均トルクが定格トルクを越えた場合、メモリ10に予め設定した「トルク−時定数特性」テーブルに基づいて工具の早送り時定数を延長するよう変更する。変更した時定数によって、モータの二乗平均トルクが定格トルクを越えないように制御する。モータの二乗平均トルク及びピークトルクとこれらの定格トルクに対する比率、変更後の早送り時定数をディスプレイ13に表示し、作業者の操作を支援する。
【選択図】図1

Description

本発明は、工作機械において例えばドリルによる深穴加工やギヤシェーパ加工等、工具を往復動させてワークを切削加工するハイサイクル加工等に用いられる工作機械の制御方法及び制御装置に関する。
従来、工作機械のマシニングセンタ等において、主軸に例えばドリルを取り付けて穴加工を行う場合、深穴加工では1回の長いストロークによって穴切削を行うと生成される切粉が長くなり、ドリルに絡まってドリルが折れたり切屑排出溝が詰まる等の不具合が発生する。そのため、深穴加工においては1回の切削ストロークを加工すべき穴の深さより短くして一部切削しては工具を外に取り出すという一工程の往復動作を複数回繰り返すことで、順次穴加工を行うようにしている。これにより、ドリルの切削で生成される切粉を短い長さにして、ドリルの折損を防ぐと共に切粉を排出し易くしている。
また、同様にギヤシェーパ加工においても、歯車を形成するためのワークに対してギヤシェーピングカッタ等をその軸方向(Z軸方向)に早送りまたは切削送り(高送り加工)で往復動させることで、ワークの外周面または内周面に歯形を形成し、順次切り込み深さを大きくすることでギヤ加工するようにしている。
このような早送りまたは切削送り(高送り加工)による往復動を長時間繰り返して切削加工するワークの加工方法をハイサイクル加工という。
マシニングセンタによる切削加工は、多種の加工や送り等、切削条件が幅広く、種々の切削加工が行われている。しかも加工時間の短縮が要求されているため、送り軸の早送り加減速時定数は一般に短く、サーボモータの性能限界まで使用されることが多い。
ハイサイクル加工はサーボモータ等のモータにかかる負荷が大きく、オーバーヒートし易く過負荷になり易いという不具合がある。モータが過負荷にならないで駆動できるための条件・指標として二乗平均トルクがある。二乗平均トルクがモータの定格トルク以内であれば連続して切削加工ができる。二乗平均トルクを考慮したモータの駆動制御装置や制御方法として、例えば下記特許文献1乃至3に記載されたものがある。
特許文献1に記載された制御装置は、パンチングプレス機の制御装置に関するものであり、金型交換時にモータの駆動によりワークを支持する移動テーブルをモータ駆動により退避させる際、モータの二乗平均トルクがそのモータの定格トルクを越えない範囲で、ワークの通常加工時の移動テーブル移動最高速度より高速に設定し、この設定速度で移動テーブルを退避させる。これにより、金型交換時間を短くできるとしている。
また、特許文献2に記載された制御装置では、工作機械における主軸に取り付けた工具でワークを切削する際に、主軸の切削負荷トルクの変動を主軸の回転速度変動として検出し、周期的な回転速度変動の実効値である二乗平均トルクを減速指令として送り系の送り速度を制御するようにしている。
特許文献3に記載された制御装置は、ロボットの質量配分と加減速パラメータを基本パラメータ、動作デューティ等の動作条件から制約条件を満足し、制約条件余裕により表現される評価関数を最大化するように決定してロボットアームの動力学的干渉を軽減する。モータ所要平均トルク・所要平均速度の関係を考慮してそれらの余裕が最大となるように決定して質量配分を行うとしている。
特開平7−328728号公報 特公平5−39737号公報 特公平7−129210号公報
ところで、上述した特許文献1乃至3に記載されたモータの制御装置と相違して、上述した深穴ステップ加工やギヤシェーパ加工は専用機的で特別なハイサイクル加工であるため、長時間の駆動によってサーボモータがオーバーヒートし易いという不具合がある。しかも、加工条件の設定時に判断基準となる加工時のサーボモータの二乗平均トルクの計算が困難であり、加工途中に過負荷で停止してワークや切削工具等の損傷を生じ易いという不具合があった。
本発明は、このような実情に鑑みてなされたものであり、モータがオーバーヒートして加工途中で切削を停止したりワークや工具や工作機械を損傷等しないように、回避動作を行えるようにした工作機械の制御方法及び制御装置を提供することを目的とする。
本発明による工作機械の制御方法は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出し、該二乗平均トルクがモータの定格トルクを越えた場合、予め設定された「トルク−時定数」テーブルに基づいて工具の早送り時定数を延長する方向で変更して、モータの二乗平均トルクが定格トルクを越えないように制御することを特徴とする。
本発明によれば、工具で早送り切削等によってワークを切削加工する際、実際の切削で得たトルクに基づいて算出した二乗平均トルクがモータの定格トルク以下である場合にはそのまま連続切削できるが、この二乗平均トルクがモータの定格トルクを越えた場合にはオーバーヒートして過負荷になるおそれがあり、この場合に、予め設定された「トルク−時定数」テーブルに基づいて工具の早送り時定数(加減速時間)を延長する方向で変更して、モータの二乗平均トルクが定格トルクを越えないようにトルクを制御してワークの切削を行うことができる。
また、モータの二乗平均トルク及びピークトルクとこれらの定格トルクに対する比率、変更後の早送り時定数をディスプレイに表示することが好ましく、これによって作業者の工作機械の操作を支援できる。
また、工具による切削加工は、ドリルを用いた深穴加工またはギヤシェーピングカッタを用いたギヤシェーピング加工であってもよい。
本発明による工作機械の制御方法は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少切削時間との積算を行って二乗平均トルクを算出し、二乗平均トルクがモータの定格トルクを越えた場合、ドウェルタイム(休止時間)を延長する方向で変更して、モータの二乗平均トルクが定格トルクを越えないように制御することを特徴とする。
本発明によれば、例えば時定数の変更を実施しずらい切削送りによってワークを切削加工する際、実際の切削で得たトルクに基づいて算出した二乗平均トルクがモータの定格トルクを越えた場合には、予め設定されたドウェルタイム(休止時間)を延長するように変更することで、モータの二乗平均トルクが定格トルクを越えないようにトルクを制御してワークの切削を行うことができる。これによって、切削時にオーバーヒートして過負荷になるおそれを防止できる。
なお、時定数の変更を実施しずらい切削送り加工とは、例えば斜め加工等のように同時2軸切削の場合等に時定数を変更すると2軸方向の形状秩序が劣化する切削加工をいい、高精度の切削加工が困難になる。
また、モータの二乗平均トルク及びピークトルクとこれらの定格トルクに対する比率、変更後のドウェルタイムをディスプレイに表示することが、作業者を支援する上で好ましい。
また、工具による切削加工がギヤシェーピングカッタを用いたギヤシェーパ加工であってもよい。
本発明による工作機械の制御方法は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少切削時間との積算を行って二乗平均トルクを算出し、二乗平均トルクがモータの定格トルクを越えた場合、モータの「過負荷デューティ特性」のテーブルに基づいて定格トルクを越える平均二乗トルクで過負荷にならずに切削可能な負荷時間を算出し、負荷時間の範囲内で定格トルクを越えるトルクで切削するようにしたことを特徴とする。
本発明によれば、二乗平均トルクがモータの定格トルクを越えた場合、モータの「過負荷デューティ特性」のテーブルに基づいて定格トルクを越える二乗平均トルクでオーバーヒートせず過負荷にならないで切削可能な負荷時間を算出し、この負荷時間の範囲内で定格トルクを越えるトルクで切削することができる。
また、負荷時間が経過した過負荷前の時点で、工具による切削を停止させ、所定の非切削時間が経過した後で加工を再開できる。
また、工具による切削を停止させた状態で、再開スイッチがONの場合、非切削時間が経過した後で切削加工を再開できる。
また、モータの二乗平均トルク、ピークトルク、及びこれらの定格トルクに対する比率、負荷時間をディスプレイに表示することが好ましく、これによって作業者による工作機械の操作を支援できる。
本発明による工作機械の制御装置は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、主軸に装着された工具を駆動するモータと、該モータのトルクを測定するトルク検出センサと、トルクの変動に対して定格トルクを越えないように時定数を設定した「トルク−時定数」テーブルを記憶するメモリと、トルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出する二乗平均トルク算出手段と、二乗平均トルクが前記モータの定格トルクを越えた場合に「トルク−時定数」テーブルに基づいて二乗平均トルクが定格トルクを越えないように工具の早送り時定数を変更する早送り時定数変更手段とを備えた演算指令部と、時定数を変更可能とする時定数変更可能スイッチと、二乗平均トルクと定格トルクに対する二乗平均トルクの比率と変更した時定数とを表示するディスプレイとを備えたことを特徴とする。
本発明による工作機械の制御装置は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、主軸に装着された工具を駆動するモータと、該モータの切削によるトルクを測定するトルク検出センサと、モータの二乗平均トルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出する二乗平均トルク算出手段と、二乗平均トルクがモータの定格トルクを越えた場合に二乗平均トルクが定格トルクを越えないようにドウェルタイムを変更するドウェルタイム変更手段とを備えた演算指令部と、ドウェルタイムを変更可能とするドウェルタイム変更可能スイッチと、二乗平均トルクと定格トルクに対する二乗平均トルクの比率と変更したドウェルタイムとを表示するディスプレイとを備えたことを特徴とする。
本発明による工作機械の制御装置は、工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、主軸に装着された工具を駆動するモータと、該モータの切削によるトルクを測定するトルク検出センサと、二乗平均トルクがモータの定格トルクを越えた場合、該定格トルクを越えた切削時間と切削を停止した非切削時間との関係に基づいて定格トルクを越えるトルクで過負荷にならずに切削可能な負荷時間を設定したモータの「過負荷デューティ特性」のテーブルを記憶するメモリと、トルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出する二乗平均トルク算出手段と、二乗平均トルクが定格トルクを越えた場合に「過負荷デューティ特性」テーブルによって負荷時間を設定して該負荷時間の範囲内で定格トルクを越えるトルクで切削する切削制御手段とを備えた演算指令部と、二乗平均トルクと定格トルクに対する二乗平均トルクの比率と負荷時間とを表示するディスプレイとを備えたことを特徴とする。
なお、「過負荷デューティ特性」テーブルは、モータの定格トルクに対する二乗平均トルクの比率をトルクパーセントとし、トルクが定格トルクを越えた時間T1と切削しない非切削時間T2とした場合に、デューティを{T1/(T1+T2)}×100で設定して、定格トルクを越えた複数のトルクパーセントに対してそれぞれデューティを設定して工具で切削可能な負荷時間を測定して記憶したものである。
本発明による工作機械の制御方法及び装置は、二乗平均トルクがモータの定格トルクを越えた場合、早送り時定数が変更可能な状態で、予め設定された「トルク−時定数」テーブルに基づいて工具の早送り時定数を延長する方向で変更することで、モータが定格トルクを越えないように二乗平均トルクを制御して、過負荷になることを回避して駆動制御できる。
また、本発明による工作機械の制御方法及び装置は、二乗平均トルクがモータの定格トルクを越えた場合、モータ駆動のドウェルタイムが変更可能な状態で、ドウェルタイムを延長する方向で変更することで、モータが定格トルクを越えないように二乗平均トルクを制御して、過負荷になることを回避して駆動制御できる。
また、本発明による工作機械の制御方法及び装置は、二乗平均トルクがモータの定格トルクを越えた場合でも、モータの「過負荷デューティ特性」のテーブルに基づいて定格トルクを越えるトルクで切削可能な負荷時間を算出し、負荷時間の範囲内で定格トルクを越えるトルクで切削するようにしたから、定格トルクを越えたトルクで工具を切削したとしてもオーバーヒートして過負荷にならない範囲に負荷時間を制限して切削することで、モータが過負荷になることを回避できる。
以下、本発明の実施の形態による工作機械の制御方法及び制御装置について図1乃至図11に基づいて説明する。
図1乃至図7は本発明の第一実施形態を示すものであり、図1は工作機械の制御装置の要部構成を示す図、図2は制御装置の演算指令部に含まれるワーク切削制御のための機能ブロック図、図3は主軸に装着したドリルでワークの深穴加工を行う工程を示す説明図、図4はドリルでワークを穴加工した際におけるトルクと切削時間との関係を示す波形図、図5は主軸の回転速度とトルクの関係において連続切削と断続切削との領域を示す速度−トルク特性の図、図6はドリルを早送りする際におけるトルクと時定数との関係を示す「トルク−時定数」テーブルの図、図7はドリルの穴加工時におけるサーボモータの二乗平均トルク算出方法を示すフローチャート、図8は早送り時定数を変更する方法を示すフローチャートである。
図1に示す工作機械1は、主軸2に工具3としてドリル3A(またはギヤシェーピングカッタ等)を装着してワークWに穴加工(またはギヤシェーパ加工)を行うものである。図1に示す工作機械1において垂直軸をY軸とし、Y軸に直交する水平面内において横方向をX軸、X軸に直交する縦方向をZ軸とする。主軸2に装着されたドリル3AはワークWに対してZ軸方向に相対的に進退して穴加工するものとする。工作機械1にはドリル3Aを主軸2の中心軸線周りに回転切削しつつZ軸方向に早送りまたは切削送りするためのサーボモータMが駆動源として装着されている。
サーボモータMは、ドリル3Aのトルクを検出してNC装置5に送信する図示しないサーボアンプに接続されている。このサーボアンプ内にトルク検出センサ6が設けられており、サーボモータMのモータ電流等からトルクを算出する。NC装置5は送受信するデータや加工プログラム等に基づいて駆動指令をサーボモータMに出力して工作機械1の駆動を自動制御する。NC装置5はサーボモータMの駆動を制御する制御装置7に電気的に接続されている。
制御装置7は、NC装置5との間でデータを送信及び受信するデータ送受信部9と、後述する「トルク−時定数」テーブルD1や「過負荷デューティ特性」テーブルD2やドウェルタイム演算手段等の各種のデータを記憶するメモリ10と、入力される工具3やモータMのデータ、トルク、メモリ10に記憶されているトルク−時定数テーブルD1等の各種データに基づいてサーボモータMの二乗平均トルク(デューティ値)、早送り時定数、或いはドウェルタイム(休止時間)等を演算してサーボモータMの駆動を制御する演算指令部11が設けられている。
演算指令部11には、図2に示すように二乗平均トルクを演算する二乗平均トルク算出手段11aと、早送り時定数を変更する早送り時定数変更手段11bとを備えている。なお、演算指令部11内には、他にドウェルタイムを変更するドウェルタイム変更手段11cと、切削制御手段11dとを備えており、必要に応じて適宜選択的に制御するようになっている。
制御装置7において、演算指令部11にはディスプレイ13が接続されており、演算されたサーボモータMの二乗平均トルク、ピークトルク(最大トルク)、二乗平均トルクと定格トルクとの比率、ピークトルクと定格トルクとの比率等を表示する。また、演算指令部11には機能スイッチ入力部14が接続されており、早送り時定数の変更を可能状態にする(早送り)時定数変更スイッチ15、ドウェルタイムの変更を可能状態にするドウェルタイム変更スイッチ16、サーボモータMの再開スイッチ17が設けられている。
本実施形態による工作機械1の制御装置7において、ドリル3Aによる深穴加工は1回の送り切削で穴を加工完了させようとすると、加工距離が長くなり切粉が長く連続してドリル3Aに絡まって折損したり、切屑排出溝に切粉が詰まって摩擦抵抗が過大になる。そのため、図3に示すように、複数段階に分けて早送り切削するステップ加工を行うようにしている。
図3に示す例では、ドリル3AをワークWの加工穴外部の基準位置RからZ軸方向に送ってワークWを距離Qだけ部分的に切削し、一部の穴加工を施してドリル3Aを基準位置Rに戻す。この1回の往復動(工程)を1サイクルとして繰り返して段階的に加工穴を深くし、例えば4回のステップで所要の深穴加工を完了する。
このような切削加工による切削時間とサーボモータMのトルクとの関係を示すと図4のようになる。
図4において、ドリル3Aの1回の往復動を1サイクルとし、1サイクルの時間T(sec)における各微少(切削)時間Δt1、Δt2、…毎にサーボモータMにかかるトルクをA1、A2、…とした場合、サーボモータMの二乗平均トルクTrmsは次の式で求められる。
Trms=√{(A1Δt1+A2Δt2+……)/T} ……(1)
二乗平均トルクTrmsはトルクと時間の積(面積)であり、多種多数のパターンが想定される。二乗平均トルクTrmsがサーボモータMの定格トルク以下であれば連続して加工を行える。しかし、二乗平均トルクTrmsがサーボモータMの定格トルクを越える場合にはオーバーヒートになり、過負荷になり易い。
図5はサーボモータMによる主軸2及びドリル3Aの回転数(回転速度)とトルクとの関係を示す速度-トルク特性の一例を示す図であり、図5に示す例ではトルクが定格トルク以内でサーボモータMの回転数(min−1)が2000min−1以下であれば、ワークWを連続切削で穴明け加工可能であり、これを連続動作領域とする。この場合、回転数が増大するにつれて定格トルク(Nm)は次第に低減する。
一方、トルクが定格トルクを越える場合や回転数が2000min−1を越える場合、オーバーヒートを防止するためには断続切削で穴明け加工可能であり、これを断続動作領域とする。この場合、回転数が1000min−1以下であると、トルク130Nmで穴加工可能であるが、回転数が1000min−1を越える場合には回転数の増大につれてトルクは130Nmから次第に減少させることになる。
図6はドリル3Aを用いて穴明け加工を行う場合の「トルク−時定数特性」を示すテーブルであり、ドリル3AによってワークWの穴明け加工を行う場合、二乗平均トルクの変動につれて定格トルクを越えないようにサーボモータMの早送り時定数を調整するように設定している。本実施形態においては、オーバーヒートを起こさないために、ドリル3AによるワークWの深穴加工において、サーボモータMの二乗平均トルクが定格トルクを越えないように図6に示す予め設定した「トルク−時定数特性」に基づいて、早送り時定数を変更するように制御するものである。
本実施形態による工作機械1の制御装置7は上述の構成を備えており、次にドリル3Aで上述した穴明け加工を行う場合の制御方法について図7及び図8に示すフローチャートに沿って説明する。
先ず、ドリル3Aによる穴加工切削を行うためのサーボモータMの駆動条件として二乗平均トルクの算出手順について図7により説明する。
ドリル3Aを基準位置RからZ軸方向に送って1回の往復動による穴加工を行い、基準位置Rに戻す動作を1サイクルとして、例えば4段階で穴明けを完了する(図3参照)。そして、トルク検出センサ6で測定した微少(切削)時間Δt1、Δt2、…当たりの各トルクの測定値A1、A2、…(図4参照)を順次読み込み(ステップ101)、NC装置5を介して制御装置7のデータ送受信部9に送信して、演算指令部11で各トルクの二乗平均トルクと微少時間の積を算出する(ステップ102)。
また、それぞれトルク検出センサ6で検知した各トルクのデータからピークトルク(最大トルク)を検知し、ピークトルクと予め設定されたサーボモータMの定格トルクとの比率を算出する(ステップ103)。これらの演算結果はディスプレイ13に表示する(ステップ104)。
そして、微少時間−トルクの積、トルクが定格トルクを越えた時間の積算(T1)、非切削状態を示す基準トルク以下の時間の積算(T2)を行い(ステップ105)。その後、上述の積算を全て終了させた場合には積算エンド指令を出力し、積算エンド指令がない場合には上述の積算を全て終了させていないと判定して、ステップ101に戻る(ステップ106)。
積算エンド指令が出力された場合には微少時間T1、T2、…を算出してこれらの和から1サイクルのトータル時間Tを算出し(ステップ107)、これをメモリ10に記憶させる。次に、1サイクルにおける微少時間Δt1、Δt2、…とトルクA1、A2、…とから二乗平均トルクTrmsを下記(1)式で求め、これをメモリ10に記憶する(ステップ108)。
Trms=√{(A1Δt1+A2Δt2+……)/T} ……(1)
この二乗平均トルクTrmsやピークトルクと定格トルクとの比を算出して(ステップ109)、ディスプレイ画面13にそれぞれ表示する(ステップ110)。
次に、二乗平均トルクが定格トルクを越えていて定格トルクに対する比率が1以上である場合における、ドリル3Aの早送り時定数を変更する制御方法について説明する。
図8において、作業者の操作により早送り時定数変更スイッチ15がON状態か否かを判断する。NOである場合には時定数を変更する処理を行わず終了し、YESである場合には時定数の変更処理を行う(ステップ201)。後者の場合、先ずメモリ10から二乗平均トルクTrmsを演算指令部11に読み込み(ステップ202)、図6に示す「トルク−時定数」テーブルを読み込む(ステップ203)。
そして、工作機械1における、二乗平均トルクTrmsが定格トルク以下か否かを判別し(ステップ204)、YESの場合には連続切削可能であるから時定数変更プログラムを終了する。NOの場合には、図4に示す微少時間とサーボモータMのトルクとの関係を特定するドリル切削を行った際の(現状の)時定数を旧時定数として読み込む(ステップ205)。次いで、図6に示すトルク−時定数」テーブルから上述した実測値に基づく二乗平均トルクTrmsに対応する時定数を新時定数として算出する(ステップ206)。
次に、これら新旧の時定数を比較して(ステップ207)、旧時定数の方が大きい場合にはより短い新時定数に変更するとサーボモータMの負荷が増大してオーバーヒートになり過負荷となるから、変更しないで時定数変更プログラムを終了する。
一方、新時定数の方が大きい場合には、サーボモータMの負荷が減少してオーバーヒートをなくすことができるから、サーボモータMの新たな時定数を、より間隔の長い新時定数に変更し(ステップ207)、これをディスプレイ13画面に表示する(ステップ208)。
そして、得られた新たな時定数を制御装置7のデータ送受信部9からNC装置5に入力して、この新たな時定数に基づいて駆動指令を送信してサーボモータMを駆動制御する。即ち、複数段階、例えば4段階に分割してドリル3Aを早送り切削する際に、二乗平均トルクTrmsが定格トルクを越える場合に、時定数を従来よりも長くして定格トルク以内に制御し、ドリル3Aを順次早送り切削してワークWを穴明け加工する。これによってサーボモータMのオーバーヒートをなくし、過負荷を防止するように制御した。
従って、本実施形態による工作機械1の制御装置7及び制御方法によれば、サーボモータMのトルクの実測値から二乗平均トルクを算出すると共に、この二乗平均トルクが定格トルクを越える場合でも、時定数を延ばすよう変更することで、サーボモータMがオーバーヒートにならないように制御できる。これにより、サーボモータMの過負荷を生じ易い専用機的なハイサイクル加工において、切削条件の設定が容易となり、過負荷を回避することでワークWやドリル3Aや工作機械1の損傷を防止することができる。
また、本実施形態のような工作機械1の制御装置7や方法はハイサイクル加工であるために長時間の使用ではオーバーヒートを起こし過負荷となり易いが、時定数を変更することによって二乗平均トルクを定格トルク以内に制御して確実にオーバーヒートや過負荷を防止できる。そのため、時定数を短くするような制御の場合には、時定数の変更を停止させることでオーバーヒートや過負荷を抑止できる。
また、二乗平均トルク、ピークトルク(最大トルク)及びこれらトルクの定格トルクに対する比率、そして新時定数をディスプレイ画面13に表示することで作業者に情報を提供して作業の助けとすることができる。
次に本発明の他の実施形態による工作機械1の制御装置7及び制御方法について説明するが、上述した実施形態と同一または同様な部材、部分については同一の符号を用いて説明を省略する。
以下、本発明の第二の実施の形態による工作機械の制御装置及び制御方法について図1、図9乃至図11に基づいて説明する。
第二の実施形態における工作機械1の制御装置7及び制御方法は、ドリル3Aの深穴加工に代えてギヤシェーパによるギヤシェーピング加工に関するものである。
図9(a)及び(b)において、パレットに保持されたワークWの内面に円形の下穴w1を加工し、主軸2に装着された工具3としてギヤシェーピングカッタ3Bを下穴w1の内面に切り込みつつZ軸方向に往復動させることで、ギヤシェーピング加工を行うものである。ギヤシェーピング加工に際して、ギヤシェーピングカッタ3BをZ軸方向に例えばF10〜15m/minの送り速度で往復動させてワークWの下穴w1の内面に切り込み、主軸2の中心軸線周りに自転させながら下穴w1の内面に沿って公転させる。そして下穴w1の内面に対するギヤシェーピングカッタ3Bの内面への切り込み量を徐々に深くしていくことで歯を形成し、ギヤ加工を行うことになる。
また、制御装置7における演算指令部11には、図10に示すように、二乗平均トルク算出手段11aと、二乗平均トルクに応じてドウェルタイム(休止時間)を予めメモリ10に記憶しておいた下記のドウェルタイム計算式に基づいて変更するドウェル変更手段11cとが設けられている。ドウェルタイムをTdとして、その計算式は下記(2)式の通りである。
Td={(A1Δt1+A2Δt2+……)/Tcon}−T……(2)
但し、Tcon:サーボモータMの定格トルク
なお、定格トルクTconは安全を考慮して定格トルクの90%にする等の考慮を加える。
本第二実施形態による工作機械1の制御装置7は上述した第一実施形態によるものと同一である。特に、ギヤシェーピング加工においては、工作機械1のサーボモータMに接続されたサーボアンプ内のトルク検出センサ6は、ギヤシェーピングカッタ3BのZ軸方向の切り込みによるトルクを検出して、NC装置5に送信する。制御装置7において、演算指令部11では、ドウェルタイム変更手段11cで各種データに基づいてドウェルタイムを演算するようにしている。
演算指令部11に接続された機能スイッチ入力部14には、(早送り)時定数変更スイッチ15、ドウェルタイムの変更を可能状態にするドウェルタイム変更スイッチ16、再開スイッチ17等が設けられている。
ギヤシェーピングカッタ3Bによるギヤシェーパ加工は専用機的でハイサイクル加工であり、長時間の切削加工ではサーボモータMがオーバーヒートによる過負荷になり易い。加工条件の設定時に、判断基準となる加工時のサーボモータMの二乗平均トルクTrmsの演算が困難であるが、ギヤシェーピングカッタ3Bによる1往復の実動作を行うことで、例えば図4に示す「トルク−時間」特性を示すグラフ図が得られる。この結果から、演算指令部11内の二乗平均トルク算出手段11aによって二乗平均トルクTrmsを演算できる。これをディスプレイ13に表示することで二乗平均トルクTrmsの演算結果が画面に表示されるため、切削条件の設定が容易になり、加工途中で過負荷で停止してワークW、ギヤシェーピングカッタ3B、工作機械3が破損したりするのを防止できる。
次に、本第二実施形態による工作機械1を用い、二乗平均トルクが定格トルクを越えている場合における、ギヤシェーピング加工におけるドウェルタイムを変更する制御方法について図11に示すフローチャートによって説明する。
先ず、図1に示す制御装置7において、ドウェル変更スイッチ16がONか否かを判別し(ステップ301)、NOである場合にはドウェルタイムの変更を行わず終了する。ドウェル変更スイッチ16がONである場合には、上述したメモリ10から、ギヤシェーピング加工において予め設定した(図7に示すフローチャートで算出した)二乗平均トルクTrmsを読み込み、演算指令部11に読み込む(ステップ302)。更にギヤシェーピング加工1サイクルの予め設定された1サイクルのトータル時間Tを読み込む(ステップ303)。
そして、二乗平均トルクTrmsがサーボモータMの定格トルク以内か否かを判別する(ステップ304)。二乗平均トルクTrmsが定格トルク以内であればドウェルタイムを変更する必要なく連続して切削加工できるので、ドウェルタイムの変更制御を終了する。二乗平均トルクTrmsが定格トルクを越える場合には、演算指令部11内のドウェルタイム変更手段11cにおいて上記(2)式のドウェルタイムTdの計算式によって新たなドウェルタイムTdを算出する(ステップ305)。
ここで、ギヤシェーピング加工等の切削送りでは、切削時の切削送り速度を変更すると加工形状の精度に影響を及ぼすため、送り速度を変更せずに1サイクルの切削送りの間隔であるドウェルタイムを(2)式により増減調整して新たなドウェルタイムTdを得ることで二乗平均トルクTrmsが定格トルク以下に収まるように調整する。
そして、先の定格トルクを越える二乗平均トルクTrmsにおける旧のドウェルタイムと新たに演算したドウェルタイムTdとを比較する(ステップ307)。そして、旧のドウェルタイムの方が長い場合には新のドウェルタイムTdに変更すると二乗平均トルクTrmsが定格トルクよりも更に大きくなり切削送りが加速されて過負荷になるため、ドウェルタイムの変更を終了する。
一方、新のドウェルタイムTdの方が旧のドウェルタイムより長い場合には新のドウェルタイムに変更することで(ステップ308)、二乗平均トルクTrmsを定格トルク以下に抑える。換言すれば、新のドウェルタイムTdは二乗平均トルクを定格トルク内に収めるように調整できる値に変更するものである。そして、新たなドウェルタイムTdをディスプレイ13に画面表示する(ステップ309)。
このように、ギヤシェーピングカッタ3Bによって切削送りする際に、二乗平均トルクTrmsが定格トルクを越える場合に、ドウェルタイムを現状よりも長い新たなドウェルタイムに変更する。
そして、得られた新たなドウェルタイムを制御装置7のデータ送受信部9からNC装置5に入力して、この新たなドウェルタイムに基づいて駆動指令を送信してサーボモータMを駆動制御する。即ち、ワークWの下穴w1内面へシェーピングカッタ3Bを第一段階の切り込みを行い、切削送りしつつシェーピングカッタ3Bを自転及び公転させる。
第一段階の加工終了後にワークWから外れた基準位置Rにギヤシェーピングカッタ3Bを戻し、ドウェルタイムの間休止させる。次に新たなドウェルタイム経過後に、下穴w1内面への切り込みを更に深くして同様に切削送りする。このようにして、複数段階に分けてワークWの下穴w1内面への切り込みを順次深くしつつ切削送りすることで内面にギヤ加工を行う。
これによってサーボモータMのオーバーヒートを防止して過負荷をなくすように制御した。
従って、本実施形態による工作機械1の制御装置7及び制御方法によれば、サーボモータMのトルクの実測値から二乗平均トルクを算出すると共に、この二乗平均トルクが定格トルクを越える場合でも、ドウェルタイムを延ばすよう変更することで定格トルク以内に収めて、サーボモータMがオーバーヒートしないように制御できる。これにより、サーボモータMの過負荷を生じ易い専用機的なハイサイクル加工において、切削条件の設定が容易となり、過負荷を回避することでワークや工具や工作機械1の損傷を防止することができる。
また、本実施形態のような工作機械1の制御装置7や方法はハイサイクル加工であるために長時間の使用ではオーバーヒートし過負荷になり易いが、ドウェルタイムを長く変更することによって確実にオーバーヒートや過負荷を防止できる。また、ドウェルタイムだけでなく、二乗平均トルク、ピークトルク(最大トルク)、これらのトルクと定格トルクとの比率、をディスプレイ13に表示することで作業者に情報を提供して作業の助けとすることができる。
次に、本発明の第三の実施の形態による工作機械の制御装置及び制御方法について図1、図12乃至図14に基づいて説明する。
第三の実施形態における工作機械1の制御装置7及び制御方法は、第一実施形態と同様にドリル3Aの深穴切削による穴加工に関するものである。
本第三実施形態では、例えばドリル3Aによる深穴加工に関するものであり、繰り返し穴明け加工を行う際、工具摩耗等の原因によって途中でモータトルクが上昇して定格トルクを越えてしまった場合、図12に示す過負荷デューティ特性のテーブルに基づいて残りの定格トルクを越えた状態での切削時間をディスプレイに表示すると共に、サーボモータMが過負荷になる前に深穴ステップ加工サイクルの戻り位置Rでドリル3Aを停止させると共に、再開スイッチ17がONの場合に、非切削時間の間停止後に切削加工を再開させて過負荷を回避するようにしたものである。
第三実施形態による制御装置7における演算指令部11には、図13に示すように二乗平均トルク算出手段11aと、「過負荷デューティ特性」のテーブルD2に基づいて定格トルクを越えた状態での切削時間を設定する切削制御手段11dとが設けられている。
次にドリル3による穴加工における「過負荷デューティ特性」のテーブルD2を作成する。テーブルD2作成に際して、図1に示す工作機械1を用いてサーボモータMを駆動源としてドリル3でワークWの穴加工を行い、設定したトルクパーセントに応じたデューティ(時間%)に対してドリル3によるサーボモータMの過負荷になるまでの耐え得る時間を負荷時間(秒)として測定する。
ここで、トルクパーセントは、サーボモータMについて、(1)式によって演算した二乗平均トルクTrmsが定格トルクを越えた場合の割合を示すものであり、[二乗平均トルクTrms/定格トルク]によって、例えば110%、120%、130%、140%、150%、170%、210%、MAXと設定する。そして、定格トルクを越えて切削する時間をT1、過負荷を防ぐために切削しない非切削時間をT2とすると、デューティ(時間%)={T1/(T1+T2)}×100によって算出される。
このように設定した各トルクパーセントのデューティ(時間%)に対してドリル3による穴加工切削を行い、定格トルクを越えていて過負荷にならずに切削できる時間を負荷時間として測定し、図13に示すテーブルD2を作成した。この「過負荷デューティ特性」テーブルD2に基づいて深穴加工を繰り返して行った場合の過負荷を回避する加工制御方法について説明する。
本第三実施形態において、工作機械1を用い、工具摩耗等でサーボモータMのモータトルクが定格トルクを越えた場合における、過負荷を回避したドリル3の深穴加工について図14に示す過負荷前停止フローチャートに基づいて説明する。
先ず、図1に示す制御装置7において、先に作成した図12に示す「過負荷デューティ特性」テーブルD2をメモリ10に読み込む(ステップ401)。そして、ワークWの深穴加工が完了したか否かを判別し(ステップ402)、NOの場合には二乗平均トルク算出のために、ドリル3による穴加工におけるトルクとその微少時間を読み込み(ステップ403)、トルクと微少時間の積を演算する(ステップ404)。
そして、読み込んだトルクとその微少時間からサーボモータMの定格トルクを越えた時間を積算し(定格トルクを越えた時間T1)、基準トルク以下の切削しない時間を積算する(非切削時間T2)。次いで、これらの入力データから二乗平均トルク、二乗平均トルクと定格トルクとの比、トルクパーセントを算出し(ステップ406)、これらをディスプレイ13に表示する(ステップ407)。
次に、トルクパーセント(=二乗平均トルクTrms/定格トルク)が100%以内か否かを判別し(ステップ408)、100%以内である場合にはステップ401に戻って深穴加工を継続する。100%を越えた場合には定格トルクを越えた切削時間T1と非切削時間T2からデューティ(時間%)を算出し、このデューティ(時間%)からメモリ10から読み出した図12に示す「過負荷デューティ特性」テーブルD2から、定格トルクを越えていても切削可能な時間である負荷時間(切削可能時間)を演算する(ステップ409)。
そして、前回の加工に要したワンショット分の負荷時間を減算した残りの負荷時間を演算し(ステップ410)、この残りの負荷時間をタイマでタイマカウントする(ステップ411)と共にディスプレイ13に表示する(ステップ412)。残りの負荷時間が残っている場合にはステップ401に戻って更に深穴加工を行い、演算した負荷時間を全て消費した場合にはドリル3をR点位置(図3参照)に戻して(ステップ413、414)ドリル3の切削送りを停止させる(ステップ415)。
ここで、予めドリル3の深穴加工の再開スイッチ17がON状態にあるか否かを判別し(ステップ416)、OFF状態である場合には切削加工を終了する。再開スイッチ17がON状態にある場合には、負荷時間の深穴加工によって過熱したサーボモータMが冷えて再度稼働できる状態になるまでの時間をカウントする(ステップ417)と共にこれをディスプレイ13に表示する(ステップ418)。そして、サーボモータMが稼働再開可能となる非切削時間T2が経過したか否かを判別し(ステップ419)、非切削時間T2が経過した場合には深穴切削の再開をディスプレイ13に表示すると共にドリル3の送り停止を解除する(ステップ421)。そして、ステップ401に戻って加工を再開する。
上述のように、本第三実施形態による工作機械1の制御方法によれば、ドリル3Aによって繰り返し穴開け加工を行う際、工具摩耗等の原因によって途中でモータトルクが上昇して定格トルクを越えてしまった場合でも、過負荷デューティ特性テーブルに基づいて定格トルクを越えて切削可能な負荷時間を算出してカウントでき、また負荷時間を消費し終えた場合でも、非切削時間T2を確認して切削を再開するよう制御できる。そのため、切削加工を繰り返して行う途中で、過負荷でサーボモータMが停止してワークWやドリル3Aや工作機械等を損傷することを防止でき、過負荷を回避できる。また、工具3が摩耗したとしても継続して切削加工できる。
なお、上述の各実施形態において、ドリル3Aを用いた深穴加工またはギヤシェーピングカッタ3Bを用いたギヤシェーピング加工の一方について説明したが、他方についても各実施形態の切削加工に採用できる。
また、ドリル3Aやギヤシェーピングカッタ3B等の工具の駆動源としてサーボモータMを用いたが、サーボモータに限定されることなく他のモータ等を用いてもよい。
本発明の実施形態による工作機械の制御装置の要部構成を示す図である。 第二実施形態における演算指令部のブロック図である。 第一の実施形態による工作機械の制御装置にドリルを装着した場合のワークに対する深穴加工工程を示す説明図である。 1サイクルにおけるトルクと時間の関係を示す波形図である。 サーボモータの回転数とトルクに関する「速度−トルク特性」を示す図である。 第一実施形態における「トルク−時定数特性」のテーブルを示す図である。 工具による切削加工における二乗平均トルクの算出方法を示すフローチャートである。 深穴加工を行うための早送り時定数を変更する制御方法を示すフローチャートである。 第二実施形態におけるギヤシェーピングカッタによるギヤシェーピング加工状態を示すもので、(a)はカッタの送り方向から見た平面図、(b)は同じく側面図である。 第二実施形態における演算指令部のブロック図である。 第二実施形態によるギヤシェーピング加工におけるドウェルタイムの変更工程を示すフローチャートである。 第三実施形態によるドリル深穴加工における「過負荷デューティ特性」のテーブルである。 第三実施形態における演算指令部のブロック図である。 過負荷デューティ特性テーブルを用いた過負荷前停止制御方法を示すフローチャートである。
符号の説明
1 工作機械
2 主軸
3 工具
3A ドリル
3B ギヤシェーピングカッタ
7 制御装置
10 メモリ
11 演算指令部
11a 二乗平均トルク算出手段
11b 早送り時定数変更手段
11c ドウェルタイム変更手段
11d 切削制御手段
13 ディスプレイ
14 機能スイッチ入力部
15 早送り変更スイッチ
16 ドウェルタイム変更スイッチ
17 再開スイッチ
M サーボモータ

Claims (13)

  1. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、
    実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出し、
    該二乗平均トルクが前記モータの定格トルクを越えた場合、予め設定された「トルク−時定数特性」テーブルに基づいて工具の早送り時定数を延長する方向で変更して、前記モータの二乗平均トルクが定格トルクを越えないように制御することを特徴とする工作機械の制御方法。
  2. 前記モータの前記二乗平均トルク及びピークトルクとこれらの定格トルクに対する比率、変更後の早送り時定数をディスプレイに表示するようにした請求項1に記載された工作機械の制御方法。
  3. 前記工具による切削加工が、ドリルを用いた深穴加工またはギヤシェーピングカッタを用いたギヤシェーピング加工である請求項1または2に記載された工作機械の制御方法。
  4. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、
    実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少切削時間との積算を行って二乗平均トルクを算出し、
    該二乗平均トルクが前記モータの定格トルクを越えた場合、ドウェルタイムを延長する方向で変更して、前記モータの二乗平均トルクが定格トルクを越えないように制御することを特徴とする工作機械の制御方法。
  5. 前記モータの前記二乗平均トルク及びピークトルクとこれらの定格トルクに対する比率、変更後のドウェルタイムをディスプレイに表示するようにした請求項4に記載された工作機械の制御方法。
  6. 前記工具による切削加工がギヤシェーピングカッタを用いたギヤシェーパ加工である請求項4または5に記載された工作機械の制御方法。
  7. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御方法において、
    実際に切削する工具の駆動源であるモータのトルクと当該トルクを生じる微少切削時間との積算を行って二乗平均トルクを算出し、
    該二乗平均トルクが前記モータの定格トルクを越えた場合、モータの「過負荷デューティ特性」のテーブルに基づいて定格トルクを越える二乗平均トルクで過負荷にならずに切削可能な負荷時間を算出し、該負荷時間の範囲内で定格トルクを越えるトルクで切削するようにしたことを特徴とする工作機械の制御方法。
  8. 前記負荷時間が経過した過負荷前の時点で、工具による切削を停止させるようにした請求項7に記載された工作機械の制御方法。
  9. 前記工具による切削を停止させた状態で、再開スイッチがONの場合、所定の切削停止時間が経過した後で切削加工を再開するようにした請求項8に記載された工作機械の制御方法。
  10. 前記モータの前記二乗平均トルク、ピークトルク、及びこれらの定格トルクに対する比率、前記負荷時間をディスプレイに表示するようにした請求項7乃至9のいずれかに記載された工作機械の制御方法。
  11. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、
    主軸に装着された工具を駆動するモータと、該モータの切削によるトルクを測定するトルク検出センサと、
    後記二乗平均トルクの変動に対して定格トルクを越えないように時定数を設定した「トルク−時定数特性」テーブルを記憶するメモリと、
    前記トルクと当該トルクを生じる微少時間との積算を行って前記二乗平均トルクを算出する二乗平均トルク算出手段と、前記二乗平均トルクが前記モータの定格トルクを越えた場合に前記「トルク−時定数」テーブルに基づいて二乗平均トルクが定格トルクを越えないように工具の早送り時定数を変更する早送り時定数変更手段とを備えた演算指令部と、
    前記時定数を変更可能とする時定数変更可能スイッチと、
    前記二乗平均トルクと前記定格トルクに対する二乗平均トルクの比率と変更した時定数とを表示するディスプレイとを備えたことを特徴とする工作機械の制御装置。
  12. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、
    主軸に装着された工具を駆動するモータと、該モータの切削によるトルクを測定するトルク検出センサと、
    前記トルクと当該トルクを生じる微少時間との積算を行って二乗平均トルクを算出する二乗平均トルク算出手段と、前記二乗平均トルクが前記モータの定格トルクを越えた場合に前記二乗平均トルクが定格トルクを越えないようにドウェルタイムを変更するドウェルタイム変更手段とを備えた演算指令部と、
    前記ドウェルタイムを変更可能とするドウェルタイム変更可能スイッチと、
    前記二乗平均トルクと前記定格トルクに対する二乗平均トルクの比率と前記変更したドウェルタイムとを表示するディスプレイとを備えたことを特徴とする工作機械の制御装置。
  13. 工作機械の主軸に装着された工具によってワークを切削加工するようにした工作機械の制御装置において、
    主軸に装着された工具を駆動するモータと、該モータの切削によるトルクを測定するトルク検出センサと、
    後記二乗平均トルクが前記モータの定格トルクを越えた場合、該定格トルクを越えた切削時間と切削を停止した非切削時間との関係に基づいて前記定格トルクを越えるトルクで過負荷にならずに切削可能な負荷時間を設定した前記モータの「過負荷デューティ特性」のテーブルを記憶するメモリと、
    前記トルクと当該トルクを生じる微少時間との積算を行って前記二乗平均トルクを算出する二乗平均トルク算出手段と、前記二乗平均トルクが前記定格トルクを越えた場合に前記「過負荷デューティ特性」テーブルによって前記負荷時間を設定して該負荷時間の範囲内で定格トルクを越えるトルクで切削する切削制御手段とを備えた演算指令部と、
    前記二乗平均トルクと前記定格トルクに対する二乗平均トルクの比率と前記負荷時間とを表示するディスプレイとを備えたことを特徴とする工作機械の制御装置。
JP2008271610A 2008-10-22 2008-10-22 工作機械の制御方法及び制御装置 Active JP5333905B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271610A JP5333905B2 (ja) 2008-10-22 2008-10-22 工作機械の制御方法及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271610A JP5333905B2 (ja) 2008-10-22 2008-10-22 工作機械の制御方法及び制御装置

Publications (2)

Publication Number Publication Date
JP2010102416A true JP2010102416A (ja) 2010-05-06
JP5333905B2 JP5333905B2 (ja) 2013-11-06

Family

ID=42293029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271610A Active JP5333905B2 (ja) 2008-10-22 2008-10-22 工作機械の制御方法及び制御装置

Country Status (1)

Country Link
JP (1) JP5333905B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130997A (ja) * 2010-12-22 2012-07-12 Okuma Corp 工作機械における加工方法
JP5269262B1 (ja) * 2012-08-03 2013-08-21 三菱電機株式会社 数値制御装置
JP2016024583A (ja) * 2014-07-18 2016-02-08 ファナック株式会社 繰返し加工を行う数値制御装置
JP2016030683A (ja) * 2014-07-30 2016-03-07 株式会社神戸製鋼所 クレーン
JP2016162179A (ja) * 2015-03-02 2016-09-05 ファナック株式会社 スピンドルのオーバヒートを回避する数値制御装置
JP2018180586A (ja) * 2017-04-03 2018-11-15 ファナック株式会社 シミュレーション装置、プログラム生成装置、制御装置およびコンピュータの表示方法
JP2020017318A (ja) * 2019-10-31 2020-01-30 ファナック株式会社 制御装置、工場監視システム、制御装置の使用頻度検出方法、及び工場監視方法
CN111052015A (zh) * 2017-08-30 2020-04-21 三菱电机株式会社 数控系统及电动机控制装置
US10876931B2 (en) 2016-07-08 2020-12-29 Fanuc Corporation Machine tool and method for the machine tool
JP2021077266A (ja) * 2019-11-13 2021-05-20 Dmg森精機株式会社 工作機械及び工作機械の制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426770B2 (ja) * 2017-02-06 2018-11-21 ファナック株式会社 サーボ制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535366B2 (ja) * 1988-01-09 1996-09-18 ファナック株式会社 産業用ロボットの動作能力確認方法と装置
JPH0991025A (ja) * 1995-09-26 1997-04-04 Fanuc Ltd 動作デューティを考慮したロボットの最短時間制御方法
JP2005219133A (ja) * 2004-02-03 2005-08-18 Fanuc Ltd ロボット用サーボモータ制御装置およびロボット
JP2006001169A (ja) * 2004-06-18 2006-01-05 Seiko Epson Corp 記録装置、記録装置の制御方法、制御プログラム及び記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535366B2 (ja) * 1988-01-09 1996-09-18 ファナック株式会社 産業用ロボットの動作能力確認方法と装置
JPH0991025A (ja) * 1995-09-26 1997-04-04 Fanuc Ltd 動作デューティを考慮したロボットの最短時間制御方法
JP2005219133A (ja) * 2004-02-03 2005-08-18 Fanuc Ltd ロボット用サーボモータ制御装置およびロボット
JP2006001169A (ja) * 2004-06-18 2006-01-05 Seiko Epson Corp 記録装置、記録装置の制御方法、制御プログラム及び記録媒体

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130997A (ja) * 2010-12-22 2012-07-12 Okuma Corp 工作機械における加工方法
US9509131B2 (en) 2012-08-03 2016-11-29 Mitsubishi Electric Corporation Numerical control apparatus
JP5269262B1 (ja) * 2012-08-03 2013-08-21 三菱電機株式会社 数値制御装置
WO2014020763A1 (ja) * 2012-08-03 2014-02-06 三菱電機株式会社 数値制御装置
JP2016024583A (ja) * 2014-07-18 2016-02-08 ファナック株式会社 繰返し加工を行う数値制御装置
US10120367B2 (en) 2014-07-18 2018-11-06 Fanuc Corporation Numerical controller performing repetitive machining
JP2016030683A (ja) * 2014-07-30 2016-03-07 株式会社神戸製鋼所 クレーン
US9983567B2 (en) 2015-03-02 2018-05-29 Fanuc Corporation Numerical controller capable of avoiding overheat of spindle
JP2016162179A (ja) * 2015-03-02 2016-09-05 ファナック株式会社 スピンドルのオーバヒートを回避する数値制御装置
US10876931B2 (en) 2016-07-08 2020-12-29 Fanuc Corporation Machine tool and method for the machine tool
JP2018180586A (ja) * 2017-04-03 2018-11-15 ファナック株式会社 シミュレーション装置、プログラム生成装置、制御装置およびコンピュータの表示方法
US10444721B2 (en) 2017-04-03 2019-10-15 Fanuc Corporation Simulation apparatus, program generating device, controller, and display method for computer
CN111052015A (zh) * 2017-08-30 2020-04-21 三菱电机株式会社 数控系统及电动机控制装置
JP2020017318A (ja) * 2019-10-31 2020-01-30 ファナック株式会社 制御装置、工場監視システム、制御装置の使用頻度検出方法、及び工場監視方法
JP2021077266A (ja) * 2019-11-13 2021-05-20 Dmg森精機株式会社 工作機械及び工作機械の制御方法
JP7084906B2 (ja) 2019-11-13 2022-06-15 Dmg森精機株式会社 工作機械及び工作機械の制御方法

Also Published As

Publication number Publication date
JP5333905B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5333905B2 (ja) 工作機械の制御方法及び制御装置
US8257002B2 (en) Method for machining workpieces on a cutting machine tool
JP5705074B2 (ja) 工作機械における回転軸回転速度のモニタ方法及びモニタ装置、工作機械
JP6898079B2 (ja) 工作機械およびその制御方法
TW201600220A (zh) 工作機械之控制裝置及具備此控制裝置之工作機械
JP5507410B2 (ja) 工作機械における主軸回転速度のモニタ方法及びモニタ装置、工作機械
JP6744815B2 (ja) 工作機械の制御装置および工作機械
KR102092968B1 (ko) 회전 절삭공구의 초기 축방향 절삭 깊이 설정방법 및 제어장치
JP2005144580A (ja) 加工方法及び装置
JPH09300176A (ja) 切削加工装置およびその異常検出方法
TW201350251A (zh) 工具機之控制方法及工具機
JP2015036833A (ja) 干渉確認装置
JP2012032869A (ja) 円盤刃物送り制御方法,装置およびそれを用いた切断装置
JP5674449B2 (ja) 工作機械
JPH07195256A (ja) 制御装置及びそれが用いられる工作機械並びにトルク測定器及び工具折損検出装置
JP3231027B2 (ja) Nc工作機械の数値制御装置
JP6237736B2 (ja) 加工方法および加工装置
CN112743392B (zh) 机床中的主轴转速的监视装置及监视方法、机床
JP2012056030A (ja) 工作機械
CN103167924B (zh) 齿轮加工装置及齿轮加工条件设定装置
JP2011121139A (ja) 工具異常検知装置および検知方法
KR101366452B1 (ko) 공작 기계 및 그 제어 방법
JP6103737B2 (ja) 円盤刃物送り制御方法および装置
JP7538228B2 (ja) 数値制御装置、製造機械、および製造機械の制御方法
JP7466037B1 (ja) 加工方法および加工機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5333905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150