JP2010098265A - 光起電力素子、および、その製造方法 - Google Patents

光起電力素子、および、その製造方法 Download PDF

Info

Publication number
JP2010098265A
JP2010098265A JP2008270259A JP2008270259A JP2010098265A JP 2010098265 A JP2010098265 A JP 2010098265A JP 2008270259 A JP2008270259 A JP 2008270259A JP 2008270259 A JP2008270259 A JP 2008270259A JP 2010098265 A JP2010098265 A JP 2010098265A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
transparent electrode
photovoltaic device
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008270259A
Other languages
English (en)
Other versions
JP5465859B2 (ja
Inventor
Akira Umigami
暁 海上
Masatsugu Oyama
正嗣 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008270259A priority Critical patent/JP5465859B2/ja
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to EP09822006.4A priority patent/EP2360733A4/en
Priority to PCT/JP2009/068012 priority patent/WO2010047309A1/ja
Priority to CN200980142325.0A priority patent/CN102187472B/zh
Priority to US13/124,902 priority patent/US20110197967A1/en
Priority to KR1020117011455A priority patent/KR20110091683A/ko
Priority to TW098135433A priority patent/TW201034213A/zh
Publication of JP2010098265A publication Critical patent/JP2010098265A/ja
Application granted granted Critical
Publication of JP5465859B2 publication Critical patent/JP5465859B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】カルコパイライト型の結晶構造を有する化合物にて形成された光吸収層でも長期間安定した特性を提供できる光起電力素子を提供する。
【解決手段】ガラス基板110面上の対をなす裏面電極層120に亘って積層したカルコパイライト構造化合物にて導電性を有するp型の光吸収層130に、光吸収層130とpn接合する透光性でn型のバッファ層140を積層形成する。バッファ層140に積層し光吸収層130およびバッファ層140の一側から裏面電極層120の一方に亘って透光性の透明電極層160を設ける。酸化インジウムおよび酸化亜鉛を主要成分としAFGの表面観察による粒径が0.001μm以下の構成材料を用いて透明電極層160を非晶質薄膜に形成する。耐熱性および耐湿性に優れ光学特性変化を生じない安定した特性の透明電極層160により、長期間安定したエネルギー変換効率を提供できる。
【選択図】図1

Description

本発明は、導電性を有するp型でカルコパイライト構造の化合物にて薄膜形成された光吸収層を有する光起電力素子、および、その製造方法に関する。
太陽電池は、無尽蔵の太陽光をエネルギー源とするクリーンな発電素子であることから、種々の用途に広く利用されている。太陽電池は、シリコン、化合物半導体等を光電変換材料として用い、この光電変換材料に太陽光等の光が入射したときに当該光電変換材料に生じる光起電力を利用した素子を備えている。
そして、太陽電池は、幾つかに分類することができるが、単結晶シリコン太陽電池や多結晶シリコン太陽電池では、高価なシリコン基板を使用する。このことから、材料費の大幅な低減が期待される薄膜構造の太陽電池が利用されている。
薄膜構造の太陽電池としては、光電変換材料として非シリコン系の半導体材料である、カルコパイライト型の結晶構造を有する化合物、なかでも、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなるCIGS系の化合物を用いたCIGS系太陽電池が注目されている。
CIGS系太陽電池の構成としては、例えば、ガラス基板上に形成された下部電極薄膜と、銅・インジウム・ガリウム・セレンを含むCIGS系化合物からなる光吸収層薄膜と、光吸収層薄膜の上にInS、ZnS、CdS、ZnO等で形成される高抵抗のバッファ層薄膜と、ZnOAl等で形成される上部電極薄膜とから構成されている(例えば、特許文献1参照)。
この特許文献1に記載のようなCIGS系太陽電池は、CIGS系半導体材料の光吸収率が高いこと、発電層を蒸着やスパッタリング等の方法で形成可能であることから、その厚さを数μmと薄くできる。そのため、小型化や材料コストを低く抑えることができ、太陽電池製造時の省エネルギー化も図ることができる。
特開2007−317885号公報
しかしながら、ZnOAlなどで形成される上部電極薄膜は、結晶化することで低抵抗が実現できる材料であり、結晶化した場合、バッファ層、またはバッファ層と透明電極層との間に形成するn型半導体層との界面に境界が形成され、エネルギー障壁になり、電気接合性が低下する。
このように境界が形成された太陽電池素子の場合、界面の接合面積が小さいため、太陽電池素子を長時間使用する間に電気接合性の低下を招き、信頼性に問題があった。
本発明は、このような点に鑑みて、カルコパイライト型の結晶構造を有する化合物にて形成された光吸収層でも、透明電極層との境界によるエネルギー障壁を低減し、電気接合性が長期間安定した特性が得られる光起電力素子、および、その製造方法を提供することを目的とする。
本発明に記載の光起電力素子は、ガラス基板と、このガラス基板の一面に設けられた裏面電極層と、カルコパイライト構造の化合物にて前記裏面電極層に積層形成された導電性を有するp型の光吸収層と、この光吸収層に積層形成されて前記光吸収層とpn接合する透光性でn型のバッファ層と、このバッファ層に積層されるとともに前記積層する光吸収層およびバッファ層の一側から前記裏面電極に亘って設けられた透光性の透明電極層と、を備え、前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質薄膜に形成されたことを特徴とする。
そして、本発明では、前記透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。
また、本発明では、前記透明電極層は、組成In23/(In23+ZnO)が50質量%以上95質量%以下に形成された構成とすることが好ましい。
さらに、本発明では、前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とする組成における第3成分量は、20質量%以下である構成とすることが好ましい。
そして、本発明では、前記バッファ層に積層形成され前記バッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層を備えた構成とすることが好ましい。
また、本発明では、前記n型半導体層は、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質薄膜に形成された構成とすることが好ましい。
さらに、本発明では、前記n型半導体層は、前記透明電極層と同一の構成材料にて形成された構成とすることが好ましい。
そしてさらに、本発明では、前記n型半導体層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。
また、前記透明電極層に積層形成され導電性および透光性を有し前記透明電極層より屈折率が小さい表面透明電極層を備えた構成とすることが好ましい。
そして、本発明では、前記表面透明電極層は、前記透明電極層と同一の構成材料にて形成された構成とすることが好ましい。
また、本発明では、前記表面透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。
本発明に記載の光起電力素子の製造方法は、ガラス基板上に裏面電極層を薄膜形成する裏面電極層形成工程と、前記裏面電極層上にカルコパイライト構造の化合物にてp型の光吸収層を薄膜形成する光吸収層形成工程と、前記光吸収層上に前記光吸収層とpn接合するn型のバッファ層を薄膜形成するバッファ層形成工程と、前記バッファ層上に透明電極層を形成する透明電極層形成工程と、を実施する光起電力素子の製造方法であって、前記透明電極層形成工程は、前記透明電極層を、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に薄膜形成することを特徴とする。
本発明によれば、ガラス基板の一面に設けられた裏面電極層にカルコパイライト構造の化合物にて導電性を有するp型の光吸収層に、光吸収層とpn接合する透光性でn型のバッファ層を積層形成し、バッファ層に積層するとともに光吸収層およびバッファ層の一側から裏面電極層の一方に亘って透光性の透明電極層を設けた光起電力素子における透明電極層を、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.0001μm以上0.001μm以下の非晶質薄膜に形成するので、バッファ層あるいはバッファ層と透明電極層との間に設けられるn半導体層との間で境界が形成されることが無く、また、粒径が小さいことにより、接合面の表面積を稼ぐことができ、安定した電気接合性を確保することができる。よって、この構成で得られた光起電力素子は、長期間使用時も電気接合性が安定しており、長期間安定したエネルギー変換効率を提供できる。
以下、本発明の光起電力素子に係る一実施の形態について、図面を参照して説明する。
図1は、本実施形態における太陽電池を構成する光起電力素子の概略構成を示す断面図である。
[光起電力素子の構成]
図1において、100は光起電力素子で、この光起電力素子100は、光の入射により起電力を発生する素子である。この光起電力素子100は例えば直列状に複数接続され、電気エネルギーとして取り出し可能な太陽電池に構成される。
そして、光起電力素子100は、ガラス基板110上に、裏面電極層120、光吸収層130、バッファ層140、n型半導体層150、透明電極層160、表面透明電極層170が、順次積層された層構造に構成されている。
ガラス基板110は、例えばソーダライムガラス等のアルカリガラスなどが用いられるが、この限りではない。
(裏面電極層)
裏面電極層120は、導電性材料にてガラス基板110の一面に薄膜形成されている。この裏面電極層120は、平面領域が所定の広さとなる状態に絶縁距離を介して並列状に複数設けられている。この裏面電極層120は、例えばMo(モリブデン)をDCスパッタなどにて製膜した後に、レーザー光照射などによって絶縁距離の幅で分割されて形成される。この絶縁距離の幅の裏面電極層120間の溝を分割溝121として図1に示す。
なお、導電性材料としては、詳細は後述するが光吸収層130としてCIGS系を例示するのでMoを例示したが、これに限らず、金、銀、銅、アルミニウム、ニッケル、鉄、クロム、モリブデン、タングステン、チタン、コバルト、タンタル、ニオブ、ジルコニウム等の金属または合金が挙げられる。特に、反射率の高い金属が好ましい。また、製膜方法としては、DCスパッタに限らず、蒸着法、各種スパッタ法、CVD法、スプレー法、スピンオン法、ディップ法などが例示できる。
そして、裏面電極層120は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると抵抗値が上昇するおそれがある。一方、1μmより厚くなると、剥離するおそれがある。このことにより、裏面電極層120の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
さらに、裏面電極層120は、表面が平坦に限らず、表面に凹凸形状を形成して光を乱反射させる機能を付与してもよい。すなわち、積層される光吸収層130で吸収しきれなかった長波長光を散乱させて、光吸収層130内での光路長を延ばすことで、光起電力素子100の長波長感度が向上し、短絡電流が増大する。その結果、光電変換効率を向上できる。なお、光を散乱するための凹凸形状は、凹凸の山と谷の高低差がRmaxで、0.2μm以上2.0μm以下とすることが望ましい。ここで、Rmaxが2.0μmより大きくなると、カバレッジ性が低下し、膜厚斑ができ、抵抗値に斑を生じるおそれがあるので、凹凸形状を設ける場合にはRmaxで0.2μm以上2.0μm以下に設定することが好ましい。この凹凸形状の加工としては、ドライエッチング、ウェットエッチング、サンドブラスト、加熱などの各種方法を適用できる。
(光吸収層)
光吸収層130は、p型の導電性を有するカルコパイライト構造の化合物であるカルコパイライト化合物にて、裏面電極層120の上面に隣接する裏面電極層120に亘って架橋する状態に薄膜形成されている。
具体的には、光吸収層130は、ZnSe、CdS、ZnOなどのII-VI族半導体、GaAs、InP、GaNなどのIII-V族半導体、SiC、SiGeなどのIV族化合物半導体、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2、あるいはCuInS2などのカルコパイライト系半導体(I-III-VI族半導体)を用いることができる。本実施形態では、Cu、In、Ga、Seをスパッタリングや蒸着などにて薄膜形成された、いわゆるCIGS系の光吸収層130が設けられる構成を例示する。すなわち、製膜状態でカルコパイライト構造の組成となるように、各種材料を用いて各種製膜方法で製膜される。
この製膜は、例えば分子線エピタキシー装置を用いた多元蒸着法で製造される。
そして、光吸収層130は、厚さ寸法が0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下に形成されることが好ましい。ここで、0.1μmより薄くなると外光からの光の吸収量が低減するおそれがある。一方、10μmより厚くなると、生産性が低下したり、膜応力により剥離しやすくなるおそれがある。このことにより、光吸収層130の厚さ寸法は、0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下に設定される。
なお、この光吸収層130は、裏面電極層120上に製膜後、後述するバッファ層140をさらに製膜した後に、例えばメカニカルスクライビングなどによって裏面電極層120が露出する状態に分割されて、隣接する裏面電極層120に亘って架橋する状態に形成される。光吸収層130は、これらの方法に限らず、例えばCu−In−Gaをアニーリングにてセレン化するなど、各種方法が利用できる。また、光吸収層130としては、Cu、In、Ga、Seに限られるものではない。
(バッファ層)
バッファ層140は、光吸収層130の上面に薄膜状に積層形成されている。このバッファ層140は、光吸収層130に積層されてpn接合する透光性で比較的に低抵抗のn型の半導体層である。また、バッファ層140は、光吸収層130の表面に残存し、シャントパスとして機能するCu2Seのような半金属抵抗層に対して障壁としても機能する。
このバッファ層140は、例えばInSを溶液成長させて薄膜成形する。この製膜としては、例えばCBD(Chemical Bath Deposition)の製造条件で製造される。
そして、バッファ層140は、厚さ寸法が0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下に形成されることが好ましい。ここで、0.01μmより薄くなるとpn接合斑が生じるおそれがある。一方、0.5μmより厚くなると、外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。このことにより、バッファ層140の厚さ寸法は、0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下に設定される。
なお、光吸収層130として、CIGS系を例示するのでInSを例示したが、これに限らず、光吸収層130と良好にpn接合される材料であれば、いずれのものが利用できる。
そして、このバッファ層140は、上述した光吸収層130のメカニカルスクライビングなどにて光吸収層130とともに分割されている。
(n型半導体層)
n型半導体層150は、バッファ層140の上面に薄膜状に積層形成された非晶質層である。このn型半導体層150は、透光性を有し光吸収層130に対してn型の比較的に高抵抗な半導体層、すなわち、正孔のキャリアとして機能する光吸収層130に対して、電子のキャリアとして機能する。さらに、n型半導体150は、開放端電圧の低下も防止する。
このn型半導体層150は、抵抗値が10kΩ/□以上1000kΩ/□以下に形成されている。ここで、抵抗値が100kΩ/□より小さくなると、光吸収層で形成された電子が容易に陽極側に移動し、開放端電圧が低下し、光電変換効率の低下を招くおそれがある。一方、抵抗値が1000kΩ/□より大きくなると、開放端電圧は向上するが、光電変換素子の駆動電圧の上昇を招くおそれがある。このことにより、n型半導体層150の抵抗値は、10kΩ/□以上1000kΩ/□以下に設定される。
そして、このn型半導体層150の製膜は、例えばアルゴン(Ar)と酸素(O2)との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に製造される。
ここで、酸素分圧pO2が1×10-2Paより低くなると低抵抗膜が形成されるおそれがある。一方、酸素分圧pO2が0.2Paより高くなると直流スパッタリング製膜法においてプラズマの放電が不安定になり、安定した製膜ができなくなるおそれがある。また、基板温度が100℃より低くなるとn型のバッファ層140の成分(硫黄(S)など)とn型半導体層150との界面反応が進行せず、n型半導体層150が高抵抗化しなくなるおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するおそれがある。
さらに、このn型半導体150の製膜では、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope:AFM)の表面観察による粒径が0.001μm以下の非晶質に製造される。ここで、AFMの表面観察による粒径が0.001μmより粗くなると、n型のバッファ層140との間の界面接合性が低下しエネルギー障壁を生じるおそれがある。このことにより、AFMの表面観察による粒径を、0.001μm以下に設定する。
そして、n型半導体層150は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130における外光の吸収が阻害されるおそれがある。このことにより、n型半導体層150の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
また、n型半導体層150は、上述したように、光吸収層130およびバッファ層140とともにメカニカルスクライビングなどにて分割されている。このメカニカルスクライビングなどにて形成され、光吸収層130、バッファ層140およびn型半導体層150間の裏面電極層120を露出させる溝を第1の加工溝131として図1に示す。
(透明電極層)
透明電極層160は、n型半導体層150の上面から、スクライビングされた光吸収層130、バッファ層140およびn型半導体層150の一側から裏面電極層120に亘る第1の加工溝131内に薄膜状に積層形成されている。この透明電極層160は、n型半導体層150と同一の構成材料、すなわち主要組成が(In23+ZnO)に、DCスパッタや蒸着などにて、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に薄膜形成される。つまり、構成材料を同一とすることで、同一の装置での製膜を可能としている。
さらに、透明電極層160は、抵抗値が5Ω/□以上20Ω/□以下に形成されている。ここで、抵抗値が5Ω/□より小さくなると、膜厚が厚くなり透過率が低下するおそれがある。一方、抵抗値が20Ω/□より大きくなると、光吸収層160などで生成した電子および正孔の移動のための十分な閾値電圧が印加されず、エネルギー変換効率の低下を招くという不都合を生じるおそれがある。このことにより、透明電極層160の抵抗値は、5Ω/□以上20Ω/□以下に設定される。
この透明電極層160の製膜は、例えばArとO2との混合ガスを用いたスパッタ製膜、特にn型半導体層150の製膜方法と同一の直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に製造される。
ここで、酸素分圧pO2が1×10-3Paより低くなると透過率が低下するおそれがある。一方、酸素分圧pO2が5×10-2Paより高くなると透明電極層160の抵抗が増加する不都合を生じるおそれがある。また、基板温度が100℃より低くなると透明電極層160の安定性が低下するおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するおそれがある。
さらに、この透明電極層160の製膜では、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope:AFM)の表面観察による粒径が0.001μm以下の構成材料を用いる。ここで、AFMの表面観察による粒径が0.001μmより粗くなると、n型半導体層150との間の界面接合性が低下し、エネルギー障壁を生じるおそれがある。このことにより、AFMの表面観察による粒径を、0.001μm以下に設定する。
そして、透明電極層160は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると所定の低抵抗膜が得られないおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130における光吸収効率が低減するおそれがある。このことにより、透明電極層160の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
この透明電極層160は、後述する表面透明電極層170が成膜された後に、例えばメカニカルスクライビングなどによって光起電力素子100が直列接続される状態にn型半導体層150が露出する状態に分割される。
(表面透明電極層)
表面透明電極層170は、透明電極層160に比べ屈折率が小さく、透明電極層160の上面に、同一の構成材料にて薄膜に積層形成、すなわち主要組成が(In23+ZnO)、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に薄膜形成されている。
さらに、表面透明電極層170は、抵抗値が100Ω/□以下に形成されている。ここで、抵抗値が100Ω/□より大きくなると、素子作成の際に上に形成される金属取出し電極との間で接続抵抗の上昇を招くおそれがある。このことにより、表面透明電極層170の抵抗値は、100Ω/□以下に設定される。
この表面透明電極層170の製膜は、例えばArとO2との混合ガスを用いたスパッタ製膜、特にn型半導体層150および透明電極層160の製膜方法と同一の直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に製造される。
ここで、酸素分圧pO2が1×10-3Paより低くなると透過率が低下するおそれがある。一方、酸素分圧pO2が5×10-2Paより高くなると表面透明電極層170の抵抗が増加する不都合を生じるおそれがある。また、基板温度が100℃より低くなると表面透明電極層170の安定性が低下するという不都合を生じるおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するという不都合を生じるおそれがある。
そして、表面透明電極層170は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると反射防止効果が低減し、光吸収層130への外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130への外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。このことにより、表面透明電極層170の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
また、表面透明電極層170は、上述した透明電極層160のメカニカルスクライビングなどにて透明電極層160とともに分割されている。このメカニカルスクライビングなどにて形成され、透明電極層160および表面透明電極層170間のn型半導体層150を露出させる溝を第2の加工溝171として図1に示す。
[光起電力素子の製造動作]
次に、上記光起電力素子100を製造する動作について説明する。
光起電力素子100の製造では、裏面電極層形成工程と、光吸収層形成工程と、バッファ層形成工程と、n型半導体層形成工程と、第1のスクライビング工程と、透明電極層形成工程と、表面透明電極形成工程と、第2のスクライビング工程と、を順次実施する。
(裏面電極層形成工程)
裏面電極層形成工程では、ガラス基板110上に裏面電極層120を薄膜形成する。
具体的には、Mo(モリブデン)などの電極材料を、DCスパッタなどの各種製膜方法により、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に、ガラス基板110上に製膜する。
そして、製膜後に、レーザー光照射やメカニカルスクライビング、エッチング処理などにより、平面領域が所定の広さの裏面電極層120となる状態に幅寸法が絶縁距離となる分割溝121を形成して並列状に分割する。
(光吸収層形成工程)
光吸収層形成工程では、裏面電極層形成工程でガラス基板110上に形成された裏面電極層120上に、分割溝121に跨って架橋する状態に、光吸収層130を薄膜形成する。なお、本実施形態では、ガラス基板110の一面側のほぼ全面に製膜後に後述する第1のスクライビング工程にて分割して光吸収層130が形成されるが、説明の都合上、製膜した段階を光吸収層130の形成工程として説明する。
製膜に際しては、ZnSe、CdS、ZnOなどのII-VI族半導体、GaAs、InP、GaNなどのIII-V族半導体、SiC、SiGeなどのIV族化合物半導体、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2、あるいはCuInS2などのカルコパイライト系半導体(I-III-VI族半導体)などの半導体材料を用いる。これら半導体材料を、スパッタリングや蒸着などの各種製膜方法により、厚さ寸法が0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下で、カルコパイライト構造の組成に製膜する。
(バッファ層形成工程)
バッファ層形成工程では、光吸収層形成工程で形成された光吸収層130上に、光吸収層130とpn接合する透光性でn型のバッファ層140を形成する。なお、本実施形態では、上述した光吸収層130と同様、ガラス基板100の一面側のほぼ全面に光吸収層130となる層を形成した後に製膜し、後述する第1のスクライビング工程にて分割して光吸収層130とともにバッファ層140が形成されるが、説明の都合上、製膜した段階をバッファ層140の形成工程として説明する。
製膜に際しては、例えばInSをCBD(Chemical Bath Deposition)の製造条件で溶液成長させ、厚さ寸法が0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下に薄膜形成する。
(n型半導体層形成工程)
n型半導体層形成工程では、バッファ層形成工程で形成されたバッファ層140上に、バッファ層140より高抵抗で光吸収層130に対してn型となる透光性で非晶質のn型半導体層150を薄膜形成する。なお、本実施形態では、上述した光吸収層130およびバッファ層140と同様に、ガラス基板110の一面側のほぼ全面にバッファ層140となる層を形成した後に製膜し、後述する第1のスクライビング工程にて分割して光吸収層130およびバッファ層140とともにn型半導体層150が形成されるが、説明の都合上、製膜した段階をn型半導体層150の形成工程として説明する。
このn型半導体層150の製膜に際しては、例えばIn、亜鉛(Zn)を適宜の条件で製膜する。具体的には、アルゴン(Ar)と酸素(O2)との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で、DCスパッタや蒸着などにて薄膜したり、酸化インジウムおよび酸化亜鉛を主要成分とする組成物を用いてDCスパッタや蒸着などしたりする。
このようにして、(In23+ZnO)を主要組成とし、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、n型半導体層150は、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に形成される。
(第1のスクライビング工程)
第1のスクライビング工程では、バッファ層形成工程にて光吸収層130上にバッファ層140を形成した後、裏面電極120とバッファ層130との対向する有効面積で起電力を発生させる素子工程とするためのメカニカルスクライビング処理である。
例えば、248nmのエキシマレーザーを用いたレーザー照射方法により、積層するn型半導体層150、バッファ層140および光吸収層130をスクライビングし、第1の加工溝131を形成して分割し、裏面電極層120の表面を露出させる。
(透明電極層形成工程)
透明電極層形成工程では、第1のスクライビング工程で、第1の加工溝131が設けられて複数分割されたn型半導体層150の上面から、第1の加工溝131内に臨む裏面電極層120までの領域に、非晶質の透明電極層160を薄膜形成する。
この透明電極層160の製膜に際しては、n型半導体層150と同一の構成材料を用いて同一の製膜方法により製膜する。具体的には、ArとO2との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で製膜した。
このようにして、主要組成が(In23+ZnO)となる非晶質で、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、透明電極層160は、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に形成される。
(表面透明電極層形成工程)
表面透明電極層形成工程では、透明電極層形成工程で形成された透明電極層160の上面に、n型半導体層150および透明電極層160と同一の構成材料を用いて同一の製膜方法により製膜する。具体的には、ArとO2との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で製膜した。
このようにして、主要組成が(In23+ZnO)となる非晶質で、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、表面透明電極層170は、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に形成される。
(第2のスクライビング工程)
第2のスクライビング工程では、表面透明電極形成工程にて表面透明電極層170を形成した後、透明電極160および表面透明電極層170を分割して、素子構成として直列接続する構成とするためのメカニカルスクライビング処理である。
例えば、金属針を用いたメカニカルスクライビング方法で積層する透明電極160および表面透明電極層170をメカニカルスクライビングし、第2の加工溝171を形成して分割し、n型半導体層150の表面を露出させる。この工程により、ガラス基板110上の薄膜積層半導体構成である隣接する光起電力素子100が直列状に接続する構成となる。
[光起電力素子の作用効果]
上述したように、上記実施の形態の光起電力素子100では、ガラス基板110の一面に設けられた対をなす裏面電極層120に亘ってカルコパイライト構造の化合物にて導電性を有するp型の光吸収層130に、この光吸収層130とpn接合する透光性でn型のバッファ層140を積層形成し、バッファ層140に積層するとともに光吸収層130およびバッファ層140の一側から裏面電極層120の一方に亘って透光性の透明電極層160を設けた光起電力素子100における透明電極層160を、酸化インジウムおよび酸化亜鉛を主要成分として含有する非晶質薄膜に形成している。
このため、pn接合にて光の入射により発生する起電力を集電する透明電極を、加工が簡単なメカニカルスクライビングでも亀裂や欠落などの不都合を生じずに良好に加工できる。よって、製造性が向上して歩留まりを向上でき、製造コストも低減できる。
さらに、酸化インジウムおよび酸化亜鉛を主要成分とした非晶質であることから、耐熱性および耐光性に優れ光学特性変化を生じない安定した特性に形成でき、長期間安定したエネルギー変換効率を提供できる。そしてさらに、接続する層間界面の表面積が増大して高い界面接続信頼性を提供できる。
そして、ArとO2との混合ガスを用いるスパッタリング製膜により、混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に透明電極層160を形成している。
このため、簡便な例えば金属針を用いたメカニカルスクライビング法で、精度よくパターン加工でき、製造性を向上できる。
また、透明電極層160の製膜の際、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の構成材料を用いて非晶質の薄膜に形成している。
このため、n型半導体層150との接合性を向上でき、エネルギー障壁を低減できるとともに、接合の安定性を向上でき、耐久性を向上できる。
さらに、透明電極層160を抵抗値が5Ω/□以上20Ω/□以下に形成している。
このため、光吸収層130で生成した電子および正孔の移動のための十分な閾値電圧が印加され、エネルギー変換効率を向上できる。
また、バッファ層140より高抵抗で光吸収層130に対してn型となる透光性のn型半導体層150を、バッファ層140に積層形成している。
このため、開放端電圧の低下を防止できる。
そして、このn型半導体層150を所定の酸素濃度でスパッタリングにより高抵抗に形成、すなわちArとO2との混合ガスを用いるスパッタリング製膜により、混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜している。
このため、容易に開放端電圧の低下を防止できる層が得られる。
さらに、n型半導体層150を透明電極層160と同一の構成材料にて形成している。
このため、n型半導体層150と透明電極層160とを同一の装置を用いて製膜でき、製造性の向上が得られる。よって、製造コストの低減が得られる。さらに、同一装置のスパッタ装置で連続して生産できるので、大気開放しなくても連続して透明電極層160を形成でき、表面汚染による接合界面の性能低下を防止できる。
そして、n型半導体層150と透明電極層160との構成材料を、酸化インジウムおよび酸化亜鉛としている。
このため、非晶質で比較的に低温条件で良好な特性の導電性の薄膜を形成できるとともに、クラックなども生じにくく、裏面電極層120との密着性も高く、良好な歩留まりで製造できる。
また、透明電極層160と同一の構成材料にて、導電性および透光性を有し透明電極層160より屈折率が小さい表面透明電極層170を透明電極層に積層形成している。
このため、効率的な光の入射が得られ、効率的に光エネルギーを電気エネルギーに変換できる。さらには、上述したように、同一装置のスパッタ装置で連続して生産できるので、大気開放しなくても連続して表面透明電極層170を形成でき、表面汚染による接合界面の性能低下を防止できる。
[実施形態の変形例]
なお、以上に説明した態様は、本発明の一態様を示すものであって、本発明は、上述した実施形態に限定されるものではなく、本発明の目的および効果を達成できる範囲内での変形や改良は、本発明の内容に含まれるものである。また、本発明を実施する際における具体的な構成および形状などは、本発明の目的および効果を達成できる範囲内において、他の構成や形状などとしても問題はない。
すなわち、本発明の光起電力素子として、光吸収層130をいわゆるCIGS系で形成したが、例えばCISなどのカルコパイライト構造の化合物にて形成した構成としてもよい。
そして、n型半導体層150を設けた構成を例示して説明したが、この層を設けなくてもよい。同様に、表面透明電極層170を設けなくともよい。
また、第1のスクライビング工程、および、第2のスクライビング工程などを実施し、分割溝121、第1の加工溝131、第2の加工溝171を形成する構成で説明したが、例えば印刷やマスクを用いる等にて、あらかじめ分割溝121、第1の加工溝131、第2の加工溝171で分割される状態に製膜するなどしてもよい。
そして、n型半導体層150、透明電極層160および表面透明電極層170を同一の構成材料にて形成したが、この限りではない。
また、屈折率は、n型半導体層150、透明電極層160および表面透明電極層170の製膜状況に応じて、適宜設定できる。なお、効率よく光を入射できるとともに層内に閉じ込めるように反射させる構成とすることが好ましい。
さらに、仕事関数についても、光吸収層130の設定されるエネルギーバンドに応じて適宜設定すればよい。
その他、本発明の実施における具体的な構成および形状などは、本発明の目的を達成できる範囲で他の構造などとしてもよい。
次に、実施例を挙げて、本発明をより具体的に説明する。
なお、本発明は実施例などの内容に何ら限定されるものではない。
(素子基板の作成)
縦寸法10cm、横寸法10cmのソーダライムガラス基板110上に、DCマグネトロンスパッタ装置を用い、Mo(モリブデン)を主成分とする裏面電極層120を室温で0.1μm膜厚で形成し、その上に、分子線エピタキシー装置を用いた共蒸着法で、CuS、InS、GaS、SeSを蒸着源に用いて、350℃でCIGSを主成分とする光吸収層130を1μm膜厚で形成し、更にその上に、CBD法によりInSを主成分とするバッファ層140を100℃で0.1μm膜厚で積層形成したものを素子基板に用いた。
(膜厚の測定)
上記素子基板および下記実施例において素子基板上に設ける各層の膜厚は、各製膜工程毎に、素子基板の他に、膜厚測定用のマスクを形成したソーダライムガラスを設置し、各層の製膜後にマスクを除去することで段差部を形成し、触針法(使用機器:Sloan社製のDEKTAK3030)によって測定した。
(シート抵抗の測定)
下記実施例において製造した光起電力素子における、n型半導体層150、透明電極層160、表面透明電極層170の各層のシート抵抗は、各層の製膜工程毎に、素子基板の他に、膜厚測定用のソーダライムガラス基板を設置し、各層の製膜後に、四端針方(使用機器:三菱油化製のロレスタFP)によって測定した。
(粒径の測定)
下記実施例において製造した光起電力素子における、n型半導体層150、透明電極層160、表面透明電極層170の各層の粒径は、シート抵抗測定に用いた各層製膜基板を用い、原子間力顕微鏡(AFM)の表面観察により測定した。
(素子評価)
下記実施例において製造した光起電力素子の光電変換効率は、透明電極層又は表面透明電極層を正極、Moを負極として利用し、Agペーストを用いたスクリーン印刷法により、透明電極層又は表面透明電極層およびMo層上に30μm□、膜厚0.5μmの取出し電極を形成し、開放電圧(Voc)、短絡電流密度(Isc)、曲線因子(FF)を評価することで算出した。なお、光源にはキセノンランプからの光を特定の光学フィルターで調整したもの(ソーラーシミュレーション)を光源として用いた。
(高温高湿試験)
下記実施例において製造した光起電力素子の高温高湿試験は、光起電力素子のAgペースト印刷前の段階で80℃、85%RHの高温高湿槽に1000時間暴露後、上記素子評価の手法でAgペーストを印刷後、開放電圧(Voc)、短絡電流密度(Isc)、曲線因子(FF)を評価することで光電変換効率を算出した。
[実施例1]
(n半導体層150の形成)
上記素子基板上にDCマグネトロンスパッタ装置、IZOターゲット(In23:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.2Paになるように調整し、室温でn型半導体層150を0.1μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜されたn型半導体層150の粒径をAFMによる表面観察により測定したところ、0.7nmであった。
(透明電極層160の形成)
上記n型半導体層150の上に、IZOターゲット(In23:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.001Paになるように調整し、室温で透明電極層160を0.2μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜された透明電極層160のシート抵抗を4端針法で、粒径をAFMによる表面観察により測定したところ、それぞれ、シート抵抗は15Ω/□、粒径は0.3nmであった。
(表面透明電極層170の形成)
上記透明電極層160の上に、IZOターゲット(In23:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.001Paになるように調整し、200℃で表面透明電極層170を0.1μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜された表面透明電極層170の粒径をAFMによる表面観察により測定したところ、表1に示すように、粒径は0.3nmであった。
素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を積層した1つの光起電力素子100の表面透明電極層170およびMo裏面電極層120上にAgペーストを用いたスクリーン印刷で取出し電極を形成し、光電変換効率を測定したところ、表1に示すように、Vocは620mV、Iscは39mA、FF(曲線因子)/Pin(標準入射パワー)は0.67で、これらから算出した光電変換効率は16.2%であった。
素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を積層したもう1つの光起電力素子100を80℃、85%RHの高温高湿条件の中に1000時間暴露試験を行い、試験後の表面透明電極層170およびMo裏面電極層120上にAgペーストを用いたスクリーン印刷で取出し電極を形成し、光電変換効率を測定したところ、Vocは619mV、Iscは39mA、FF/Pinは0.67で、これらから算出した光電変換効率は16.2%であった。
なお、表中、n層はn半導体層150、TCOは透明電極層160、S−TCOは表面透明電極層170を示す。
[実施例2〜48および比較例1〜24]
製膜条件、ターゲット組成、表面透明電極層170の有無以外は、実施例1と同様に素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を適宜形成し、各層の粒径、透明電極層160のシート抵抗、初期の素子評価、高温高湿試験後の素子評価を行い、結果を表1〜4に示した。
Figure 2010098265
Figure 2010098265
Figure 2010098265
Figure 2010098265
[結果]
上記表1から表4までに示す実験結果から、製膜条件の最適化により各構成層の粒径を0.001μm以下に制御することで、エネルギー変換効率の向上および高温高湿試験後のエネルギー変換効率の低下を最小限に抑制することができることがわかる。
本発明は、カルコパイライト構造の化合物にて薄膜形成された導電性を有するp型の光吸収層を有する光起電力素子として利用できる。
本発明の一実施形態に係る光起電力素子の概略構成を示す断面図である。
符号の説明
100…光起電力素子
110…ガラス基板
120…裏面電極層
121…分割溝
130…光吸収層
131…第1の加工溝
140…バッファ層
150…n型半導体層
160…透明電極層
170…表面透明電極層
171…第2の加工溝

Claims (12)

  1. ガラス基板と、
    このガラス基板の一面に設けられた裏面電極層と、
    カルコパイライト構造の化合物にて前記裏面電極層に積層形成された導電性を有するp型の光吸収層と、
    この光吸収層に積層形成されて前記光吸収層とpn接合する透光性でn型のバッファ層と、
    このバッファ層に積層されるとともに前記積層する光吸収層およびバッファ層の一側から前記裏面電極に亘って設けられた透光性の透明電極層と、を備え、
    前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質薄膜に形成された
    ことを特徴とした光起電力素子。
  2. 請求項1に記載の光起電力素子であって、
    前記透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
    ことを特徴とした光起電力素子。
  3. 請求項1または請求項2に記載の光起電力素子であって、
    前記透明電極層は、組成In23/(In23+ZnO)が50質量%以上95質量%以下に形成された
    ことを特徴とした光起電力素子。
  4. 請求項1から請求項3までのいずれか1項に記載の光起電力素子であって、
    前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とする組成における第3成分量は、20質量%以下である
    ことを特徴とした光起電力素子。
  5. 請求項1から請求項4までのいずれか1項に記載の光起電力素子であって、
    前記バッファ層に積層形成され前記バッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層を備えた
    ことを特徴とした光起電力素子。
  6. 請求項5に記載の光起電力素子であって、
    前記n型半導体層は、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質薄膜に形成された
    ことを特徴とした光起電力素子。
  7. 請求項5または請求項6に記載の光起電力素子であって、
    前記n型半導体層は、前記透明電極層と同一の構成材料にて形成された
    ことを特徴とした光起電力素子。
  8. 請求項5から請求項7までのいずれか1項に記載の光起電力素子であって、
    前記n型半導体層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
    ことを特徴とした光起電力素子。
  9. 請求項1から請求項8までのいずれか1項に記載の光起電力素子であって、
    前記透明電極層に積層形成され導電性および透光性を有し前記透明電極層より屈折率が小さい表面透明電極層を備えた
    ことを特徴とした光起電力素子。
  10. 請求項9に記載の光起電力素子であって、
    前記表面透明電極層は、前記透明電極層と同一の構成材料にて形成された
    ことを特徴とした光起電力素子。
  11. 請求項9または請求項10に記載の光起電力素子であって、
    前記表面透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
    ことを特徴とした光起電力素子。
  12. ガラス基板上に裏面電極層を薄膜形成する裏面電極層形成工程と、
    前記裏面電極層上にカルコパイライト構造の化合物にてp型の光吸収層を薄膜形成する光吸収層形成工程と、
    前記光吸収層上に前記光吸収層とpn接合するn型のバッファ層を薄膜形成するバッファ層形成工程と、
    前記バッファ層上に透明電極層を形成する透明電極層形成工程と、
    を実施する光起電力素子の製造方法であって、
    前記透明電極層形成工程は、前記透明電極層を、酸化インジウムおよび酸化亜鉛を主要成分とし、原子間力顕微鏡(Atomic Force Microscope)の表面観察による粒径が0.001μm以下の非晶質に薄膜形成する
    ことを特徴とする光起電力素子の製造方法。
JP2008270259A 2008-10-20 2008-10-20 光起電力素子、および、その製造方法 Expired - Fee Related JP5465859B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008270259A JP5465859B2 (ja) 2008-10-20 2008-10-20 光起電力素子、および、その製造方法
PCT/JP2009/068012 WO2010047309A1 (ja) 2008-10-20 2009-10-19 光起電力素子、および、その製造方法
CN200980142325.0A CN102187472B (zh) 2008-10-20 2009-10-19 光致电压元件及其制造方法
US13/124,902 US20110197967A1 (en) 2008-10-20 2009-10-19 Photovoltaic element and method for manufacturing same
EP09822006.4A EP2360733A4 (en) 2008-10-20 2009-10-19 PV ELEMENT AND MANUFACTURING METHOD THEREFOR
KR1020117011455A KR20110091683A (ko) 2008-10-20 2009-10-19 광기전력 소자 및 그 제조 방법
TW098135433A TW201034213A (en) 2008-10-20 2009-10-20 Photovoltaic element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270259A JP5465859B2 (ja) 2008-10-20 2008-10-20 光起電力素子、および、その製造方法

Publications (2)

Publication Number Publication Date
JP2010098265A true JP2010098265A (ja) 2010-04-30
JP5465859B2 JP5465859B2 (ja) 2014-04-09

Family

ID=42259720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270259A Expired - Fee Related JP5465859B2 (ja) 2008-10-20 2008-10-20 光起電力素子、および、その製造方法

Country Status (1)

Country Link
JP (1) JP5465859B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122987A (ja) * 2011-12-12 2013-06-20 Honda Motor Co Ltd 太陽電池の製造方法
KR101765922B1 (ko) 2011-02-07 2017-08-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN111490107A (zh) * 2019-01-25 2020-08-04 神华(北京)光伏科技研发有限公司 薄膜太阳电池及薄膜太阳电池的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135037A (ja) * 1995-11-10 1997-05-20 Canon Inc 光起電力素子
JP2001257374A (ja) * 2000-03-10 2001-09-21 Honda Motor Co Ltd 太陽電池
JP2004158619A (ja) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd 電子デバイスおよびその製造方法
JP2005126758A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 透明導電膜の製造方法
JP2006332440A (ja) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及び製膜装置
WO2007108932A2 (en) * 2006-03-13 2007-09-27 Solopower, Inc. Technique for preparing precursor films and compound layers for thin film solar cell fabrication and apparatus corresponding thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135037A (ja) * 1995-11-10 1997-05-20 Canon Inc 光起電力素子
JP2001257374A (ja) * 2000-03-10 2001-09-21 Honda Motor Co Ltd 太陽電池
JP2004158619A (ja) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd 電子デバイスおよびその製造方法
JP2005126758A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 透明導電膜の製造方法
JP2006332440A (ja) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及び製膜装置
WO2007108932A2 (en) * 2006-03-13 2007-09-27 Solopower, Inc. Technique for preparing precursor films and compound layers for thin film solar cell fabrication and apparatus corresponding thereto

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN4001006695; T. Minami, et al.: 'Highly Transparent and Conductive Zn2InO5 Thin Films Prepared by RF Magnetron Sputtering' Japanese Journal of Applied Physics Vol.34, Part 2, No.8A, 19950801, p.L971-L974 *
JPN6010002322; T. Sasabayashi, et al.: Thin Solid Films Vol.445, 2003, p.219-223 *
JPN6010002327; 海上 暁: '特集/機能性コーティングの主役 新規性非晶質透明導電材料' コンバーテック , 199603, p.19-21 *
JPN6010002330; 海上 暁: '非晶質透明導電材料' 出光技報 第39巻第1号, 1996, p.40-45 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765922B1 (ko) 2011-02-07 2017-08-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP2013122987A (ja) * 2011-12-12 2013-06-20 Honda Motor Co Ltd 太陽電池の製造方法
CN111490107A (zh) * 2019-01-25 2020-08-04 神华(北京)光伏科技研发有限公司 薄膜太阳电池及薄膜太阳电池的制备方法

Also Published As

Publication number Publication date
JP5465859B2 (ja) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2010047309A1 (ja) 光起電力素子、および、その製造方法
KR101081294B1 (ko) 태양전지 및 이의 제조방법
KR101144570B1 (ko) 태양전지 및 이의 제조방법
WO2007043219A1 (ja) 太陽電池およびその製造方法
JP6366914B2 (ja) 多接合型太陽電池
KR101034150B1 (ko) 태양전지 및 이의 제조방법
JP2004296749A (ja) 両面受光太陽電池
JP2012204617A (ja) 光起電力素子、及び当該光起電力素子の製造方法
US20130029450A1 (en) Method for manufacturing solar cell
US20120055544A1 (en) Solar cell and method of manufacturing the same
JP5465860B2 (ja) 光起電力素子、および、その製造方法
JP5465859B2 (ja) 光起電力素子、および、その製造方法
KR101189415B1 (ko) 태양전지 및 이의 제조방법
JP2011159920A (ja) 化合物半導体、光電素子及びその製造方法
KR101327126B1 (ko) 태양전지 및 이를 이용한 태양전지 모듈
KR101349484B1 (ko) 태양전지 모듈 및 이의 제조방법
KR101592582B1 (ko) 태양전지 및 이의 제조방법
KR101028310B1 (ko) 태양전지 및 이의 제조방법
JP5594949B2 (ja) 光起電力素子、および、その製造方法
US20150093852A1 (en) Method for enhancing conductivity of molybdenum thin film by using electron beam irradiation
JP5530618B2 (ja) 光起電力素子、および、その製造方法
JP2012124284A (ja) 光電素子
KR101283240B1 (ko) 태양전지 및 이의 제조방법
KR101034146B1 (ko) 태양전지 및 이의 제조방법
KR101814814B1 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees