JP2010093753A - 固体撮像素子及び信号処理システム - Google Patents

固体撮像素子及び信号処理システム Download PDF

Info

Publication number
JP2010093753A
JP2010093753A JP2008264583A JP2008264583A JP2010093753A JP 2010093753 A JP2010093753 A JP 2010093753A JP 2008264583 A JP2008264583 A JP 2008264583A JP 2008264583 A JP2008264583 A JP 2008264583A JP 2010093753 A JP2010093753 A JP 2010093753A
Authority
JP
Japan
Prior art keywords
optical
unit
signal
dark current
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008264583A
Other languages
English (en)
Inventor
Hidehiko Ogasawara
英彦 小笠原
Toshiyuki Sekiya
俊之 関矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008264583A priority Critical patent/JP2010093753A/ja
Priority to US12/554,506 priority patent/US8355049B2/en
Priority to CN2009102046935A priority patent/CN101729802B/zh
Publication of JP2010093753A publication Critical patent/JP2010093753A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】画素部から読み出される画素信号を、光通信部で発生する熱の影響を考慮して、光信号により高速伝送を可能とした固体撮像素子を提供する。
【解決手段】固体撮像素子1Aは、画素部10Aから読み出される信号を光信号に変換して出力する光通信部11Aと有効画素領域100Eの間に、第1のオプティカルブラック領域101(OPB1)が配置される。OPBレベル供給部210は、第1のオプティカルブラック領域101(OPB1)から取得したOPB1レベルと、第2のオプティカルブラック領域101(OPB2)から取得したOPB2レベルに基づき、信号が読み出される画素の位置に応じて変化する推定OPBレベルを生成し、CDS部200は、有効画素領域100Eから信号を読み出すタイミングに合わせて出力された推定OPBレベルを、有効画素領域100Eから読み出された信号から減算する。
【選択図】 図3

Description

本発明は、光の像を電気信号に変換する固体撮像素子及びこの固体撮像素子を備えた信号処理システムに関する。詳しくは、固体撮像素子から読み出される画素信号を、光通信部で光信号により出力できるようにすると共に、固体撮像素子の有効画素領域で発生する暗電流成分を、オプティカルブラック領域の暗電流成分を利用することで、オプティカルブラック領域の近傍に配置された光通信部で発生する熱による変動を考慮して除去できるようにしたものである。
回路基板の高速化、高集積化が進み、信号遅延、EMIの発生等の問題への対応が急務になってきている。電気配線により問題になっていた信号遅延、信号劣化、及び配線から放射される電磁干渉ノイズについて解決され、かつ高速伝送が可能である光配線技術が注目されている。
このような光配線技術を利用して、カメラ本体部に着脱可能に構成されたレンズに固体撮像素子を備えると共に、固体撮像素子から出力される信号を光でカメラ本体部に伝達できるようにした技術が提案されている(例えば、特許文献1参照)。
一方、固体撮像素子で発生する熱を抑えるために、画素出力の必要が無いタイミングでは出力部を駆動しないように電源供給を制御する技術が提案されている(例えば、特許文献2参照)。
特開2006−196972号公報 特開2004−112422号公報
光配線技術を利用することで、信号の高速伝送が可能である。しかし、特許文献1に記載の技術では、固体撮像素子が実装されている基板に発光素子が実装される構成が開示されるのみで、発光素子の配置について記載されていない。これにより、固体撮像素子と発光素子との位置関係に起因する熱に関する課題が解決されていない。
すなわち、固体撮像素子には、オプティカルブラック領域と称される遮光された領域が設けられ、オプティカルブラック領域で発生する暗電流成分を信号から除去することで、ノイズ除去を行っている。
固体撮像素子で発生する暗電流成分は、熱の影響で値が大きく変化する。このため、固体撮像素子に熱源となる発光素子を備えた構成では、熱の影響で暗電流成分にばらつきが生じ、黒浮きの発生等、画質の低下につながる可能性がある。
また、特許文献2に記載の技術のように、固体撮像素子が発生する熱ではなく、発光素子から発生する熱が固体撮像素子に与える影響について考慮されていない。
本発明は、このような課題を解決するためになされたもので、画素部から読み出される画素信号を、光通信部で発生する熱の影響を考慮して、光信号により高速伝送を可能とした固体撮像素子及びこの固体撮像素子を備えた信号処理システムを提供することを目的とする。
上述した課題を解決するため、本発明の固体撮像素子は、光が入射され、入射された光を電気信号に変換する有効画素領域、及び有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有した画素部と、有効画素領域の周囲に配置されたオプティカルブラック領域に対して、所定のオプティカルブラック領域の近くに配置され、画素部から読み出される信号を、光信号に変換して出力する光通信部と、光通信部が近接配置されたオプティカルブラック領域から暗電流に応じた暗電流レベルを取得し、取得した暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成し、有効画素領域から信号を読み出すタイミングに合わせて推定暗電流レベルを出力する暗電流レベル供給部と、暗電流レベル供給部から推定暗電流レベルが供給され、有効画素領域から読み出された信号から、推定暗電流レベルを減算するノイズ補正部とを備えたものである。
また、本発明の固体撮像素子は、光が入射され、入射された光を電気信号に変換する有効画素領域、及び有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有し、オプティカルブラック領域は、有効画素領域を挟んで一方の側に第1のオプティカルブラック領域が形成されると共に、他方の側に第2のオプティカルブラック領域が形成された画素部と、第2のオプティカルブラック領域に対して第1のオプティカルブラック領域の近くに配置され、画素部から読み出される信号を、光信号に変換して出力する光通信部とを備えたものである。
本発明の信号処理システムは、上述した固体撮像素子を備えるものである。すなわち、入射された光を電気信号に変換する固体撮像素子及び固体撮像素子に光を入射させる光学素子を有した光学装置と、光学装置が接続される信号処理装置を備え、固体撮像素子は、光が入射され、入射された光を電気信号に変換する有効画素領域、及び有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有した画素部と、有効画素領域の周囲に配置されたオプティカルブラック領域に対して、所定のオプティカルブラック領域の近くに配置され、画素部から読み出される信号を、光信号に変換して出力する光通信部と、光通信部が近接配置されたオプティカルブラック領域から暗電流に応じた暗電流レベルを取得し、取得した暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成し、有効画素領域から信号を読み出すタイミングに合わせて推定暗電流レベルを出力する暗電流レベル供給部と、暗電流レベル供給部から推定暗電流レベルが供給され、有効画素領域から読み出された信号から、推定暗電流レベルを減算するノイズ補正部とを備え、信号処理装置は、固体撮像素子の光通信部から出力される光信号が入力される光通信部と、固体撮像素子に画素部からの信号の読み出しを制御する読み出し制御部と、画素部から読み出されて固体撮像素子から光通信で入力される信号に処理を行う信号処理部とを備えたものである。
本発明では、光通信部が近接配置された第1のオプティカルブラック領域で発生する暗電流に応じた第1の暗電流レベルと、第2のオプティカルブラック領域で発生する暗電流に応じた第2の暗電流レベルが取得される。
光通信部が近接配置された第1のオプティカルブラック領域は、光通信部で発生する熱の影響を受けることで、発生する暗電流が変化する。このため、光通信部が近接配置されたオプティカルブラック領域から取得される暗電流レベルは、光通信部で発生する熱の影響で変化する。
暗電流レベル供給部は、第1のオプティカルブラック領域から取得した第1の暗電流レベルと、第2のオプティカルブラック領域から取得した第2の暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成する。推定暗電流レベルは、第1の暗電流レベルを初期レベル、第2の暗電流レベルを終了レベルとして、第1の暗電流レベルと第2の暗電流レベルの差に従い変化する。
有効画素領域では、光通信部に近い側の画素から信号が読み出される。暗電流レベル供給部は、有効画素領域から信号を読み出すタイミングに合わせて、推定暗電流レベルを変化させる。
これにより、信号から減算される暗電流レベルは、信号が読み出される画素と、光通信部との位置関係に応じた熱の影響が考慮される。従って、有効画素領域内で熱の影響により暗電流レベルが異なる場合でも、画素の位置に応じて最適な暗電流レベルが信号から減算され、暗電流レベルが除去される。
本発明の固体撮像素子によれば、オプティカルブラック領域の近くに、熱源となる光通信部を配置し、光通信部で発生する熱の影響で変化する暗電流レベルを利用して、信号から減算する暗電流レベルを、信号が読み出される画素の位置に応じて変える。
これにより、熱の影響による撮像画質の劣化を抑えることができる。また、光通信部を画素部の近くに配置可能として、配置の自由度を向上させることができる。
本発明の信号処理システムによれば、上述した固体撮像素子を備えることで、熱の影響による劣化が抑えられた画素信号を、光による高速伝送で信号処理装置に送り、画像データの信号処理を行うことができる。
以下、図面を参照して本発明の固体撮像素子、固体撮像素子を備えた光学装置、光学装置が接続される信号処理装置、光学装置と信号処理装置を備えた信号処理システムの実施の形態について説明する。なお、説明は以下の順序で行う。
1.本発明の概要
2.第1の実施の形態の固体撮像素子の構成例
3.有効画素領域における暗電流の推定方法
4.第1の実施の形態の固体撮像素子の動作例
5.光通信部の配置例
6.遮光部の配置例
7.固体撮像素子を備えた信号処理システムの構成例
8.信号処理システムにおける信号伝送の形態に応じた光通信部の実装形態例
9.光通信部の近くにオプティカルブラック領域を配置した固体撮像素子の効果例
<1.本発明の概要>
図1は、本発明の概要を示す機能ブロック図、図2は、本発明の背景となる比較例を示す機能ブロック図である。光電変換機能を有した固体撮像素子において、画素部から電気信号で読み出された画素信号を、光信号に変換して出力する構成を考える。
図2に示すように、画素部10Aの近傍に光通信部11Aを配置する例では、光通信部11Aの発熱により、光通信部11Aの近くの有効画素領域100Eは熱を持ち、光が入射しなくとも発生する暗電流が増加する。一方、オプティカルブラック領域101は、光通信部11Aと有効画素領域100Eを挟んで反対側にあるので、光通信部11Aの発熱による温度上昇の影響は小さく、暗電流の増加は殆どない。
固体撮像素子では、画素部10Aに光が入射されない状態でも生じる暗電流を補正するために、オプティカルブラック領域101で発生する暗電流を利用する。すなわち、オプティカルブラック領域101から取得した暗電流成分を、有効画素領域100Eの信号から減算することで、暗電流の直流分の除去を行っている。
画素部10Aと光通信部11Aが近接配置された構成では、光通信部11A付近の有効画素と、光通信部11Aから離れた位置にある有効画素で、含まれる暗電流成分が異なる。
このため、画素部10Aと光通信部11Aが近接配置された構成で、オプティカルブラック領域101を利用して暗電流成分の除去を行うと、黒浮き等、撮像画素が劣化する可能性がある。
そこで、図1に示すような構成を提案する。図1では、光通信部11Aと有効画素領域100Eの間に、第1のオプティカルブラック領域101(OPB1)を備える。光通信部11Aの発熱により、光通信部11Aの近くの有効画素領域100Eは熱を持ち、暗電流が増加する。同様に、光通信部11Aと有効画素領域100Eの間に配置される第1のオプティカルブラック領域101(OPB1)も熱を持ち、暗電流が増加する。
光通信部11Aから離れる程、光通信部11Aの発熱の影響は小さくなり、有効画素領域100Eにおける温度上昇も小さくなると想定される。これにより、有効画素領域100Eを挟んで光通信部11Aと反対側にある第2のオプティカルブラック領域101(OPB2)では、温度上昇の影響は小さく、暗電流の増加は殆ど無い。
そこで、第1のオプティカルブラック領域101(OPB1)と第2のオプティカルブラック領域101(OPB2)における暗電流成分を利用し、各有効画素毎に暗電流成分を推定し、画素毎に減算する暗電流成分を変える。これにより、撮像画質の劣化を抑え、かつ、光通信部11Aを画素部10Aの近くに配置可能として、配置の自由度を向上させる。
<2.第1の実施の形態の固体撮像素子の構成例>
[固体撮像素子の全体構成]
図3は、第1の実施の形態の固体撮像素子の一例を示す構成図、図4及び図5は、第1の実施の形態の固体撮像素子を実現する機能の一例を示す機能ブロック図である。
第1の実施の形態の固体撮像素子1Aは、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、またはCCD(Charge Coupled Device)イメージセンサで構成され、本例では、CMOSイメージセンサを例に説明する。
固体撮像素子1Aは、光を電気信号に変換して出力する画素部10Aを備える。画素部10Aは、光を電気に変換する画素100が2次元または1次元に配列される。画素部10Aは、有効画素領域100Eと、有効画素領域101Eの周囲に形成されるオプティカルブラック領域101(OPB1〜OPB4)を備える。有効画素領域100Eは、画素100に光が入射するように構成された領域で、有効画素領域100Eにある画素(有効画素)100に光が入射すると、入射した光の強度に応じた電気信号が出力される。
オプティカルブラック領域101は、画素100に光が入射しないように遮光された領域である。オプティカルブラック領域101は、光は入射しないが、暗電流が発生する。画素部10Aは、四角形の4辺に沿ってオプティカルブラック領域が形成され、1の辺に第1のオプティカルブラック領域101(OPB1)が形成される。また、第1のオプティカルブラック領域101(OPB1)に対向する辺に第2のオプティカルブラック領域101(OPB2)が形成される。
更に、画素部10Aは、第1のオプティカルブラック領域101(OPB1)と直交する辺に第3のオプティカルブラック領域101(OPB3)が形成される。また、第3のオプティカルブラック領域101(OPB3)に対向する辺に第4のオプティカルブラック領域101(OPB4)が形成される。
固体撮像素子1Aは、画素部10Aから出力される電気信号をディジタル信号に変換するA/D変換部12Aと、A/D変換部12Aでディジタル化された電気信号を、光信号に変換して出力する光通信部11Aを備える。
光通信部11Aは、電気信号を光信号に変換する光出力部を、1個または複数備える。光通信部11Aは、光出力部の第1の実施の形態として、電圧の印加で発光する例えば半導体レーザ(LD)等の自発光型の発光素子を有する。半導体レーザ等の発光素子は、印加される電圧の変化等による電気信号で光の変調が可能である。これにより、光通信部11Aは、自発光する光を、A/D変換部12Aでディジタル信号に変換された電気信号に基づき変調することで、画素部10Aから読み出される画素データに基づく信号光Lsを出力する。
また、光通信部11Aは、光出力部の第2の実施の形態として、外部から入力されて透過または反射する光を、電圧の変化等による電気信号に基づいて外部変調する光変調器を有する。光通信部11Aでは、外部からの一定の光が光変調器入力されると共に、A/D変換部12Aでディジタル信号に変換された電気信号が光変調器に入力される。これにより、光通信部11Aは、外部から入力された光を、A/D変換部12Aから入力された電気信号に基づいて変調することで、画素部10Aから読み出される画素データに基づく信号光Lsを出力する。
固体撮像素子1Aは、光通信部11Aが第1のオプティカルブラック領域101(OPB1)に近接して配置される。ここでの近接とは、光通信部11Aが駆動されることで発生する熱が画素部10Aに伝搬され、第1のオプティカルブラック領域101(OPB1)で発生する暗電流が変化するような位置関係である。一方、光通信部11Aは、第2のオプティカルブラック領域101(OPB2)とは離間して配置される。ここでの離間とは、光通信部11Aが駆動されることで発生する熱が画素部10Aに伝搬されても、第2のオプティカルブラック領域101(OPB2)で発生する暗電流が実質的に変化しないような位置関係である。または、第1のオプティカルブラック領域101(OPB1)に比べれば、暗電流の変化が小さいような位置関係である。
固体撮像素子1Aは、画素信号を読み出す画素100をXYアドレス方式で選択する垂直走査回路102及び水平走査回路103を備える。垂直走査回路(Row Decoder/Driver)102は、画素部10Aの行方向において画素信号を読み出す画素100を選択する。また、動作モード毎に行の選択パターンを生成して、生成された選択パターンに基づき画素信号を読み出す画素100を選択しても良い。
水平走査回路(Column Decoder/Driver)103は、画素部10Aの列方向において画素信号を読み出す画素100を選択する。また、動作モード毎に列の選択パターンを生成して、生成された選択パターンに基づき画素信号を読み出す画素100を選択しても良い。更に、水平方向の画素加算等の演算を行って、各画素100から出力された信号の並びを並列直列変換する。
固体撮像素子1Aは、画素信号からノイズを除去するカラム(Column)CDS回路104を備える。CDS(Correlated Double Sampling:相関2重サンプリング)回路とは、信号の中に含まれる基準(リセット)レベルとデータレベルをサンプリングし、減算を行って差分を算出する動作を行う回路である。カラムCDS回路104は、画素部10Aから画素信号を出力する列信号線105に接続されたCDS部200で、画素100毎に増幅等のばらつきを除去する。カラムCDS回路104では、回路内部でアナログ信号のまま処理が行われる。
固体撮像素子1Aは、画素部10Aに光が入射されない状態で生じる暗電流を補正するために、オプティカルブラック領域101で発生する暗電流を利用する。CDS部200は、オプティカルブラック領域101から取得した暗電流成分を、有効画素領域100Eの信号から減算することで、暗電流の直流分の除去を行っている。
固体撮像素子1Aは、CDS部200に暗電流成分であるOPBレベルを供給するOPBレベル供給部210を備える。OPBレベル供給部210は、第1のオプティカルブラック領域101(OPB1)から暗電流成分を電圧値として取得する。また、第2のオプティカルブラック領域101(OPB2)から暗電流成分を電圧値として取得する。そして、第1のオプティカルブラック領域101(OPB1)と第2のオプティカルブラック領域101(OPB2)における暗電流成分を利用して、画素100毎に暗電流レベルを生成する。なお、CDS部200とOPBレベル供給部210の詳細は後述する。
図6及び図7では、各画素の構成と画素信号の読み出し構成を示し、図6は、画素アレイの具体例を示す回路構成図、図7は、各画素の構造モデル例を示す断面構造図である。画素100は、光を電気(信号電荷)に変換するフォトダイオード(PD)106と、電気信号を増幅するFDアンプ107と、行選択スイッチを構成する行選択トランジスタ(Tr)108を備える。各画素100は、垂直走査回路102により行選択線109で行選択トランジスタ108のオンとオフが切り替えられ、FDアンプ107で増幅された電気信号が列信号線105に出力される。
FDアンプ107は、電荷検出部(FD)110と、リセットトランジスタ111と、増幅トランジスタ112を備え、蓄積期間の間に光電変換された電荷の増幅機能を持つ。すなわち、FDアンプ107は、蓄積期間が完了すると、信号を出力する前に電荷検出部110がリセットゲート(Rst)を構成するリセット線113でリセットされる。リセットされた電荷検出部110の電圧が、増幅トランジスタ112のゲートに接続されているので、信号の無い状態であるリセットレベルが、増幅トランジスタ112のソースから列信号線105に出力される。
その直後にフォトダイオード106から読み出しゲート(Rd)を構成する行読み出し線114により電荷検出部110に信号電荷が読み出され、転送を終えてから行読み出し線114が閉じられると、電荷検出部110の電圧が、フォトダイオード106に入射した光の強さに相当する分変化するので、信号のある状態であるデータレベルが、増幅トランジスタ112から列信号線105に出力される。
なお、図7に示すフォトダイオード106は、N層領域106aの表面にP層領域106bが形成される埋め込みフォトダイオードと称される構成で、P層領域106bが暗電流の発生を抑制し、暗電流によるFPN(Fixed Pattern Noise)が改善されている。
上述したように、有効画素領域100Eでは、光電変換によって得られた電流成分がFDアンプ107により増幅されて電圧値として列信号線105から出力される。一方、オプティカルブラック領域101においては、暗電流がFDアンプ107により増幅されて、列信号線105から電圧として出力される。
このオプティカルブラック領域101において、FDアンプ107を経て列信号線105から得られる暗電流レベルを、OPBレベルと称す。OPBレベルは、暗電流成分がFDアンプにより増幅された値で、電圧として出力される。
図8は、画素部からから出力される信号の波形の一例を示すグラフである。図8では、有効画素領域から出力されるデータレベルと、暗電流成分が大きいオプティカルブラック領域から出力される暗電流レベルと、暗電流成分が小さいオプティカルブラック領域から出力される暗電流レベルと、リセットレベルを、模式的に比較している。図8に示すように、有効画素領域100Eにおいて光電変換で得られるデータレベルS_DATAの出力に比べて、リセットレベルS_Rstの出力は大きな値である。つまり、画素部10Aで発生する電流値が大きいと、電圧値はより小さな値として列信号線105に出力される。このため、オプティカルブラック領域101では、暗電流成分が大きい程、OPBレベルは小さい値をとるように出力される。上述したように、第1のオプティカルブラック領域101(OPB1)は、光通信部11Aで発生する熱の影響で暗電流成分が増加する。暗電流成分が大きい程、FDアンプ107から出力されるOPBレベルは小さい値となる。このため、図8では、暗電流成分が大きいオプティカルブラック領域が、第1のオプティカルブラック領域101(OPB1)となり、暗電流成分が小さいオプティカルブラック領域が、第2のオプティカルブラック領域101(OPB2)となる。そして、第1のオプティカルブラック領域101(OPB1)から出力されるOPB1レベルV1と、第2のオプティカルブラック領域101(OPB2)から出力されるOPB2レベルV2の関係は、通常、OPB1レベルV1<OPB2レベルV2となる。上述したように、暗電流成分が小さいと、FDアンプ107から出力されるOPBレベルは大きい値となり、リセットレベルS_Rstからの差分電圧は小さくなる。暗電流成分が大きい程、OPBレベルは小さい値となり、リセットレベルS_Rstからの差分電圧は大きくなる。本例では、OPB1レベルV1とOPB2レベルV2を利用して求めた推定OPBレベルとリセットレベルS_Rstとの差分電圧が、データレベルS_DATAから減算される。
固体撮像素子1Aは、動作モードに応じた駆動クロック(CLK)を生成し、画素部10A、A/D変換部12A及び光通信部11Aの各機能ブロックに供給するタイミングジェネレータ(TG)13Aを備える。また、固体撮像素子1Aは、制御信号等の入出力が行われる制御I/O14Aと、電源を供給するDC−DC部15Aと、画素データの読み出しを制御する制御部16Aを備える。制御部16AとDC−DC部15Aとタイミングジェネレータ13Aは、バス17に接続されて、制御信号やデータの送受が行われる。
制御部16Aは、DC−DC部15Aを制御して、固体撮像素子1Aの電源の供給を制御する。また、制御部16Aは、駆動クロックをタイミングジェネレータ13Aで生成して画素部10AとA/D変換部12Aと光通信部11Aに供給し、駆動クロックに同期させて画素部10AとA/D変換部12Aと光通信部11Aを動作させる。
固体撮像素子1Aは、図3に示すように、垂直走査回路102と水平走査回路103がバス17に接続される。そして、タイミングジェネレータ13Aで生成される駆動クロックφhが水平走査回路103とカラムCDS回路104に供給される。また、駆動クロックφADCがA/D変換部12Aに供給される。更に、駆動クロックφOptが光通信部11Aに供給される。
画素部10AとA/D変換部12Aと光通信部11Aは、タイミングジェネレータ13Aから供給される駆動クロックで、信号の入出力を同期させる。画素部10Aでは、入射される光の像に応じた画素データが、電気信号として読み出される。A/D変換部12Aでは、画素部10Aから読み出された画素データが入力され、ディジタル信号に変換されて出力される。光通信部11Aでは、画素部10Aから読み出され、A/D変換部12Aでディジタル信号に変換された電気信号が入力され、画素データに基づく光信号に変換されて、信号光Lsが出力される。
固体撮像素子1Aは、画素部10Aと、A/D変換部12Aと、光通信部11Aと、タイミングジェネレータ13Aと、DC−DC部15Aと、制御部16Aが、シリコン(Si)で構成される基板18上に集積形成される。固体撮像素子1Aは、半導体の製造プロセスを利用してこれら構成要素が集積形成されて1チップ化されている。
[CDS部の構成例]
図9は、CDS部の一例を示す機能ブロック図である。CDS部200はノイズ補正部の一例で、画素部10Aから読み出された画素信号Sと、タイミングジェネレータ13Aで生成した値保持タイミングパルスPが入力される。
CDS部200は、画素部10Aから読み出されたデータレベルS_DATAを保持する第1の値保持部201と、画素部10Aから読み出されたリセットレベルS_Rstを保持する第2の値保持部202を備える。第1の値保持部201は、データ読み出しパルスP_DATAのタイミングで、データレベルS_DATAが保持される。第2の値保持部202は、リセットパルスP_Rstのタイミングで、リセットレベルS_Rstが保持される。
第1の値保持部201は、信号が読み出される画素100毎に変えられたOPBレベルが、データ読み出しパルスP_DATAのタイミングでOPBレベル供給部210からOPBレベルが供給される。第1の値保持部201は、信号が読み出される画素100の位置毎に変えられたOPBレベルを減算したデータレベルS_DATAが保持される。
CDS部200は、減算部203を備える。減算部203は、第1の値保持部201に保持されたデータレベルS_DATAから、第2の値保持部202に保持されたリセットレベルS_Rstの減算を行う。第1の値保持部201に保持されたデータレベルS_DATAは、上述したようにOPBレベルが除去されており、CDS部200は、画素信号として、OPBレベルとリセットレベルS_Rstが除去された差分を算出する。
これにより、CDS部200は、OPBレベルとリセットレベルが除去されることで、ノイズが抑圧された画素信号をA/D変換部12Aに出力する。
[OPBレベル供給部の構成例]
図10は、OPBレベル供給部の一例を示す機能ブロック図である。OPBレベル供給部210は暗電流レベル供給部の一例で、所定のオプティカルブラック領域101から入力されたOPBレベルに基づいて、信号が読み出される画素の位置に応じた推定OPBレベルV_OPBを生成するOPBレベル生成部211を備える。
また、OPBレベル供給部210は、OPBレベルが入出力されるOPBレベル生成部211を選択するOPB出力選択部212を備える。更に、OPBレベル供給部210は、OPB出力選択部212で選択されたOPBレベル生成部211から推定OPBレベルV_OPBを出力するOPBレベル出力部213を備える。
図11は、OPB出力選択部の一例を示す機能ブロック図である。OPB出力選択部212は、第1のオプティカルブラック領域101(OPB1)から取得される第1の暗電流レベルであるOPB1レベルV1が入力される。また、第2のオプティカルブラック領域101(OPB2)から取得される第2の暗電流レベルであるOPB2レベルV2が入力される。
OPB出力選択部212は、入力されるOPBレベルに基づいて、OPBレベルを入力するOPBレベル生成部211を判断する判断部212aを備える。また、OPB出力選択部212は、入力されるOPB1レベルV1及びOPB2レベルV2と、選択すべきOPBレベル生成部211が対応付けられたテーブルである値参照部212bを備える。更に、OPB出力選択部212は、判断部212aで判断されたOPBレベル生成部211を選択する選択部212cを備える。
図12は、値参照部の一例を示す説明図である。値参照部212bは、OPB1レベルV1及びOPB2レベルV2と、初期レベルの出力先として選択すべきレベル生成部番号と、終了レベルの出力先として選択すべきレベル生成部番号が記憶される。
図13は、OPBレベル生成部の一例を示す機能ブロック図である。OPBレベル生成部211は、入力されるOPBレベルを保持する値保持部211aを備える。値保持部211aは、第1のオプティカルブラック領域101(OPB1)から入力されたOPB1レベルV1、または、第2のオプティカルブラック領域101(OPB2)から入力されたOPB2レベルV2を保持する。
OPBレベル生成部211は、値保持部211aに保持されたOPBレベルから、推定OPBレベルV_OPBを生成する値生成部211bを備える。値生成部211bは、例えば、図10に示すように、抵抗RとコンデンサCにより規定される時定数をもったローパスフィルタで構成され、RCの値によって所望の波形が生成される。
OPBレベル生成部211は、値生成部211bで生成された推定OPBレベルV_OPBを出力する値出力部211cを備える。
OPBレベル供給部210は、値生成部211bを有しない第1のOPBレベル生成部211(1)と、所望の特性の値生成部211bを有した第2のOPBレベル生成部211(2)を備える。また、OPBレベル供給部210は、特性の異なる値生成部211bを有した単数または複数のOPBレベル生成部211を備えても良い。本例では、第2のOPBレベル生成部211(2)と特性の異なる値生成部211bを有した第3のOPBレベル生成部211(3)を備える。
第1のオプティカルブラック領域101(OPB1)から入力されたOPB1レベルV1がv1、第2のオプティカルブラック領域101(OPB2)から入力されたOPB2レベルV2がv1で、OPB1レベルV1とOPB2レベルV2が等しい場合がある。
OPB1レベルV1とOPB2レベルV2が等しい場合、OPB出力選択部212は、図12に示す値参照部212bに従い、OPB1レベルV1とOPB2レベルV2を保持するOPBレベル生成部として、第1のOPBレベル生成部211(1)を選択する。
OPB出力選択部212は、OPB1レベルV1とOPB2レベルV2が等しいので、例えば、OPB1レベルV1を第1のOPBレベル生成部211(1)に保持する。そして、OPBレベルを出力するOPBレベル生成部を、第1のOPBレベル生成部211(1)に固定する。
これにより、第1のOPBレベル生成部211(1)に保持されたOPB1レベルV1が、推定OPBレベルV_OPBの初期レベルとなり、かつ、推定OPBレベルV_OPBがOPB1レベルV1(=v1)に固定される。
OPB1レベルV1がv2、OPB2レベルV2がv1(v2<v1)である場合、OPB出力選択部212は、OPB1レベルV1を保持するOPBレベル生成部として、第1のOPBレベル生成部211(1)を選択する。また、OPB2レベルV2を保持するOPBレベル生成部として、第2のOPBレベル生成部211(2)を選択する。
OPB出力選択部212は、OPB1レベルV1を第1のOPBレベル生成部211(1)に保持する。また、OPB2レベルV2を第2のOPBレベル生成部211(2)に保持する。そして、OPB出力選択部212は、OPBレベルを出力するOPBレベル生成部を、画素部10Aからの信号の読み出しのタイミングに合わせて、第1のOPBレベル生成部211(1)から第2のOPBレベル生成部211(2)に切り替える。
これにより、第1のOPBレベル生成部211(1)に保持されたOPB1レベルV1が、推定OPBレベルV_OPBの初期レベルとなる。また、第2のOPBレベル生成部211(2)に保持されたOPB2レベルV2が、推定OPBレベルV_OPBの終了レベルとなる。推定OPBレベルV_OPBは、値生成部211bの特性によって、OPB1レベルV1(=v2)とOPB2レベルV2(=v1)の間で変化する。
OPB1レベルV1がv3、OPB2レベルV2がv1(v3<v2)である場合、OPB出力選択部212は、OPB1レベルV1を保持するOPBレベル生成部として、第1のOPBレベル生成部211(1)を選択する。また、OPB2レベルV2を保持するOPBレベル生成部として、第3のOPBレベル生成部211(3)を選択する。
OPB出力選択部212は、OPB1レベルV1を第1のOPBレベル生成部211(1)に保持する。また、OPB2レベルV2を第3のOPBレベル生成部211(3)に保持する。そして、OPB出力選択部212は、OPBレベルを出力するOPBレベル生成部を、画素部10Aからの信号の読み出しのタイミングに合わせて、第1のOPBレベル生成部211(1)から第3のOPBレベル生成部211(3)に切り替える。
これにより、第1のOPBレベル生成部211(1)に保持されたOPB1レベルV1が、推定OPBレベルV_OPBの初期レベルとなる。また、第3のOPBレベル生成部211(3)に保持されたOPB2レベルV2が、推定OPBレベルV_OPBの終了レベルとなる。推定OPBレベルV_OPBは、値生成部211bの特性によって、OPB1レベルV1(=v3)とOPB2レベルV2(=v1)の間で変化する。
図14は、推定OPBレベルの波形の一例を示すグラフである。OPB1レベルV1とOPB2レベルV2の差が小さい場合、推定OPBレベルV_OPBは、図14(a)に示すように、OPB1レベルV1とOPB2レベルV2の間で例えば線形で補間される。一方、OPB1レベルV1とOPB2レベルV2の差が大きい場合、推定OPBレベルV_OPBは、図14(b)に示すように、OPB1レベルV1とOPB2レベルV2の間で非線形で補間される。例えば、OPB1レベルV1近傍で急峻に立ち上がるような非線形で補間される。
OPBレベル供給部210は、OPB1レベルV1とOPB2レベルV2の差が小さい場合は、OPB1レベルV1を第1のOPBレベル生成部211(1)に保持し、OPB2レベルV2を第2のOPBレベル生成部211(2)に保持する。第2のOPBレベル生成部211(2)は、図14(a)に示すような波形が得られるように、値生成部211bが構成される。
また、OPBレベル供給部210は、OPB1レベルV1とOPB2レベルV2の差が大きい場合は、OPB1レベルV1を第1のOPBレベル生成部211(1)に保持し、OPB2レベルV2を第3のOPBレベル生成部211(3)に保持する。第3のOPBレベル生成部211(3)は、図14(b)に示すような波形が得られるように、値生成部211bが構成される。
これにより、OPB1レベルV1とOPB2レベルV2の差に基づいてOPBレベル生成部211が選択され、OPB1レベルV1とOPB2レベルV2の差に基づいて推定OPBレベルV_OPBが生成される。
<3.有効画素領域における暗電流の推定方法>
次に、オプティカルブラック領域における暗電流から、有効画素領域の任意の位置の画素における暗電流を推定する方法について説明する。
[垂直方向の線形補間]
図15は、有効画素領域において暗電流を推定する画素とオプティカルブラック領域の垂直方向の関係を示す説明図である。有効画素領域100Eの垂直(V)方向の長さをVLとする。また、有効画素領域100Eの水平(H)方向の長さをHLとする。
第1のオプティカルブラック領域101(OPB1)の位置xにおける平均暗電流をIOPB1(x)とする。また、第2のオプティカルブラック領域101(OPB2)の位置xにおける平均暗電流をIOPB2(x)とする。
以上のように平均暗電流IOPB1(x)とIOPB2(x)を定義した場合に、有効画素領域100Eの位置(x、y)に存在する画素100の暗電流IDARK(x,y)は、以下の(1)式から推定できる。
Figure 2010093753
[水平方向の線形補間]
図16は、有効画素領域において暗電流を推定する画素とオプティカルブラック領域の水平方向の関係を示す説明図である。有効画素領域100Eの垂直(V)方向の長さをVLとする。また、有効画素領域100Eの水平(H)方向の長さをHLとする。
第3のオプティカルブラック領域101(OPB3)の位置yにおける平均暗電流をIOPB3(y)とする。また、第4のオプティカルブラック領域101(OPB4)の位置yにおける平均暗電流をIOPB4(y)とする。
以上のように平均暗電流IOPB3(y)とIOPB4(y)を定義した場合に、有効画素領域100Eの位置(x、y)に存在する画素100の暗電流IDARK(x,y)は、以下の(2)式から推定できる。
Figure 2010093753
[垂直、水平方向の線形補間の重み付け和]
図17は、有効画素領域において暗電流を推定する画素とオプティカルブラック領域の垂直及び水平方向の関係を示す説明図である。有効画素領域100Eの垂直(V)方向の長さをVLとする。また、有効画素領域100Eの水平(H)方向の長さをHLとする。
第1のオプティカルブラック領域101(OPB1)の位置xにおける平均暗電流をIOPB1(x)とする。また、第2のオプティカルブラック領域101(OPB2)の位置xにおける平均暗電流をIOPB2(x)とする。
第3のオプティカルブラック領域101(OPB3)の位置yにおける平均暗電流をIOPB3(y)とする。また、第4のオプティカルブラック領域101(OPB4)の位置yにおける平均暗電流をIOPB4(y)とする。
以上のように平均暗電流IOPB1(x)、IOPB2(x)と、IOPB3(y)、IOPB4(y)を定義した場合に、垂直方向の傾きは、以下の(3)式で求められる。また、水平方向の傾きは、以下の(4)式で求められる。更に、有効画素領域100Eの位置(x、y)に存在する画素100の暗電流IDARK(x,y)は、以下の(5)式から推定できる。
Figure 2010093753
(5)式では、垂直方向と水平方向の傾きの大きさに応じて、垂直方向と水平方向の補間値の重みが決定される。
<4.第1の実施の形態の固体撮像素子の動作例>
図18は、第1の実施の形態の固体撮像素子の処理の一例を示すフローチャート、図19から図23は、第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図であり、次に、各図を参照して、推定OPBレベルV_OPBを生成する処理について説明する。
OPBレベル供給部210は、ステップS1の処理で、画素部10Aのオプティカルブラック領域101からOPBレベルを取得する。ステップS1の処理では、図19に示すように、OPB出力選択部212は、第1のオプティカルブラック領域101(OPB1)から、OPB1レベルV1を取得する。また、OPB出力選択部212は、第2のオプティカルブラック領域101(OPB2)から、OPB2レベルV2を取得する。
OPB出力選択部212は、ステップS2の処理で、所定のオプティカルブラック領域101から取得したOPBレベルに基づき、OPBレベルの補間に最適なOPBレベル生成部211を選択する。
ステップS2の処理では、OPB出力選択部212は、取得したOPB1レベルV1とOPB2レベルV2で、判断部212aが図12で説明した値参照部212bを参照する。
判断部212aは、第1のオプティカルブラック領域101(OPB1)から取得したOPB1レベルV1に基づいて、初期レベルの出力先として選択すべきOPBレベル生成部211を決定する。また、判断部212aは、第2のオプティカルブラック領域101(OPB2)から取得したOPB2レベルV2に基づいて、終了レベルの出力先として選択すべきOPBレベル生成部211を決定する。
本例では、OPB1レベルV1の出力先として、第1のOPBレベル生成部211(1)が選択され、OPB2レベルV2の出力先として、第3のOPBレベル生成部211(3)が選択されるものとする。
OPB出力選択部212は、ステップS3の処理で、図20に示すように、第1のオプティカルブラック領域101(OPB1)から取得したOPB1レベルV1を、第1のOPBレベル生成部211(1)に設定する。
ステップ3の処理では、OPB出力選択部212は、判断部212aでOPB1レベルV1の出力先に決定された第1のOPBレベル生成部211(1)が選択部212cで選択され、OPB1レベルV1が第1のOPBレベル生成部211(1)に供給される。
第1のOPBレベル生成部211(1)は、OPB出力選択部212から供給されたOPB1レベルV1を、値保持部211aに保持する。
OPB出力選択部212は、ステップS4の処理で、図21に示すように、第2のオプティカルブラック領域101(OPB2)から取得したOPB2レベルV2を、第3のOPBレベル生成部211(3)に設定する。
ステップ4の処理では、OPB出力選択部212は、判断部212aでOPB2レベルV2の出力先に決定された第3のOPBレベル生成部211(3)が選択部212cで選択され、OPB2レベルV2が第3のOPBレベル生成部211(3)に供給される。
第3のOPBレベル生成部211(3)は、OPB出力選択部212から供給されたOPB2レベルV2を、値保持部211aに保持する。
OPB出力選択部212は、ステップS5の処理で、図22に示すように、第1のOPBレベル生成部211(1)とOPBレベル出力部213を接続する。ステップS5の処理では、第1のOPBレベル生成部211(1)は、値保持部211aに保持されたOPB1レベルV1を、値出力部211cによりOPBレベル出力部213に出力する。
第1のOPBレベル生成部211(1)は、値生成部211bを有していないので、第1のオプティカルブラック領域101(OPB1)から供給されたOPB1レベルV1が、値保持部211aからそのまま出力される。
これにより、OPBレベル供給部210は、推定OPBレベルV_OPBの初期レベルとして、OPB1レベルV1がCDS部200に出力される。
OPB出力選択部212は、画素部10Aで各行の読み出しが開始されると、ステップS6の処理で、図23に示すように、第3のOPBレベル生成部211(3)とOPBレベル出力部213を接続する。
ステップS6の処理では、第3のOPBレベル生成部211(3)は、値保持部211aに保持されたOPB2レベルV2から、値生成部211bで推定OPBレベルV_OPBを生成し、値出力部211cによりOPBレベル出力部213に出力する。
図24は、推定OPBレベルの波形の具体例を示すグラフである。OPBレベル供給部210は、第1のOPBレベル生成部211(1)に保持されたOPB1レベルV1が、推定OPBレベルV_OPBの初期レベルとなる。また、本動作例では、第3のOPBレベル生成部211(3)に保持されたOPB2レベルV2が、推定OPBレベルV_OPBの終了レベルとなる。
推定OPBレベルV_OPBは、第3のOPBレベル生成部211(3)の値生成部211bの特性によって、OPB1レベルV1とOPB2レベルV2の間で変化する。第3のOPBレベル生成部211(3)は、画素部10Aにおいて、有効画素領域100Eのi行目の読み出しが行われるタイミングで、推定OPBレベルV_OPBがi行目の推定値と等しくなるように、値生成部211bが構成される。
CDS部200の動作と共に具体的に説明すると、画素部10Aの有効画素領域100Eにおいて、1行目のリセットレベルS_Rstが読み出され、CDS部200の第2の値保持部202で保持される。次に、1行目のデータレベルS_DATAが読み出され、CDS部200の第1の値保持部201で保持される。
OPBレベル供給部210は、1行目のデータレベルS_DATAが読み出されるタイミングで、OPBレベルを出力するOPBレベル生成部を、第1のOPBレベル生成部211(1)から、本例では第3のOPBレベル生成部211(3)に切り替える。
これにより、推定OPBレベルV_OPBの初期レベルとして、OPB1レベルV1がCDS部200に出力される。そして、1行目から読み出しが開始されると、例えば、図24に示すように、信号が読み出される画素100の位置に従って変わる推定OPBレベルV_OPBがCDS部200に出力される。
CDS部200では、推定OPBレベルV_OPBを減算したデータレベルS_DATAが、第1の値保持部201で保持される。
有効画素領域100Eの1行目付近は、本例の構成では、光通信部11Aが近くに配置されている。このため、光通信部11Aで発生する熱の影響を受け、暗電流が増加する可能性がある。
そこで、有効画素領域100Eの1行目から読み出しを開始する際に、推定OPBレベルV_OPBの初期レベルをOPB1レベルV1に設定し、1行目から読み出しが開始されると、信号を読み出すタイミングに合わせて、推定OPBレベルV_OPBを変化させる。
OPB1レベルV1は、光通信部11Aに近く熱の影響を受ける第1のオプティカルブラック領域101(OPB1)から取得した値である。一方、OPB2レベルV2は、光通信部11Aから遠く熱の影響を受けにくい第2のオプティカルブラック領域101(OPB2)から取得した値である。
推定OPBレベルV_OPBは、上述した(1)式〜(5)式等を利用して、画素の位置と暗電流の関係から、画素の位置に基づき推定した値が得られるように、OPB1レベルV1からOPB2レベルV2まで変化する。
これにより、光通信部11Aで発生する熱の影響に応じてOPBレベルを変化させて、データレベルから減算することができ、熱の影響を排除した出力を得ることができる。
<5.光通信部の配置例>
[光通信部の配置例]
図25は、単一の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。また、図26〜図28は、複数の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。
固体撮像素子1Aは、図25に示すように、1個の光出力部120Aを有した光通信部11Aを1個備えることで、光による信号伝送を1本のチャネルで行う構成となる。また、固体撮像素子1Aは、図26及び図27に示すように、複数の光出力部120Aがアレイ化された光通信部11Aを1個または複数備えることで、光による信号伝送を複数のチャネルで行う構成となる。更に、図28に示すように、1個の光出力部120Aを有した光通信部11Aを複数備えることでも、光による信号伝送を複数のチャネルで行う構成となる。
固体撮像素子1Aは、A/D変換部12Aから出力される例えばnビット(n>1)のディジタル信号をシリアル伝送する構成では、光による信号伝送を、1本のチャネルで行うことが可能となる。
例えば、データ信号に同期信号とクロック信号が重畳されてシリアル化されたディジタル信号を生成することで、1本のチャネルで信号伝送が可能となる。これにより、固体撮像素子1Aは、図25に示すように、1個の光出力部120Aを有した1個の光通信部11Aを備えることで、シリアル伝送が実現される。
また、固体撮像素子1Aは、シリアル化されたデータ信号とクロック信号を独立したチャネルで伝送する構成では、光による信号伝送を、複数(2本)のチャネルで行うことが可能となる。
固体撮像素子1Aは、1個の光出力部120Aを有した光通信部11Aを2個備えることで、クロック信号を独立して伝送するシリアル伝送が実現される。または、2個の光出力部120Aがアレイ化された光通信部11Aを1個備えることでも、同様にクロック信号を独立して伝送するシリアル伝送が実現される。
更に、固体撮像素子1Aは、A/D変換部12Aから出力されるnビットのディジタル信号をパラレル伝送する構成では、光による信号伝送を、複数のチャネルで行うことが可能となる。
固体撮像素子1Aは、伝送チャネル数分の光出力部120Aがアレイ化された光通信部11Aを1個備えることで、パラレル伝送が実現される。例えば、8ビットのディジタル信号をパラレル伝送する構成では、固体撮像素子1Aは、図26に示すように、8個の光出力部120Aがアレイ化された光通信部11Aを1個備えれば良い。
または、固体撮像素子1Aは、複数の光出力部120Aがアレイ化された光通信部11Aを、光出力部120Aが伝送チャネル数分となる複数備えることで、パラレル伝送が実現される。例えば、8ビットのディジタル信号をパラレル伝送する構成では、固体撮像素子1Aは、図27に示すように、4個の光出力部120Aがアレイ化された光通信部11Aを2個備えれば良い。
あるいは、固体撮像素子1Aは、1個の光出力部120Aを有した光通信部11Aを伝送チャネル数分備えることで、パラレル伝送が実現される。例えば、8ビットのディジタル信号をパラレル伝送する構成では、固体撮像素子1Aは、図28に示すように1個の光出力部120Aを有した光通信部11Aを8個備えれば良い。
[光通信部が集合配置された固体撮像素子の構成例]
図29は、光通信部が集合配置された固体撮像素子の模式的な平面図である。なお、図29では、走査回路及びCDS部等は図示していない。図29に示す固体撮像素子1Bは、画素部10Aにおいて、有効画素領域100Eの周囲にオプティカルブラック領域101が形成される。
オプティカルブラック領域101は、上述したように、有効画素領域100Eを挟む一の辺に、第1のオプティカルブラック領域101(OPB1)と第2のオプティカルブラック領域101(OPB2)が配置される。また、有効画素領域100Eを挟む他の辺に、第3のオプティカルブラック領域101(OPB3)と第4のオプティカルブラック領域101(OPB4)が配置される。
光通信部11Aは、複数の光出力部120Aがアレイ化された構成で、画素部10Aの第1のオプティカルブラック領域101(OPB1)の近くで基板18の1箇所に配置される。
このように、複数の光出力部120Aを1箇所に集合させる光通信部11Aの配置を集合配置と称す。光通信部11Aを集合配置する構成では、例えば、複数の光出力部120Aが並列する方向が、第1のオプティカルブラック領域101(OPB1)に沿うような向きで、光通信部11Aが配置される。
また、図27に示すように、複数の光出力部120Aがアレイ化された光通信部11Aを複数備え、第1のオプティカルブラック領域101(OPB1)の近くで基板18の1箇所に集合させて配置した形態も集合配置である。
同様に、図28に示すように、1個の光出力部120Aを有した光通信部11Aを複数備え、第1のオプティカルブラック領域101(OPB1)の近くで基板18の1箇所に集合させて配置した形態も集合配置である。なお、図25に示すように、1個の光出力部120Aを有した1個の光通信部11Aを、第1のオプティカルブラック領域101(OPB1)の近くで基板18の1箇所に配置した形態も集合配置に含められる。
光通信部11Aが集合配置された固体撮像素子1Aでは、単一のA/D変換部12Aの後段に、各光出力部120Aを近づけるような配置として、A/D変換部12Aと光通信部11Aとの間の信号配線の配線長が、短くなるように構成される。また、熱源となる回路が、第1のオプティカルブラック領域101(OPB1)の近くに集合するように構成される。
光通信部11Aが集合配置された固体撮像素子1Bでは、熱の発生源となる光通信部11Aを、第1のオプティカルブラック領域101(OPB1)の近くの1箇所に集めることができる。これにより、光通信部11Aで発生する熱の影響を、第1のオプティカルブラック領域101(OPB1)における暗電流に確実に反映させることができる。
[光通信部が分散配置された固体撮像素子の構成例]
図30は、光通信部が分散配置された固体撮像素子の模式的な平面図である。なお、図30では、走査回路、CDS部及びA/D変換部等は図示していない。図30に示す固体撮像素子1Cは、1個の光出力部120Aを有した複数の光通信部11Aが、第1のオプティカルブラック領域101(OPB1)の近くで基板18の複数箇所に分散して配置される。このように、1個の光出力部120Aを複数個所に分散させる光通信部11Aの配置を分散配置と称す。
光通信部11Aが分散配置された固体撮像素子1Cは、光通信部11A同士の距離がなるべく長くなるように、各光通信部11Aの配置が決められる。通常、固体撮像素子は四角形であり、第1のオプティカルブラック領域101(OPB1)に沿った両端に光通信部11Aが配置される。
光通信部11Aが分散配置された固体撮像素子1Cでは、複数の光出力部120Aを同期させてディジタル信号がパラレル伝送される構成である。このため、個々の光通信部11Aは、パラレル伝送の1ビット分の信号伝送を担当する形態となり、個々の光通信部11Aで出力される信号の伝送量は小さくすることができる。従って、個々の光通信部11Aで発生する熱は、光出力部がアレイ化された光通信部に比べて小さくなる。
これにより、光通信部11Aが基板18に分散配置されることで、光通信部11Aで発生する熱を、固体撮像素子1Cの全体に分散させることができる。
[光通信部が分散集合配置された固体撮像素子の構成例]
図31は、光通信部が分散集合配置された固体撮像素子の一例を示す模式的な平面図である。なお、図31では、走査回路、CDS部及びA/D変換部等は図示していない。図31に示す固体撮像素子1Dは、複数の光出力部120Aを有した複数の光通信部11Aが、第1のオプティカルブラック領域101(OPB1)の近くで基板18の複数箇所に分散して配置される。このように、複数の光出力部120Aを複数個所に分散させる光通信部11Aの配置を分散集合配置と称す。
また、図27に示すように、複数の光出力部120Aがアレイ化された光通信部11Aを複数備え、第1のオプティカルブラック領域101(OPB1)の近くで基板18の複数個所に分散させて配置した形態も分散集合配置である。同様に、図28に示すように、1個の光出力部120Aを有した光通信部11Aを複数備え、第1のオプティカルブラック領域101(OPB1)の近くで基板18の複数個所に分散させて配置した形態も分散集合配置である。
光通信部11Aが分散集合配置された固体撮像素子1Dでは、複数の光通信部を集合配置することにより、光通信部11Aで発生する熱の影響を、第1のオプティカルブラック領域101(OPB1)における暗電流に確実に反映させることができる。また、集合配置された光通信部を分散させることにより、局所的な温度上昇を抑えることができる。
<6.遮光部の配置例>
上述した各実施の形態の固体撮像素子では、第1のオプティカルブラック領域101(OPB1)の近くに光通信部11Aが配置される。第1のオプティカルブラック領域101(OPB1)は、有効画素領域100Eの一の辺部に形成されるものであり、有効画素領域100Eと光通信部11Aの距離も近くなる。
このため、光通信部11Aが自発光型の光出力部を備える構成では、光通信部11Aから出力される信号光、及び光通信部11Aから漏れる光が、有効画素領域100Eに入射しないように、遮光する必要がある。また、有効画素領域100Eに入射する光が、光通信部11Aから出力される信号光に混ざらないように遮光する必要がある。
図32、図33及び図34は、遮光部を備えた固体撮像素子の構成の一例を示し、図32は、遮光部を備えた固体撮像素子の一例を示す模式的な平面図である。また、図33及び図34は、遮光部を備えた固体撮像素子の一例を示す模式的な側面図である。
固体撮像素子1は、画素部10Aにおいて、有効画素領域100Eの周囲にオプティカルブラック領域101が形成される。オプティカルブラック領域101は、有効画素領域100Eにおける光の入射面側に、アルミニウム等の遮光層150が形成される。これにより、オプティカルブラック領域101には、光が入射しないように構成される。
オプティカルブラック領域101は、上述したように、有効画素領域100Eを挟む一の辺に、第1のオプティカルブラック領域101(OPB1)と第2のオプティカルブラック領域101(OPB2)が配置される。また、有効画素領域100Eを挟む他の辺に、第3のオプティカルブラック領域101(OPB3)と第4のオプティカルブラック領域101(OPB4)が配置される。
光通信部11Aは、画素部10Aの第1のオプティカルブラック領域101(OPB1)の近くで、基板18の表面側に配置される。図33に示す例では、光通信部11Aは、自発光型の光出力部として、面発光型半導体レーザ(VCSEL)121Aを備えた構成である。
面発光型半導体レーザ121Aは、上面が発光面であり、信号光Lsが矢印で示す方向に出力される。なお、面発光型半導体レーザ121Aは、発光面と反対側の下面から、若干量の漏れ光が出力される。
固体撮像素子1は、第1のオプティカルブラック領域101(OPB1)の上側に遮光部250Aを備える。遮光部250Aは、面発光型半導体レーザ121Aの発振波長の光、及び、画素部10Aに入射する光LIは遮光するような材質で構成される。
遮光部250Aは、面発光型半導体レーザ121Aから出力される信号光Lsのなかで、画素部10A側に向かう成分を遮光する遮光板251を備える。また、画素部10Aに入射する光LIの中で、面発光型半導体レーザ121Aに向かう成分を遮光する遮光板252を備える。更に、面発光型半導体レーザ121Aの下面に遮光部253を備える。
これにより、固体撮像素子1は、面発光型半導体レーザ121Aから出力される信号光Lsのなかで、画素部10A側に向かう成分が、遮光部250Aの遮光板251で遮光される。よって、面発光型半導体レーザ121Aから出力された信号光Lsが、画素部10Aの有効画素領域100Eに入射することを防ぐことができる。
また、固体撮像素子1は、画素部10Aに入射する光LIの中で、面発光型半導体レーザ121Aに向かう成分が、遮光部250Aの遮光板252で遮光される。よって、画素部10Aに入射する光が、面発光型半導体レーザ121Aから出力される信号光Lsに混ざることを防ぐことができる。
更に、固体撮像素子1は、面発光型半導体レーザ121Aの下面から漏れる光が、遮光部253で遮光される。よって、面発光型半導体レーザ121Aの下面から漏れる光が、基板18の内部から画素部10Aに到達することを防ぐことができる。
図34に示す例では、光通信部11Aは、自発光型の光出力部として、端面発光型半導体レーザ121Bを備えた構成である。
端面発光型半導体レーザ12Bは、一方の側面が発光面であり、信号光Lsが矢印で示す方向に出力される。なお、端面発光型半導体レーザ121Bは、発光面と反対側の他方の側面から、若干量の漏れ光Lnが出力される。
固体撮像素子1は、第1のオプティカルブラック領域101(OPB1)の上側に遮光部250Bを備える。遮光部250Bは、端面発光型半導体レーザ121Bの発振波長の光、及び、画素部10Aに入射する光は遮光するような材質で構成される。
遮光部250Bは、端面発光型半導体レーザ121Bから出力される漏れ光Ln、及び画素部10Aに入射する光LIの中で、端面発光型半導体レーザ121Bに向かう成分を遮光する遮光板252を備える。
これにより、固体撮像素子1は、端面発光型半導体レーザ121Bから画素部10Aに向かう漏れ光Lnが、遮光部250Bの遮光板252で遮光される。よって、端面発光型半導体レーザ121Bから出力された漏れ光Lnが、画素部10Aの有効画素領域100Eに入射することを防ぐことができる。
また、固体撮像素子1は、画素部10Aに入射する光の中で、端面発光型半導体レーザ121Bに向かう成分が、遮光部250Bの遮光板252で遮光される。よって、画素部10Aに入射する光が、端面発光型半導体レーザ121Bから出力される信号光Lsに混ざることを防ぐことができる。
なお、遮光部250A,250Bを備えた固体撮像素子1は、上述した固体撮像素子1A〜1Dの何れであっても良い。
固体撮像素子1は、遮光部250A,250Bが第1のオプティカルブラック領域101(OPB1)の上側に形成される。これにより、遮光部250A,250Bを配置するためのスペースを、第1のオプティカルブラック領域101(OPB1)と共用でき、遮光部250A,250Bを配置することによる基板18の大型化を防ぐことができる。
<7.固体撮像素子を備えた信号処理システムの構成例>
[光学装置の構成例]
図35は、固体撮像素子を備えた信号処理システムの概要を示す機能ブロック図で、まず、固体撮像素子を備えた光学装置の概要について説明する。光学装置2Aは、上述した固体撮像素子1と、レンズ部20と、固体撮像素子1とレンズ部20等が実装されるハウジング21を備え、例えばカメラシステムのレンズユニットを構成する。レンズ部20は光学素子の一例で、1枚のレンズまたは複数枚のレンズを組み合わせて構成される。
光学装置2Aは、固体撮像素子1の画素部10Aが、レンズ部20の焦点位置に合うように構成され、レンズ部20から入射した光の像が、固体撮像素子1の画素部10Aに結像される。
光学装置2Aは、撮像対象物との距離によらず、レンズ部20の焦点位置を固体撮像素子1の画素部10Aに合わせるため、例えば、固体撮像素子1に対してレンズ部20を光軸方向に移動させる焦点合わせ機構を備えている。
[信号処理装置の構成例]
次に、光学装置が接続される信号処理装置の概要について説明する。信号処理装置3Aは、光信号を電気信号に変換する光通信部30Aと、制御信号等の入出力が行われる制御I/O31Aを備え、例えばカメラシステムのカメラ本体部を構成する。信号処理装置3Aは、光学装置2Aが接続されると、光通信部30Aが固体撮像素子1の光通信部11Aと光学的に結合される。また、制御I/O31Aが固体撮像素子1の制御I/O14Aと接続される。
信号処理装置3Aは、ユーザによる操作を受ける操作部32Aと、操作部32Aでの操作に基づいて、光学装置2Aの固体撮像素子1に画素信号の読み出しを指示する読み出し制御部33Aを備える。
信号処理装置3Aは、制御I/O31Aから光学装置2Aの固体撮像素子1に画素信号の読み出しを指示し、自機の光通信部30Aと固体撮像素子1の光通信部11Aとの間で光通信を行って、固体撮像素子1から画素信号を取得する。
光通信部30Aは、受光部としてフォトダイオード(PD)等の受光素子を有し、固体撮像素子1の光通信部11Aから出力される信号光Lsが入力されて、光信号で入力される画素信号を電気信号に変換して出力する。
信号処理装置3Aは、固体撮像素子1と光通信を行って取得した画素信号に所定の信号処理を行い、画像データを生成する信号処理部34Aを備える。また、信号処理装置3Aは、固体撮像素子1から取得した画素信号を保持するデータ保持部35Aと、信号処理部34Aで生成された画像データから画像を表示する表示部36Aを備える。
信号処理装置3Aは、自機及び光学装置2Aに電源を供給する電源37Aと、電源の供給を制御する電源制御部38Aを備える。電源制御部38Aは、信号処理装置3Aの電源をオンとする操作、及び電源をオフとする操作に基づき、信号処理装置3Aに対する電源の供給の有無と、光学装置2Aに対する電源の供給の有無を、所定の順番で切り替える電源供給制御を行う。
[信号処理システムの構成例]
次に、光学装置と信号処理装置を備えた信号処理システムの概要について説明する。
信号処理システム4Aは、上述した光学装置2Aと信号処理装置3Aを備え、例えばカメラシステムを構成する。カメラシステムでは、レンズユニットを構成する光学装置2Aが、カメラ本体部を構成する信号処理装置3Aに対して着脱可能で交換できるように構成される。
信号処理システム4Aは、信号処理装置3Aに光学装置2Aが接続されると、信号処理装置3Aの光通信部30Aと、光学装置2Aを構成する固体撮像素子1の光通信部11Aが光学的に結合される。また、信号処理装置3Aの制御I/O31Aと、固体撮像素子1の制御I/O14Aが接続される。
これにより、信号処理システム4Aは、固体撮像素子1の光通信部11Aと、信号処理装置3Aの光通信部30Aによって、光学装置2Aと信号処理装置3Aとの間でデータが光信号で入出力される。
また、信号処理システム4Aは、信号処理装置3Aの制御I/O31Aと、固体撮像素子1の制御I/O14Aによって、信号処理装置3Aと光学装置2Aとの間で制御信号が入出力される。
更に、信号処理システム4Aは、信号処理装置3Aの制御I/O31Aと、固体撮像素子1の制御I/O14Aによって、信号処理装置3Aと光学装置2Aとの間で電源の供給が行われる。
信号処理システム4Aは、信号処理装置3Aの操作部32Aでユーザの操作を受け、操作部32Aでの操作に基づいて、信号処理装置3Aの読み出し制御部33Aが、画素信号の読み出しを指示する制御信号を出力する。
信号処理システム4Aは、信号処理装置3Aの制御I/O31Aと、光学装置2Aの制御I/O14Aによって、画素データの読み出しを指示する制御信号が光学装置2Aの固体撮像素子1に入力される。
信号処理システム4Aは、画素信号の読み出しを指示する制御信号が光学装置2Aの固体撮像素子1に入力されると、固体撮像素子1の制御部16Aが、タイミングジェネレータ13Aで駆動クロックを生成する。
タイミングジェネレータ13Aで生成された駆動クロックは、画素部10AとA/D変換部12Aと光通信部11Aに供給され、画素部10Aでは画素データが電気信号として読み出される。A/D変換部12Aでは、画素部10Aから読み出された画素データが入力され、ディジタル信号に変換されて出力される。光通信部11Aでは、A/D変換部12Aでディジタル信号に変換された電気信号が入力され、画素信号が信号光Lsに変換されて出力される。
信号処理システム4Aは、固体撮像素子1の光通信部11Aと、信号処理装置3Aの光通信部30Aによって、固体撮像素子1で読み出された画素信号が、光通信で信号処理装置3Aに入力される。
信号処理システム4Aは、固体撮像素子1で読み出された画素信号が、光通信で信号処理装置3Aに入力されると、信号処理装置3Aの光通信部30Aが、光信号で入力される画素信号を電気信号に変換して出力する。
信号処理システム4Aは、信号処理装置3Aの光通信部30Aで電気信号に変換された画素信号に、信号処理装置3Aの信号処理部34Aが所定の信号処理を行って画像データを生成し、例えば表示部36Aに画像を表示する。
<8.信号処理システムにおける信号伝送の形態に応じた光通信部の実装形態例>
[光通信部をアレイ化することによるパラレル伝送例]
図36は、アレイ化された光通信部の一例を示す機能ブロック図で、次に、パラレル伝送に応じた光通信部の最適な実装形態について説明する。
固体撮像素子1の光通信部11Aは、例えば自発光型の発光素子で構成される光出力部120Aが並列された光出力部アレイ120Yを備える。光出力部アレイ120Yは、A/D変換部12Aでディジタル信号に変換された画素信号DATA_TXが出力されるデータ線と、クロック信号CLK_TXが出力されるクロック線で構成される光信号線の数に合わせて光出力部120Aが並列されてアレイ化される。
固体撮像素子1は、上述したように、図35で説明した信号処理装置3Aの光通信部30Aとの間で光通信が行われる。このため、信号処理装置3Aの光通信部30Aは、固体撮像素子1から出力される光信号線の数に合わせて光受信部300Aが並列されてアレイ化される。
固体撮像素子1は、図35等で説明したA/D変換部12AでA/D変換された画素信号DATA_TXと、タイミングジェネレータ13Aで生成されるクロック信号CLK_TXが、光通信部11Aに入力される。ディジタル信号に変換された画素信号DATA_TXとクロック信号CLK_TXは、光出力部アレイ120Yのそれぞれ対応する光出力部120Aで信号光に変換されて出力される。
固体撮像素子1の光通信部11Aから出力された光信号は、信号処理装置3Aの光通信部30Aに入力され、それぞれ対応する光受信部300Aで電気信号に変換されて画素信号DATA_RXと、クロック信号CLK_RXが出力される。
[データをシリアル化することによるシリアル伝送例]
図37は、画素信号をシリアル化して光通信する光通信部の一例を示す機能ブロック図で、次に、シリアル伝送に応じた光通信部の最適な実装形態について説明する。
固体撮像素子1の光通信部11Aは、図35等で説明したA/D変換部12Aでディジタル信号に変換された画素信号をシリアルデータに変換するシリアルインタフェース(I/F)122Aを備える。
シリアルインタフェース122Aは、A/D変換部12AでA/D変換された画素信号DATAと、タイミングジェネレータ13Aで生成された同期信号を重畳するエンコード部124を備える。
エンコード部124は、タイミングジェネレータ13Aで生成されたクロック信号CLKが入力される。また、タイミングジェネレータ13Aで生成され、垂直走査回路102を駆動する垂直同期信号φVが入力される。更に、タイミングジェネレータ13Aで生成され、水平走査回路103を駆動する水平同期信号φHと、フィールドを選択するフィールド信号Fが入力される。エンコード部124は、例えば8b/10b方式を採用し、データ線にクロック信号と同期信号を重畳して1本の信号線で送る。
また、シリアルインタフェース122Aは、同期信号が重畳された画素信号をスクランブルするデータスクランブル部125と、同期信号が重畳されてスクランブルされた画素信号をシリアルデータに変換するパラレル/シリアル変換部126を備える。更に、光通信部11Aは、シリアル化された画素データと同期信号を光信号に変換して出力する光出力部120Aを備える。
信号処理装置3Aの光通信部30Aは、シリアル化された画素信号と同期信号が光信号として入力され、入力された光信号を電気信号に変換する光受信部302を備える。また、光通信部30Aは、シリアル化された画素信号と同期信号からクロックを再生し、画素信号を検出するシリアル/パラレル変換部303を備える。更に、光通信部30Aは、同期信号が重畳された画素信号をデスクランブルするデスクランブル部304と、同期信号を検出するデコード部305を備える。
画素信号をシリアル化して光通信する光通信部11Aを備えた固体撮像素子1では、シリアルインタフェース122Aによりデータ線にクロック信号と同期信号が重畳されたシリアル信号が、シリアルインタフェース122Aから光出力部120Aに伝送される。
シリアルインタフェース122Aでは、データ信号に同期信号とクロック信号が重畳されてシリアル化されたディジタル信号を生成することで、1本のチャネルで信号伝送が可能となる。これにより、光通信部11Aは、1個の光出力部120Aを備えるもので良く、画素数の増大に伴う多ビット化によっても、光通信部11Aの数を減らすことができる。
[画素信号のシリアル化と複数の光入出力部を備えることによる複数伝送例]
図38は、画素信号をシリアル化して複数の光入出力部で光通信する光通信部の一例を示す機能ブロック図で、次に、画素信号をシリアル化して、クロック信号との複数伝送に応じた光通信部の最適な実装形態について説明する。
固体撮像素子1の光通信部11Aは、A/D変換部12AでA/D変換された画素信号DATA_TXをシリアルデータに変換するパラレル/シリアル(P/S)変換部122Bを備える。パラレル/シリアル変換部122Bは、A/D変換部12AでA/D変換された画素信号DATA_TXと、タイミングジェネレータ13Aで生成されるクロック信号CLK_TXが入力される。
また、光通信部11Aは、シリアル化された画素信号SDATA_TXを、光信号に変換して出力する光出力部120Sと、クロック信号φSCLK_TXを、光信号に変換して出力する光出力部120CLを備える。
信号処理装置3Aの光通信部30Aは、シリアル化され光信号に変換された画素信号SDATA_TXが光通信によるデータ線LsDで入力され、入力された光信号をシリアル化された電気信号としての画素信号SDATA_RXに変換する光受信部300Sを備える。また、光通信部30Aは、光信号に変換されたクロック信号φSCLK_TXが光通信によるクロック線LsCLで入力され、入力された光信号を電気信号としてのクロック信号φSCLK_RXに変換する光受信部300CLを備える。
更に、光通信部30Aは、光受信部300CLで電気信号に変換されたクロック信号φSCLK_RXで、光受信部300Sで電気信号に変換された画素信号SDATA_RXから画素信号DATA_RXを検出するシリアル/パラレル変換部301Aを備える。
画素信号をシリアル化すると共に、データ線LsDとクロック線LsCLを有して光通信する光通信部11Aを備えた固体撮像素子1では、シリアル信号とクロック信号が、パラレル/シリアル変換部122Bから光出力部120S,120CLに伝送される。
パラレル/シリアル変換部122Bは、クロック信号の重畳は行われず、回路構成が簡単で安価である。一方、データ信号のシリアル化を行うことで、データ線とクロック線の2本の信号線で伝送が可能である。
このため、2個の光出力部120S,120CLを有した光通信部11Aを備えることで、データ信号とクロック信号の伝送が可能となる。これにより、光通信部の数が増加することによるコスト増は低く抑えられる。
<9.光通信部の近くにオプティカルブラック領域を配置した固体撮像素子の効果例>
各実施の形態の固体撮像素子では、有効画素領域と光通信部の間にオプティカルブラック領域を配置することで、光通信部で発生する熱に応じて有効画素領域で発生する暗電流を推定し、信号から減算できるようにした。
これにより、光通信部で発生する熱が有効画素領域に伝搬されても、画素の位置に応じた最適な暗電流レベルを信号から除去できるので、有効画素領域の全面に亘り黒浮き等による画質の劣化を防ぐことができる。
また、オプティカルブラック領域の近くに光通信部を配置することで、画質の劣化を抑えているので、光通信部を画素部の近くに配置することができる。これにより、光通信部の配置に自由度が向上し、基板の小型化も可能である。
更に、光通信部の配置の自由度が向上することで、光通信部の集合配置、分散配置、分散集合配置等を、信号の伝送形態等に応じて選択できる。また、光通信部の配置の自由度が向上することで、例えば、パラレル伝送、データ線に同期信号とクロック信号を重畳シリアル伝送、シリアル化したデータ線とクロック信号の複数伝送等、様々な信号伝送方式を採用することができる。
なお、各実施の形態の固体撮像素子では、画素部10Aと光通信部11Aを基板18の表面側に配置したが、光通信部11Aを基板18の裏面側に配置しても良い。光通信部11Aを基板18の裏面側に配置した構成では、簡単な構成で、漏れ光が画素部10Aに入射することを防ぐことができる。
本発明は、固体撮像素子を備えた光学装置に適用される。
本発明の概要を示す機能ブロック図である。 本発明の背景となる比較例を示す機能ブロック図である。 第1の実施の形態の固体撮像素子の一例を示す構成図である。 第1の実施の形態の固体撮像素子を実現する機能の一例を示す機能ブロック図である。 第1の実施の形態の固体撮像素子を実現する機能の一例を示す機能ブロック図である。 画素アレイの具体例を示す回路構成図である。 各画素の構造モデル例を示す断面構造図である。 画素部からから出力される信号の波形の一例を示すグラフである。 CDS部の一例を示す機能ブロック図である。 OPBレベル供給部の一例を示す機能ブロック図である。 OPB出力選択部の一例を示す機能ブロック図である。 値参照の一例を示す説明図である。 OPBレベル生成部の一例を示す機能ブロック図である。 推定OPBレベルの波形の一例を示すグラフである。 有効画素領域において暗電流を推定する画素とオプティカルブラック領域の垂直方向の関係を示す説明図である。 有効画素領域において暗電流を推定する画素とオプティカルブラック領域の水平方向の関係を示す説明図である。 有効画素領域において暗電流を推定する画素とオプティカルブラック領域の垂直及び水平方向の関係を示す説明図である。 第1の実施の形態の固体撮像素子の処理の一例を示すフローチャートである。 第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図である。 第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図である。 第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図である。 第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図である。 第1の実施の形態の固体撮像素子の処理の一例を示す動作説明図である。 推定OPBレベルの波形の具体例を示すグラフである。 単一の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。 複数の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。 複数の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。 複数の伝送チャネルを実現する光通信部の配置例を示す模式的な平面図である。 光通信部が集合配置された固体撮像素子の模式的な平面図である。 光通信部が分散配置された固体撮像素子の模式的な平面図である。 光通信部が分散集合配置された固体撮像素子の模式的な平面図である。 遮光部を備えた固体撮像素子の一例を示す模式的な平面図である。 遮光部を備えた固体撮像素子の一例を示す模式的な側面図である。 遮光部を備えた固体撮像素子の一例を示す模式的な側面図である。 光学装置と信号処理装置を備えた信号処理システムの概要を示す機能ブロック図である。 アレイ化された光通信部の一例を示す機能ブロック図である。 画素信号をシリアル化して光通信する光通信部の一例を示す機能ブロック図である。 画素信号をシリアル化して複数の光入出力部で光通信する光通信部の一例を示す機能ブロック図である。
符号の説明
1、1A〜1D・・・固体撮像素子、10A・・・画素部、11A・・・光通信部、12A・・・A/D変換部、13A・・・タイミングジェネレータ、14A・・・制御I/O、15A・・・DC−DC部、16A・・・制御部、17・・・バス、100・・・画素、100E・・・有効画素領域、101・・・オプティカルブラック領域、102・・・垂直走査回路、103・・・水平走査回路、104・・・カラムCDS回路、105・・・列信号線、106・・・フォトダイオード、107・・・FDアンプ、108・・・行選択トランジスタ、109・・・行選択線、110・・・電荷検出部、111・・・リセットトランジスタ、112・・・増幅トランジスタ、113・・・リセット線、114・・・行読み出し線、120A・・・光出力部、200・・・CDS部、201・・・第1の値保持部、202・・・第2の値保持部、203・・・減算部、210・・・OPBレベル供給部、211・・・OPBレベル生成部、211a・・・値保持部、211b・・・値生成部、211c・・・値出力部、212・・・OPB出力選択部、212a・・・判断部、212b・・・値参照部、212c・・・選択部、213・・・OPBレベル出力部

Claims (9)

  1. 光が入射され、入射された光を電気信号に変換する有効画素領域、及び前記有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有した画素部と、
    前記有効画素領域の周囲に配置された前記オプティカルブラック領域に対して、所定のオプティカルブラック領域の近くに配置され、前記画素部から読み出される信号を、光信号に変換して出力する光通信部と、
    前記光通信部が近接配置された前記オプティカルブラック領域から暗電流に応じた暗電流レベルを取得し、取得した暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成し、前記有効画素領域から信号を読み出すタイミングに合わせて推定暗電流レベルを出力する暗電流レベル供給部と、
    前記暗電流レベル供給部から推定暗電流レベルが供給され、前記有効画素領域から読み出された信号から、推定暗電流レベルを減算するノイズ補正部と
    を備えた固体撮像素子。
  2. 前記オプティカルブラック領域は、前記有効画素領域を挟んで一方の側に第1のオプティカルブラック領域が形成されると共に、他方の側に第2のオプティカルブラック領域が形成され、
    前記光通信部は、前記第2のオプティカルブラック領域に対して前記第1のオプティカルブラック領域の近くに配置され、
    前記暗電流レベル供給部は、前記第1のオプティカルブラック領域から暗電流に応じた第1の暗電流レベルを取得すると共に、前記第2のオプティカルブラック領域から暗電流に応じた第2の暗電流レベルを取得し、第1の暗電流レベルと第2の暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成し、前記有効画素領域から信号を読み出すタイミングに合わせて推定暗電流レベルを出力する
    請求項1記載の固体撮像素子。
  3. 前記暗電流レベル供給部は、前記第1のオプティカルブラック領域から取得した第1の暗電流レベルと、前記第2のオプティカルブラック領域から取得した第2の暗電流レベルの差に基づき、異なる推定暗電流レベルを生成する
    請求項2記載の固体撮像素子。
  4. 単一または複数の前記光通信部が、前記第1のオプティカルブラック領域の近くで前記基板の周辺部に集合して配置される
    請求項2記載の固体撮像素子。
  5. 単一の前記光通信部が、前記第1のオプティカルブラック領域の近くで前記基板の周辺部に分散して配置される
    請求項2記載の固体撮像素子。
  6. 複数の前記光通信部が、前記第1のオプティカルブラック領域の近くで前記基板の周辺部に分散して集合配置される
    請求項2記載の固体撮像素子。
  7. 前記有効画素領域と前記光通信部との間で、光の入出力を遮光する遮光部を、前記第1のオプティカルブラック領域上に配置した
    請求項2記載の固体撮像素子。
  8. 光が入射され、入射された光を電気信号に変換する有効画素領域、及び前記有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有し、前記オプティカルブラック領域は、前記有効画素領域を挟んで一方の側に第1のオプティカルブラック領域が形成されると共に、他方の側に第2のオプティカルブラック領域が形成された画素部と、
    前記第2のオプティカルブラック領域に対して前記第1のオプティカルブラック領域の近くに配置され、前記画素部から読み出される信号を、光信号に変換して出力する光通信部と
    を備えた固体撮像素子。
  9. 入射された光を電気信号に変換する固体撮像素子及び前記固体撮像素子に光を入射させる光学素子を有した光学装置と、
    前記光学装置が接続される信号処理装置を備え、
    前記固体撮像素子は、
    光が入射され、入射された光を電気信号に変換する有効画素領域、及び前記有効画素領域の周囲に配置される遮光されたオプティカルブラック領域を有した画素部と、
    前記有効画素領域の周囲に配置された前記オプティカルブラック領域に対して、所定のオプティカルブラック領域の近くに配置され、前記画素部から読み出される信号を、光信号に変換して出力する光通信部と、
    前記光通信部が近接配置された前記オプティカルブラック領域から暗電流に応じた暗電流レベルを取得し、取得した暗電流レベルに基づき、信号が読み出される画素の位置に応じて変化する推定暗電流レベルを生成し、前記有効画素領域から信号を読み出すタイミングに合わせて推定暗電流レベルを出力する暗電流レベル供給部と、
    前記暗電流レベル供給部から推定暗電流レベルが供給され、前記有効画素領域から読み出された信号から、推定暗電流レベルを減算するノイズ補正部とを備え、
    前記信号処理装置は、
    前記固体撮像素子の前記光通信部から出力される光信号が入力される光通信部と、
    前記固体撮像素子に前記画素部からの信号の読み出しを制御する読み出し制御部と、
    前記画素部から読み出されて前記固体撮像素子から光通信で入力される信号に処理を行う信号処理部とを備えた
    信号処理システム。
JP2008264583A 2008-10-10 2008-10-10 固体撮像素子及び信号処理システム Withdrawn JP2010093753A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008264583A JP2010093753A (ja) 2008-10-10 2008-10-10 固体撮像素子及び信号処理システム
US12/554,506 US8355049B2 (en) 2008-10-10 2009-09-04 Solid-state imaging device including an optical communication section placed in proximity to an optical black area and signal processing system
CN2009102046935A CN101729802B (zh) 2008-10-10 2009-10-10 固态成像设备和信号处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264583A JP2010093753A (ja) 2008-10-10 2008-10-10 固体撮像素子及び信号処理システム

Publications (1)

Publication Number Publication Date
JP2010093753A true JP2010093753A (ja) 2010-04-22

Family

ID=42098503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264583A Withdrawn JP2010093753A (ja) 2008-10-10 2008-10-10 固体撮像素子及び信号処理システム

Country Status (3)

Country Link
US (1) US8355049B2 (ja)
JP (1) JP2010093753A (ja)
CN (1) CN101729802B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049947A (ja) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp 画像処理装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093754A (ja) * 2008-10-10 2010-04-22 Sony Corp 固体撮像素子及び信号処理システム
CN102739924B (zh) * 2012-05-31 2014-04-16 浙江大华技术股份有限公司 一种图像处理方法和系统
JP2015012373A (ja) * 2013-06-27 2015-01-19 株式会社東芝 固体撮像装置
CN107431080B (zh) * 2015-03-30 2020-07-07 株式会社尼康 拍摄元件及拍摄装置
CN107547808B (zh) * 2016-08-31 2020-11-27 思特威(上海)电子科技有限公司 消除边缘像素偏色问题的方法
KR102351950B1 (ko) 2017-06-30 2022-01-18 삼성전자주식회사 이미지 신호 프로세서를 포함하는 전자 장치
CN108172194B (zh) * 2018-03-22 2019-11-22 京东方科技集团股份有限公司 显示面板及其驱动方法、驱动装置、驱动系统
US11363221B2 (en) * 2018-06-08 2022-06-14 Facebook Technologies, Llc Image sensor post processing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525769B1 (en) * 1998-12-30 2003-02-25 Intel Corporation Method and apparatus to compensate for dark current in an imaging device
US6624643B2 (en) * 2000-12-08 2003-09-23 Intel Corporation Apparatus and method to read output information from a backside of a silicon device
US6744526B2 (en) * 2001-02-09 2004-06-01 Eastman Kodak Company Image sensor having black pixels disposed in a spaced-apart relationship from the active pixels
JP2004112422A (ja) 2002-09-19 2004-04-08 Canon Inc 撮像装置
US20040140417A1 (en) * 2002-12-27 2004-07-22 Accretech (Israel) Ltd. Image sensor for confocal microscopy
JP2004219882A (ja) 2003-01-17 2004-08-05 Canon Inc 光接続装置、及びそれを用いた光電融合配線基板
JP4383827B2 (ja) * 2003-10-31 2009-12-16 キヤノン株式会社 撮像装置、白傷補正方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP2006191465A (ja) 2005-01-07 2006-07-20 Seiko Instruments Inc 電子機器
JP2006196972A (ja) 2005-01-11 2006-07-27 Fuji Photo Film Co Ltd カメラシステム
JP4827508B2 (ja) * 2005-12-02 2011-11-30 キヤノン株式会社 撮像システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049947A (ja) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp 画像処理装置

Also Published As

Publication number Publication date
US20100091144A1 (en) 2010-04-15
CN101729802B (zh) 2013-05-08
CN101729802A (zh) 2010-06-09
US8355049B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
JP2010093753A (ja) 固体撮像素子及び信号処理システム
KR101799262B1 (ko) 촬상소자 및 촬상장치
US8743256B2 (en) Solid-state image pickup element, optical apparatus, signal processing apparatus, and signal processing system
US8704923B2 (en) Solid-state imager and signal processing system
JP6287058B2 (ja) 縮小光学系用の光電変換素子、画像読取装置、画像形成装置及び画像読取方法
US10447976B2 (en) Solid state imaging device having a shared pixel structure and electronic apparatus
KR20160132342A (ko) 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
US11637975B2 (en) Solid state image sensor and electronic equipment
US9544493B2 (en) Solid-state imaging apparatus and imaging system using the same
JP2011029835A (ja) 固体撮像装置とその駆動方法、及び電子機器
JP2021061438A (ja) 撮像素子および撮像装置
CN110730316B (zh) 摄像装置
US20100091150A1 (en) Solid-state imaging device and signal processing system
WO2018062561A1 (ja) 撮像素子およびカメラ
JP2018101995A (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
JP2009253693A (ja) 撮像装置
JP2003032553A (ja) スミア低減機能付き固体撮像装置
JP2022176482A (ja) 撮像素子、及び、撮像装置
CN115136586A (zh) 摄像元件以及摄像装置
JP2022184314A (ja) 撮像素子、及び、撮像装置
JP2021150800A (ja) 光電変換装置、画像読取装置、画像形成装置、及び撮像システム
JP2012235342A (ja) 撮像装置及び電子カメラ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110