JP2010080621A - 光源装置、映像表示装置および発光素子の駆動方法 - Google Patents

光源装置、映像表示装置および発光素子の駆動方法 Download PDF

Info

Publication number
JP2010080621A
JP2010080621A JP2008246238A JP2008246238A JP2010080621A JP 2010080621 A JP2010080621 A JP 2010080621A JP 2008246238 A JP2008246238 A JP 2008246238A JP 2008246238 A JP2008246238 A JP 2008246238A JP 2010080621 A JP2010080621 A JP 2010080621A
Authority
JP
Japan
Prior art keywords
emitting element
light
short
circuit
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008246238A
Other languages
English (en)
Other versions
JP2010080621A5 (ja
Inventor
Tomio Ikegami
富雄 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008246238A priority Critical patent/JP2010080621A/ja
Priority to US12/538,730 priority patent/US8212490B2/en
Publication of JP2010080621A publication Critical patent/JP2010080621A/ja
Publication of JP2010080621A5 publication Critical patent/JP2010080621A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

【課題】パルス電流を発光素子に供給する光源装置において、発光素子からの出射光量の立ち上がりをより速くする。
【解決手段】光源装置300に設けられた発光素子LDには、発光素子LDからの平均出射光量を調整するためにパルス電流が供給される。この発光素子LDには、発光素子LDを短絡する発光素子短絡部Q2が並列に設けられている。
【選択図】図4

Description

本発明は、発光素子をパルス駆動する発光素子の駆動技術に関する。
レーザスキャンディスプレイ(例えば、特許文献1参照)やレーザ式プロジェクタ等の映像表示装置では、映像を構成する画素毎に発光素子の出射光量を調整するため、各画素を表示する期間(画素時間)中において発光素子に電流を供給する時間を調整するパルス幅変調が行われる。
特開2007−140009号公報 特開平6−013659号公報
図1は、レーザダイオードを用いた映像表示装置における映像出力ユニット10aの構成を示す概略図である。映像出力ユニット10aは、階調調整部100と、パルス幅変調(PWM)信号発生回路200と、レーザダイオードLDを用いた光源回路300aとにより構成されている。
階調調整部100は、表示階調を画素毎に指定する映像データが供給される。階調調整部100は、ルックアップテーブル(LUT)として構成されている。このルックアップテーブルを参照することにより、レーザダイオードの出射光量を画素毎に指定する描画データが生成される。生成された描画データは、PWM信号発生回路200に供給される。PWM信号発生回路200は、レーザダイオードの出射光量を描画データで指定される値に調整するためのPWM信号を発生する。PWM信号は、レーザダイオードに供給される電流のオン・オフを指定するHレベルとLレベルの2値の信号である。なお、階調調整部100とPWM信号発生回路200には、画素時間のタイミングを規定する描画クロックが供給されている。
光源回路300aは、レーザダイオードLDと、負荷抵抗Raと、スイッチングトランジスタQ1とを有している。レーザダイオードLDと、負荷抵抗Raと、スイッチングトランジスタQ1とは、この順に直列に接続されている。レーザダイオードLDのアノードは、レーザダイオードLDを駆動するための電源(図示しない)に接続され、電源電圧Vccが印加されている。レーザダイオードLDは、駆動用接続線302を介して、電源電圧Vccの供給部と、負荷抵抗Raとに接続されている。なお、図1では、スイッチングトランジスタQ1として、n型のMOSFETが使用されているが、スイッチングトランジスタQ1としては、p型のMOSFETや、バイポーラトランジスタや接合形FET等、種々のスイッチング素子を用いることができる。
スイッチングトランジスタQ1のゲート(G)は、PWM信号発生回路200に接続されている。PWM信号発生回路200から供給されるPWM信号がHレベルとなり、ゲートが接地されたソース(S)よりも電圧が高くなると、スイッチングトランジスタQ1のドレイン(D)−ソース(S)間が導通状態(オン状態)になる。そのため、レーザダイオードLDと、負荷抵抗Raと、スイッチングトランジスタQ1のドレイン(D)−ソース(S)間とを介して電流が流れ、レーザダイオードLDからは光が出射される。一方、PWM信号がLレベルとなり、ゲート(G)とソース(S)とがほぼ同電圧になると、スイッチングトランジスタQ1のドレイン(D)−ソース(S)間が非導通状態(オフ状態)となる。これにより、レーザダイオードLDには電流が流れなくなり、レーザダイオードLDからは光が出射されなくなる。
図2は、図1に示す光源回路300aによりレーザダイオードLDを駆動したときの状態を示す説明図である。図2(a)は、光源回路300aに供給されるPWM信号を示すグラフである。図2(b)は、レーザダイオードLDに流れる駆動電流ILDを示すグラフである。図2(a)および図2(b)の横軸は、それぞれ時間を表している。図2(a)の縦軸は、PWM信号の電圧値を表し、図2(b)の縦軸は、レーザダイオードLDの駆動電流ILDを表している。
図2に示すように、PWM信号がHレベルになると、スイッチングトランジスタQ1がオン状態になり、レーザダイオードLDに電流が流れる。しかしながら、図1に示すように、レーザダイオードLDは、駆動用接続線302を介して、電源電圧Vccの供給部と、負荷抵抗Raとに接続されている。この駆動用接続線302には幾分かのインダクタンスが存在するから、駆動用信号線302の電源電圧供給部側への印加電圧を矩形波としても、駆動電流ILDの増加にはインダクタンスによる遅れが生じる。この結果、駆動電流ILDの波形は、パルスの先端から後端に向かって徐々に増加するランプ波に近くなる。一般に、レーザダイオードLDの出射光量は駆動電流ILDに比例するため、駆動電流ILDの波形がランプ波になると、出射光量の波形もランプ波になる。
図3は、レーザダイオードの駆動特性が出射光量に与える影響を示す説明図である。図3(a)は、理想的なレーザダイオードの駆動特性を示し、図3(b)は、図1に示す回路によるレーザダイオードの駆動特性を示している。図3(c)は、図3(a)および図3(b)に示す駆動特性でレーザダイオードが駆動された場合の、パルス幅tPWと、1画素時間当たりの平均出射光量Paとの関係を示すグラフである。
図3(a)に示すように、矩形波のPWM信号は、1画素時間Tp中の平均出射光量Paに相当する時間tPWだけHレベルになる。そして、レーザダイオードの駆動が理想的に行われると、レーザダイオードの出射光量Poの波形は、PWM信号と同じパルス幅tPWの矩形波となる。一方、上述のように、図1に示す駆動回路では、駆動電流ILDの波形がランプ波となるため、図3(b)に示すように出射光量Poの波形もランプ波となる。
1画素時間Tp中のレーザダイオードから出射される総光量は、出射光量Poを当該画素時間中において時間積分した値となる。そのため、図3(c)の破線で示すように、レーザダイオードの駆動が理想的に行われた場合、平均出射光量Paはパルス幅tPWに比例する。一方、図1に示す駆動回路を用いた場合、出射光量Poの波形がランプ波となるため、平均出射光量Paはパルス幅tPWの2乗に従って変化する。このように、平均出射光量Paとパルス幅tPWとの関係が非線形となると、映像データの階調に応じた平均出射光量Paの調整が容易でなくなる。また、パルス幅tPWが1画素時間Tpとなった場合の平均出射光量Pa、すなわち平均出射光量Paの最大値は、出射光量Poの波形がランプ波になることにより、理想的な矩形波となった場合の1/2になってしまう。
このように、駆動電流ILDの立ち上がりが遅くなると、出射光量Poの立ち上がりが遅くなり、表示階調値に応じた平均出射光量Paの調整(階調制御)が容易でなくなるとともに、平均出射光量Paの最大値が低下する。この問題は、パルス電流を発光素子に供給して発光素子からの平均出射光量を調整する種々の光源装置に共通する問題である。
本発明は、上述した従来の課題を解決するためになされたものであり、パルス電流を発光素子に供給して発光素子からの平均出射光量を調整する光源装置において、出射光量の立ち上がりをより速くすることを目的とする。
上記課題の少なくとも一部を解決するために、本発明は、以下の形態または適用例として実現することが可能である。
[適用例1]
発光素子を用いた光源装置であって、
前記発光素子からの平均出射光量を調整するために、前記発光素子にパルス電流を供給するパルス駆動部と、
前記発光素子に並列に設けられ、前記発光素子を短絡する発光素子短絡部と
を備える光源装置。
この適用例によれば、発光素子が短絡されている短絡状態から、発光素子が短絡されていない非短絡状態に切り替わると、短絡状態において発光素子短絡部に流れている電流が発光素子に速やかに供給される。このように、発光素子に流れる電流の立ち上がりを速くすることにより、発光素子からの出射光量の立ち上がりをより速くすることができる。
[適用例2]
適用例1記載の光源装置であって、
前記発光素子短絡部は、前記パルス電流の過渡期間において前記発光素子を短絡させる
光源装置。
この適用例によれば、パルス電流の過渡期間において発光素子が短絡される。そのため、過渡期間におけるパルス電流の立ち上がりがより速くなり、より早いタイミングで発光素子を非短絡状態に切り替えることができる。そのため、発光素子短絡部に電流が流れる短絡状態をより短時間にすることができ、光源装置の効率をより高くすることができる。
[適用例3]
適用例1または2のいずれか記載の光源装置であって、さらに、
前記発光素子への前記パルス電流の供給を前記パルス駆動部に指示するパルス信号を生成するパルス信号生成部と、
前記発光素子の短絡を前記発光素子短絡部に指示する短絡信号を生成する短絡信号生成部と
を備え、
前記短絡信号生成部は、前記パルス信号を反転および遅延させることにより前記短絡信号を生成する
光源装置。
この適用例によれば、パルス信号の遅延時間の間だけ発光素子短絡部に電流が流れる。そのため、発光素子短絡部における発熱量を低減することが可能となり、発光素子短絡部の小型化と、光源回路の効率の向上とを図ることができる。
[適用例4]
適用例3記載の光源装置であって、
前記パルス信号生成部は、前記平均出射光量を最大にする場合に、前記発光素子に連続した電流を流すように前記パルス信号を生成する
光源装置。
この適用例によれば、発光素子に連続した電流を流すようにパルス信号を生成することにより、出射光量を最大にした場合には、発光素子短絡部による発光素子の短絡が行われない。そのため、発光素子短絡部における発熱量をより低減することが可能となり、更なる発光素子短絡部の小型化と、光源回路の効率の向上とを図ることができる。
[適用例5]
適用例1ないし4のいずれか記載の光源装置であって、
前記パルス駆動部は、スイッチング用トランジスタのオン状態とオフ状態とを切り替えることにより前記発光素子にパルス電流を供給し、
前記発光素子短絡部は、前記スイッチング用トランジスタよりも許容損失が小さい短絡用トランジスタをオン状態とすることにより前記発光素子を短絡する
光源装置。
この適用例によれば、短絡用トランジスタとして、許容損失がスイッチング用トランジスタよりも小さいトランジスタを使用することにより、短絡用トランジスタをより小さくすることができる。そのため、短絡用トランジスタをより発光素子に近づけて、発光素子と短絡用トランジスタとの間の配線のインダクタンスやキャパシタンスの影響をより小さくすることができ、発光素子に流れる電流の立ち上がりをより速くすることが可能となる。
[適用例6]
適用例1ないし4のいずれか記載の光源装置であって、
前記パルス駆動部は、スイッチング用トランジスタのオン状態とオフ状態とを切り替えることにより前記発光素子にパルス電流を供給し、
前記発光素子短絡部は、前記スイッチング用トランジスタよりもオン抵抗が大きい短絡用トランジスタをオン状態とすることにより前記発光素子を短絡する
光源装置。
この適用例によれば、短絡用トランジスタとして、オン抵抗がスイッチング用トランジスタよりも大きいトランジスタを使用することにより、短絡用トランジスタをより小さくすることができる。そのため、短絡用トランジスタをより発光素子に近づけて、発光素子と短絡用トランジスタとの間の配線のインダクタンスやキャパシタンスの影響をより小さくすることができ、発光素子に流れる電流の立ち上がりをより速くすることが可能となる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、光源装置、映像表示装置および映像表示方法、光源装置や映像表示装置の制御装置および制御方法、これらの装置の機能および方法を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体、そのコンピュータプログラムを含み搬送波内に具現化されたデータ信号、等の種々の形態で実現することができる。
A.映像出力ユニットの構成:
図4は、本発明の一実施例としての映像出力ユニット10の構成を示す説明図である。映像出力ユニット10は、光源回路300の構成が図1の映像出力ユニット10aと異なっている。他の点は、図1に示す映像出力ユニット10aと同様である。図4に示すように、本実施例の光源回路300は、図1に示す光源回路300aに、さらに、反転遅延回路310と、短絡トランジスタQ2と、終端抵抗Rtとが付加されている。なお、図4においては、短絡トランジスタQ2として、n型のMOSFETを使用しているが、短絡トランジスタQ2としては、p型のMOSFETや、バイポーラトランジスタや、接合型FET等、種々のスイッチング素子を使用することができる。
反転遅延回路310は、PWM信号発生回路200に接続されている。反転遅延回路310は、PWM信号発生回路200から供給されるPWM信号のHレベルとLレベルとを反転するとともに、所定の遅延時間ΔT(例えば、3ns)遅延させる。反転・遅延されたPWM信号には必要応じてレベルシフトが施され、短絡信号として短絡信号接続線304を介して終端抵抗Rtおよび短絡トランジスタQ2に供給される。
終端抵抗Rtは、短絡トランジスタQ2のゲート(G)−ソース(S)間に並列に接続されている。終端抵抗Rtは、抵抗値が短絡信号接続線304の特性インピーダンスとほぼ同じに設定されている。このように、終端抵抗Rtの抵抗値を特性インピーダンスとほぼ同じにすること(インピーダンスマッチング)により、短絡トランジスタQ2のゲート(G)−ソース(S)間に加えられる短絡信号の波形は、反転遅延回路310が出力する短絡信号とほぼ同じ波形となる。
短絡信号がHレベルとなり、短絡トランジスタQ2のゲート電圧がソース電圧よりも高くなると、短絡トランジスタQ2のドレイン(D)−ソース(S)間が導通状態(オン状態)となる。そのため、短絡信号がHレベルでは、レーザダイオードLDのアノード−カソード間が短絡される。一方、短絡信号がLレベルとなり、短絡トランジスタQ2のゲート電圧がソース電圧とほぼ同じになると、短絡トランジスタQ2のドレイン(D)−ソース(S)間は非導通状態(オフ状態)となる。これにより、レーザダイオードLDの接続状態は、図1に示す状態とほぼ同じとなる。
B.光源回路のモデル:
図5および図6は、短絡トランジスタQ2がオフ状態の本実施例の光源回路300、すなわち、図1に示す光源回路300aを模式的に示す説明図である。
図5(a)は、駆動用接続線302をインダクタンスLおよびキャパシタンスCでモデル化した光源回路300aを示している。図5(b)は、スイッチングトランジスタQ1がオン状態での光源回路300aの等価回路を示している。図5(b)の等価回路は、図5(c)に示すレーザダイオードLDの端子間を流れる駆動電流ILDと、端子間に加えられる端子間電圧VLDとの関係(I−V特性)に基づいて決定される。
図5(c)に示すように、端子間電圧VLDが低い領域では、端子間電圧VLDが上昇しても駆動電流ILDはほとんど上昇しない。一方、端子間電圧VLDがある電圧よりも高くなると、駆動電流ILDは増加しはじめる。その後、駆動電流ILDは、一点鎖線で示すように、端子間電圧VLDに対して直線的に変化するようになる。そのため、レーザダイオードLDは、端子間電圧VLDに対して駆動電流ILDが直線的に変化する際の傾きに相当する等価抵抗(微分抵抗)Reと、等価抵抗Reに直列に接続された直流電圧源Vthとで近似することができる。
また、スイッチングトランジスタQ1がオン状態となっている場合、ドレイン−ソース間はオーム特性を有している。そのため、スイッチングトランジスタQ1をオン抵抗Rsで表すと、図5(a)に示す光源回路300aは、図5(b)に示す等価回路で表すことができる。
図6(a)は、図5(b)と同一の図であり、スイッチングトランジスタQ1がオン状態の光源回路300aの等価回路を示している。図6(b)は、図6(a)に示す等価回路を簡略化した等価回路を示している。図6(b)の等価回路は、図6(a)に示す等価回路に流れる回路電流Iと、インダクタンスLおよびキャパシタンスCに蓄積されるエネルギεL,εCとの関係に基づいて決定される。なお、図1に示す光源回路300aと、短絡トランジスタQ2がオフ状態(非短絡時)の光源回路300(図4)とでは、レーザダイオードLDを流れない電流経路が存在しない。そのため、これらの場合においては、回路電流Iは、レーザダイオードLDの駆動電流ILDと一致する。
ここで、スイッチングトランジスタQ1(図5(a))がオン状態に定常的に維持された状態、すなわち、レーザダイオードLDが直流駆動された場合を考える。このとき、図6(a)に示す等価回路に流れる直流の回路電流I0は、図6(a)の等価回路の各回路パラメータを用いて、次の式(1)で与えられる。
Figure 2010080621
インダクタンスLに蓄積されるエネルギεLと、キャパシタンスCに蓄積されるエネルギεCとは、それぞれ、次の式(2)および(3)で与えられる。
Figure 2010080621
ここで、図5(c)のI−V特性から見積もられる閾値電圧Vthは約1.2Vであり、等価抵抗Reは約1Ωである。また、駆動用接続線302(図1および図4を参照)として、長さが50mmで、特性インピーダンスが50Ωの同軸ケーブルを使用した場合、インダクタンスLは約13nHとなり、キャパシタンスCは約6pFとなる。従って、直流回路電流I0と、インダクタンスLとキャパシタンスCとに蓄積されるエネルギεL,εCとの関係は、図6(c)に示すようになる。
図6(c)から分かるように、直流回路電流I0がごく小さい場合には、インダクタンスLに蓄積されるエネルギεLは、キャパシタンスCに蓄積されるエネルギεCよりも小さい。インダクタンスLに蓄積されるエネルギεLは、直流回路電流I0が大きくなるに従って急激に増加する。そして、直流回路電流I0がレーザダイオードLDの駆動に使用する数百mA程度になると、インダクタンスLに蓄積されるエネルギεLは、キャパシタンスCに蓄積されるエネルギεCよりも遙かに大きくなる。そのため、直流回路電流I0がごく小さい場合には、光源回路300aの回路特性に対するキャパシタンスCの影響が大きいものの、数百mAでレーザダイオードLDを駆動した場合、すなわち、直流回路電流I0を数百mAとした場合には、インダクタンスLが回路特性に大きな影響を与える。
このように、本実施例では、インダクタンスLが回路特性に対して支配的に働くため、図6(b)に示すように、図6(a)の等価回路のキャパシタンスCを省略した等価回路を用いて、光源回路300aをモデル化することができる。
C.光源回路の応答特性(比較例):
図7は、比較例としての光源回路300a(図1)の応答特性を示す説明図である。ここで、応答特性とは、光源回路300aのスイッチングトランジスタQ1に供給されるPWM信号がLレベルからHレベルに立ち上がった際の、回路電流Iの立ち上がりの特性のことを言う。
図6(c)に示す等価回路の応答特性は、次の式(4)に示す時間tについての微分方程式で表される。
Figure 2010080621
式(4)に示す微分方程式を、時間t=0の時の回路電流I(t)を0とする条件(I(0)=0)の下で解くことにより、回路電流I(t)は、電流定常値(直流回路電流)I0と時定数τとを用いて次の式(5)で与えられる。
Figure 2010080621
ここで、電流定常値I0と時定数τとは、次の式(6)および(7)で与えられる。
Figure 2010080621
図7(a)は、上記の式(4)で表される回路電流Iの時間変化を示すグラフである。図7(a)に示すように、回路電流Iは、スイッチングトランジスタQ1がオフ状態からオン状態に切り替わったタイミング(t=0)から徐々に上昇し、時間tが十分経過すると電流定常値I0に到達する。
上記の式(7)から分かるように、負荷抵抗Raを大きくすることにより、時定数τを小さくすることができる。このように、時定数τを小さくすることにより、回路電流Iの立ち上がりをより速くすることが可能となる。但し、負荷抵抗Raを大きくすると、上記の式(6)にから分かるように、電流定常値I0を同一にするためには電源電圧Vccをより高くする必要がある。また、負荷抵抗Raを大きくすることにより、消費電力も大きくなる。従って、電源電圧Vccおよび消費電力を低減するためには、負荷抵抗Raを設けない(すなわち、Ra=0Ωとする)のがより好ましい。
インダクタンスLの両端電圧ELは、次の式(8)で与えられる。図7(b)は、式(8)で表されるインダクタンス両端電圧ELの時間変化を示すグラフである。
Figure 2010080621
上記の式(8)および図7(b)に示すように、インダクタンスLの両端には、スイッチングトランジスタQ1がオフ状態からオン状態に切り替わったタイミング(t=0)において、電源電圧Vccと閾値電圧Vthとの差(Vcc−Vth)の電圧が加わっている。そして、時間tの経過とともに、徐々に低下する。このように、回路電流Iの立ち上がりの遅れは、インダクタンスLの両端の電圧ELが徐々に変化していくために発生している。
D.光源回路の応答特性(本実施例):
図8は、本実施例の映像出力ユニット10内の各信号のレベルと、2つのトランジスタQ1,Q2のオン・オフ状態の時間変化を示す説明図である。図8の各グラフの横軸は時間を表している。図8(a)の各グラフは、上から順に、PWM信号と、PWM信号を反転した反転信号と、遅延時間ΔTで反転信号を遅延させた短絡信号とのそれぞれのレベルを示している。図8(b)の各グラフは、上から順に、スイッチングトランジスタQ1と、短絡トランジスタQ2とのそれぞれのオン・オフ状態を示している。
上述のように、本実施例では、PWM信号はスイッチングトランジスタQ1のゲートに加えられ、PWM信号を反転・遅延させた短絡信号は短絡トランジスタQ2のゲートに加えられる。そのため、図8(b)に示すように、短絡トランジスタQ2は、スイッチングトランジスタQ1がオフ状態からオン状態に切り替わる前にオン状態となっている。そして、スイッチングトランジスタQ1がオン状態に切り替わってから遅延時間ΔTが経過した後、短絡トランジスタQ2はオフ状態に切り替わる。
図9は、本実施例の光源回路300の応答特性を示す説明図である。図9(a)は、駆動用接続線302をインダクタンスLでモデル化した光源回路300を示している。図9(b)は、短絡トランジスタQ2がオン状態の場合の光源回路300の等価回路を示している。図9(c)は、短絡トランジスタQ2がオフ状態の場合の光源回路300の等価回路を示しており、図6(b)と同じ図である。図9(d)は、本実施例における回路電流Iの時間変化を示すグラフである。
本実施例の光源回路300では、図4に示すように、駆動用接続線302のレーザダイオードLD側に、短絡トランジスタQ2が設けられている。そのため、図9(a)に示すように、光源回路300は、短絡トランジスタQ2のドレイン(D)がインダクタンスLとレーザダイオードLDのアノードとの間に接続され、ソース(S)がレーザダイオードLDのカソードと負荷抵抗Raとの間に接続されたものとしてモデル化することができる。
レーザダイオードLDは、等価抵抗Reと直流電圧源Vthとで表すことができ、オン状態の短絡トランジスタQ2は、短絡抵抗Rpで表すことができる。そのため、2つのトランジスタQ1,Q2がいずれもオン状態となっている光源回路300は、図9(b)に示す等価回路で表すことができる。
上述のように、レーザダイオードLDの端子間電圧VLDが閾値電圧Vthを越えるまで、レーザダイオードLDには、ほとんど電流が流れない。すなわち、この状態におけるレーザダイオードLDのインピーダンスは、極めて大きくなっている。一方、短絡トランジスタQ2のインピーダンスは、短絡抵抗Rpそのものであり、レーザダイオードLDのインピーダンスよりも遙かに小さい。そのため、回路電流Iの大部分は短絡トランジスタQ2のドレイン(D)−ソース(S)間を流れる。なお、短絡状態とは、電位差がある回路において、2が所以上の点が、相対的に低い抵抗または低インピーダンスで意図的に接続された状態である。従って、本明細書においてレーザダイオードLDが短絡されている状態とは、短絡トランジスタQ2のオン状態、すなわちレーザダイオードLDの両端の見かけのインピーダンスが小さくされている状態のことを言う。また、この状態は、レーザダイオードLDをバイパスするバイパス電流経路が形成されている状態とも捉えることができる。
このように、短絡トランジスタQ2がオン状態になっている場合、レーザダイオードLDに流れる駆動電流ILDを無視することができる。そのため、図9(b)に示す等価回路の応答特性は、次の式(9)に示す時間tについての微分方程式で表される。
Figure 2010080621
式(9)に示す微分方程式を、時間t=0の時の回路電流I(t)を0とする条件(I(0)=0)の下で解くことにより、回路電流I(t)は、電流定常値I1と時定数τ1とを用いて次の式(10)で与えられる。
Figure 2010080621
ここで、電流定常値I1と時定数τ1とは、次の式(11)および(12)で与えられる。
Figure 2010080621
式(10)から分かるように、回路電流I(t)は、スイッチングトランジスタQ1がオフ状態からオン状態に切り替わったタイミング(t=0)から、電流定常値I1に向かって上昇する。次に、スイッチングトランジスタQ1のオン状態に切り替わってから遅延時間ΔTが経過すると、短絡トランジスタQ2がオフ状態に切り替えられる。
短絡トランジスタQ2がオフ状態に切り替えられた後の光源回路300は、図9(c)に示す等価回路で表される。従って、遅延時間ΔT以降の回路電流I(t)は、式(4)に示す微分方程式で表される。式(4)の微分方程式を解くことにより、遅延時間ΔT以降の回路電流I(t)は、上記の式(6)および(7)で与えられる電流定常値I0および時定数τとを用いて、以下の式(13)で与えられる。
Figure 2010080621
式(13)から分かるように、遅延時間ΔT以降において、回路電流I(t)は、電流定常値I0に向かって変化していく。そして、遅延時間ΔT以降では、短絡トランジスタQ2がオフ状態となることにより、回路電流IがレーザダイオードLDを流れる。
ここで、図9(b)および図9(c)における回路パラメータとして、以下の表の値を用いた場合、短絡トランジスタQ2がオフ状態の非短絡時においては、電流定常値I0が550mAとなり、時定数τが6.5nsとなる。また、短絡トランジスタQ2がオン状態の短絡時においては、電流定常値I1が657mAとなり、時定数τ1が3.7nsとなる。なお、電流定常値I0,I1および時定数τ,τ1との関係から分かるように、短絡トランジスタQ2としては、オン抵抗がスイッチングトランジスタQ1よりも大きいものを使用することができる。
Figure 2010080621
このように、短絡時の電流定常値I1は非短絡時の電流定常値I0よりも大きく(I1>I0)、短絡時の時定数τ1は非短絡時の時定数τよりも小さい(τ1<τ)。そのため、図9(d)において実線で示す本実施例での回路電流I(t)は、一点鎖線で示す比較例よりも、より高い電流定常値I1に向かって速やかに上昇する。そして、遅延時間ΔTが経過した際には、十分に高くなった回路電流I(ΔT)がレーザダイオードLDに流される。このように、本実施例では、レーザダイオードLDに並列に短絡トランジスタQ2を接続することにより、レーザダイオードLDに流れる駆動電流ILDの立ち上がりをより高速にすることができる。
E.レーザダイオードLDの駆動制御:
図10は、本実施例におけるレーザダイオードLDの駆動制御の様子を示すタイミングチャートである。図10の各グラフの横軸は、時間を表している。図10に示すように、回路電流Iは、PWM信号の立ち上がりにおいて立ち上がる。また、駆動電流ILDは、短絡信号の立ち下がりにおいて立ち上がる。そして、レーザダイオードLDの出射光量は、駆動電流ILDの立ち上がりから、遅れ時間tdの後に立ち上がる。回路電流I、駆動電流ILD、および、レーザダイオードLDの出射光量は、いずれも、PWM信号の立ち下がりにおいて立ち下がる。
図10に示すように、本実施例では、PWM信号を反転・遅延させることによって短絡信号を生成し、生成した短絡信号で短絡トランジスタQ2のオン・オフ状態を切り替えている。そのため、短絡トランジスタQ2を流れる(レーザダイオードLDを流れない)短絡電流は、図10においてハッチングで示す領域のみとなる。そのため、期間T3において最大光量で画素を表示した後の期間T4では、短絡電流が流れなくなる。従って、本実施例のように短絡信号を生成することにより、消費電力の増加が抑制される。
また、短絡電流は、各画素時間T1〜T5の最初の遅延時間ΔTの間だけ流れる。この遅延時間ΔTは、短絡時の回路電流Iが非短絡時の電流定常値I0に到達する程度の時間であれば十分であり、各画素時間T1〜T5よりも十分に短くすることができる。このように、短絡電流が流れる遅延時間ΔTを各画素時間T1〜T5よりも十分に短くすると、短絡トランジスタQ2での発熱量が小さくなる。そのため、短絡トランジスタQ2として、スイッチングトランジスタQ1よりも許容損失が小さく、オン抵抗が大きいものを使用することができる。通常、トランジスタの大きさは、許容損失が小さいほど、また、オン抵抗が大きいほど小さくなる。そのため、短絡トランジスタQ2として、スイッチングトランジスタQ1よりも小型のものを使用することができるので、短絡トランジスタQ2をレーザダイオードLDに近接して配置することが可能となる。
F.一適用例としてのレーザスキャンディスプレイ:
図11は、本発明の一適用例としてのレーザスキャンディスプレイ20の構造を示す概略図である。レーザスキャンディスプレイ20は、赤(R)・緑(G)・青(B)の3色のレーザビームを射出するレーザ光源21r,21g,21bを備えている。レーザ光源21r,21g,21bのそれぞれには、レーザダイオードLDと、短絡トランジスタQ2と、終端抵抗Rtとが組み込まれている。表示制御部22は、RGBの各色毎に、階調調整部100と、PWM信号発生回路200と、反転遅延回路310と、スイッチングトランジスタQ1とが設けられている。レーザ光源21r,21g,21bのそれぞれは、駆動用接続線302と短絡信号接続線304とにより、表示制御部22に接続されている。上述のように、レーザ光源21r,21g,21bからの出射光量は、各画素時間毎に調整される。
レーザスキャンディスプレイ20は、また、2つのガルバノミラー23,24と、ファイバ導波路25と、スクリーン26とを備えている。ガルバノミラー23,24は、レーザ光源21r,21g,21bから出射されたレーザビームをそれぞれ直交する方向に走査する。走査されたレーザビームは、ファイバ導波路25の端面25aに入射する。ファイバ導波路25に入射した光は、ファイバ導波路25を構成する個々の光ファイバを通して、スクリーン26に導かれる。このようにしてスクリーン26に導かれた光により、スクリーン26の前面26bに映像が表示される。なお、ファイバ導波路25を用いることなく、ガルバノミラー23,24で走査されたレーザビームを直接スクリーン26に投写するものとしてもよい。
このレーザスキャンディスプレイ20では、レーザ光源21r,21g,21bのそれぞれに、レーザダイオードLDと短絡トランジスタQ2と終端抵抗Rtとを組み込むことによって、レーザダイオードLDの駆動電流ILDの立ち上がりの高速化が図られている。これにより、レーザダイオードLDからの出射光量の立ち上がりが速くなる。そのため、スクリーン26上に表示される映像の各画素の階調制御がより容易となり、また、スクリーン26上に表示される映像の最大輝度をより高くすることができる。
G.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
G1.変形例1:
上記実施例では、PWM信号を反転・遅延させることにより短絡信号を発生させているが、短絡信号は、種々の方法によって発生させることができる。短絡信号は、例えば、描画クロック単独、あるいは、描画クロックと描画データとを用いて生成することも可能である。一般に、短絡信号は、スイッチングトランジスタQ1のオフ状態からオン状態への切替の後、回路電流が定常電流値になるまでの期間(過渡期間)の少なくとも一部において短絡トランジスタQ2をオン状態にする信号であればよい。但し、回路電流の立ち上がりをより速くすることができる点で、スイッチングトランジスタQ1のオン状態への切替タイミングにおいて、短絡トランジスタQ2がオン状態となっているのがより好ましい。
G2.変形例2:
上記実施例では、光源回路300(図4)に使用する発光素子として、レーザダイオードLDを使用しているが、レーザダイオードLDに換えて、発光ダイオード(LED)等の種々の発光素子を使用することができる。
G3.変形例3:
上記実施例では、本発明をレーザスキャンディスプレイ20に適用しているが、本発明は、パルス幅変調を行うことにより発光素子の平均出射光量を制御する装置であれば、種々の装置に適用することができる。本発明は、例えば、レーザ式プロジェクタや、レーザ式リアプロジェクション表示装置等、種々の映像表示装置に適用することができる。
レーザダイオードを用いた映像出力ユニットの構成を示す概略図。 図1の光源回路でレーザダイオードを駆動したときの状態を示す説明図。 レーザダイオードの駆動特性が出射光量に与える影響を示す説明図。 一実施例としての映像出力ユニットの構成を示す説明図。 短絡トランジスタがオフ状態の光源回路を模式的に示す説明図。 短絡トランジスタがオフ状態の光源回路を模式的に示す説明図。 比較例の光源回路の応答特性を示す説明図。 映像出力ユニットの各信号レベルと、トランジスタのオン・オフ状態の時間変化を示す説明図。 実施例の光源回路の応答特性を示す説明図。 レーザダイオードの駆動制御の様子を示すタイミングチャート。 レーザスキャンディスプレイの構造を示す概略図。
符号の説明
10,10a…映像出力ユニット
100…階調調整部
200…PWM信号発生回路
300,300a…光源回路
302…駆動用接続線
304…短絡信号接続線
310…反転遅延回路
C…キャパシタンス
L…インダクタンス
LD…レーザダイオード
Q1…スイッチングトランジスタ
Q2…短絡トランジスタ
Ra…負荷抵抗
Re…等価抵抗
Rp…短絡抵抗
Rs…オン抵抗
Rt…終端抵抗
Vcc…電源電圧
Vth…直流電圧源
20…レーザスキャンディスプレイ
21r,21g,21b…レーザ光源
22…表示制御部
23,24…ガルバノミラー
25…ファイバ導波路
25a…ファイバ導波路端面
26…スクリーン
26b…スクリーン前面

Claims (9)

  1. 発光素子を用いた光源装置であって、
    前記発光素子からの平均出射光量を調整するために、前記発光素子にパルス電流を供給するパルス駆動部と、
    前記発光素子に並列に設けられ、前記発光素子を短絡する発光素子短絡部と
    を備える光源装置。
  2. 請求項1記載の光源装置であって、
    前記発光素子短絡部は、前記パルス電流の過渡期間において前記発光素子を短絡させる
    光源装置。
  3. 請求項1または2記載の光源装置であって、さらに、
    前記発光素子への前記パルス電流の供給を前記パルス駆動部に指示するパルス信号を生成するパルス信号生成部と、
    前記発光素子の短絡を前記発光素子短絡部に指示する短絡信号を生成する短絡信号生成部と
    を備え、
    前記短絡信号生成部は、前記パルス信号を反転および遅延させることにより前記短絡信号を生成する
    光源装置。
  4. 請求項3記載の光源装置であって、
    前記パルス信号生成部は、前記平均出射光量を最大にする場合に、前記発光素子に連続した電流を流すように前記パルス信号を生成する
    光源装置。
  5. 請求項1ないし4のいずれか記載の光源装置であって、
    前記パルス駆動部は、スイッチング用トランジスタのオン状態とオフ状態とを切り替えることにより前記発光素子にパルス電流を供給し、
    前記発光素子短絡部は、前記スイッチング用トランジスタよりも許容損失が小さい短絡用トランジスタをオン状態とすることにより前記発光素子を短絡する
    光源装置。
  6. 請求項1ないし4のいずれか記載の光源装置であって、
    前記パルス駆動部は、スイッチング用トランジスタのオン状態とオフ状態とを切り替えることにより前記発光素子にパルス電流を供給し、
    前記発光素子短絡部は、前記スイッチング用トランジスタよりもオン抵抗が大きい短絡用トランジスタをオン状態とすることにより前記発光素子を短絡する
    光源装置。
  7. 発光素子を表示用の光源とする映像表示装置であって、
    表示映像を構成する各画素の階調値に応じて前記発光素子からの平均出射光量を調整するために、前記発光素子にパルス電流を供給するパルス駆動部と、
    前記発光素子に並列に設けられ、前記発光素子を短絡する発光素子短絡部と、
    前記発光素子からの出射光を走査することにより表示映像を生成する走査部と
    を備える映像表示装置。
  8. 発光素子の駆動方法であって、
    前記発光素子からの平均出射光量を調整するために、前記発光素子にパルス電流を供給し、
    前記パルス電流の過渡期間において前記発光素子を短絡させる
    発光素子の駆動方法。
  9. 発光素子を用いた光源装置であって、
    前記発光素子からの平均出射光量を調整するために、前記発光素子にパルス電流を供給するパルス駆動部と、
    前記発光素子を短絡して前記パルス電流の立ち上がりを速くする立上加速部と
    を備える光源装置。
JP2008246238A 2008-09-25 2008-09-25 光源装置、映像表示装置および発光素子の駆動方法 Pending JP2010080621A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008246238A JP2010080621A (ja) 2008-09-25 2008-09-25 光源装置、映像表示装置および発光素子の駆動方法
US12/538,730 US8212490B2 (en) 2008-09-25 2009-08-10 Light source device, image display apparatus, and method of driving light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246238A JP2010080621A (ja) 2008-09-25 2008-09-25 光源装置、映像表示装置および発光素子の駆動方法

Publications (2)

Publication Number Publication Date
JP2010080621A true JP2010080621A (ja) 2010-04-08
JP2010080621A5 JP2010080621A5 (ja) 2011-09-15

Family

ID=42037631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246238A Pending JP2010080621A (ja) 2008-09-25 2008-09-25 光源装置、映像表示装置および発光素子の駆動方法

Country Status (2)

Country Link
US (1) US8212490B2 (ja)
JP (1) JP2010080621A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198877A (ja) * 2010-03-18 2011-10-06 Ricoh Co Ltd 半導体レーザ駆動装置、該半導体レーザ駆動装置を具備する光走査装置および画像形成装置
US8787415B1 (en) 2010-06-11 2014-07-22 Ixys Corporation Bias current control of laser diode instrument to reduce power consumption of the instrument
US8803437B2 (en) 2011-09-25 2014-08-12 Wen-Hsiung Hsieh Switching mode pulsed current supply for driving LEDS
US8810147B2 (en) 2012-07-15 2014-08-19 Wen-Hsiung Hsieh Method and circuit for driving LEDs with a pulsed current
LU92061B1 (en) * 2012-08-13 2014-02-14 Iee Sarl Pulse modulating laser driver
JP6083193B2 (ja) * 2012-11-02 2017-02-22 ソニー株式会社 画像出力装置および画像出力装置の動作方法、電子回路、電子機器、並びにプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273375A (ja) * 1987-05-01 1988-11-10 Mitsubishi Electric Corp 光ディスク装置
JPH0936471A (ja) * 1995-07-21 1997-02-07 Nec Corp レーザダイオード駆動回路
JP2001345691A (ja) * 2000-06-01 2001-12-14 Nec Eng Ltd 発光素子駆動回路
JP2003198046A (ja) * 2001-12-26 2003-07-11 Fujitsu Access Ltd 半導体レーザ駆動回路
JP2005167000A (ja) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd レーザ駆動回路および光通信装置
JP2008058367A (ja) * 2006-08-29 2008-03-13 Hitachi Lighting Ltd 発光ダイオード点滅制御装置および照明装置
JP2008171983A (ja) * 2007-01-11 2008-07-24 Seiko Epson Corp 光源装置、画像表示装置、プロジェクタおよび光源制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613659A (ja) 1992-04-30 1994-01-21 Takiron Co Ltd 発光ダイオードの輝度調整装置
JPH10270805A (ja) 1997-03-27 1998-10-09 Rohm Co Ltd 半導体レーザ装置
US7259525B2 (en) * 2005-11-03 2007-08-21 System General Corporation High efficiency switching LED driver
JP2007140009A (ja) 2005-11-17 2007-06-07 Seiko Epson Corp 画像表示装置
US7843147B2 (en) * 2008-02-01 2010-11-30 Micrel, Incorporated LED driver circuits and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273375A (ja) * 1987-05-01 1988-11-10 Mitsubishi Electric Corp 光ディスク装置
JPH0936471A (ja) * 1995-07-21 1997-02-07 Nec Corp レーザダイオード駆動回路
JP2001345691A (ja) * 2000-06-01 2001-12-14 Nec Eng Ltd 発光素子駆動回路
JP2003198046A (ja) * 2001-12-26 2003-07-11 Fujitsu Access Ltd 半導体レーザ駆動回路
JP2005167000A (ja) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd レーザ駆動回路および光通信装置
JP2008058367A (ja) * 2006-08-29 2008-03-13 Hitachi Lighting Ltd 発光ダイオード点滅制御装置および照明装置
JP2008171983A (ja) * 2007-01-11 2008-07-24 Seiko Epson Corp 光源装置、画像表示装置、プロジェクタおよび光源制御方法

Also Published As

Publication number Publication date
US20100074283A1 (en) 2010-03-25
US8212490B2 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
JP4017960B2 (ja) 駆動回路
JP2010080621A (ja) 光源装置、映像表示装置および発光素子の駆動方法
KR100771780B1 (ko) 과전압 보호 및 듀티 제어 기능을 갖는 led 구동장치
KR100819252B1 (ko) 광원 구동 집적회로
KR101428430B1 (ko) 조명 장치용 집적 회로 및 조명 장치
TWI381767B (zh) Light emitting diode drive circuit
US20130147360A1 (en) Led driver apparatus
TW200820203A (en) Drive device for light emitting diode element, light source device, and display
KR20150078503A (ko) 전원 공급 장치 및 이를 포함하는 표시 장치
US20070127276A1 (en) Power supply and display
US10043437B2 (en) Display device and method for driving backlight thereof
JP4566692B2 (ja) 発光ダイオード駆動装置及びそれを備えた光伝送装置
KR20080114713A (ko) 광 송신기 회로
US20140247033A1 (en) Low EMI Driver Circuit
US8633654B2 (en) Light source driving apparatus
JPH10284783A (ja) パルス波形整形回路及び該回路による発光素子駆動回路
KR100744327B1 (ko) 광원 구동 회로 및 방법
JP7101463B2 (ja) 発光素子駆動装置、半導体装置、発光装置及び液晶表示装置
JP4878414B2 (ja) 容量性発光表示パネルの駆動装置
US10777617B2 (en) Display, a circuit arrangement for a display, and a method of operating a circuit arrangement of a display
US20070236518A1 (en) Hysteretic led driver with low end linearization
US7224709B2 (en) Electrical circuit for a directly modulated semiconductor radiation source
JP2002229512A (ja) 容量性発光素子の駆動装置および駆動方法
TWI824698B (zh) 畫素電路及應用其之微發光二極體面板
TWI829428B (zh) 畫素電路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105