JP2010062422A - 極端紫外光光源装置 - Google Patents
極端紫外光光源装置 Download PDFInfo
- Publication number
- JP2010062422A JP2010062422A JP2008228092A JP2008228092A JP2010062422A JP 2010062422 A JP2010062422 A JP 2010062422A JP 2008228092 A JP2008228092 A JP 2008228092A JP 2008228092 A JP2008228092 A JP 2008228092A JP 2010062422 A JP2010062422 A JP 2010062422A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- mirror
- extreme ultraviolet
- pipe
- condenser mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
【課題】クリーニングガスを集光鏡に導入するに際し、簡易な手段で、外側のミラーに対してよりも内側のミラーに対してクリーニングガスを多く供給できるようにすること。
【解決手段】 クリーニングガスを導入するガスノズル21を、直管状のパイプで構成し、集光鏡3aの複数のミラーを支持する支柱に沿って、集光鏡3aの光出射口を横断するように設け、このパイプに複数のガス吹き出し口を形成する。そして、このガスノズル21へのクリーニングガスの供給を、集光鏡3aの光出射口の中心付近に当たる位置からおこない、パイプに設けたガス吹き出し口から、集光鏡の内部に向けて、ガスを吹き出す。これにより、集光鏡3aの外側のミラーよりも内側のミラーに対してより多くの量のクリーニングガスを供給することができる。
【選択図】 図1
【解決手段】 クリーニングガスを導入するガスノズル21を、直管状のパイプで構成し、集光鏡3aの複数のミラーを支持する支柱に沿って、集光鏡3aの光出射口を横断するように設け、このパイプに複数のガス吹き出し口を形成する。そして、このガスノズル21へのクリーニングガスの供給を、集光鏡3aの光出射口の中心付近に当たる位置からおこない、パイプに設けたガス吹き出し口から、集光鏡の内部に向けて、ガスを吹き出す。これにより、集光鏡3aの外側のミラーよりも内側のミラーに対してより多くの量のクリーニングガスを供給することができる。
【選択図】 図1
Description
本発明は、極端紫外光を出射する極端紫外光光源装置に関する。特に、特に極端紫外光を集光する集光鏡への付着物を除去するためのガスを、効率よく集光鏡に導入するガス供給手段を備えた極端紫外光光源装置に関するものである。
半導体集積回路の微細化、高集積化につれて、その製造用の投影露光装置においては解像力の向上が要請されている。
その要請に応えるため、露光用光源の短波長化が進められ、エキシマレーザ装置に続く次世代の半導体露光用光源として、波長13〜14nm、特に波長13.5nmの極端紫外光(以下、EUV(Extreme Ultra Violet)光ともいう)を出射する極端紫外光光源装置(以下、EUV光源装置ともいう)が開発されている。
EUV光源装置において、EUV光を発生させる方法の一つに極端紫外光放射種(以下、EUV放射種)を加熱して励起することにより高温プラズマを発生させ、この高温プラズマからEUV光を取り出す方法がある。
その要請に応えるため、露光用光源の短波長化が進められ、エキシマレーザ装置に続く次世代の半導体露光用光源として、波長13〜14nm、特に波長13.5nmの極端紫外光(以下、EUV(Extreme Ultra Violet)光ともいう)を出射する極端紫外光光源装置(以下、EUV光源装置ともいう)が開発されている。
EUV光源装置において、EUV光を発生させる方法の一つに極端紫外光放射種(以下、EUV放射種)を加熱して励起することにより高温プラズマを発生させ、この高温プラズマからEUV光を取り出す方法がある。
このような方法を採用するEUV光源装置は、高温プラズマの生成方式により、LPP(Laser Produced Plasma:レーザ生成プラズマ)方式EUV光源装置とDPP(Discharge Produced Plasma:放電生成プラズマ)方式EUV光源装置とに大きく分けられる。
このうちDPP方式EUV光源装置は、電流駆動によって生成した高温プラズマから放射されるEUV光を利用するものである。DPP方式EUV光源は、LPP方式EUV光源と比較して、光源装置の小型化、光源システムの消費電力が小さいといった利点あり、実用化への期待も大きい。
EUV光源装置において、波長13.5nmのEUV光を放出する放射種、すなわち、高温プラズマ用原料としてLi(リチウム)イオンとSn(錫)イオンが注目されている。
このうちDPP方式EUV光源装置は、電流駆動によって生成した高温プラズマから放射されるEUV光を利用するものである。DPP方式EUV光源は、LPP方式EUV光源と比較して、光源装置の小型化、光源システムの消費電力が小さいといった利点あり、実用化への期待も大きい。
EUV光源装置において、波長13.5nmのEUV光を放出する放射種、すなわち、高温プラズマ用原料としてLi(リチウム)イオンとSn(錫)イオンが注目されている。
図5に、DPP方式のEUV光源装置の構成例を示す。
EUV光光源装置は、放電容器であるチャンバ1を有する。チャンバ1は、放電部2とEUV光集光部3とを内部に有する。
放電部2は、EUV放射種を加熱して励起する加熱励起手段である。EUV光集光部3は、放電部2においてEUV放射種が加熱励起されて生成した高温プラズマから放出されるEUV光を集光して、チャンバ1に設けられたEUV光取出部4より、図示を省略した露光装置の照射光学系へ導く。
チャンバ1内部は排気装置10により減圧雰囲気とされ、排気装置10により圧力が調整される。
EUV光光源装置は、放電容器であるチャンバ1を有する。チャンバ1は、放電部2とEUV光集光部3とを内部に有する。
放電部2は、EUV放射種を加熱して励起する加熱励起手段である。EUV光集光部3は、放電部2においてEUV放射種が加熱励起されて生成した高温プラズマから放出されるEUV光を集光して、チャンバ1に設けられたEUV光取出部4より、図示を省略した露光装置の照射光学系へ導く。
チャンバ1内部は排気装置10により減圧雰囲気とされ、排気装置10により圧力が調整される。
放電部2は、第1の放電電極2aと第2の放電電極2bとが絶縁材2cを挟むように配置された構造である。両電極はともに金属製の円盤状部材であり、両者の中心は略同軸上に配置され、絶縁材2cの厚みの分だけ離間した位置に固定されている。絶縁材2cの厚み、すなわち、第1の放電電極2aと第2の放電電極2bの離間距離は1mm〜10mm程度である。なお、第2の放電電極2bの直径は、第1の放電電極2aの直径よりもやや大きい。
第2の放電電極2bの中心には、モータ6の回転シャフト6aが取り付けられている。 上記したように、第1の放電電極2aの中心と第2の放電電極2bの中心は、ほぼ一致して固定されているので、回転シャフト6aが回転すると、第1の放電電極2aと第2の放電電極2bは、同じ回転中心を軸として回転する。
回転シャフト6aは、例えば、メカニカルシール6bを介してチャンバ1内に導入される。メカニカルシール6bは、チャンバ1内の減圧雰囲気を維持しつつ、回転シャフト6aの回転を許容する。
第2の放電電極2bの中心には、モータ6の回転シャフト6aが取り付けられている。 上記したように、第1の放電電極2aの中心と第2の放電電極2bの中心は、ほぼ一致して固定されているので、回転シャフト6aが回転すると、第1の放電電極2aと第2の放電電極2bは、同じ回転中心を軸として回転する。
回転シャフト6aは、例えば、メカニカルシール6bを介してチャンバ1内に導入される。メカニカルシール6bは、チャンバ1内の減圧雰囲気を維持しつつ、回転シャフト6aの回転を許容する。
第2の放電電極2bの下側には、例えばカーボンブラシ等で構成される第1の摺動子7aおよび第2の摺動子7bが設けられている。第2の摺動子7bは第2の放電電極2bと電気的に接続される。
一方、第1の摺動子7aは第2の放電電極を貫通する貫通孔2eを介して第1の放電電極2aと電気的に接続される。なお、図示を省略した絶縁機構により、第1の放電電極2aと電気的に接続される第1の摺動子7aと、第2の放電電極2bとの間では絶縁破壊が発生しないように構成されている。
第1の摺動子7aと第2の摺動子7bは摺動しながらも電気的接続を維持する電気接点であり、パルス電力発生器7と接続される。パルス電力発生器7は、第1の摺動子7a、第2の摺動子7bを介して、第1の放電電極2aと第2の放電電極2bとの間にパルス電力を供給する。すなわち、モータ6が動作して第1の放電電極2aと第2の放電電極2bとが回転していても、第1の放電電極2aと第2の放電電極2bとの間には、第1の摺動子7a、第2の摺動子7bを介して、パルス電力発生器7よりパルス電力が印加される。
一方、第1の摺動子7aは第2の放電電極を貫通する貫通孔2eを介して第1の放電電極2aと電気的に接続される。なお、図示を省略した絶縁機構により、第1の放電電極2aと電気的に接続される第1の摺動子7aと、第2の放電電極2bとの間では絶縁破壊が発生しないように構成されている。
第1の摺動子7aと第2の摺動子7bは摺動しながらも電気的接続を維持する電気接点であり、パルス電力発生器7と接続される。パルス電力発生器7は、第1の摺動子7a、第2の摺動子7bを介して、第1の放電電極2aと第2の放電電極2bとの間にパルス電力を供給する。すなわち、モータ6が動作して第1の放電電極2aと第2の放電電極2bとが回転していても、第1の放電電極2aと第2の放電電極2bとの間には、第1の摺動子7a、第2の摺動子7bを介して、パルス電力発生器7よりパルス電力が印加される。
パルス電力発生器7は、コンデンサCと磁気スイッチSRとからなる磁気パルス圧縮回路部を介して、負荷である第1の放電電極2aと第2の放電電極2bとの間にパルス幅の短いパルス電力を印加する。なお、パルス電力発生器7から第1の摺動子7a、第2の摺動子7bとの配線は、図示を省略した絶縁性の電流導入端子を介してなされる。
電流導入端子は、チャンバ1に取り付けられ、チャンバ1内の減圧雰囲気を維持しつつ、パルス電力発生器7から第1の摺動子7a、第2の摺動子7bとの電気的接続を可能とする。
金属製の円盤状部材である第1の放電電極2a、第2の放電電極2bの周辺部は、エッジ形状に構成される。パルス電力発生器7より第1の放電電極2a、第2の放電電極2bに電力が印加されると、両電極のエッジ形状部分間で放電が発生する。第2の放電電極2bの周辺部には溝部2dが設けられ、この溝部2dに、原料供給ユニット8から、高温プラズマ用原料である固体スズ(Sn)や固体リチウム(Li)が供給される。
原料供給ユニット8を用いる場合、原料供給ユニット8に加熱機構を持たせ、原料となるSnやLiを加熱により液化させ、この液化した原料を第2の放電電極2bの溝部2dに供給するように構成してもよい。
電流導入端子は、チャンバ1に取り付けられ、チャンバ1内の減圧雰囲気を維持しつつ、パルス電力発生器7から第1の摺動子7a、第2の摺動子7bとの電気的接続を可能とする。
金属製の円盤状部材である第1の放電電極2a、第2の放電電極2bの周辺部は、エッジ形状に構成される。パルス電力発生器7より第1の放電電極2a、第2の放電電極2bに電力が印加されると、両電極のエッジ形状部分間で放電が発生する。第2の放電電極2bの周辺部には溝部2dが設けられ、この溝部2dに、原料供給ユニット8から、高温プラズマ用原料である固体スズ(Sn)や固体リチウム(Li)が供給される。
原料供給ユニット8を用いる場合、原料供給ユニット8に加熱機構を持たせ、原料となるSnやLiを加熱により液化させ、この液化した原料を第2の放電電極2bの溝部2dに供給するように構成してもよい。
モータ6は一方向にのみ回転し、モータ6が動作する事により回転シャフト6aが回転し、回転シャフト6aに取り付けられた第2の放電電極2b及び第1の放電電極2aが一方向に回転する。第2の放電電極2bの溝部2dに供給されたSnまたはLiは、第2の放電電極2bの回転により放電部2におけるEUV光出射側であるEUV光集光部3側に移動する。
一方、チャンバ1には、上記EUV集光部3側に移動したSnまたはLiに対してレーザ光を照射するレーザ照射機9が設けられる。レーザ照射機9からのレーザ光は、上記EUV集光部3側に移動した原料(SnまたはLi)上に照射される。レーザ光が照射された原料は、第1の放電電極2a、第2の放電電極2b間で気化し一部は電離する。
このような状態下で、第1、第2の放電電極2a,2b間にパルス電力発生器7より電圧が約+20kV〜−20kVであるようなパルス電力を印加すると、両電極2a,2bの周辺部に設けられたエッジ形状部分間で放電が発生する。このとき両電極2a,2b間で気化した原料の一部電離した部分にパルス状の大電流が流れる。
その後、ピンチ効果によるジュール加熱によって、両電極2a,2b間の周辺部には、気化した原料による高温プラズマが形成され、この高温プラズマから波長13.5nmのEUV光が放射される。
一方、チャンバ1には、上記EUV集光部3側に移動したSnまたはLiに対してレーザ光を照射するレーザ照射機9が設けられる。レーザ照射機9からのレーザ光は、上記EUV集光部3側に移動した原料(SnまたはLi)上に照射される。レーザ光が照射された原料は、第1の放電電極2a、第2の放電電極2b間で気化し一部は電離する。
このような状態下で、第1、第2の放電電極2a,2b間にパルス電力発生器7より電圧が約+20kV〜−20kVであるようなパルス電力を印加すると、両電極2a,2bの周辺部に設けられたエッジ形状部分間で放電が発生する。このとき両電極2a,2b間で気化した原料の一部電離した部分にパルス状の大電流が流れる。
その後、ピンチ効果によるジュール加熱によって、両電極2a,2b間の周辺部には、気化した原料による高温プラズマが形成され、この高温プラズマから波長13.5nmのEUV光が放射される。
放電部により放出されたEUV光は、EUV光集光部に設けられた斜入射型のEUV集光鏡3aにより集光され、チャンバ1に設けられたEUV光取出部4より図示を省略した露光装置の照射光学系へ導かれる。
EUV集光鏡3aは、径の異なる回転楕円体、または回転放物体形状のミラーを複数枚具える。これらのミラーは、同一軸上に、焦点位置が略一致するように回転中心軸を重ねて配置され、例えば、ニッケル(Ni)等からなる平滑面を有する基体材料の反射面側に、ルテニウム(Ru)、モリブデン(Mo)、およびロジウム(Rh)などの金属膜を緻密にコーティングすることで、0°〜25°の斜入射角度のEUV光を良好に反射できるように構成されている。なお、上記したミラーの回転中心軸は、集光鏡の2つの焦点を結ぶ直線、すなわち光軸と一致する。
なお、EUV集光鏡3aにおける、複数のミラーの支持は、特許文献1に示されるように、ミラーの径方向に伸びるスパイダと呼ばれる棒状の固定用部材で行われる。
EUV集光鏡3aは、径の異なる回転楕円体、または回転放物体形状のミラーを複数枚具える。これらのミラーは、同一軸上に、焦点位置が略一致するように回転中心軸を重ねて配置され、例えば、ニッケル(Ni)等からなる平滑面を有する基体材料の反射面側に、ルテニウム(Ru)、モリブデン(Mo)、およびロジウム(Rh)などの金属膜を緻密にコーティングすることで、0°〜25°の斜入射角度のEUV光を良好に反射できるように構成されている。なお、上記したミラーの回転中心軸は、集光鏡の2つの焦点を結ぶ直線、すなわち光軸と一致する。
なお、EUV集光鏡3aにおける、複数のミラーの支持は、特許文献1に示されるように、ミラーの径方向に伸びるスパイダと呼ばれる棒状の固定用部材で行われる。
上記した放電部2とEUV光集光部3との間には、EUV集光鏡3aのダメージを防ぐために、ホイルトラップ11が設置される。ホイルトラップ11は、第1および第2の放電電極2a,2bが高温プラズマによってスパッタされて生じる金属粉等のデブリや、原料のSnまたはLiに起因するデブリを捕捉してEUV光のみを通過させる。
上記のEUV光源装置によれば、第1および第2の放電電極2a,2bが回転しているので、両電極2a,2bにおいてパルス放電が発生する位置はパルス毎に変化する。
よって、第1および第2の放電電極2a,2bが受ける熱的負荷は小さくなり、放電電極の磨耗スピードが減少し、放電電極2a,2bの長寿命化が可能となる。
上記のEUV光源装置によれば、第1および第2の放電電極2a,2bが回転しているので、両電極2a,2bにおいてパルス放電が発生する位置はパルス毎に変化する。
よって、第1および第2の放電電極2a,2bが受ける熱的負荷は小さくなり、放電電極の磨耗スピードが減少し、放電電極2a,2bの長寿命化が可能となる。
高温プラズマ用原料として、スズ(Sn)を使用する場合、このスズに起因するデブリが発生する。スズは蒸気圧が低く室温程度では固体である。そのため、集光鏡の反射面にはスズまたはスズの化合物が付着し、EUV光の反射率が低下する。その結果、EUV光源装置から出射するEUV光の出力が低下することがある。
これを防ぐため、特許文献2,3には、光学システムから光学要素を汚す堆積汚染物質を除去するのに、ミラーへの付着物を除去するためのガス(ハロゲンガス等)を使用することが示されている。
これを防ぐため、特許文献2,3には、光学システムから光学要素を汚す堆積汚染物質を除去するのに、ミラーへの付着物を除去するためのガス(ハロゲンガス等)を使用することが示されている。
極端紫外光光源装置の集光鏡は、上記したように、複数の筒状の斜入射ミラーが入れ子状に重なって構成されており、EUV光の光軸に近い内側のミラーほど、プラズマからのデブリの影響を受けやすく汚れが付着しやすい。一方、光軸から遠い外側のミラーは比較的汚れにくい。
そのため、ミラーへの付着物を除去するためのガス(以下クリーニングガス)を、外側のミラーに対してよりも、内側のミラーに対して多く供給したいという要望がある。
そのために、例えば特許文献2に示されるように、内側のミラーにクリーニングガスを供給する配管と、外側のミラーにクリーニングガスを供給する配管とを別々に設け、それぞれに供給するクリーニングガスの量を制御することが考えられる。
しかし、このような方法では、装置の構成や制御が複雑になり、装置のコストアップにつながる。
本発明は上記事情に鑑みなされたものであって、本発明の課題は、集光鏡への付着物を除去するためクリーニングガスを集光鏡に導入するに際し、簡易な手段で、外側のミラーに対してよりも内側のミラーに対してクリーニングガスを多く供給できるようにすることである。
そのため、ミラーへの付着物を除去するためのガス(以下クリーニングガス)を、外側のミラーに対してよりも、内側のミラーに対して多く供給したいという要望がある。
そのために、例えば特許文献2に示されるように、内側のミラーにクリーニングガスを供給する配管と、外側のミラーにクリーニングガスを供給する配管とを別々に設け、それぞれに供給するクリーニングガスの量を制御することが考えられる。
しかし、このような方法では、装置の構成や制御が複雑になり、装置のコストアップにつながる。
本発明は上記事情に鑑みなされたものであって、本発明の課題は、集光鏡への付着物を除去するためクリーニングガスを集光鏡に導入するに際し、簡易な手段で、外側のミラーに対してよりも内側のミラーに対してクリーニングガスを多く供給できるようにすることである。
上記課題を本発明においては、集光鏡にクリーニングガスを導入するガスノズルを次のように構成し、前記課題を解決する。
極端紫外光光源装置において、クリーニングガスを導入するガスノズルを、直管状のパイプで構成し、集光鏡の光出射口を横断するように設け、該パイプに複数のガス吹き出し口を形成する。そして、このガスノズルへのクリーニングガスの供給を、集光鏡の回転中心軸(光軸)と、ガスノズルである直管状のパイプとの交点に形成したガス導入口からおこなう。すなわち、上記直管状のパイプに設けたガスを供給するためのガス導入口を、集光鏡の光軸との交点付近に配置し、このガス導入口からガスをパイプ内に導入し、パイプに設けた複数のガス吹き出し口から、集光鏡の内部に向けて、ガスを吹き出す。
さらに、ガスノズルのパイプを、集光鏡の複数のミラーを支持する支柱(スパイダ)に沿って、該支柱の光出射側に設ける。すなわち、該支柱(スパイダ)により、集光鏡から出る光が影になる部分にパイプを配置する。
なお、ガス吹き出し口を、集光鏡の複数のミラーが配置される間隔に合わせて、内側(中心付近)に密に、外側に疎になるように形成してもよい。
すなわち、本発明においては、次のようにして前記課題を解決する。
(1)容器と、この容器内で、極端紫外光放射種を放電により加熱して励起し高温プラズマを発生させる、一対の主放電電極からなる放電部と、上記放電部に上記極端紫外光放射種を供給する極端紫外光放射種供給手段と、上記主放電電極に高電圧を印加する高電圧発生部と、上記高温プラズマから放射される極端紫外光を反射して集光する集光鏡と、上記集光された光を取り出す、上記容器に形成された光取り出し部と、上記容器内を、上記集光鏡の光入射側から排気する排気手段と、上記集光鏡に付着した付着物を除去するガスを、ガスノズルから上記集光鏡に導入するガス供給手段とを備えた極端紫外光光源装置において、上記集光鏡を、複数の径の異なる回転楕円体または回転放物体形状のミラーを、同一軸上に、焦点位置が一致するように回転中心軸を重ねて配置されたもので構成し、上記ガスノズルを、上記集光鏡の光出射口を横断するように設けた直管状のパイプとし、該パイプには複数のガス吹き出し口を形成し、このガスノズルへのガスの供給を、上記直管状のパイプと上記集光鏡の回転中心軸との交点に形成したガス導入口から行う。
(2)上記(1)において、上記直管状のパイプを、上記集光鏡の複数のミラーを支持する支柱に沿って設ける。
極端紫外光光源装置において、クリーニングガスを導入するガスノズルを、直管状のパイプで構成し、集光鏡の光出射口を横断するように設け、該パイプに複数のガス吹き出し口を形成する。そして、このガスノズルへのクリーニングガスの供給を、集光鏡の回転中心軸(光軸)と、ガスノズルである直管状のパイプとの交点に形成したガス導入口からおこなう。すなわち、上記直管状のパイプに設けたガスを供給するためのガス導入口を、集光鏡の光軸との交点付近に配置し、このガス導入口からガスをパイプ内に導入し、パイプに設けた複数のガス吹き出し口から、集光鏡の内部に向けて、ガスを吹き出す。
さらに、ガスノズルのパイプを、集光鏡の複数のミラーを支持する支柱(スパイダ)に沿って、該支柱の光出射側に設ける。すなわち、該支柱(スパイダ)により、集光鏡から出る光が影になる部分にパイプを配置する。
なお、ガス吹き出し口を、集光鏡の複数のミラーが配置される間隔に合わせて、内側(中心付近)に密に、外側に疎になるように形成してもよい。
すなわち、本発明においては、次のようにして前記課題を解決する。
(1)容器と、この容器内で、極端紫外光放射種を放電により加熱して励起し高温プラズマを発生させる、一対の主放電電極からなる放電部と、上記放電部に上記極端紫外光放射種を供給する極端紫外光放射種供給手段と、上記主放電電極に高電圧を印加する高電圧発生部と、上記高温プラズマから放射される極端紫外光を反射して集光する集光鏡と、上記集光された光を取り出す、上記容器に形成された光取り出し部と、上記容器内を、上記集光鏡の光入射側から排気する排気手段と、上記集光鏡に付着した付着物を除去するガスを、ガスノズルから上記集光鏡に導入するガス供給手段とを備えた極端紫外光光源装置において、上記集光鏡を、複数の径の異なる回転楕円体または回転放物体形状のミラーを、同一軸上に、焦点位置が一致するように回転中心軸を重ねて配置されたもので構成し、上記ガスノズルを、上記集光鏡の光出射口を横断するように設けた直管状のパイプとし、該パイプには複数のガス吹き出し口を形成し、このガスノズルへのガスの供給を、上記直管状のパイプと上記集光鏡の回転中心軸との交点に形成したガス導入口から行う。
(2)上記(1)において、上記直管状のパイプを、上記集光鏡の複数のミラーを支持する支柱に沿って設ける。
本発明においては、以下の効果を得ることができる。
(1)クリーニングガスを、ガスノズルを構成する直管状のパイプの中央(光軸との交点)から供給しているので、ガス吹き出し口から吹き出すクリーニングガスの流速が、外側よりも内側(集光鏡の光出射口の中心側)のほうが早くなる。したがって、複雑な制御を行うことなく、外側のミラーよりも内側のミラーに対してより多くの量のクリーニングガスを供給することができる。
(2)また、ガスノズルのパイプを、ミラーを支持する支柱(スパイダ)に沿って設けることにより、ガスノズルのパイプを、支柱(スパイダ)の影に入れることができる。
このため、集光鏡から出射するEUV光が、ガスノズルのパイプにより遮光されるのを防ぐことができる。
なお、支柱(スパイダ)が放射状に設けられていれば、ガスノズルのパイプも、放射状に設けても良い。これにより、クリーニングガスを、円筒状のミラー全体に行き渡らせることができる。
また、ガス吹き出し口を、集光鏡の複数のミラーが配置される間隔に合わせて、内側(中心付近)に密に、外側に疎になるように形成することにより、確実にミラーに対してクリーニングガスを供給することができる。
(1)クリーニングガスを、ガスノズルを構成する直管状のパイプの中央(光軸との交点)から供給しているので、ガス吹き出し口から吹き出すクリーニングガスの流速が、外側よりも内側(集光鏡の光出射口の中心側)のほうが早くなる。したがって、複雑な制御を行うことなく、外側のミラーよりも内側のミラーに対してより多くの量のクリーニングガスを供給することができる。
(2)また、ガスノズルのパイプを、ミラーを支持する支柱(スパイダ)に沿って設けることにより、ガスノズルのパイプを、支柱(スパイダ)の影に入れることができる。
このため、集光鏡から出射するEUV光が、ガスノズルのパイプにより遮光されるのを防ぐことができる。
なお、支柱(スパイダ)が放射状に設けられていれば、ガスノズルのパイプも、放射状に設けても良い。これにより、クリーニングガスを、円筒状のミラー全体に行き渡らせることができる。
また、ガス吹き出し口を、集光鏡の複数のミラーが配置される間隔に合わせて、内側(中心付近)に密に、外側に疎になるように形成することにより、確実にミラーに対してクリーニングガスを供給することができる。
図1に本発明の実施例の極端紫外光光源装置の構成を示す。図5とは、集光鏡の光出射側に、クリーニングガス供給手段が設けられている点のみ異なり、その他の構成及び動作は図5と同じである。
すなわち、放電容器であるチャンバ1内に、放電部2とEUV光集光部3が設けられ、放電部2は、第1、第2の電極2a,2bを有し、EUV放射種を加熱して励起する。EUV光集光部3は、放電部2においてEUV放射種が加熱励起されて生成した高温プラズマから放出されるEUV光を集光して、チャンバ1に設けられたEUV光取出部4より、図示を省略した露光装置の照射光学系へ導く。
EUV光集光部3には、EUV集光鏡3aとクリーニングガス供給手段20が設けられ、クリーニングガス供給手段20は、集光鏡3aの光出射側に取り付けられたガスノズル21と、このガスノズル21に集光鏡3aの付着物を除去するガスを供給するクリーニングガス供給部22とから構成される。
すなわち、放電容器であるチャンバ1内に、放電部2とEUV光集光部3が設けられ、放電部2は、第1、第2の電極2a,2bを有し、EUV放射種を加熱して励起する。EUV光集光部3は、放電部2においてEUV放射種が加熱励起されて生成した高温プラズマから放出されるEUV光を集光して、チャンバ1に設けられたEUV光取出部4より、図示を省略した露光装置の照射光学系へ導く。
EUV光集光部3には、EUV集光鏡3aとクリーニングガス供給手段20が設けられ、クリーニングガス供給手段20は、集光鏡3aの光出射側に取り付けられたガスノズル21と、このガスノズル21に集光鏡3aの付着物を除去するガスを供給するクリーニングガス供給部22とから構成される。
クリーニングガス供給部22からガスノズル21に供給されたクリーニングガスは、集光鏡3aに導入され、集光鏡3aの光出射側から光入射側に向かって流れ、ミラー3cに付着した付着物を除去する。
その後、ホイルトラップ11を通過し、放電部2側に設けた排気装置10から排気される。
クリーニングガスが出射するガスノズル21を、集光鏡3aの光出射側に設け、光出射側から光入射側に向かって流れるようにしたのは、以下の理由による。
集光鏡3aの汚れは、光入射側(プラズマに近い側)に多くつく。集光鏡3aの光入射側からクリーニングガスを流すと、光入射側で取り除かれた汚れが、光出射側に再付着する可能性がある。これを防ぐためである。また、クリーニングガスが、ホイルトラップ11を通過し、放電部2側に設けた排気装置10から排気されることにより、ホイルトラップ11に付着した汚れも取り除くことが期待できる。
その後、ホイルトラップ11を通過し、放電部2側に設けた排気装置10から排気される。
クリーニングガスが出射するガスノズル21を、集光鏡3aの光出射側に設け、光出射側から光入射側に向かって流れるようにしたのは、以下の理由による。
集光鏡3aの汚れは、光入射側(プラズマに近い側)に多くつく。集光鏡3aの光入射側からクリーニングガスを流すと、光入射側で取り除かれた汚れが、光出射側に再付着する可能性がある。これを防ぐためである。また、クリーニングガスが、ホイルトラップ11を通過し、放電部2側に設けた排気装置10から排気されることにより、ホイルトラップ11に付着した汚れも取り除くことが期待できる。
図2と図3を用いてガスノズルの構造について説明する。
図2は、集光鏡の光出射口側から見た斜視図であり、図3は集光鏡を光軸に沿った方向で切断した断面図である。なお、図2と図3においては、集光鏡3aを構成するミラー3cが3枚であるが、実際はミラーの枚数はもっと多い。また、図3においては、複数のミラー3cを支持する支柱(スパイダ)は省略している。
ガスノズル21は、直管状のパイプであり、集光鏡3aの光出射口を横断するように設ける。
ガスノズル21のパイプは、集光鏡3aの複数のミラー3cを支持する支柱(スパイダ)3bの光出射側に該支柱3bに沿って設ける。これにより、ガスノズル21のパイプは、集光鏡3aから出射するEUV光に対し、支柱3b(スパイダ)の影に入る。したがって、ガスノズル21のパイプがEUV光を遮ることがない。
なお、支柱3b(スパイダ)が放射状に設けられていれば、ガスノズル21のパイプも、放射状に設けても良い。
図2は、集光鏡の光出射口側から見た斜視図であり、図3は集光鏡を光軸に沿った方向で切断した断面図である。なお、図2と図3においては、集光鏡3aを構成するミラー3cが3枚であるが、実際はミラーの枚数はもっと多い。また、図3においては、複数のミラー3cを支持する支柱(スパイダ)は省略している。
ガスノズル21は、直管状のパイプであり、集光鏡3aの光出射口を横断するように設ける。
ガスノズル21のパイプは、集光鏡3aの複数のミラー3cを支持する支柱(スパイダ)3bの光出射側に該支柱3bに沿って設ける。これにより、ガスノズル21のパイプは、集光鏡3aから出射するEUV光に対し、支柱3b(スパイダ)の影に入る。したがって、ガスノズル21のパイプがEUV光を遮ることがない。
なお、支柱3b(スパイダ)が放射状に設けられていれば、ガスノズル21のパイプも、放射状に設けても良い。
ガスノズル21に形成するガス吹き出し口21aは、集光鏡3aの複数のミラー3cが配置される間隔に合わせて、ミラー3cとミラー3cの間にガスが供給されるように形成する。集光鏡3aを構成するミラー3cの間隔は、内側ほど狭くなる。そのため、パイプに形成するガス吹き出し口21aの間隔も、内側(中心付近)に向かうほど密になり、反対に外側は疎になる。
ガスノズル21へのクリーニングガスの供給は、パイプの、集光鏡3aの光出射口の中心(光軸)との交点に形成したガス導入口21bからおこなう。すなわち、図3に示すように、ガスノズル21のパイプと集光鏡3aの光軸(回転中心軸)との交点にガス導入口21bを設け、このガス導入口21bから、ガスノズル21にクリーニングガスを供給する。
ガスノズル21に供給されたクリーニングガスは、ガスノズル21に設けられた複数の吹き出し口21aから、集光鏡3aの内部に向けて吹き出される。
ガスノズル21へのクリーニングガスの供給は、パイプの、集光鏡3aの光出射口の中心(光軸)との交点に形成したガス導入口21bからおこなう。すなわち、図3に示すように、ガスノズル21のパイプと集光鏡3aの光軸(回転中心軸)との交点にガス導入口21bを設け、このガス導入口21bから、ガスノズル21にクリーニングガスを供給する。
ガスノズル21に供給されたクリーニングガスは、ガスノズル21に設けられた複数の吹き出し口21aから、集光鏡3aの内部に向けて吹き出される。
図4は、ガスノズル21のパイプに形成されているガス吹き出し口21aの位置と、そこから吹き出すクリーニングガスの流速を示す図である。
横軸がガス吹き出し口の位置であり、縦軸がクリーニングガスの流速である。ガス吹き出し口の直径は0.3mmであり、パイプに均等な間隔で16箇所形成されている。
同図(a)は、パイプの両端からガスを供給した場合であり、(b)が、パイプの中心(集光鏡の光出射口の中心に当たる位置)からガスを供給した場合である。なお、(b)では、ハイプの両端は閉じている。
なお、供給するガスは塩素で、流速は500sccm(500ml/分)、ガスノズル21のパイプの太さは外径3.2mm、ガスノズル21と集光鏡3aの光出射側の端部との距離は50〜150mmである。
横軸がガス吹き出し口の位置であり、縦軸がクリーニングガスの流速である。ガス吹き出し口の直径は0.3mmであり、パイプに均等な間隔で16箇所形成されている。
同図(a)は、パイプの両端からガスを供給した場合であり、(b)が、パイプの中心(集光鏡の光出射口の中心に当たる位置)からガスを供給した場合である。なお、(b)では、ハイプの両端は閉じている。
なお、供給するガスは塩素で、流速は500sccm(500ml/分)、ガスノズル21のパイプの太さは外径3.2mm、ガスノズル21と集光鏡3aの光出射側の端部との距離は50〜150mmである。
図4(a)に示すように、ガスをガスノズル21のパイプの両端から供給した場合、パイプの両端のガス吹き出し口から吹き出すガスの流速が最も早く、内側に向かうにしたがって、流速は低下し、中央付近で最も小さくなる。
これは、ガスが供給される側に近いガス吹き出し口の方が、ガスの圧力が高くなるためと考えられる。
このように、パイプの両端からガスを供給したのでは、汚れの付着しにくい外側のミラーに対して多くのクリーニングガスが供給され、汚れの付着しやすい内側のミラーに供給されるクリーニングガスは少なくなる。
なお、パイプの両端からガスを供給する場合、中央に向かうにしたがって、ガス吹き出し口の穴径を徐々に大きくすれば、中央から吹き出すガスの量を大きくすることができる。しかし、その際は、パイプの両側から供給するガスの流量や圧力が等しくなるように調整する必要があり、また、ガス吹き出し口の穴径もガス流量や圧力に応じて設計する必要があり、加工も難しくなる。
これは、ガスが供給される側に近いガス吹き出し口の方が、ガスの圧力が高くなるためと考えられる。
このように、パイプの両端からガスを供給したのでは、汚れの付着しにくい外側のミラーに対して多くのクリーニングガスが供給され、汚れの付着しやすい内側のミラーに供給されるクリーニングガスは少なくなる。
なお、パイプの両端からガスを供給する場合、中央に向かうにしたがって、ガス吹き出し口の穴径を徐々に大きくすれば、中央から吹き出すガスの量を大きくすることができる。しかし、その際は、パイプの両側から供給するガスの流量や圧力が等しくなるように調整する必要があり、また、ガス吹き出し口の穴径もガス流量や圧力に応じて設計する必要があり、加工も難しくなる。
これに対し、図4(b)に示すように、ガスをパイプの中心(集光鏡の光軸との交点に当たる位置)から供給すると、パイプの中央付近のガス吹き出し口から吹き出すガスの流速が最も早く、外側に向かうにしたがって、流速は低下する。
上記したように、各ガス吹き出し口の径は等しいので、流速が早い方がガス流量は多くなり、ガス流速の早い中央付近には多くのクリーニングガスが供給される。
したがって、汚れの付着しやすい内側のミラーに対して多くのクリーニングガスが供給され、汚れの付着しにくい外側のミラーに供給されるクリーニングガスは少なくなる。
また、このように構成すればパイプに供給するガスの流量や圧力について複雑な制御調整は不要である。また、ガス吹き出し口の穴径もすべて同じでよく加工も容易である。
上記したように、各ガス吹き出し口の径は等しいので、流速が早い方がガス流量は多くなり、ガス流速の早い中央付近には多くのクリーニングガスが供給される。
したがって、汚れの付着しやすい内側のミラーに対して多くのクリーニングガスが供給され、汚れの付着しにくい外側のミラーに供給されるクリーニングガスは少なくなる。
また、このように構成すればパイプに供給するガスの流量や圧力について複雑な制御調整は不要である。また、ガス吹き出し口の穴径もすべて同じでよく加工も容易である。
1 チャンバ
2a 第1の放電電極
2b 第2の放電電極
3 EUV光集光部
3a 集光鏡
3b 支柱(スパイダ)
3c ミラー
4 EUV光取出部
6 モータ
7 パルス電力発生器
8 原料供給ユニット
9 レーザ照射機
10 排気装置
11 ホイルトラップ
21 ガスノズル
22 クリーニングガス供給部
2a 第1の放電電極
2b 第2の放電電極
3 EUV光集光部
3a 集光鏡
3b 支柱(スパイダ)
3c ミラー
4 EUV光取出部
6 モータ
7 パルス電力発生器
8 原料供給ユニット
9 レーザ照射機
10 排気装置
11 ホイルトラップ
21 ガスノズル
22 クリーニングガス供給部
Claims (2)
- 容器と、
この容器内で、極端紫外光放射種を放電により加熱して励起し高温プラズマを発生させる、一対の主放電電極からなる放電部と、
上記放電部に上記極端紫外光放射種を供給する極端紫外光放射種供給手段と、
上記主放電電極に高電圧を印加する高電圧発生部と、上記高温プラズマから放射される極端紫外光を反射して集光する集光鏡と、
上記集光された光を取り出す、上記容器に形成された光取り出し部と、
上記容器内を、上記集光鏡の光入射側から排気する排気手段と、
上記集光鏡に付着した付着物を除去するガスを、ガスノズルから上記集光鏡に導入するガス供給手段とを備えた極端紫外光光源装置において、
上記集光鏡は、複数の径の異なる回転楕円体または回転放物体形状のミラーを、同一軸上に、焦点位置が一致するように回転中心軸を重ねて配置されたものであり、
上記ガスノズルは、
上記集光鏡の光出射口を横断するように設けた直管状のパイプであり、
該パイプには複数のガス吹き出し口が形成され、
上記ガスノズルへのガスの供給は、上記直管状のパイプと上記集光鏡の回転中心軸との交点に形成されたガス導入口から行われる
ことを特徴とする極端紫外光光源装置。 - 上記直管状のパイプは、上記集光鏡の複数のミラーを支持する支柱に沿って設けられている
ことを特徴とする請求項1に記載の極端紫外光光源装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228092A JP2010062422A (ja) | 2008-09-05 | 2008-09-05 | 極端紫外光光源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228092A JP2010062422A (ja) | 2008-09-05 | 2008-09-05 | 極端紫外光光源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010062422A true JP2010062422A (ja) | 2010-03-18 |
Family
ID=42188885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008228092A Pending JP2010062422A (ja) | 2008-09-05 | 2008-09-05 | 極端紫外光光源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010062422A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017202545A1 (de) * | 2016-05-23 | 2017-11-30 | Carl Zeiss Smt Gmbh | Projektionsbelichtungsanlage für die halbleiterlithographie mit elementen zur plasmakonditionierung |
JP2020016894A (ja) * | 2013-09-09 | 2020-01-30 | エーエスエムエル ネザーランズ ビー.ブイ. | 極端紫外光源用搬送システム |
WO2024094431A1 (en) * | 2022-10-31 | 2024-05-10 | Asml Netherlands B.V. | Extreme ultraviolet light source obscuration bar and methods |
-
2008
- 2008-09-05 JP JP2008228092A patent/JP2010062422A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020016894A (ja) * | 2013-09-09 | 2020-01-30 | エーエスエムエル ネザーランズ ビー.ブイ. | 極端紫外光源用搬送システム |
JP2021099526A (ja) * | 2013-09-09 | 2021-07-01 | エーエスエムエル ネザーランズ ビー.ブイ. | 極端紫外光源用搬送システム |
JP7153753B2 (ja) | 2013-09-09 | 2022-10-14 | エーエスエムエル ネザーランズ ビー.ブイ. | 極端紫外光源用搬送システム |
WO2017202545A1 (de) * | 2016-05-23 | 2017-11-30 | Carl Zeiss Smt Gmbh | Projektionsbelichtungsanlage für die halbleiterlithographie mit elementen zur plasmakonditionierung |
US10712677B2 (en) | 2016-05-23 | 2020-07-14 | Carl Zeiss Smt Gmbh | Projection exposure system for semiconductor lithography, comprising elements for plasma conditioning |
WO2024094431A1 (en) * | 2022-10-31 | 2024-05-10 | Asml Netherlands B.V. | Extreme ultraviolet light source obscuration bar and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4888046B2 (ja) | 極端紫外光光源装置 | |
US7622727B2 (en) | Extreme UV radiation source device | |
US8076655B2 (en) | Method of cleaning optical surfaces of an irradiation unit in a two-step process | |
JP5076349B2 (ja) | 極端紫外光集光鏡および極端紫外光光源装置 | |
US8097092B2 (en) | Method of cleaning and after treatment of optical surfaces in an irradiation unit | |
JP2009021566A (ja) | プラズマベース放射線源の光学表面を清浄化する方法及び装置 | |
JP2008041742A (ja) | 極端紫外光光源装置 | |
JP5103976B2 (ja) | ホイルトラップ及びこのホイルトラップを用いた極端紫外光光源装置 | |
JP2009016640A (ja) | 極端紫外光光源装置及び極端紫外光集光鏡のクリーニング方法 | |
JP2007005542A (ja) | 極端紫外光光源装置 | |
US9572240B2 (en) | Light source apparatus | |
JP2007200919A (ja) | 極端紫外光光源装置 | |
JP2009212268A (ja) | 極端紫外光が出射する装置と極端紫外光が導入される装置との接続装置 | |
JP2010062422A (ja) | 極端紫外光光源装置 | |
JP4618013B2 (ja) | 極端紫外光光源装置 | |
JP2010123714A (ja) | 極端紫外光光源装置 | |
JP2007305908A (ja) | 極端紫外光光源装置 | |
JP2009224182A (ja) | 極端紫外光光源装置 | |
JP6036785B2 (ja) | ホイルトラップ及びマスク検査用極端紫外光光源装置 | |
JP2010080593A (ja) | 極端紫外光光源装置用ホイルトラップ | |
JP2007129103A (ja) | 極端紫外光光源装置 | |
JP6107694B2 (ja) | ホイルトラップ用櫛状中間リング | |
WO2011114958A1 (ja) | 極端紫外光光源装置 | |
JP2017091891A (ja) | 極端紫外光光源装置および極端紫外光光源装置の調整方法 |